
Guiding Belief Space Planning with Learned
Models for Interactive Merging

Johannes Fischer1, Etienne Bührle1, Danial Kamran1 and Christoph Stiller1

Abstract—Safely navigating complex, interactive situations is
one of the major challenges in planning for automated vehicles.
The key difficulty is that drivers have unobservable properties
determining their driving style. To make optimal decisions, the
belief over latent driver states has to be considered, which is
computationally challenging. For this reason, online planning
algorithms suffer from the curse of dimensionality in highly
interactive scenarios. On the other hand, learned policies often
have difficulties generalizing to new environments with different
driving styles. We propose to use policies trained in belief space
as heuristics to guide online belief space planning algorithms,
thereby alleviating the curse of dimensionality. We evaluate the
proposed approach in a cooperative merging scenario.

Index Terms— MCTS, DQN, reinforcement learning, belief
state planning, interactive, cooperative, merging.

I. INTRODUCTION

One of the greatest challenges in autonomous driving is
how to solve highly interactive situations that require drivers
to negotiate with each other. While humans intuitively rely on
social cues in such situations, it is not easy for an automated
system to safely navigate such encounters without being overly
conservative.

One such challenging scenario is merging into an urban
traffic flow, as depicted in Fig. 1. In dense traffic situations,
other vehicles might be courteous and allow the merge. Hence,
the merging vehicle has to clearly communicate its desire
to merge while at the same time reasoning about the other
vehicles’ cooperativeness to estimate if a merge is possible.

Previous work has tackled the interactive nature of such
situations by probabilistically estimating the latent parameters
of other vehicles and then using online planning algorithms to
act optimally with respect to the estimated parameters [1]–[3].
These approaches include sampling-based motion-planning
[1], [2], as well as belief space planning with tree search
methods [3]. The value of reasoning about other vehicles in
belief space has been proven by Sunberg et al. [4]. While the
probabilistic nature of those approaches allows dealing with
latent parameters, they suffer from the curse of dimensionality
and can not easily scale to complex interactive scenarios.

Others approach interactivity by game-theoretic planning,
reasoning not only for the ego vehicle but also for the other
vehicles [5], [6]. These methods can be combined with an
online inference of parameters or objectives of other vehicles
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Figure 1: The ego vehicle (cyan) has to merge onto the main
road where cooperative vehicles (green) might yield while
non-cooperative vehicles (red) ignore it.

[7], [8]. However, game-theoretic planning is computationally
highly demanding, which makes it difficult to apply in real-
time systems with multiple interacting vehicles.

In contrast to those online planning algorithms, there is
also a rich body of work that learns policies for interac-
tive scenarios using reinforcement learning (RL). Continuous
control policies for merging into dense traffic have been
learned, where the other vehicles stochastically yield based
on a cooperation parameter [9]. Leurent et al. use an attention
mechanism to capture the interactivity between vehicles [10].
Bouton et al. demonstrate how reinforcement learning can be
used directly in belief space to fully leverage information
on the latent states [11]. Game-theoretic ideas have also
been employed in iterative reinforcement learning schemes to
approximate the strategic reasoning process [12].

Reinforcement learning approaches can scale up more easily
to complex scenes with multiple interacting vehicles since
no online planning is involved. However, additional measures
have to be taken to ensure the safety of the learned policy, such
as allowing only safe actions [13]–[15]. In contrast, planning
algorithms have the advantage of actively reasoning about the
situation encountered at deploy time, which helps to achieve
safe driving behavior.

Silver et al. have combined tree search-based planning
algorithms with learned heuristics to solve board games [16],
[17]. This idea has been explored in the domain of automated
driving, where a particle filter is used to estimate the most
likely state, which is then used for planning [18].

Our work falls into the last category of methods. We use
learned models to guide the online planning algorithm to
the most promising areas of the search tree to overcome the
curse of dimensionality. In contrast to Hoel et al. (2020), we
propose to directly plan in belief space instead of only for the
most likely state to fully consider the current uncertainty and



leverage the effect of ego actions on future information. To
this end, we use belief space reinforcement learning to train
a policy and value function over the belief space. They are
used during belief space tree search to estimate the value of
new tree nodes and as a prior on the tree policy, respectively.
Our method enables tree search methods to scale up and at
the same time makes use of powerful learned policies while
still planning online.

