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Abstract

The complex cubic Klein-Gordon (ccKG) equation possesses a fam-
ily of periodic traveling wave solutions. Whitham’s modulation equa-
tions (WME) can be derived by a multiple scaling perturbation anal-
ysis in order to describe slow modulations in time and space of these
traveling wave solutions. We prove estimates between true solutions
of the ccKG equation and their associated WME approximation. The
bounds are obtained in Gevrey spaces and hold independently of the
spectral stability of the underlying traveling wave solutions. The proof
is based on a suitable choice of variables, Cauchy-Kovalevskaya the-
ory, infinitely many near identity changes of variables, and energy es-
timates in Gevrey spaces. The analysis for the ccKG equation is more
complicated than the analysis for the nonlinear Schrödinger (NLS)
equation which has been handled in the existing literature, due to
additional curves of eigenvalues leading to an additional oscillatory
behavior.

1 Introduction

Whitham’s modulation equations (WME) can be derived by a multiple scal-
ing perturbation analysis, cf. [Whi74], with a small perturbation parameter
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0 < δ ≪ 1, in order to describe slow modulations in time and space of pe-
riodic traveling wave solutions in dispersive and dissipative systems. In this
introduction and also in the subsequent two sections we are going to explain
the backgrounds, ideas, as well as some intuitive calculations in numerous
remarks.

Remark 1.1. So far there are only few approximation results showing that
the WME approximations make correct predictions about the dynamics of
periodic traveling wave solutions in dispersive and dissipative systems. In
[DS09] such estimates were obtained in Gevrey spaces for such waves of the
NLS equation

∂τA = iν1∂
2
ξA+ iν2A|A|2, (1)

with τ ∈ R, ξ ∈ R, A(ξ, τ) ∈ C, and coefficients ν1, ν2 ∈ R, as original
system. In [BKS20] such estimates were obtained in Gevrey spaces for such
waves of a system of coupled NLS equations as original system. For spectrally
stable waves of the NLS equation in [BKZ21] it was shown that WME even
make correct predictions for initial conditions in Sobolev spaces. The only
approximation result, we are aware of, for dissipative systems can be found
in [HdRS21] where the validity of WME was shown for such waves in the
amplitude system which appears at the first instability of the Marangoni
problem consisting of a Ginzburg-Landau equation coupled to a diffusive
conservation law.

Remark 1.2. Such approximation results are non-trivial since solutions of
order O(1) have to be bounded on a long O(1/δ)-time scale. In general
solutions of order O(1) are only bounded on an O(1)-time scale.

Remark 1.3. As a next step in the direction of handling modulations of
periodic wave trains for general dispersive systems, in this paper, we consider
the complex cubic Klein-Gordon (ccKG) equation

∂2t u = ∂2xu− u+ γu |u|2 , (2)

with t, x ∈ R, γ ∈ {−1, 1}, and u(x, t) ∈ C. It possesses traveling wave
solutions

u (x, t) = erq,µ+iqx+iµt,

with µ, q, rq,µ ∈ R satisfying

−γe2rq,µ = µ2 − q2 − 1.

2



Remark 1.4. All these equations have in common that the nonlinearities
possess an S1-symmetry, i.e., with u also ueiϕ, with ϕ ∈ R, is a solution.
As a consequence, the underlying periodic traveling wave solutions are har-
monic which easily allows us to extract a local wave number variable which
is necessary for the derivation of WME.

Remark 1.5. What makes the analysis for the ccKG equation more com-
plicated than the analysis for the NLS equation are two additional curves of
eigenvalues which lead to an additional oscillatory behavior. See Figure 1.

Figure 1: The left panel shows the spectral curves for the NLS equation.
The right panel shows the spectral curves for the ccKG equation (2). WME
describe the modes in the circles.

Remark 1.6. For notational simplicity, here in the introduction, we derive
WME for the ccKG equation (2) for the wave train associated to q = 0,
where we have µ2 = 1− γe2r0,µ . We introduce polar coordinates

u = er+iφ+r0,µ+iµt, (3)

with r = r(x, t) and φ = φ(x, t). Using

∂tu = er+iφ+r0,µ+iµt(∂tr + i∂tφ+ iµ),

∂2t u = er+iφ+r0,µ+iµt(∂tr + i∂tφ+ iµ)2 + er+iφ+r0,µ+iµt(∂2t r + i∂2t φ),

and similar expressions for ∂xu and ∂2xu we find by separating real and imag-
inary parts that

∂2t r − (∂tφ+ µ)2 + (∂tr)
2 = ∂2xr − (∂xφ)

2 + (∂xr)
2 − 1 + γe2r+2r0,µ ,

2 (∂tr) (∂tφ+ µ) + ∂2t φ = 2 (∂xr) (∂xφ) + ∂2xφ.
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We introduce the local temporal wave number ϑ = ∂tφ and the local spatial
wave number ψ = ∂xφ for which we obtain

∂2t r = ∂2xr + ϑ2 + 2µϑ− (∂tr)
2 − ψ2 + (∂xr)

2 + γe2r0,µ(e2r − 1), (4)

∂tϑ = 2(∂xr)ψ + ∂xψ − 2(∂tr)(ϑ+ µ), (5)

∂tψ = ∂xϑ, (6)

by using

(∂tφ+ µ)2 = (ϑ+ µ)2 = ϑ2 + 2µϑ+ µ2 = ϑ2 + 2µϑ+ 1− γe2r0,µ .

For the derivation of WME we make the long wave ansatz

(r, ψ, ϑ)(x, t) = (ř, ψ̌, ϑ̌)(δx, δt), (7)

with 0 < δ ≪ 1 a small perturbation parameter. Ignoring higher order terms
yields the system

0 = ϑ̌2 + 2µϑ̌− ψ̌2 + γe2r0,µ(e2ř − 1), (8)

∂T ϑ̌ = 2(∂X ř)ψ̌ + ∂Xψ̌ − 2(∂T ř)(ϑ̌+ µ), (9)

∂T ψ̌ = ∂X ϑ̌. (10)

Since the second equation contains derivatives of ϑ̌ and ř w.r.t. T , it turns
out be advantageous to work with the variables

v̌ = 2µϑ̌+ bř and w̌ = ϑ̌+ 2µř, (11)

respectively

ϑ̌ = (−2µv̌ + bw̌)/D and ř = (v̌ − 2µw̌)/D,

with b = 2γe2r0,µ = 2 − 2µ2 and D = −4µ2 − b = −(6µ2 − 2) = 2 − 6µ2.
Equation (8) is then of the form

v̌ = fv(v̌, w̌, ψ̌),

with fv at least quadratic in its arguments. For w̌ and ψ̌ sufficiently small
this equation can be solved with respect to v̌, i.e., there exists a nonlinear
function gv such that

v̌ = gv(w̌, ψ̌), (12)
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with gv at least quadratic in its arguments. Using

∂T ϑ̌+ 2µ∂T ř = 2(∂X ř)ψ̌ + ∂Xψ̌ − 2(∂T ř)ϑ̌

we rewrite the ϑ̌-equation into

∂T w̌ = 2(∂X(a1v̌ + a2w̌))ψ̌ + ∂Xψ̌ − 2(∂T (a1v̌ + a2w̌))(a3v̌ + a4w̌),

= 2ψ̌(∂X(a1v̌ + a2w̌)) + ∂Xψ̌ − 2(a3v̌ + a4w̌)a2∂T w̌

−2(a3v̌ + a4w̌)a1(ℓ1(w̌, ψ̌)∂T w̌ + ℓ2(w̌, ψ̌)∂T ψ̌),

with ℓ1 and ℓ2 at least linear in its arguments and constant coefficients aj.
We can replace ∂T ψ̌ by the right hand side of the third equation which is of
the form

∂T ψ̌ = ∂X(a3v̌ + a4w̌).

Hence, for w̌ and ψ̌ sufficiently small the second equation can be solved with
respect to ∂T w̌, i.e., there exists a nonlinear function gw such that

∂T w̌ = gw(v̌, w̌, ψ̌, ∂X v̌, ∂Xw̌, ∂Xψ̌),

where gw is of the form

gw = gw,1(v̌, w̌, ψ̌)∂X v̌ + gw,2(v̌, w̌, ψ̌)∂Xw̌ + gw,3(v̌, w̌, ψ̌)∂Xψ̌.

Eliminating v̌ by the above expression finally yields WME given by

∂T w̌ = gw(gv(w̌, ψ̌), w̌, ψ̌, ∂Xgv(w̌, ψ̌), ∂Xw̌, ∂Xψ̌), (13)

∂T ψ̌ = ∂X(a3gv(w̌, ψ̌) + a4w̌), (14)

describing the modes in the circles in the right panel of Figure 1, where the
right-hand side of the w̌-equation (13) can be written as

gw,4(w̌, ψ̌)∂Xw̌ + gw,5(w̌, ψ̌)∂Xψ̌. (15)

Remark 1.7. Depending on the values of µ and γ WME (13)-(14) can
be well- or ill-posed in Sobolev spaces. In the first case, it turns out that
equivalently the periodic wave train is spectrally stable, in the second case
spectrally unstable. The first situation is called the Benjamin-Feir stable and
the second situation the Benjamin-Feir unstable case, cf. Remark 1.11 and
Section 2.1.
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In the following we prove estimates between true solutions of the ccKG
equation and their associated WME approximation. The bounds are ob-
tained in Gevrey spaces and hold independently of the spectral stability of
the underlying traveling wave solutions.

Definition 1.8. The Gevrey spaces

Gm
σ = {u ∈ L2 : ∥u∥Gm

σ
<∞}

are Hilbert spaces equipped with the inner product

(u, v)Gm
σ
=

∫
R
e2σ(1+|k|) (1 + |k|2

)m
û(k)v̂(k)dk,

for σ ≥ 0 and m ≥ 0.

Remark 1.9. Since the right hand sides of WME (13)-(14) only contain first
derivatives local existence and uniqueness of solutions in Gevrey spaces for
WME is well known by the Cauchy-Kowalevskaya theorem. See Section 4.

Our approximation result, formulated for q = 0, is as follows.

Theorem 1.10. Let |µ| > 1/
√
3, σ0 > 0 and m ≥ 3. Then for all T0 and

C1 there exist C2, T1, δ0 > 0 such that for all δ ∈ (0, δ0) the following holds.
Let (w̌app, ψ̌app) ∈ C([0, T0], G

m+1
σ0

) ∩ C1((0, T0], G
m
σ0
) be a solution of WME

(13)-(14) satisfying

sup
T∈[0,T0]

∥(w̌app, ψ̌app)∥Gm+1
σ0

≤ C1,

let v̌app be the corresponding solution to the algebraic equation (12) and let
(řapp, ϑ̌app, ψ̌app) be the approximation constructed from (v̌app, w̌app, ψ̌app).
Then there exist solutions (r, ϑ, ψ) of (4)-(6) with

sup
t∈[0,T1/δ]

sup
x∈R

|(r, ϑ, ψ)(x, t)− (řapp, ϑ̌app, ψ̌app)(δx, δt)| ≤ C2δ.