The contribution of our work is threefold:

• We propose a principled way of combining learning and
planning in the belief space that can make use of different
RL algorithms.

• We evaluate our method on a cooperative driving sce-
nario and compare its performance with state-of-the-art
baselines.

• We show that our algorithm is robust to transfer to
new environments by evaluating it on two scenarios of
increased difficulty that were not seen during training.

II. BACKGROUND

We begin our analysis by presenting the theoretical frame-
works employed to model the decision-making problem and
giving an overview of the algorithms used in this work.

A. Partially Observable Markov Decision Processes

High-level decision-making problems can often be mod-
elled as Partially Observable Markov Decision Processes
(POMDPs). Such processes are described by a tuple
(S,A,O, T ,Z,R, γ) where S, A, and O are the state, ac-
tion, and observation spaces, respectively, T is the transition
model, Z the observation model, R the reward function and
γ ≤ 1 a discount factor [19]. In this discrete-time model, the
environment (which includes the agent) is in a state s ∈ S at
each point in time. After selecting an action a ∈ A in state s,
the environment stochastically transitions to a successor state
s′ with probability T (s′|s, a) given by the transition model
and the agent receives a reward r = R(s, a). The agent’s goal
is to choose actions such that the cumulative discounted future
reward

∑∞
t=0 γ

trt (the so-called return) is maximized.
The main difficulty is that the agent is not able to observe

the current state. Instead, it receives a noisy observation o ∼
Z(·|s, a, s′) after transitioning from state s to s′ with action a.
With knowledge of the transition and observation models, the
agent can keep track of the current state distribution, known
as the belief b, using Bayes’ theorem.

B. Belief MDP

If the state is fully observable, the tuple (S,A, T ,R, γ)
forms a Markov Decision Process (MDP). Any POMDP can
be equivalently reformulated as an MDP over the belief space
B [19]. The belief state of this belief MDP transitions to suc-
cessor beliefs with probabilities according to the observation
model.

C. Monte Carlo Tree Search

A standard method for solving POMDPs is Monte Carlo
Tree Search (MCTS) [20]. MCTS selects actions by construct-
ing a search tree from many simulations of the current state
for different action sequences where each simulation adds a
new node to the tree. The layers of the tree alternate between
action nodes, representing different action choices, and state
nodes, representing stochastic state transitions. In each action
node, the action value function Q(s, a), denoting the expected
return when starting in state s with action a, is estimated by
averaging the return values of all simulations passing through
that node with action a. The tree policy selects between action
nodes within the tree by maximizing the upper confidence tree
(UCT) objective

U(s, a) = Q(s, a) + cuct

√
ln

∑
a′ N(s, a′)

N(s, a)
, (1)

where the parameter cuct can be used to balance between
exploitation of high-return areas and the exploration of actions
with a low number of samples N(s, a) [21]. When reaching
a leaf node, the value of the leaf node is estimated by the
return of a random rollout from this node. Then the leaf node
is expanded and all visited nodes are updated with their return
values.

The tree search ends after a predefined number of simu-
lations or after exhausting a computational budget. Then the
action with the highest Q-value estimate is selected.

In continuous environments with stochastic transitions, a
new state would be sampled in every simulation. Hence,
the tree would remain shallow. To remedy this, progressive
widening can be used to artificially limit the number of child
nodes to kN(s, a)α, with hyperparameters k and α [22]. If
the maximal number of child nodes is already reached, one of
the existing nodes is sampled at random.

D. Deep Reinforcement Learning

Another family of widely used methods for decision-making
problems is reinforcement learning. Such methods do not
require knowledge of the transition or observation models. But
instead, they learn an optimal policy π from many interactions
with the environment [23]. In continuous environments, neural
networks are frequently used to approximate the value func-
tion, e.g. in the Deep Q-network (DQN) algorithm [24].

III. APPROACH

Combining planning and learning has been shown to be very
effective in the game of Go and other board games [16], [17],
but also in the domain of automated driving [18]. However,
these works either solve fully observable environments or plan
only for the most likely state.

Just acting based on the last observation or the most
likely state can be suboptimal because it does not take the
information of the full belief into account. To optimally solve
a POMDP, belief space planning is necessary. Therefore, we
propose to combine MCTS and reinforcement learning to solve



partially observable problems directly in the belief space. One
difficulty this imposes is that the belief space is of much higher
dimensionality than the state space: A binary state variable
alone introduces a continuous dimension in the corresponding
belief space.

A. Algorithm Overview

Our algorithm follows the general MCTS procedure de-
scribed in Section II-C, but solves the belief MDP. This
requires a belief updater U that produces the posterior belief
b′ given a prior belief, the chosen action and the observation.
Whenever a new simulation starts in the root node, a state is
sampled from the root belief. Throughout this simulation, the
sampled state is simulated forward with the chosen actions and
is used to generate observations for updating the belief with
the belief updater U . Hence, the simulations trace trajectories
in the belief space.

B. Belief Space Reinforcement Learning

The belief represents the agent’s knowledge of the state.
For optimal decision-making, a reinforcement learning agent
has to make its decisions based on the belief. Often this is
approximated by providing a history of observations to the
agent [15], or the belief is tracked implicitly within a recurrent
neural network architecture [25]. Since we propose to use
MCTS planning in belief space, we must also train the learned
heuristics with belief space reinforcement learning. In our
work, we follow Bouton et al., who learned a policy directly in
belief space by extending reinforcement learning with a belief
updater [11]. The input to the neural networks is a vectorized
representation of the belief.

C. Guiding the Tree Policy with Learned Models

In the following, we present different methods to employ a
model trained with reinforcement learning as guidance for the
MCTS tree policy, similar to the methods presented for the
AlphaZero algorithm [16]. However, we adapt these methods
to the belief space formulation of a POMDP. Depending on
whether the reinforcement learning agent learned a policy, or a
value or Q-value function, or both, only some of the strategies
are applicable.

The MCTS tree policy selects the action that maximizes the
upper confidence tree formula in Eq. (1). This formula consists
of an exploitation term preferring high estimated Q values and
an exploration term that considers how often each action has
been tried. We consider both terms for using a learned model
as additional guidance.

1) Using a learned policy for rollouts: A learned policy
can be used to estimate the value in leaf nodes. Instead of
performing a random rollout to estimate the value of leaf
nodes, the rollout can be performed following the optimal
policy. Since random rollouts are highly unlikely to produce
good value estimates, this greatly improves the value estimate
in the leaf node, which is used to update all nodes in this
branch of the tree. Hence, this makes the exploitation term of
UCT much more accurate.

2) Using Q-value estimates instead of rollouts: Similarly,
a learned value function can be used to estimate the value
at leaf nodes. Whenever a leaf node is reached, the trained
value network is queried for the simulated belief instead of
estimating its value with a random rollout. Since the learned
value function subsumes different stochastic evolutions of the
environment, this results in a lower variance estimate than
using a rollout. At the same time, this approach saves the
computational cost of performing the rollout, allowing a larger
number of simulations to be executed from the root node
within a given computational budget. Note that if the learned
model provides only Q-values, the value of a belief b is simply
given by V (b) = maxaQ(b, a).

3) Using Q-value estimates to initialize action node values:
Each action node maintains a running estimate of the Q
value corresponding to this state-action pair. This estimate
is continually updated with each node visit and is used in
the UCT formula. When a new node is added to the tree,
by default the Q values are initialized with zero. Instead, a
learned Q-value function can be used to initialize the action
node’s value.

4) Using a RL policy as exploration prior: The AlphaZero
algorithm proposes to use a trained policy πθ with weights θ
as an action prior in a variant of UCT. Formulated for belief
space planning, the formula is given by

Uθ(b, a) = Q(b, a) + cuctπθ(b, a)

√∑
a′ N(b, a′)

1 +N(b, a)
. (2)

This strategy leads to more exploration in the tree areas that
are believed to be highly rewarding by the policy.

This strategy can be used even if the agent did not explicitly
learn a policy πθ (e.g. a DQN agent). In this case, we propose
to use a Boltzmann policy

πθ(b, a) =
exp(Qθ(b, a))∑
a′ exp(Qθ(b, a′))

(3)

in Eq. (2).