Remark 1.11. The approximation result covers the Benjamin-Feir stable
case, |µ| ≥ 1, and the Benjamin-Feir unstable case, |µ| ∈ (1/

√
3, 1), cf.

Figure 2. For |µ| ≤ 1/
√
3 it cannot be expected that WME make correct

predictions, cf. Figure 3 and Remark 9.2.
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Remark 1.12. As already said, the above validity result is a nontrivial task.
The WME approximation and the associated solution are of order O(1) for
δ → 0. Therefore, a simple application of Gronwall’s inequality would only
provide the boundedness of the solutions on an O(1)-time scale, but not on
the natural O(1/δ)-time scale of the WME approximation.

Remark 1.13. There is a number of counterexamples where formally derived
amplitude equations make wrong predictions about the dynamics of original
systems on the natural time scale of the amplitude equations, cf. [Sch95,
SSZ15, HS20, BSSZ20, FS22].

Remark 1.14. Although Theorem 1.10 is not optimal in the sense that
the possible approximation time T1/δ is possibly smaller than T0/δ, we do
establish an approximation result on the natural O(1/δ)-time scale of the
WME approximation.

The plan of the paper is as follows. In the next section we go on with some
further remarks. We start with the Benjamin-Feir instability, i.e., in Section
2.1 we explain that there are stable and unstable wave trains. Modulations
of small amplitude wave trains of the ccKG equation (2) can be described
by an NLS approximation. Therefore, in Section 2.2 we relate our approxi-
mation result to the associated approximation results for the NLS equation.
The WME approximation is a long wave limit approximation like the KdV
approximation or the inviscid Burgers approximation. Hence, in Section 2.3
we relate our result to other long wave approximation results and formulate
the associated approximation results for modulations of wave trains in the
ccKG equation (2). Finally, in Section 2.4 we explain the ideas of the proof
of Theorem 1.10. In Section 3 we redo some calculations for q ̸= 0 and plot
a few spectral curves which look different from the spectral curves for q = 0.
The rest of the paper is about the proof of the main theorem 1.10. We
use Cauchy-Kovalevskaya theory in Section 4 to obtain local existence and
uniqueness of solutions to WME (13)-(14). After diagonalisation of the error
equations in Section 5, we have to use infinitely many normal form trans-
formations in Section 6 to get rid of the new oscillatory terms appearing in
the right panel of Figure 1, cf. [DKS16]. After some preparations in Section
7 we obtain a system for which in Section 8 we can use energy estimates,
similar to the one used for WME in Section 4, to control the solutions close
to the wave number k = 0. At wave numbers bounded away from k = 0
an artificial damping is available to control the solutions due to the use of
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a time-dependent scale of Gevrey spaces. This finally yields the validity of
the main theorem 1.10. We close this paper with Section 9 where we dis-
cuss related questions such as difficulties and strategies to obtain estimates
in Sobolev spaces. In an Appendix we collect some calculations about the
spectral curves plotted subsequently in Figure 5 for the case q ̸= 0 and give
a proof for some estimates used in the previous sections.

2 Some further remarks

As in the introduction all further explanations in this section are still made
for the wave trains with the wave number q = 0.

2.1 The Benjamin-Feir instability

In this section we explain that there are stable and unstable wave trains.
The so called Benjamin-Feir instability is a long wave instability.

Remark 2.1. The linearization of (4)-(6) is given by

∂2t r = ∂2xr + 2µϑ+ 2γe2r0,µr,

∂tϑ = ∂xψ − 2µ(∂tr),

∂tψ = ∂xϑ,

where for q = 0 we have
−γe2r0,µ = µ2 − 1.

A Fourier ansatz yields the dispersion relations

−ω2r̂ = −k2r̂ + 2µϑ̂− 2(µ2 − 1)r̂,

iωϑ̂ = ikψ̂ − 2µ(iωr̂),

iωψ̂ = ikϑ̂.

For k = 0 we find the dispersion relation

−ω2(−ω2 + 6µ2 − 2) = 0.

Hence, we have two eigenvalues zero and two eigenvalues bounded away from
zero, which is exactly the spectral situation necessary for the derivation of
WME.
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Remark 2.2. For the calculation of the eigenvalues we have to solve

det

 ω2 − k2 − 2(µ2 − 1) 2µ 0
−2µiω −iω ik

0 ik −iω

 = 0.

We find
(ω2 − k2 − 2(µ2 − 1))(−ω2 + k2) + 4µ2ω2 = 0,

respectively,

ω4 − ω2(2k2 + 6µ2 − 2) + k4 + 2k2(µ2 − 1) = 0,

and so

2ω2
1,2 = (2k2 + 6µ2 − 2)±

√
(2k2 + 6µ2 − 2)2 − 4(k4 + 2k2(µ2 − 1)),

which yields

ω2
1,2 = (k2 + 3µ2 − 1)±

√
4k2µ2 + (3µ2 − 1)2.

Figure 2: The left panel shows the spectral curves ±iω1,2 of (4)-(6) for µ =
1.2 ≥ 1. They are purely imaginary (in blue) since the real part (in red) of
±iω1,2 vanishes identically. The right panel shows the imaginary part of the
spectral curves of (4)-(6) for µ = 0.8 ∈ (1/

√
3, 1) (in blue). The eigenvalues

with vanishing imaginary part have non-zero real part (in red), i.e., there is
a so called Benjamin-Feir instability.
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Figure 3: The left panel shows the real (in red) and imaginary part (in blue)
of the spectral curves ±iω1,2 of (4)-(6) for µ = 0.4 < 1/

√
3. The right panel

shows the same at the threshold µ = 1/
√
3, cf. Remark 1.11.

Figure 2 and Figure 3 show that the traveling wave solutions are only
spectrally stable for |µ| ≥ 1. In this region an approximation result with
initial conditions in Sobolov spaces would be desirable. For |µ| ∈ (1/

√
3, 1)

we have a Benjamin-Feir instability and so only an approximation result
with initial conditions in Gevrey spaces can be expected. For |µ| < 1/

√
3

the modes associated to ω = 0 are imaginary again, however, for k = 0 there
are now modes with positive growth rates and so it cannot be expected that
the WME approximation makes correct predictions, cf. Figure 3.

2.2 The NLS limit

In the following remarks we explain how the previous WME approximation
results from [DS09, BKZ21] for the NLS equation are related to our result
for the ccKG equation stated in Theorem 1.10.

Remark 2.3. Inserting the multiple scaling ansatz

u(x, t) = εA(ε(x− ct), ε2t)ei(k0x−ω0t)

into the ccKG equation (2) and then equating the coefficients in front of
εnei(k0x−ω0t) to zero for n = 1, 2, 3 gives the dispersion relation

ω2
0 = k20 + 1,
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the group velocity
c = k0/ω0,

and shows that in lowest order A has to satisfy the NLS equation

2iω0∂τA = (1− c2)∂2ξA+ γA|A|2.

Remark 2.4. The normalized NLS equation

∂τU = i∂2ξU + γiU |U |2, (16)

with τ ∈ R, ξ ∈ R, U(ξ, τ) ∈ C, and γ = ±1 possesses traveling wave
solutions

Uϱ,q(ξ, τ) = eϱ+iω̃τ+iϕ0+iqξ, (17)

with ϱ, ω̃, ϕ0, q ∈ R satisfying

ω̃ = −q2 + γe2ϱ. (18)

WME describe slow modulations in time and in space of these waves. For
notational simplicity in this remark we restrict ourselves in the following
to modulations of the wave train to q = ϱ = ϕ0 = 0. For the derivation
we introduce polar coordinates, with radius also in exponential form, in a
uniformly rotating frame. The NLS equation in such polar coordinates

U(ξ, τ) = er(ξ,τ)+iϕ(ξ,τ)+iγτ

is then given by

∂τr = −∂2ξϕ− 2(∂ξr)(∂ξϕ), (19)

∂τϕ = ∂2ξ r − (∂ξϕ)
2 + (∂ξr)

2 + γ(e2r − 1). (20)

Introducing the local spatial wave number ∂ξϕ = ψ yields

∂τr = −∂ξψ − 2(∂ξr)ψ, (21)

∂τψ = ∂3ξ r − ∂ξ(ψ
2) + ∂ξ(∂ξr)

2 + 2γe2r∂ξr. (22)

The long wave ansatz

r(ξ, τ) = ř(δξ, δτ), ψ(ξ, τ) = ψ̌(δξ, δτ), (23)
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with 0 < δ ≪ 1, leads to

∂T ř = −∂Xψ̌ − 2(∂X ř)ψ̌, (24)

∂T ψ̌ = δ2∂3X ř − ∂X(ψ̌
2) + δ2∂X(∂X ř)

2 + 2γe2ř∂X ř, (25)

where T = δτ and X = δξ. Ignoring the higher order terms gives WME

∂T ř = −∂Xψ̌ − 2(∂X ř)ψ̌, (26)

∂T ψ̌ = −∂X(ψ̌2) + 2γe2ř∂X ř. (27)

In case γ = 1 we recover the Benjamin-Feir instability, cf. [BM95], i.e., the
linearization

∂T ř = −∂Xψ̌, ∂T ψ̌ = 2γ∂X ř,

is an elliptic system and so ill-posed in Sobolev spaces for γ = 1. However,
even for γ = 1 WME still possess local in time solutions in the space of
functions analytic in a strip around the real axis in the complex plane, i.e.,
in so called Gevrey spaces by the Cauchy-Kowalevskaya theorem.

Remark 2.5. We derive WME for the ccKG equation (2) in the NLS limit
introduced in the two previous remarks. In this limit we consider modulations
of the traveling wave solution

u (x, t) = εeiωt

of the ccKG equation (2) with

ω =
√

1− γε2 = 1− γ

2
ε2 +O(ε4).

For the derivation of WME we introduce polar coordinates

u(x, t) = εer(εx,ε
2t)+iφ(εx,ε2t)+iωt.

Using

∂tu = εer+iφ+it−iγε2t/2+O(ε4)(ε2∂τr + iε2∂τφ+ i− iε2γ/2 +O(ε4)),

∂2t u = εer+iφ+it−iγε2t/2+O(ε4)(ε2∂τr + iε2∂τφ+ i− iε2γ/2 +O(ε4))2

+εer+iφ+it−iγεt/2+O(ε4)(ε4∂2τ r + iε4∂2τφ),
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and

∂xu = εer+iφ+it−iγε2t/2+O(ε4)(ε∂ξr + iε∂ξφ),

∂2xu = εer+iφ+it−iγε2t/2+O(ε4)(ε∂ξr + iε∂ξφ)
2

+εer+iφ+it−iγε2t/2+O(ε4)(ε2∂2ξ r + iε2∂2ξφ),

and separating real and imaginary parts we find

ε4∂2τ r −
(
ε2∂τφ+ 1− γε2/2 +O(ε4)

)2
+
(
ε2∂τr

)2
= ε2∂2ξ r − (ε∂ξφ)

2 + (ε∂ξr)
2 − 1 + ε2γe2r,

2ε2 (∂τr)
(
ε2∂τφ+ 1− γε2/2 +O(ε4)

)
+ ε4∂2τφ

= 2 (ε∂ξr) (ε∂ξφ) + ε2∂2ξφ,

where ξ = εx and τ = ε2t. In lowest order we obtain

−2∂τφ = ∂2ξ r − (∂ξφ)
2 + (∂ξr)

2 + γ(e2r − 1),

2∂τr = 2 (∂ξr) (∂ξφ) + ∂2ξφ,

which corresponds up to some rescaling to (19)-(20). Following the rest of
Remark 2.4 allows us to recover WME in the NLS limit for the ccKG equation
(2).