IV. IMPLEMENTATION

In the following, we describe how the merging scenario
and the interactive behavior of the other vehicles is modelled
as a Partially Observable Markov Decision Process (POMDP)
closely following the work of Bouton et al. [11].

A. POMDP Formulation

In the considered scenario, the ego vehicle starts on a
merging road and has to merge onto a main road with varying
traffic density.

1) States: We model the merging scenario in a continuous
state space. Since we are primarily interested in the inter-
actions of the merging behavior and each vehicle follows a
defined path, only the longitudinal motion of the vehicles is
considered. Hence, the physical state of each vehicle consists
of its longitudinal position x, measured as the distance to the
merging point, velocity v, and acceleration a. Additionally,
each vehicle’s state contains an unobserved parameter deter-
mining its interactive driving behavior, namely its cooperation



level c, which is described in detail in Section IV-B. Hence,
the full state s = (se, s1, . . . , sN ) consists of the ego vehicle
state se = (xe, ve, ae) and the physical and latent states of a
variable number of N other vehicles si = (xi, vi, ai, ci).

2) Actions: The scenario evolution is discretized into time
steps of length ∆t. To achieve smooth driving, we model
the action space using jerk levels. Specifically, the agent can
choose between the jerk levels jt ∈ {−1 m

s3 , 0
m

s3 , 1
m

s3 } which
update the acceleration according to aet = aet−1 + jt∆t.
Together with an emergency brake action that immediately
sets the acceleration to aet = −4 m

s2 , the agent has the choice
between four actions in each step.

3) Transition Model: All vehicles follow a simplified dy-
namics model according to

xt+1 = xt + vt∆t+
1

2
at∆t

2, (4)

vt+1 = vt + at∆t. (5)

The ego vehicle acceleration is determined as described in
the previous section whereas the other vehicles choose their
acceleration according to the driver model described in Sec-
tion IV-B. When vehicles reach the end of the road, they
are spawned at the beginning of the main road again with
a probability pspawn.

4) Reward Model: The reward function encodes the desired
objectives of safety, efficiency, and comfort. At each time step
t, the agent receives a penalty of −0.1a2t − 0.1j2t to prevent
excessive acceleration and jerk. Once the agent reaches the
goal region 50 m behind the merge point, it receives a reward
of +100. In case of a collision with another vehicle, it receives
a penalty of −100. The agent is encouraged to reach the goal
quickly since future rewards are discounted with a discount
factor of γ = 0.99. An episode terminates if the agent reaches
the goal, collides with another vehicle, or after a fixed time of
100 s has elapsed.

5) Observation Model: The agent is able to observe the
positions xi and velocities vi of other vehicles, as well as
its own physical state se. The acceleration and cooperation
level of other vehicles is not observable. Since this work
is focused on the interaction between vehicles and not on
sensor uncertainties, there is no noise in the observation. To
effectively deal with a varying number of vehicles in the
scenario, we consider only the four most important vehicles for
merging in the observation. These are the vehicles right before
and after the merge point, and the front and rear vehicle of the
projection of the ego car onto the main road, as illustrated in
Fig. 2. The projection is defined by the longitudinal distance
to the merge point.

B. Model for Cooperative Driving

The behavior of the vehicles on the main road is modelled
by the Cooperative Intelligent Driver Model (C-IDM) [11], an
extension of the Intelligent Driver Model (IDM) [26]. As with
standard IDM, the model computes a longitudinal acceleration
based on the front vehicle. Additionally, C-IDM also takes

Ego vehicle projection
Observed vehicles

Figure 2: The ego vehicle (cyan) can observe the vehicles
before and behind the merge point as well as the vehicles
before and behind the ego projection (white) onto the main
road.

merging vehicles into account by introducing a cooperation
level c in the interval [0, 1].

C-IDM estimates the time-to-merge (TTM) for the merging
vehicle (TTMmerge) as well as for the vehicle on the main
road (TTMmain) using a constant velocity prediction. If
TTMmerge < c · TTMmain, the projection of the merging
vehicle onto the main road is used as the IDM target for the
main road vehicle. If TTMmerge ≥ c · TTMmain, or if no
merging vehicle is within the field of view of 30 m, the main
road vehicle follows standard IDM behavior. Thus, cooperative
cars (c = 1) will slow down for the merging vehicle if it
reaches the merging point earlier. Non-cooperative vehicles
(c = 0) will not slow down in any case.

Hence, given the cooperation level c, the C-IDM behavior is
deterministic. While the model might not accurately represent
human-like driving, it certainly exhibits behavior that happens
in real traffic merging situations.

C. Initial State Distribution

When initializing the scenario, the ego vehicle is placed at
a distance of 50 m from the merge point on the merging road
with an initial velocity of 10 m

s . A random number of N ∈
{Nmin, . . . , Nmax} vehicles is spawned in random positions
on the main road with normally distributed initial velocities
with a mean of 5 m

s and a standard deviation of 1 m
s . The

desired velocity vdes for each vehicle is also randomly sampled
depending on the desired traffic conditions with the parameters
given in Table I. Each vehicle has a random cooperation level
c ∈ [0, 1]. The remaining IDM parameters have constant values
of desired time headway T = 1.5 s, minimum spacing d =
2 m, and maximum acceleration |a|max = 2 m

s2 . To generate
a more natural initial traffic scene, the vehicles on the main
road are simulated forward for a random time interval between
5 s and 10 s using their respective driver model, while the ego
vehicle state remains unchanged.

D. Tracking the Cooperation Belief

As described in Section III-B, the reinforcement learning
agent is trained in the belief space. In our scenario, there
is one latent state per vehicle – the cooperation level. The
physical states of the vehicles are fully observable, while the
desired velocity parameter of the IDM model is not observable.
However, it is not estimated, since the cooperation level has
a much higher impact on the resulting behavior for the ego



vehicle. The other IDM parameters are assumed to be known.
Hence, the belief is only estimated over cooperation levels,
which decreases the required computational effort for belief
updates.

Following prior work, the cooperation level is assumed to be
binary for filtering to make the belief updates more efficient
[11]. Let θ̂it denote the estimated probability for ci = 1 at
time t and ŝML

t the most likely state. In the update of vehicle
i’s cooperation θ̂it, the most likely state ŝML

t is constructed
from the known physical states, randomly sampled desired
velocities, and assuming cj = θ̂jt for all other vehicles j 6= i.

After receiving an observation ot of the scene, the belief
of the cooperation ci for vehicle i is updated using Bayes’
theorem as

θ̂it+1 =
p(ot|ŝML

t , ci = 1)θ̂it

p(ot|ŝML
t , ci = 0)(1− θ̂it) + p(ot|ŝML

t , ci = 1)θ̂it

This means that first, the scene is predicted for both hypotheses
ci = 0 and ci = 1 using C-IDM. The likelihood p(ot|ŝML

t , ci)
of observing ot given the most likely state and the cooperation
level is then determined by adding Gaussian noise with a
standard deviation of 1 m for positions and 1 m

s for velocities
to the predicted state. This Gaussian noise makes the proposed
approach more resilient to model mismatch.

To reduce the computational cost, the belief is only updated
for observed vehicles. Furthermore, the belief about the direct
leading vehicle is not updated, since its cooperation level
cannot influence the ego merge. Hence, a maximum of three
cooperation beliefs is updated for each observation.

E. Reinforcement Learning with Cooperation Beliefs

The dimension of the belief varies with the number of
vehicles on the scene. To simplify the training of the rein-
forcement learning agent, we choose a belief representation
with a fixed size as input to the neural networks. This
representation consists of the physical ego state (xe, ve, ae)
and the position, velocity and cooperation estimate (xi, vi, ci)
of the four observed vehicles, as described in Section IV-A5.
In total, this results in a 15-dimensional vector representation
of the belief, where the belief is estimated using the method
introduced in the previous section. The network architecture
and DQN parameters are presented in Table II.