Remark 2.6. In order to relate the equations (19)-(20) to WME (13)-(14)
for the ccKG equation we use the variables from above, namely ψ = ∂ξϕ and
ϑ = ∂τϕ. We find

∂τr = −∂ξψ − 2(∂ξr)ψ,

ϑ = ∂2ξ r − ψ2 + (∂ξr)
2 + γ(e2r − 1),

∂τψ = ∂ξϑ.

Diffentiating the ϑ-equation w.r.t. τ and replacing then ∂τr and ∂τψ on the
new right-hand side by the right-hand sides of the ∂τr- and ∂τψ-equations
gives the systems from above.

Remark 2.7. Finally we show how the Benjamin-Feir instability criterion
for the ccKG equation and for the associated NLS equation fit together. With
the notations of Remark 1.6 we have µ2 = 1− γe2r0,µ and get

ř∗(ϑ̌, ψ̌) = − µ

γe2r0,µ
ϑ̌+ h.o.t..

13



We find

∂T ř
∗ = − µ

γe2r0,µ
∂T ϑ̌+ h.o.t.,

∂X ř
∗ = − µ

γe2r0,µ
∂X ϑ̌+ h.o.t..

Inserting this in the above equations (8)-(10) yields

∂T ϑ̌ = 2

(
− µ

γe2r0,µ
∂X ϑ̌

)
ψ̌ + ∂Xψ̌ − 2

(
− µ

γe2r0,µ
∂T ϑ̌

)(
ϑ̌+ µ

)
= − 2µ

γe2r0,µ

(
∂T ψ̌

)
ψ̌ + ∂Xψ̌ +

2µ

γe2r0,µ

(
∂T ϑ̌

)
ϑ̌+

2µ

γe2r0,µ

(
∂T ϑ̌

)
µ.

The linearization of this equation is given by

∂T ϑ̌ = ∂Xψ̌ +
2µ2

γe2r0,µ
∂T ϑ̌ = ∂Xψ̌ +

2 (1− γe2r0,µ)

γe2r0,µ
∂T ϑ̌.

Hence we find

∂T ϑ̌ =
1(

3− 2

γe2r0,µ

)∂Xψ̌ =
1

(3− 2γ−1e−2r0,µ)
∂Xψ̌.

In the NLS limit we have r0,µ → −∞ and so 3 ≪ e−2r0,µ . Since additionally
∂T ψ̌ = ∂X ϑ̌, then γ decides about the stability and instability. The so called
Benjamin-Feir instability occurs for 3 − 2γ−1e−2r0,µ < 0 and is possible for
γ = 1. In this case the system is ill-posed in Sobolev spaces.

2.3 Long wave limit approximations

WME appear as a long wave approximation. Other long wave approximations
are the KdV approximation or the inviscid Burgers equation. The KdV
approximation describes long waves of amplitude O(δ2) on an O(1/δ3)-time
scale whereas, as we have seen, the WME approximation describes long waves
of amplitude O(1) on an O(1/δ)-time scale.

Remark 2.8. In order to obtain a KdV equation

∂TA = ν1∂
3
XA+ ν2A∂XA, (28)
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with coefficients ν1, ν2 ∈ R, for (4)-(6) with |µ| > 1 we make the ansatz rkdv
ϑkdv

ψkdv

 (x, t) = δ2A(δ(x− ct), δ3t)V,

where c ∈ R is the group velocity and V ∈ R3 an eigenvector to the eigenvalue
0 associated to one of the two curves ω±1 plotted in the circle of the right
panel of Figure 1. Then similar to Theorem 1.10 the following approximation
result can be established.

Theorem 2.9. Let |µ| > 1, σ0 > 0 and m ≥ 5. Then for all T0 and C1

there exist C2, T1, δ0 > 0 such that for all δ ∈ (0, δ0) the following holds.
Let A ∈ C([0, T0], G

m+3
σ0

)∩C1((0, T0], G
m
σ0
) be a solution of the KdV equation

(28) satisfying
sup

T∈[0,T0]

∥A∥Gm+3
σ0

≤ C1.

Then there exist solutions (r, ϑ, ψ) of (4)-(6) with

sup
t∈[0,T1/δ3]

sup
x∈R

|(r, ϑ, ψ)(x, t)− (rkdv, ϑkdv, ψkdv)(x, t)| ≤ C2δ
3.

Remark 2.10. We explain in the subsequent Remark 2.15 how the proof of
Theorem 1.10 has to be modified for proving Theorem 2.9. We refrain from
formulating a similar result for the approximation by an inviscid Burgers
equation, cf. [BDS19].

Remark 2.11. The spectral situation, plotted in the left panel of Figure 1,
appears for various systems with a spatially homogeneous background state
and so for this spectral situation various KdV approximation results exist,
for instance for the water wave problem, cf. [Cra85, SW00b, Dül12], or the
FPU-system, cf. [SW00a]. Less results are available for the spectral situ-
ation plotted in the right panel of Figure 1. Only recently, methods have
been developed for the description of the long wave limit of spatially ho-
mogeneous systems by KdV approximations, cf. [CS11, Sch20], and WME
approximations for such systems. In the justification analysis the new oscil-
latory modes are eliminated by some normal form transformations. In the
justification analysis of the WME approximation a new serious difficulty oc-
curs, namely, the fact that due to the scaling of the WME ansatz infinitely
many normal form transformations have to be performed, cf. [DKS16]. In
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[BDS19] for a Boussinesq equation with spatially periodic coefficients the
validity of the WME approximation was established with a suitable chosen
energy.

Remark 2.12. The spectral situation, plotted in Figure 1 a), also appears in
the situation described in Remark 1.1, and so beside the already mentioned
WME approximation results, cf. [DS09, BKZ21] also KdV approximation
results, cf. [BGSS09, BGSS10, CR10, CDS14], do exist for the NLS equation.
However, slow modulations in time and space of periodic traveling wave
solutions with a spectral situation as plotted in the right panel of Figure 1
have not been considered before.

2.4 Idea of the proof

Remark 2.13. The strategy of the proof is as follows. By Cauchy-Kovalevs-
kaya theory in Gevrey spaces we have local existence and uniqueness of so-
lutions to WME (4)-(6). Another application of the Cauchy-Kovalevskaya
theory yields the local existence of higher-order approximations in Gevrey
spaces. These higher-order approximations are necessary for the proof of
the main result, Theorem 1.10. The solutions of the error equations are
controlled with methods from [DKS16], described above. Since we have to
perform infinitely many normal form transformations we have to show the
convergence of this procedure. Energy estimates for the limit system provide
the final argument to finish the proof of Theorem 1.10.

Remark 2.14. Although our proof is based on the overall idea of [DKS16],
there are a number of differences between the analysis from [DKS16] and
the analysis of the present paper. In the present paper the normal form
transformations are only made in a neighborhood of wave numbers at k =
0. Therefore, in the present paper the validity of non-resonance conditions
is only necessary in this neighborhood but not on the whole real line like
in [DKS16]. However, by this restriction due to some incompatibility of
some Fourier modes supports infinitely many new terms are created whose
convergence additionally has to be shown. Moreover, since the Benjamin-
Feir unstable situation is included the estimates from [DKS16] has to be
transfered from Sobolev spaces to Gevrey spaces.

Remark 2.15. The KdV approximation result in Theorem 2.9 can be proven
similarly as the Whitham approximation result in Theorem 1.10. However,
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due to the smaller size of the solutions one normal form transformation is
sufficient for the elimination of the oscillatory terms. Finally we can use the
same energy estimates as for the WME approximation.

3 The case q ̸= 0

In this section we derive the evolution equations in case q ̸= 0 and investigate
the linear stability of the associated wave trains. Calculations for determining
the stability regions in the (µ, q)-parameter plane can be found in Appendix
A.1.

3.1 The evolution equations

In this section we redo the calculations from Remark 1.6 for the case q ̸= 0.

Remark 3.1. We introduce polar coordinates

u = er+iφ+rq,µ+iµt+iqx,

with r = r(x, t) and φ = φ(x, t). Inserting this into the ccKG equation (2)
and separating real and imaginary parts finally gives

∂2t r = − (∂tr)
2 + (∂tφ)

2 + 2µ∂tφ+ (∂xr)
2 − (∂xφ)

2 − 2q∂xφ+ ∂2xr

+γe2rq,µ
(
e2r − 1

)
,

∂2t φ = −2∂tr∂tφ− 2µ∂tr + 2∂xr∂xφ+ 2q∂xr + ∂2xφ.

As in Remark 1.6 we introduce the local spatial wave number ψ = ∂xφ and
the local temporal wave number ϑ = ∂tφ for which we obtain the evolutionary
system

∂2t r = ∂2xr + ϑ2 + 2µϑ− (∂tr)
2 − ψ2 + (∂xr)

2 − 2qψ (29)

+γe2rq,µ
(
e2r − 1

)
,

∂tϑ = 2 (∂xr) (ψ + q) + ∂xψ − 2 (∂tr) (ϑ+ µ) , (30)

∂tψ = ∂xϑ. (31)

3.2 Linear stability analysis

In this section we redo the linear stability analysis from Section 2.1 for the
periodic wave trains in case q ̸= 0, i.e., we consider the linear stability of
(r, ϑ, ψ) = (0, 0, 0) of (29)-(31).
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Remark 3.2. The linearization of (29)-(31) at the origin is given by

∂2t r = ∂2xr + 2µϑ− 2qψ + 2γe2r0,µr,

∂tϑ = ∂xψ − 2µ(∂tr) + 2q(∂xr),

∂tψ = ∂xϑ,

which yields the spectral problem

−ω2r̂ = −k2r̂ + 2µϑ̂− 2qψ̂ − 2(µ2 − 1− q2)r̂,

iωϑ̂ = ikψ̂ − 2µ(iωr̂) + 2qikr̂,

iωψ̂ = ikϑ̂

where we used µ2 = 1 + q2 − γe2rq,µ .

Remark 3.3. For the calculation of the eigenvalues we have to solve

det

 ω2 − k2 − 2(µ2 − 1− q2) 2µ −2q
−2µiω + 2qik −iω ik

0 ik −iω

 = 0.

We find

(ω2 − k2 − 2(µ2 − 1− q2))(−ω2 + k2)− (−2µiω + 2qik)2 = 0,

respectively

ω4 − ω2(2k2 + 6µ2 − 2− 2q2) + ω(8µqk) + k4 + 2k2(µ2 − 1− 3q2) = 0,

which no longer can be solved explicitly w.r.t. ω.

Remark 3.4. Figure 4 shows the different stability/instability regions in the
(µ, q)-parameter plane. In the (yellow) area Pstab the spectral curves show a
similar behavior as the ones in the left panel of Figure 2. In that case WME
approximations can be derived with the same techniques as for q = 0. In the
(white) area Prest there are eigenvalues with positive real part at the wave
number k = 0. As we will see below in this region it cannot be expected that
the WME approximation makes correct predictions. A typical spectral curve
for the parameter region Pbenj is shown in the left panel of Figure 5. It shows
a Benjamin-Feir instability for q ̸= 0. The right panel of Figure 5 shows
a spectrally stable situation which does not occur in this form for q = 0.
Since the derivation of WME needs a spectral situation as shown in Figure 2
we concentrate in the following on parameters outside the parameter region
Prest, cf. Remark 9.2.
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Figure 4: In the (µ, q)-parameter plane we identify regions where the spectral
curves look qualitatively different. The parameter region Pbenj is determined
by the inequality 1 + q2 − 3µ2 ≤ 0 and the parameter region Pstab by 1 +
3q2 − µ2 ≤ 0. See Appendix A.1 for some details.
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Figure 5: The left panel shows the real (in red) and imaginary part (in blue)
of the spectral curves ±iω1,2 of (29)-(31) for µ = 0.8 and q = 0.5 which is
located in Pbenj. The right panel shows the same for µ = 1.2 and q = 0.7
which is close to the boundary of Pbenj and Pstab.

4 The improved WME approximation

For estimating the error made by the WME approximation we need that
the residual terms, i.e., the terms which do not cancel after inserting the
WME approximation into the ccKG equation (2) are sufficiently small. The
residual can be made smaller by adding higher order terms to the WME
approximation. This section contains the construction of such an improved
WME approximation. The subsequent analysis is an adaption of [HdRS21,
Section 2]. The local existence and uniqueness of solutions of the approxima-
tion equations is guaranteed by an application of the Cauchy-Kovalevskaya
theory in Gevrey spaces.

4.1 Some preparations

In the next Remark 4.1 we collect some inequalities which we use in the
following.

Remark 4.1. a) We use that Gm
σ is an algebra for m > 1/2. In addition, if

u, v ∈ Gm
σ then uv ∈ Gm

σ and

∥uv∥Gm
σ
≤ Cm∥u∥Gm

σ
∥v∥Gm

σ
, (32)
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where the constant Cm > 0 is independent of σ ≥ 0. In case that u and v are
vector-valued, the product is replaced by an inner product on Rd. Formula
(32) can be improved to

∥uv∥Gm1
σ

≤ Cm1,m2(∥u∥Gm1
σ
∥v∥Gm2

σ
+ ∥u∥Gm2

σ
∥v∥Gm1

σ
), (33)

which holds for all σ ≥ 0 and mj > 1/2 for j = 1, 2 where the constant
Cm1,m2 is independent of σ ≥ 0.

b) Let ϕ be any entire function ϕ with ϕ(0) = 0. Then for any m > 1/2
there exists an entire function ϕm(z) which is monotonically increasing on
R+ and satisfies ϕm(0) = 0 such that we have

∥ϕ(u)∥Gm
σ
≤ ϕm(∥u∥Gm

σ
) (34)

for all u ∈ Gm
σ .

c) Functions u ∈ Gm
σ can be extended to functions that are analytic on

the strip {z ∈ C : |Im(z)| < σ} by the Paley-Wiener Theorem, cf. [RS75,
Theorem IX.13]. It is easy to see that for any σ1 > σ2 ≥ 0 and any m ≥ 0
we have the continuous embedding G0

σ1
↪→ Gm

σ2
.

d) Since ∥u(δx)∥L2(dx) = O(δ−1/2) the WME approximation will be of
order O(δ−1/2) in the L2-based spaces Gm

σ . In order to estimate the WME
approximation without this loss of powers of δ we introduce

Definition 4.2. The spaces

Wm
σ = {u ∈ C0

b : ∥u∥Wm
σ
<∞}

are equipped with the norm

∥u∥Wm
σ
=

∫
R
eσ(1+|k|) (1 + |k|2

)m/2 |û(k)|dk,

for σ ≥ 0 and m ≥ 0.

In the following we use

∥uv∥Gm
σ
≤ Cm∥u∥Wm

σ
∥v∥Gm

σ
, (35)

for u ∈ Wm
σ and v ∈ Gm

σ , with m,σ ≥ 0, where the constant Cm > 0 is
independent of σ ≥ 0.
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4.2 The structure of the problem

Our starting point in this section is the System (4)-(6) on which the transform
(11) is applied. The equations for v, w and ψ are obtained as above in Remark
1.6, i.e.

∂2t (a1v + a2w) = ∂2x(a1v + a2w) + (a3v + a4w)
2 + v (36)

− (∂t(a1v + a2w))
2 − ψ2 + (∂x(a1v + a2w))

2

+γe2r0,µ(e2(a1v+a2w) − 1− 2(a1v + a2w)),

∂tw = 2ψ(∂x(a1v + a2w)) + ∂xψ (37)

−2(∂t(a1v + a2w))(a3v + a4w),

∂tψ = ∂x(a3v + a4w). (38)

We switch to the (X,T )-coordinates in (36)-(38)

δ2∂2T (a1v̌ + a2w̌) = δ2∂2X(a1v̌ + a2w̌) + (a3v̌ + a4w̌)
2 + v̌ (39)

−δ2 (∂T (a1v̌ + a2w̌))
2 − ψ̌2

+δ2 (∂X(a1v̌ + a2w̌))
2

+γe2r0,µ(e2(a1v̌+a2w̌) − 1− 2(a1v̌ + a2w̌)),

∂T w̌ = 2ψ̌(∂X(a1v̌ + a2w̌)) + ∂Xψ̌ (40)

−2(∂T (a1v̌ + a2w̌))(a3v̌ + a4w̌),

∂T ψ̌ = ∂X(a3v̌ + a4w̌). (41)

The resulting system for v, w, and ψ is then of the form

0 = Mv(v,u) + δ2Fv(D
2
Xv, D

2
Xu, D

2
Tv, D

2
Tu),

∂Tu = Mu(v,u)∂X(v,u) +MT,u(v,u)∂T (v,u), (42)

with v = v̌ and u = (w̌, ψ̌), where Mv(v,u), Mu(u,v) and MT,u(u,v)
are entire (matrix-valued) functions of their arguments. The functions Fv is
polynomial in D2

Xv = (v, ∂Xv, ∂
2
Xv), D

2
Xu = (u, ∂Xu, ∂

2
Xu), DTv = (v, ∂Tv)

and DTu = (u, ∂Tu), and the additional property that Fv is linear in ∂2Tv
and ∂2Tu.

In lowest order for δ = 0 we have

0 = Mv(v,u), (43)

∂Tu = Mu(v,u)∂X (v,u) +MT,u(v,u)∂T (v,u). (44)
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By construction for u sufficiently small the equation (43) can be solved by
the implicit function theorem with respect to v = v∗(u). Inserting this into
(44) yields

∂Tu = Mu(u)∂Xu+MT,u(u)∂Tu. (45)

With the help of Neumann’s series for v̌, w̌ and ψ̌ sufficiently small, we can
solve (45) w.r.t. ∂Tu, i.e., we obtain

∂Tu = M(u)∂Xu. (46)

Our system is now in a form where we find a local existence and uniqueness
result by using the Cauchy-Kovalevskaya theory for Gevrey spaces similarly
to [HdRS21] and [BKS20].

4.3 Cauchy-Kovalevskaya theory in Gevrey spaces

We have the quasilinear abstract Cauchy problem of the form

∂Tu = M(u)∂Xu, u
∣∣
T=0

= u0 , X ∈ R, T ≥ 0, (47)

where u = u(X,T ) is an unknown function taking values in Rd. The
initial condition u0 lies in the Gevrey space Gm

σ0
for some m > 1 and

σ0 > 0, andM(u) is an entire matrix-valued function. The following Cauchy-
Kovalevskaya theorem provides local existence and uniqueness of solutions
in Gevrey spaces for (47).

Theorem 4.3. Let m > 1 and R, σ0 > 0. Then, for every u0 ∈ Gm
σ0

with
2∥u0∥Gm

σ0
< R and σ1 ∈ (0, σ0), there exists an η = η(R,m, σ0, σ1) > 0 such

that for T0 = (σ0−σ1)/η there exists a local solution u ∈ C1
(
(0, T0], G

m−1
σ1

)
∩

C
(
[0, T0], G

m
σ1

)
to (47), satisfying

sup
T∈[0,T0]

∥u(T )∥Gm
σ1

≤ R. (48)

For a proof we refer to the existing literature, cf. [Saf95, Theorem 1.1].
As preparation for the subsequent error estimates we would like to show for
this simple example how to obtain estimates in a time-dependent scale of
Gevrey spaces.
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Let |k|op :=
√

−∂2x. Multiplication of (47) by

e2σ(T )(1+|k|op)
(
1 + |k|2op

)m
u,

where σ(T ) = σ0 − ηT , and integration w.r.t. X ∈ R leads to

1

2

d

dT
∥u∥2Gm

σ(T )
+ η∥(1 + |k|op)1/2u∥2Gm

σ(T )

= Re
(
((M(u)−M(0))∂Xu,u)Gm

σ(T )
+ (M(0)∂Xu,u)Gm

σ(T )

)
.

By the Cauchy-Schwarz like inequality

Re(u,v)Gm
σ
≤ ∥u∥

G
m−1/2
σ

∥v∥
G

m+1/2
σ

, (49)

Remark 4.1 with (32) and (34), and the assumption m− 1
2
> 1

2
we have

1

2

d

dT
∥u∥2Gm

σ(T )
+ η∥u∥2

G
m+1/2
σ(T )

≤ ∥M(0)∥∥u∥2
G

m+1/2
σ(T )

+ ϕm(∥u∥Gm−1/2
σ(T )

)∥u∥2
G

m+1/2
σ(T )

,

with ϕm an entire function which is monotonically increasing on R+ and
satisfies ϕm(0) = 0. Finally, we obtain

1

2

d

dT
∥u∥2Gm

σ(T )
+
(
η − ∥M(0)∥ − ϕm(∥u∥Gm

σ(T )
)
)
∥u∥2

G
m+1/2
σ(T )

≤ 0 . (50)

Choosing η so large that

η > ∥M(0)∥+ ϕm(R)

finally yields (48).

4.4 Approximate solutions for the perturbed problem

The residual contains the terms which do not cancel after inserting the ap-
proximation into the original system. Adding higher-order terms to theWME
approximation (13)-(14) allows us to make the residual sufficiently small for
our purposes. Like in [BKS20, HdRS21] we consider an improved approxi-
mation (v,u) of the form

v(X,T, δ) = v0(X,T ) + δ2v1(X,T ) + δ4v2(X,T ) + h.o.t.,

u(X,T, δ) = u0(X,T ) + δ2u1(X,T ) + δ4u2(X,T ) + h.o.t..
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We insert the ansatz into (42) and equate the coefficient in front of the δs to
zero. In lowest order, i.e., here at δ0 and δ1, we get

0 = Mv(v
0,u0),

∂Tu
0 = Mu(v

0,u0)∂X(v
0,u0) +MT,u(v

0,u0)∂T (v
0,u0).