V. EXPERIMENTS

We evaluate our approach in the merging environment de-
scribed in Section IV-A. The scenario was implemented using
the POMDPs.jl framework [27]. We consider three scenarios
that differ in traffic density and desired velocities of other
vehicles: The first scenario represents moderate urban traffic,
while the other two represent dense urban traffic and fast
traffic, respectively. In the moderate scenario, vehicles have
a low desired velocity and the traffic density is moderate. The
dense scenario uses the same desired velocity range, but the
traffic density is increased. In contrast, the vehicles have higher
desired velocities in the fast scenario, while the traffic density
remains moderate. The parameters defining the scenarios are

Traffic condition

Parameter Moderate Dense Fast

Nmin 4 8 5
Nmax 8 12 10
pspawn 1.0 0.3 0.8
vdes,min 4m/s 4m/s 8m/s
vdes,max 6m/s 6m/s 12m/s

Table I: Scenario-specific parameters.

Parameter Value

Neural network architecture 2 dense layers, 64 and 32 nodes
Activation function ReLU (only on hidden layers)
Loss function Huber loss
Optimizer Adam [29]
Learning rate 10−4

Batch size 200
Training steps 3 · 106
Replay buffer size 1 · 105
Target update frequency 5,000

Table II: Parameters used for training the DQN agent.

provided in Table I. In the dense and fast scenario, vehicles
only spawn again with pspawn < 1 at the beginning of the
lane after reaching the end. This slowly decreases the traffic
density over time, simulating larger gaps that also occur in
dense traffic occasionally.

In our experiments, we train a DQN agent with experience
replay on the belief MDP as described in Sections III-B
and IV-E. We used the ReinforcementLearning.jl framework to
train the agent. [28]. The hyperparameters of the DQN agent
are given in Table II.

This agent is then used to guide the online belief space
search of the MCTS-based algorithms using the strategies
presented in Section III-C and serves as a baseline for the pro-
posed methods. The belief updater presented in Section IV-D
is used to update the agent’s belief during the experiments but
also in the belief space MCTS tree simulations.

To assess how well the proposed approach transfers to new,
unseen environments, we train the DQN agent only in the
moderate scenario and then evaluate all scenarios using this
agent. Hence, our evaluation consists of one in-distribution
experiment and two out-of-distribution experiments. For each
of the three scenarios, we compare the following decision-
making algorithms:

1) Belief Space Reinforcement Learning: The baseline for
all MCTS-based algorithms is the plain DQN agent trained on
the belief MDP, referred to as Belief RL [11].

2) Belief Space MCTS with Random Rollout Policy: This
policy represents the standard MCTS formulation where the
value of leaf nodes is estimated by rolling out the simulation
with a random policy. We refer to it as Random MCTS.

3) Belief Space MCTS with Neutral Value Estimate: The
Neutral MCTS assumes that no more rewards are collected
after reaching a leaf node. While this makes it more difficult
to find the sequence of actions that leads to the goal, it is
computationally cheap.



4) Belief Space MCTS with Informed Rollout Policy: For
the Informed Rollout MCTS (IR MCTS), we use the greedy
DQN policy to estimate leaf node values with rollouts.

5) Belief Space MCTS with Q-value Estimates and Action
Prior: This method makes the most use of the trained models:
Leaf node values are estimated using the learned value func-
tion and Q-value estimates are initialized with the learned Q-
values. Additionally, the Boltzmann policy in Eq. (3) is used
as a prior on the exploration term as presented in Eq. (2). We
refer to it as Q-Zero.

6) Belief Space MCTS with Q-value Estimates: This policy
represents an ablation of the previous one. It also uses the
learned Q-value function to estimate leaf node values and to
initialize Q-value estimates in new action nodes. However,
it uses the standard UCT formula without the learned action
prior for the tree policy. It is referred to as Q-MCTS.

7) Belief Space MCTS with Value Estimates: The last
policy represents a further ablation and is referred to as V -
MCTS. It only makes use of the learned model for estimating
the value of leaf nodes as V (b) = maxaQ(b, a).

All the MCTS-variants use progressive widening of the
belief space with parameters k = α = 0.5. The exploration
constant for UCT was set to cuct = 50 and the maximum
depth for tree search and rollouts to d = 30 in all experiments.
All algorithms have a computational budget of 1 s of online
planning time. Note that it is not possible to use POMDP
solvers like POMCPOW [30] on this problem, since the
observation is modelled deterministically.

For each of the algorithms, we conduct 1000 experiments
with random initial states, as described in Section IV-C.
Policies are judged based on collision rate, timeout rate, and
the average number of steps to reach the goal in successful
episodes. Furthermore, we also report the average discounted
and undiscounted cumulative reward.