As above the first equation can be solved w.r.t. to v0 for u0 sufficiently small.
Inserting the solution v0 = v0(u0) in the second equation and solving then by
Neumann’s series, for u0 sufficiently small, the second equation w.r.t. ∂Tu

0

yields

∂Tu
0 = M(u0)∂X(u

0), with u0|T=0 = u0, (51)

which coincides with the equation (47) studied earlier. The governing equa-
tions for (vn,un), n ∈ N, arise at δ2n and δ2n+1. We obtain linear inhomoge-
neous equations of the form

0 = M̃v(v
n,v0,un,u0)

+Fv,n

(
D2

Xv
0, D2

Xu
0, D2

Tv
0, D2

Tu
0, ...

..., D2
Xv

n−1, D2
Xu

n−1, D2
Tv

n−1, D2
Tu

n−1
)
,

∂Tu
n = Mu(v

0,u0)∂X(v
n,un) +DMu(v

0,u0)[(vn,un)]∂X(v
0,u0)

+MT,u(v
0,u0)∂T (v

n,un) +DMT,u(v
0,u0)[(vn,un)]∂T (v

0,u0)

+Fu,n(D
2
Xv

0, D2
Xu

0, DTv0, DTu0, ...

..., D2
Xv

n−1, D2
Xu

n−1, DTv
n−1, DTu

n−1).

Herein, DMu(v
0,u0)[(vn,un)] denotes the linearization of the map (v, u) 7→

Mu(v, u) in the point (v0,u0) applied to (vn,un). DMT,u(v
0,u0)[(vn,un)]

is analogously defined. As above we can use the implicit function theorem
to solve the first equation with respect to

vn = vn
(
D2

Xv
0, DXu

0, D2
Tv

0, D2
Tu

0, ..., D2
Xv

n−1, DXu
n−1,un, D2

Tv
n−1,

D2
Tu

n−1
)
,

for sufficiently small and sufficiently smooth data, where vn is analytic in a
neighborhood of 0 and where vn = 0 for (D2

Xv
0, . . . , D2

Tu
n−1) = 0. By as-

sumption, vn−1 and therefore D2
Tv

n−1 and D2
Xv

n−1 are completely described
in terms of (v0,u0, ...,vn−2,un−2,un−1) and its temporal and spatial deriva-
tives. Iteratively (v0, ...,vn−1,vn) is determined in terms of (u0, ...,un−1,un).
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Thus, we get the equation

∂Tu
n = M̃u(u

0)∂Xu
n + D̃Mu(u

0)[un]∂Xu
0

+M̃T,u(u
0)∂Tu

n + D̃MT,u(u
0)[(un)]∂T (u

0) (52)

+Fn(D
2
Xv

0, D2
Xu

0, DTv
0, DTu

0, ...

..., D2
Xv

n−1, D2
Xu

n−1, DTv
n−1, DTu

n−1),

with zero inital data for n ≥ 1. Here, M̃u, M̃T,u, Fn and the linearizations

D̃Mu(u
0) and D̃MT,u(u

0) are entire (matrix-valued) functions and Fn(0) =
0. Similar to above we apply Neumann’s series to solve (52) w.r.t ∂Tu

n for
sufficiently small and smooth inital data. This finally yields

∂Tu
n = M̃∗

u(u
0)∂Xu

n + D̃M
∗
u(u

0)[un]∂Xu
0

+D̃M
∗
T,u(u

0)[(un)]∂T (u
0) (53)

+F∗
n(D

2
Xv

0, D2
Xu

0, DTv
0, DTu

0, ...

..., D2
Xv

n−1, D2
Xu

n−1, DTv
n−1, DTu

n−1).

Line for line as in [HdRS21] we obtain

Theorem 4.4. Let m > 1 and σ0 > 0. Suppose there exists a local solution

u0 ∈ C1
(
(0, T0], G

m−1
σ0

)
∩ C

(
[0, T0], G

m
σ0

)
,

to (51). Then, for every σ1 ∈ (0, σ0), n ∈ N, and for all 0 < k ≤ n, there
exist T1 = T1(σ1, k + 1) ≤ T1(σ1, k) ≤ T0 and solutions

uk ∈ C1
(
(0, T1], G

m−1
σ1

)
∩ C

(
[0, T1], G

m
σ1

)
,

to (53).

Then the n-th order approximations are given by

ṽn(T ) = v0(T ) + δ2v1(T ) + · · ·+ δ2nvn(T ) ,

ũn(T ) = u0(T ) + δ2u1(T ) + · · ·+ δ2nun(T ) ,

with corresponding residuals

Resnv (T ) = Mv(ṽ
n, ũn) + δ2Fv(D

2
X ṽ

n, D2
X ũ

n, D2
T ṽ

n, D2
T ũ

n),

Resnu(T ) = −∂T ũn +Mu(ṽ
n, ũn)∂X(ṽ

n, ũn) +MT,u(ṽ
n, ũn)∂T (ṽ

n, ũn)

+δ2Fu(D
2
X ṽ

n, D2
Xũ

n, DT ṽ
n, DT ũ

n).

By the above construction and Theorem 4.4 we directly obtain
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Corollary 4.5. Assume that the hypotheses of Theorem 4.4 are met. Then,
for every n ∈ N, the approximate solutions (ṽn, ũn) and residuals (Resnv ,Res

n
u)

are in C
(
[0, T1], G

m
σ̃1

)
for all σ̃1 ∈ [0, σ1). Further, there exists a constant

C > 0 such that we have

sup
T∈[0,T1]

∥(ṽn(T ), ũn(T ))− (v0(T ),u0(T ))∥Gm
σ̃1

≤ Cδ2,

sup
T∈[0,T1]

∥(Resnv ,Resnu)(T )∥Gm
σ̃1

≤ Cδ2n+2.

5 The error equations

For notational simplicity the following analysis is carried out for q = 0. It
will be obvious that the proof will also work in the parameter regimes Pbenj,
and Pstab, cf. Figure 4. For estimating the difference between the WME
approximation and true solutions of (4)-(6) on the long O(1/δ)-timescale, we
separate the modes in a neighborhood of the wave number k = 0 from the
the modes bounded away from the wave number k = 0. In the neighborhood
of k = 0 we use normal form transformations and energy estimates similar to
the ones in Section 4 to get rid of the terms of order O(1) in the equations for
the error. Outside this neighborhood we use the artificial damping obtained
from the time-dependent scale of Gevrey spaces.

Our starting point is system (4)-(6) which we write as first order system

∂tV = LV +N(V ), (54)

where

V =


r
r̃
ϑ
ψ

 , LV =


r̃

∂2xr + 2µϑ+ 2(µ2 − 1)r
∂xψ − 2µr̃

∂xϑ

 ,

and

N(V ) =


0

ϑ2 − r̃2 − ψ2 + (∂xr)
2 + (1− µ2)(e2r − 1− 2r)

2(∂xr)ψ − 2r̃ϑ
0

 .

We introduce the error function R made by the associated WME approxi-
mation Ψ through V = Ψ+ δ3/2R. The error function R satisfies

∂tR = LR+B(Ψ,R) + δ3/2G(R) + δ−3/2ResR,
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where B(Ψ,R) stand for the Ψ-dependent terms which are linear in R, and
G(R) for the terms which are non-linear in R, i.e.,

B(Ψ,R) = DN(Ψ)R, δ3/2G(R) = N(Ψ + δ3/2R)−N(Ψ)−DN(Ψ)R.
In our notation we suppress the fact G depends on Ψ, too. For the separation
of the modes we introduce the mode projections

Êδc(k) =

{
1, |k| ≤ δc,
0, |k| > δc,

and Êc
δc
(k) = 1− Êδc(k) for δc > 0 independent of 0 < δ ≪ 1.

We split R with the help of Eδc , i.e., let R = EδcR and Rc = Ec
δc
R. The

new error functions R and Rc satisfy

∂tR = LR + EδcB(Ψ, R) + EδcB(Ψ, Rc) (55)

+δ3/2EδcG(R +Rc) + δ−3/2EδcResR,

∂tR
c = LRc + Ec

δcB(Ψ, R) + Ec
δcB(Ψ, Rc) (56)

+δ3/2Ec
δcG(R +Rc) + δ−3/2Ec

δcResR.

For controlling the error functions R and Rc on the long O(1/δ)-time scale
we have to get rid of the O(1)-terms on the right-hand side. The terms

Ec
δcB(Ψ, R) + Ec

δcB(Ψ, Rc)

in (56) can be controlled with the artificial damping obtained from the time-
dependent scale of Gevrey spaces. We use normal form transformations and
energy estimates to get rid of the terms EδcB(Ψ, R) + EδcB(Ψ, Rc) in (55).

For the normal form transformations in a neighborhood around k = 0 it
is advantageous to diagonalize the linearized system in this neighborhood. A
diagonalization is possible, since L is of the form

L(k) =


0 1 0 0

2(µ2 − 1) +O(k2) 0 2µ 0
0 −2µ 0 ik
0 0 ik 0


for k → 0. There are two eigenvalues ω±1 of order O(1) and two eigenvalues
ω±2 of order O(k). The associated eigenvectors are of the form

φ±1(0) =


O(1)
O(1)
O(1)
0

 , φ2(0) =


O(1)
0

O(1)
0

 , φ−2(0) =


0
0
0

O(1)

 .
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For R∗ = S−1R, with the matrix S(k) = (φ1(k), φ−1(k), φ2(k), φ−2(k)) for
|k| ≤ δc, we find

∂tR
∗ = ΛR∗ + EδcS

−1B(Ψ, SR∗) + EδcS
−1B(Ψ, Rc) (57)

+δ3/2EδcS
−1G(SR∗ +Rc) + δ−3/2EδcS

−1ResR,

where

Λ(k) = S−1(k)L(k)S(k) =


iω1(k) 0 0

0 iω−1(k) 0 0
0 0 iω2(k) 0
0 0 0 iω−2(k)

 .

Remark 5.1. Since Ψ is strongly concentrated at the wave number k = 0
the part Ec

δc
Ψ is O(δs) in the spaces used subsequently if Ψ is chosen s

times more differentiable than the error. The approximation Ψ appears in
the equations for the error not only linearly but also nonlinearly but due to
(32) also Ec

δc
applied on the nonlinear terms in Ψ is O(δs) if Ψ is chosen s

times more differentiable than the error. Hence, if we separate Ψ in EδcΨ and
Ec

δc
Ψ, a product of these terms is already O(δs) if at least one Ec

δc
Ψ-factor

appears. Hence, terms with no Ec
δc
Ψ-factor are of order O(1). Again due to

the concentration of Ψ at the wave number k = 0 if Ec
δc

is applied to such
a term, i.e., to an entire function of EδcΨ, we again have an O(δs)-order.
Therefore, we can restrict the support of the O(1)-terms to the support of
Eδc . In our notation these O(1)-terms will be denoted by Ψ0. The O(δs)-
terms will be denoted by Ψr.

Example 5.2. Let ψ1 be the first component of Ψ. Then Eδc(Eδcψ1 ·Eδcψ1)
belongs to Ψ0. The terms Ec

δc
(Eδcψ1 · Eδcψ1), E

c
δc
ψ1 · Eδcψ1, Eδcψ1 · Ec

δc
ψ1,

and Ec
δc
ψ1 · Ec

δc
ψ1 are at least of order O(δs) and belong to Ψr.

We use Remark 5.1 to extract higher order terms from EδcS
−1B(Ψ, SR∗)+

EδcS
−1B(Ψ, Rc) such that only a number of lower order terms with a bounded

Fourier support have to be eliminated by normal form transformations. Hence
we rewrite (57) into

∂tR
∗ = ΛR∗ + EδcS

−1B(Ψ0, SR
∗) + EδcS

−1B(Ψ0, R
c) +H∗ (58)

where

H∗ = EδcS
−1B(Ψr, SR

∗) + EδcS
−1B(Ψr, R

c)

+δ3/2EδcS
−1G(SR∗ +Rc) + δ−3/2EδcS

−1ResR.
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Remark 5.3. As continuation of Remark 5.1 we remind that in physical
space EδcS

−1B(Ψ0, SR
∗) + EδcS

−1B(Ψ0, R
c) mainly consists of products of

EδcΨ0 multiplied with one R∗, which has been rearranged in such a way that
Eδc is applied on the product of the EδcΨ0 and Ec

δc
applied on this product

has been moved to H∗.

Example 5.4. Let ψ1 resp. R1 be the first component of Ψ resp. R. Then
Eδcψ1 · Eδcψ1 · R1 is written as Eδc(Eδcψ1 · Eδcψ1) · R1 which is a part of
EδcS

−1B(Ψ0, SR
∗) and Ec

δc
(Eδcψ1 · Eδcψ1) ·R1 which is a part of H∗.

Remark 5.5. The terms in EδcS
−1B(Ψ0, SR

∗) + EδcS
−1B(Ψ0, R

c) are a
mode projection applied on a product of a term with Fourier support in
[−δc, δc] with an error term. In Fourier space the term is mainly a convolution
with some kernel K, i.e.,

Êδc(k)

∫
K(k, k −m,m)Ψ0(k −m)R(m)dm.

This term is non-zero if |k| ≤ δc and |k − m| ≤ δc. As a consequence
only |m| ≤ 2δc has to be considered. Hence w.l.o.g. we write the term
EδcS

−1B(Ψ0, SR
∗)+EδcS

−1B(Ψ0, R
c) as EδcS

−1B(Ψ0, SR) which can always
be achieved if δc > 0 is chosen sufficiently small.

With the previous remarks we write (58) as

∂tR
∗ = ΛR∗ + EδcS

−1B(Ψ0, SR
∗) +H∗ (59)

and use normal form transformations to simplify EδcS
−1B(Ψ0, SR) as far as

possible for applying subsequently energy estimates to get rid of the remain-
ing terms. The term H∗ does not make problems to prove bounds for R on
the long O(1/δ)-time scale since all terms in H∗ are at least of order O(δ).

We separate (59) in its components. With R∗, respectively R, written as
(R1, R−1, R2, R−2), with some slight abuse of notation, we have

∂tR1 = iω1R1 +
∑

j=±1,±2

B1,j(Ψ0, Rj) +H∗
1 , (60)

∂tR2 = iω2R2 +
∑

j=±1,±2

B2,j(Ψ0, Rj) +H∗
2 , (61)

and similarly for R−1 und R−2, where

Bj1,j2(Ψ0, Rj2)(k) = φ∗
j1
(k) · EδcS

−1B(Ψ0, (φ
∗
j2
· SR∗)φj2)(k),

and where the φ∗
j(k) are the adjoint eigenvectors of L(k), with the property

(φ∗
i (k), φj(k))C4 = δij.
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6 The series of normal form transformations

Our goal is to prove an O(1)-bound for R±1, R±2, and R
c on an O(1/δ)-time

scale. As already said, as next step on this path, we simplify (60)-(61) by
eliminating all non-resonant terms of order O(1) by near-identity changes
of variables. System (60)-(61) has a similiar structure as [DKS16, System
(21)-(24)] and so it can be expected that the non-resonant terms B1,±2 and
B2,±1 can be eliminated with a convergent infinite series of normal form
transformations.

To illustrate the procedure, we show how to obtain the first change of
variables close to the identity. We set

R1,1 = R1 +
∑
j=±2

M1,j(Ψ0, Rj),

R2,1 = R2 +
∑
j=±1

M2,j(Ψ0, Rj).

The operators Mi,j and Bi,j are linear in the error functions Rj and possess
a convolution structure, i.e.,

Mi,j(Ψ0, Rj)(k) =

∫
mi,j(k, k −m,m)Ψ0(k −m)Rj(m)dm,

with kernel mi,j and similarly for Bi,j with kernel bi,j.
We differentiate R1,1 w.r.t. time and obtain

∂tR1,1 = ∂tR1 +
∑
j=±2

(M1,j(∂tΨ0, Rj) +M1,j(Ψ0, ∂tRj))

= iω1R1 +
∑

j=±1,±2

B1,j(Ψ0, Rj) +O(δ)

+
∑
j=±2

M1,j

(
Ψ0, iωjRj +

∑
j1=±1,±2

Bj,j1(Ψ0, Rj1)

)
+O(δ)

= iω1R1,1 − iω1

∑
j=±2

M1,j(Ψ0, Rj) +
∑

j=±1,±2

B1,j(Ψ0, Rj) +O(δ)

+
∑
j=±2

M1,j

(
Ψ0, iωjRj +

∑
j1=±1,±2

Bj,j1(Ψ0, Rj1)

)
+O(δ)
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where we used that ∂tΨ0 = O(δ) due to the long wave character of Ψ0. In
order to eliminate the terms B1,j for j = ±2 we choose M1,j to satisfy

−iω1M1,2(Ψ0, R2) +M1,2(Ψ0, iω2R2) +B1,2(Ψ0, R2) = 0,

−iω1M1,−2(Ψ0, R−2) +M1,−2(Ψ0, iω−2R−2) +B1,−2(Ψ0, R−2) = 0,

i.e., we set

m1,2(k, k −m,m) =
b1,2(k, k −m,m)

iω1(k)− iω2(m)
,

m1,−2(k, k −m,m) =
b1,−2(k, k −m,m)

iω1(k)− iω−2(m)
.

Since |k| ≤ δc and |m| ≤ 2δc the denominator is non-zero for δc > 0 suffi-
ciently small, and so m1,±2 is well-defined and bounded. As a consequence
theM1,±2 are bounded mappings in all Gm

σ -spaces. After this transformation
we thus have

∂tR1,1 = iω1R1,1 +
∑
j=±1

B1,j(Ψ0, Rj) +O(δ)

+
∑
j=±2

M1,j

(
Ψ0,

∑
j1=±1,±2

Bj,j1(Ψ0, Rj1)

)
+O(δ).

We do exactly the same with R2,1 and obtain

m2,1(k, k −m,m) =
b2,1(k, k −m,m)

iω2(k)− iω1(m)
,

m2,−1(k, k −m,m) =
b2,−1(k, k −m,m)

iω2(k)− iω−1(m)
,

such that finally

∂tR2,1 = iω2R2,1 +
∑
j=±2

B2,j(Ψ0, Rj) +O(δ)

+
∑
j=±1

M2,j

(
Ψ0,

∑
j1=±1,±2

Bj,j1(Ψ0, Rj1)

)
+O(δ).

Since the bilinear functions B are of order O(1) the norm of the normal
form transformations M is bounded by the norm of Ψ and R. This yields
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the invertibility of the near identity change of variables with the help of
Neumann series for Ψ = O(1), but sufficiently small.

However, new terms of order O(1) are created by this strategy and so
this procedure must be performed again and again. Convergence of these
finally infinitely many transformations holds since only the first resonant
terms are of order O(∥Ψ∥). The newly created terms by the second normal
form transformation are at most of order O(∥Ψ∥2), then O(∥Ψ∥3) by the
third transformation, etc., such that a geometric series in ∥Ψ∥ can be used
as convergent majorant for ∥Ψ∥ sufficiently small. Since the construction is
very similar to [DKS16] we refrain from repeating the complete analysis and
refer to this paper for more details. We only mention that the convergence
of the Ψ-terms is controlled by the norm

∥f∥Xσ,m,δ =

∫
sup
k∈R

|f(k, l)|

(
1 +

(
l

δ

)2
)m

2

exp

(
σ

(
l

δ

))
dl.

See Appendix A.2 for more details about this point. There is one technical
difference between [DKS16] and the present approach. Before performing the
next transformation we have to prepare our system according to Remark 5.3
and Example 5.4 such that we have a sequence of problems

∂tR1,n = iω1R1,n +
∑

j=±1,±2

B1,j,n(Ψ0,n, Rj,n) +H∗
1,n, (62)

∂tR2,n = iω2R2,n +
∑

j=±1,±2

B2,j,n(Ψ0,n, Rj,n) +H∗
2,n, (63)

and a sequence of normal form transformations

R1,n+1 = R1,n +
∑
j=±2

M1,j,n(Ψ0,n, Rj,n),

R2,n+1 = R2,n +
∑
j=±1

M2,j,n(Ψ0,n, Rj,n).

The terms which move to H∗
j,n when transforming Ψ0,n−1 into Ψ0,n, according

to Remark 5.3 and Example 5.4, are of order O(∥Ψ∥n) such that convergence
holds for these terms, too.
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The limit system has the following structure

∂tR1,∞ = iω1R1,∞ +
∑
j=±1

B1,j,∞(Ψ0,∞, Rj,∞) +H∗
1,∞, (64)

∂tR2,∞ = iω2R2,∞ +
∑
j=±2

B2,j,∞(Ψ0,∞, Rj,∞) +H∗
2,∞, (65)

and similar for R−1,∞ and R−2,∞. For j ∈ {±1,±2} the nonlinear terms obey
the estimates

∥H∗
j,∞∥Gm

σ
≤ Cδ

(
∥(R1,∞, R2,∞)∥Gm

σ
+ δ1/2(∥(R1,∞, R2,∞)∥2Gm

σ
+ ∥Rc∥2Gm

σ
) + 1

)
.

7 Some further preparations

Before performing the energy estimates for obtaining an O(1)-bound for
R±1,∞, R±2,∞, and Rc on an O(1/δ)-time scale we need two additional prepa-
rations.

Remark 7.1. For notational simplicity it turns out to be advantageous if
all components of R·,∞ and Rc have the same regularity. This is automat-
ically fulfilled for R±1,∞ and R±2,∞ since they all have a compact support
in Fourier space. However, for Rc this is not the case and so we introduce
the multiplication operator M defined by its symbol M̂(k) = (1 + k2)1/2 in
Fourier space. Since in Equation (61) we have r̃ ∈ Gm

σ , ϑ ∈ Gm
σ , and ψ ∈ Gm

σ ,
but r ∈ Gm+1

σ , we introduce r = Mr ∈ Gm
σ and find

∂tV = LV +N(V), (66)

where

V =


r
r̃
ϑ
ψ

 , LV =


Mr̃

∂2x(M−1r) + 2µϑ+ 2(µ2 − 1)(M−1r)
∂xψ − 2µr̃

∂xϑ

 ,

and

N(V) =


0

ϑ2 − r̃2 − ψ2 + (∂x(M−1r))
2
+ (1− µ2)(e2(M

−1r) − 1− 2(M−1r))
2(∂x(M−1r))ψ − 2r̃ϑ

0

 .
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For the transformed error part Rc we obtain a system of the form

∂tR
c = LRc +H∗

c , (67)

with

∥H∗
c ∥Gm

σ
≤ C∥Rc∥Gm

σ
+ δ(∥(R1,∞, R2,∞)∥Gm

σ
+ δ1/2∥Rc∥2Gm

σ
+ 1).

In this estimate the terms linear in R±1,∞ and R±2,∞ are at least of order
O(δ) since these terms coming from the procedure described in Remark 5.1.

Remark 7.2. In order to apply the ideas from Section 4 in the energy esti-
mates of Rj,∞ we need an additional structure in the limit system (64)-(65).
Comparing the derivation of (65) with the derivation of (13)-(14) in com-
bination with (15) we see that the terms

∑
j=±2B2,j,∞(Ψ0,∞, Rj,∞) are the

linearization of (13)-(14) around Ψ0,∞. Therefore, they can be written as∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞ +O(δ).

The terms where a derivative of (15) falls on Ψ0,∞ gives an additional O(δ)
such that such a term will be included in H∗

2,∞.

8 Error estimates in Gevrey spaces

Now we come back to the full system consisting of (64)-(65) and (67). In or-
der to get rid of the remaining O(1)-terms in these equations which are
problematic to come to an O(1/δ)-scale we use as in Section 4 a time-
dependent scale of Gevrey spaces to handle the R2,∞-variable exploiting the
property from Remark 7.2, use classical energy estimates to handle the R1,∞-
variable, and use the artificial damping coming from the time-dependent scale
of Gevrey spaces to get rid of the Rc variable.

Technically, we multiply the equation of Rj,∞ with

e2σ(t)|k|op(1 + |k|2op)mRj,∞,

and the equation of Rc with

e2σ(t)|k|op(1 + |k|2op)mRc,
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where σ(t) = σ0/δ − ηt and integrate then w.r.t. x where as before |k|op =√
−∂2x. For

E(t) = ∥R1,∞∥2Gm
σ(t)

+ ∥R2,∞∥2Gm
σ(t)

+ ∥Rc∥2Gm
σ(t)

we find
1

2

d

dt
E = Re

11∑
j=1

sj,

where

s1 = −η∥|k|1/2op R1,∞∥2Gm
σ(t)
,

s2 = (R1,∞, iω1R1,∞)Gm
σ(t)
,

s3 =

(
R1,∞,

∑
j=±1

B1,j,∞(Ψ0,∞, Rj,∞)

)
Gm

σ(t)

,

s4 = (R1,∞, H
∗
1,∞)Gm

σ(t)
,

s5 = −η∥|k|1/2op R2,∞∥2Gm
σ(t)
,

s6 = (R2,∞, iω2R2,∞)Gm
σ(t)
,

s7 =

(
R2,∞,

∑
j=±2

B2,j,∞(Ψ0,∞, Rj,∞)

)
Gm

σ(t)

,

s8 = (R2,∞, H
∗
2,∞)Gm

σ(t)
,

s9 = −η∥|k|1/2op Rc∥2Gm
σ(t)
,

s10 = (Rc,LRc)Gm
σ(t)
,

s11 = (Rc, H∗
c )Gm

σ(t)
.

In the following we estimate the ’bad’ terms s2, s3, s4, s6, s7, s8, s10, and
s11 by the ’good’ artificial damping terms s1, s5, and s9. Before we do so, we
explain where the good terms come from.
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s1, s5, s9: We have for instance∫
∂tR1,∞e

2σ(t)|k|op(1 + |k|2op)mR1,∞dx

=
1

2
∂t

∫
e2σ(t)|k|op(1 + |k|2op)mR2

1,∞dx

+ η

∫
e2σ(t)|k|op(1 + |k|2op)m|k|opR2

1,∞dx

=
1

2
∂t∥R1,∞∥2Gm

σ(t)
+ η∥|k|1/2op R1,∞∥2Gm

σ(t)
.

s2: Since iω1 is a skew-symmetric operator in the parameter regimes under
consideration, we have

s2 = 0.

s6: In the Benjamin-Feir stable situation, cf. left panel of Figure 2, iω2 is a
skew-symmetric operator which yields

s6 = 0.

In the Benjamin-Feir unstable situation, cf. right panel of Figure 2, iω2 grows
at most as C|k| such that

|s6| ≤ C6∥|k|1/2op R2,∞∥2Gm
σ(t)
.

Next we go on with the higher order terms.
s4, s8, s11: We find

|s4| ≤ C∥R1,∞∥Gm
σ
∥H∗

1,∞∥Gm
σ(t)

≤ C4δ
(
∥(R1,∞, R2,∞)∥2Gm

σ(t)
+ δ1/2(∥(R1,∞, R2,∞)∥3Gm

σ(t)
+ ∥Rc∥3Gm

σ(t)
) + 1

)
,

where we used a ≤ 1 + a2. Similarly, we obtain

|s8| ≤ C∥R2,∞∥Gm
σ(t)

∥H∗
2,∞∥Gm

σ(t)

≤ C8δ
(
∥(R1,∞, R2,∞)∥2Gm

σ(t)
+ δ1/2(∥(R1,∞, R2,∞)∥3Gm

σ(t)
+ ∥Rc∥3Gm

σ(t)
) + 1

)
.

Finally, we estimate

|s11| ≤ C∥Rc∥Gm
σ(t)

∥H∗
c ∥Gm

σ(t)

≤ C11(∥Rc∥2Gm
σ(t)

+ δ(∥(R1,∞, R2,∞)∥Gm
σ(t)

∥Rc∥Gm
σ(t)

+ δ1/2∥Rc∥3Gm
σ(t)

+ 1)).
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It remains to estimate s3, s7, and s10.
s10: We start with the energy estimates for the linear term LRc. The pa-
rameter regions we are working in, include the possibility of Benjamin-Feir
unstable wave trains. Hence, the eigenvalues of L can be bounded from above
by C|k|, cf. the right panel of Figure 2, and so we obtain the rather rough
estimate

|s10| ≤ C10∥|k|1/2op Rc∥2Gm
σ(t)
.

s7: With Remark 7.2 the term s7 can be rewritten as

s7 = (R2,∞,
∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞ +O(δ))Gm

σ(t)
.

Since this term was constructed by infinitely many near identity changes we
use the convergence in the Xm,δ-spaces. More details about these estimates
can be found in the Appendix A.2. Integration by parts with |k|1/2op yields

|s7| ≤ C(∥Ψ0,∞∥Wm
σ(t)

∥|k|1/2op R±2,∞∥2Gm
σ(t)

+∥|k|1/2op Ψ0,∞∥Wm
σ(t)

∥R±2,∞∥Gm
σ(t)

∥|k|1/2op R±2,∞∥Gm
σ(t)

+O(δ)).

Next we use that ∥|k|1/2op Ψ0,∞∥Wm
σ(t)

= O(δ1/2) and δ1/2ab ≤ a2+δb2 such that

|s7| ≤ C(∥|k|1/2op R±2,∞∥2Gm
σ(t)

+δ1/2∥R±2,∞∥Gm
σ(t)

∥|k|1/2op R±2,∞∥Gm
σ(t)

+O(δ))

≤ C7(∥|k|1/2op R±2,∞∥2Gm
σ(t)

+ δ∥R±2,∞∥2Gm
σ(t)

).

s3: It remains to estimate

Res3 = Re(R1,∞, B1,1,∞(Ψ0,∞, R1,∞))Gm
σ(t)

+Re(R1,∞, B1,−1,∞(Ψ0,∞, R−1,∞))Gm
σ(t)

+Re(R−1,∞, B−1,1,∞(Ψ0,∞, R1,∞))Gm
σ(t)

+Re(R−1,∞, B−1,−1,∞(Ψ0,∞, R−1,∞))Gm
σ(t)

We have the following representation

sj,j1 = (Rj,∞, Bj,j1,∞(Ψ0,∞, Rj1,∞))Gm
σ(t)

=

∫ ∫
Rj,∞(k)bj,j1,∞(k, k −m,m)Ψ0,∞,j,j1(k −m)Rj1,∞(m)dmdk.
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Since Ψ0,∞,j,j1(k−m) is strongly concentrated at the wave number k = 0 we
have

sj,j1 =

∫ ∫
Rj,∞(k)bj,j1,∞(k, 0, k)Ψ0,∞,j,j1(k −m)Rj1,∞(m)dmdk +O(δ)

= sj,j1,a + sj,j1,b,

with

sj,j1,a =

∫ ∫
Rj,∞(k)bj,j1,∞(0, 0, 0)Ψ0,∞,j,j1(k −m)Rj1,∞(m)dmdk +O(δ)

sj,j1,b =

∫ ∫
Rj,∞(k)(bj,j1,∞(k, 0, k)− bj,j1,∞(0, 0, 0))

×Ψ0,∞,j,j1(k −m)Rj1,∞(m)dmdk +O(δ).

Using |bj,j1,∞(k, 0, k)−bj,j1,∞(0, 0, 0)| ≤ C|k| the term sj,j1,b can be estimated
similar as s7 by

|sj,j1,b| ≤ C(∥|k|1/2op R±1,∞∥2Gm
σ(t)

+δ1/2∥R±1,∞∥Gm
σ(t)

∥|k|1/2op R±1,∞∥Gm
σ(t)

+O(δ))

≤ C3(∥|k|1/2op R±1,∞∥2Gm
σ(t)

+ δ∥R±1,∞∥2Gm
σ(t)

).

Similar to [Sch20] we obtain

Re(s1,1,a) = 2i

∫ ∫
R−1,∞(k)b1,1,∞(0, 0, 0)Ψ0,∞,1,1(k −m)R1,∞(m)dmdk

−2i

∫ ∫
R1,∞(k)b1,1,∞(0, 0, 0)Ψ0,∞,1,1(k −m)R−1,∞(m)dmdk,

for G0
σ(t). By definition we have Ψ0,∞,1,1(k − m) = Ψ0,∞,1,1(m − k) and

b1,1,∞(0, 0, 0) = b1,1,∞(0, 0, 0) ∈ R. Therefore, the terms cancel each other by
interchanging the role of k and m in the second term, i.e.

Re(s1,1,a) = 2i

∫ ∫
R−1,∞(k)b1,1,∞(0, 0, 0)Ψ0,∞,1,1(k −m)R1,∞(m)dmdk

−2i

∫ ∫
R1,∞(m)b1,1,∞(0, 0, 0)Ψ0,∞,1,1(k −m)R−1,∞(k)dmdk

= 0.
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Doing the same calculations for s−1,1,a, s1,−1,a and s−1,−1,a yields

Re(s1,1,a) + Re(s−1,1,a) + Re(s1,−1,a) + Re(s−1,−1,a) = 0.

For Gm
σ(t) we can use the fact that whenever a derivative falls on Ψ0,∞,j,j1 we

gain an additional power of δ. The term where every m derivatives fall on
R±1,∞ in the second component of the scalar product can be estimated line
for line as in the case G0

σ(t)

The final estimates: The previous estimates yield

1

2

d

dt
E ≤ s1 + s5 + s9 + |s3|+ |s4|+ |s6|+ |s7|+ |s8|+ |s10|+ |s11|

≤ −η∥|k|1/2op R1,∞∥2Gm
σ(t)

− η∥|k|1/2op R2,∞∥2Gm
σ(t)

− η∥|k|1/2op Rc∥2Gm
σ(t)

+C6∥|k|1/2op R2,∞∥2Gm
σ(t)

+(C4 + C8)δ
(
∥(R1,∞, R2,∞)∥2Gm

σ

+δ1/2(∥(R1,∞, R2,∞)∥3Gm
σ
+ ∥Rc∥3Gm

σ
) + 1

)
+C11(∥Rc∥2Gm

σ

+δ(∥(R1,∞, R2,∞)∥Gm
σ
∥Rc∥Xm

σ
+ δ1/2∥Rc∥3Gm

σ
+ 1))

+C10∥|k|1/2op Rc∥2Gm
σ(t)

+ C7(∥|k|1/2op R±2,∞∥2Gm
σ(t)

+ δ∥R±2,∞∥2Gm
σ(t)

)

+C3(∥|k|1/2op R±1,∞∥2Gm
σ(t)

+ δ∥R±1,∞∥2Gm
σ(t)

)

≤ (−η + C3)∥(|k|op)1/2R1,∞∥2Gm
σ(t)

+(−η + C6 + C7)∥|k|1/2op R2,∞∥2Gm
σ(t)

+(−η + C10)∥|k|1/2op Rc∥2Gm
σ(t)

+(C3 + C4 + C7 + C8)δ
(
E + δ1/2(E3/2 + 1)

)
≤ (C3 + C4 + C7 + C8)δ

(
E + δ1/2(E3/2 + 1)

)
,

if η > 0 is chosen so large that

−η + C3 < 0, −η + C6 + C7 < 0, −η + C10 < 0.

After this we choose δ > 0 so small that

δ1/2E1/2 ≤ 1 (68)
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is fulfilled. Hence we have

d

dt
E ≤ (C + 1)δE + Cδ.

With the help of Gronwalls inequality we obtain

E(t) ≤ (E(0) + Cδt)e(C+1)δt ≤ (E(0) + CT0)e
(C+1)T0 =M = O(1).

The constant M is independent of η, T0 and 0 < δ ≪ 1. We choose δ0 > 0
sufficiently small such that δ

1/2
0 M1/2 < 1 is fullfilled. This guarantees the

validity of (68). This proves our main theorem 1.10.

9 Discussion

Remark 9.1. Since the Benjamin-Feir instability occurs for γ = 1 respec-
tively µ < 1 we have no hope to replace the Gevrey spaces by classical
Sobolev spaces, like the plot of the spectral curves in the right panel of Fig-
ure 2 shows. However, it is a natural question if this might be possible for
γ = −1 respectively µ > 1. In that case the wave train is spectrally stable
and such a result can be found in [BKZ21] for the NLS equation. At this
point we have no answer if this is also possible for the ccKG equation and
have to postpone this question to future research.

Remark 9.2. Although in the parameter region Prest, cf. the left panel
of Figure 3, WME can be derived, it cannot be expected that the associ-
ated WME approximation makes correct predictions on the long O(1/δ)-time
scale. In the left panel of Figure 3 we have a smooth curve of eigenvalues
with positive real part of order O(1) at the wave number k = 0. This leads to
growth rates of order O(exp(1/δ)) on the long O(1/δ)-time scale. Therefore,
to come to the long O(1/δ)-time scale, by nonlinear interaction and initially
only terms of order O(exp(−1/δ)) can be allowed. However, this is not the
case and so we expect that the WME approximation fails in Prest to make
correct predictions.

Remark 9.3. We finally remark that the reconstruction of the solution in
physical variables (3) requires the spatial integration of the local wave number
ψ = ∂xφ to reconstruct the phase φ. As a consequence in the original u-
variable only a local in space approximation result can be obtained. The
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size of the spatial domain where the WME approximation makes correct
predictions is proportional to the inverse order of the higher order WME
approximation constructed in Section 4.4. For details see for instance [DS09,
BKS20].

A Appendix

A.1 Stability regions for q ̸= 0

In this section we consider the case q ̸= 0 and explain where parameter
regions plotted in Figure 4 come from.

Remark A.1. To analyze q ̸= 0 we look at the system (29)-(31), derive
WME, and redo the calculations from Remark 2.7. We have

γe2rq,µ = 1 + q2 − µ2,

and as above, we make the long wave ansatz

(r, ψ, ϑ)(x, t) = (ř, ψ̌, ϑ̌)(δx, δt),

with 0 < δ ≪ 1 a small perturbation perimeter. Ignoring higher order terms
yields the system

0 = ϑ̌2 + 2µϑ̌− ψ̌2 − 2qψ̌ + γe2rq,µ(e2ř − 1),

∂T ϑ̌ = 2(∂X ř)(ψ̌ + q) + ∂Xψ̌ − 2(∂T ř)(ϑ̌+ µ),

∂T ψ̌ = ∂X ϑ̌.

For ϑ̌ and ψ̌ small we can solve the first equation w.r.t. ř and get

ř∗(ϑ̌, ψ̌) = − µ

γe2rq,µ
ϑ̌+

q

γe2rq,µ
ψ̌ + h.o.t.

with the partial temporal and spatial derivatives

∂T ř
∗ = − µ

γe2rq,µ
∂T ϑ̌+

q

γe2rq,µ
∂T ψ̌ + h.o.t.,

∂X ř
∗ = − µ

γe2rq,µ
∂X ϑ̌+

q

γe2rq,µ
∂Xψ̌ + h.o.t..
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Inserting this in the equations for ϑ̌ and ψ̌ yields

∂T ϑ̌ =2

(
− µ

γe2rq,µ
∂X ϑ̌+

q

γe2rq,µ
∂Xψ̌

)
(ψ̌ + q) + ∂Xψ̌

− 2

(
− µ

γe2rq,µ
∂T ϑ̌+

q

γe2rq,µ
∂T ψ̌

)(
ϑ̌+ µ

)
=− 2µ

γe2rq,µ

(
∂X ϑ̌

)
(ψ̌ + q) +

2q

γe2rq,µ
∂Xψ̌(ψ̌ + q) + ∂Xψ̌

+
2µ

γe2rq,µ

(
∂T ϑ̌

)
(ϑ̌+ µ)− 2q

γe2rq,µ

(
∂T ψ̌

)
(ϑ̌+ µ).

The linearization of this equation is given by

∂T ϑ̌ = ∂Xψ̌ +
2µ2

γe2rq,µ
∂T ϑ̌− 4qµ

γe2rq,µ
∂X ϑ̌+

2q2

γe2rq,µ
∂Xψ̌.

Hence we find(
1− 2µ2

γe2rq,µ

)
∂T ϑ̌ =

(
1 + q2 − µ2 − 2µ2

1 + q2 − µ2

)
∂T ϑ̌ =

(
1 + q2 − 3µ2

1 + q2 − µ2

)
∂T ϑ̌

=− 4qµ

1 + q2 − µ2
∂X ϑ̌+

1 + q2 − µ2 + 2q2

1 + q2 − µ2
∂Xψ̌

=− 4qµ

1 + q2 − µ2
∂X ϑ̌+

1 + 3q2 − µ2

1 + q2 − µ2
∂Xψ̌,

and so finally in the long wave limit

∂T ϑ̌ = − 4qµ

1 + q2 − 3µ2
∂X ϑ̌+

1 + 3q2 − µ2

1 + q2 − 3µ2
∂Xψ̌,

∂T ψ̌ = ∂X ϑ̌.

Hence, the sign of 1+3q2−µ2

1+q2−3µ2 determines the stability or instability of the wave

train w.r.t. long wave perturbations. If 1 + 3q2 − µ2 and 1 + q2 − 3µ2 are
both smaller than zero the spectral curves look similar the ones in the left
panel of Figure 2. Spectral curves for other parameter values are plotted in
Figure 5.

A.2 Some technical estimates

Since the near identity changes of variables converges in Xσ,m,δ-spaces we
would like to provide some more details about the role of the Xσ,m,δ-spaces
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in the estimates of the resonant terms s3 and s7 in the Gevrey spaces Gm
σ(t).

In the following we concentrate on the term

s7 = (R2,∞,
∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞ +O(δ))Gm

σ(t)
,

where B∗
2,j,∞(Ψ0,∞), which is completely determined by Ψ0,∞, is the limit of

the resonant terms after the infinitely many normal form transformations.
We have

∥
∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞∥Gm

σ(t)

≤ C∥eσ(t)(|k|)
∫ ∑

j=±2

((B∗
2,j,∞(Ψ0,∞))(k, k − l)|l|Rj,∞(l)dl)∥L2

m

≤ C∥
∑
j=±2

∫
(eσ(t)(|k−l|)(B∗

2,j,∞(Ψ0,∞))(k, k − l)eσ(t)(|l|)|l|Rj,∞(l))∥L2
m
.

By the inequality [DKS16, eq. (45)] we obtain

∥
∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞∥Gm

σ(t)

≤ C∥B∗
2,±2,∞(Ψ0,∞)∥Xσ,m,δ∥eσ(t)(|k|)|k|R±2,∞)∥L2

m

≤ C∥B∗
2,±2,∞(Ψ0,∞)∥Xσ,m,δ∥|k|opR±2,∞)∥Gm

σ(t)

≤ C∥Ψ0,∞∥Wm
σ(t)

∥|k|opR±2,∞∥Gm
σ(t)
.

In the last step of this estimate we use that the construction is built such
that the limit of the resonant terms in the norm of Xm,δ can be estimated by
∥Ψ0∥ and therefore by ∥Ψ0∥Wm

σ(t)
. We can follow the steps for the estimates

of s7 in Section 8. Integration by parts with |k|1/2 yields with the estimates
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above

|s7| = |(R2,∞,
∑
j=±2

B∗
2,j,∞(Ψ0,∞)∂xRj,∞ +O(δ))Gm

σ(t)
|

≤ |(|k|1/2op R2,∞,
∑
j=±2

B∗
2,j,∞(Ψ0,∞)|k|1/2op Rj,∞ +O(δ))Gm

σ(t)
|

+|(R2,∞,
∑
j=±2

|k|1/2op B
∗
2,j,∞(Ψ0,∞)|k|1/2op Rj,∞ +O(δ))Gm

σ(t)
|

≤ C
(
∥Ψ0,∞∥Wm

σ(t)
∥|k|1/2op R±2,∞)∥Gm

σ(t)

+∥|k|1/2op Ψ0,∞∥Wm
σ(t)

∥|k|1/2op R±2,∞)∥Gm
σ(t)

+O(δ)
)
.

The remaining rest of the estimate for s7 follows as in Section 8.
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