VI. RESULTS

Table III presents the results for the moderate scenario,
on which the belief RL agent was trained. While belief RL
performs well, the MCTS approaches not employing learned
models are struggling: Random MCTS has both, collision and
timeout failures, while neutral MCTS acts very conservatively
and has a lot of timeout failures. The approaches making
use of learned models as heuristics generally perform better
in terms of reward than the classical MCTS variants. The
best performance is achieved by Q-Zero, closely followed by
its ablation Q-MCTS. Their performance almost matches the
belief RL agent. IR MCTS also has a very high success rate
but on average requires more steps to reach the goal. V -MCTS
acts very conservatively and hence has almost no collisions but
a significant number of timeouts.

For the dense traffic transfer environment, the general
picture is very similar, as illustrated in Table IV. The MCTS
methods using learned Q-value functions as guidance outper-
form the MCTS approaches not using learning. The belief
RL agent now suffers from some collisions, since it cannot
easily handle the increased traffic density. Its driving behavior

was optimized for moderate traffic, hence, it results in a
high-risk policy in dense traffic situations. For this reason,
it reaches the goal quickly if successful but at the cost of
many collisions. Despite the suboptimality of this policy, the
MCTS algorithms can effectively make use of it as guidance to
promising action sequences while still avoiding highly risky
situations. In particular, Q-MCTS and Q-Zero require only
slightly more steps to safely reach the goal, with Q-Zero
achieving a lower collision rate than Q-MCTS.

As Table V shows, the results for the second transfer
environment with fast traffic flow are similar to dense traffic.
While belief RL again results in a high-risk policy regarding
collisions, the MCTS-based algorithms can still use it to
greatly improve their performance to a minimum of collisions
without being conservative. In this scenario, Q-Zero reaches
the goal significantly faster than Q-MCTS at a comparable
level of safety.

VII. CONCLUSIONS AND OUTLOOK

This work presents a methodology for augmenting online
planning algorithms with learned policies to overcome the
curse of dimensionality in belief space planning. We use
trained neural networks as heuristics to estimate the value
of leaf nodes during tree search as well as to guide the tree
policy to the most promising parts of the search tree. The
efficacy of the method is shown in a cooperative merging
scenario, including two transfer environments with different
characteristics.

In our work, we use Monte Carlo Tree Search (MCTS)
as the online planning component. However, the ideas can
be transferred to other online planning algorithms, such as
optimization- or sampling-based motion planners. Further-
more, our approach can be used in other highly interactive
driving situations such as roundabouts or traffic weaving.

From our experiments, we conclude that MCTS can greatly
improve its online planning performance by using learned
models. The experiments on the transfer environments show
that even if the policy itself is suboptimal, it can be used
effectively to guide the tree exploration in MCTS. Our ablation
studies show that using the learned model only to estimate the
value of leaf nodes can result in over-conservative behavior. If
additionally the Q-values of action nodes are initialized using
the learned Q-value function, this acts as an initial prior on
the UCT action selection and already results in a very good
policy. The full Q-Zero method uses a Boltzmann policy based
on the learned Q-values as a persistent action prior, which
further improves the performance.

Another benefit of Q-Zero is that querying a small neural
network is a faster operation than simulating a rollout of the
environment. For this reason, Q-Zero and its ablations are able
to perform more simulations within the same computational
budget, leading to a performance superior to IR MCTS.

A promising direction for future research is to let the actions
represent high-level maneuvers with an underlying low-level
controller that guarantees safety, as demonstrated in an RL
context by Mirchevska et al. [31]. Additionally, data-driven



Algorithm Total reward Disc. reward Collision rate [%] Timeout rate [%] Number of steps

Belief RL 97.0 82.2 0.1 0.0 17.3

Random MCTS 54.9 36.8 3.7 4.7 34.8

Neutral MCTS 16.1 12.7 0.5 79.2 24.0

IR MCTS 82.5 58.9 0.7 0.3 34.6

Q-Zero 95.6 80.4 0.2 0.0 18.7

Q-MCTS 94.5 79.3 0.6 0.0 18.7

V -MCTS 68.3 50.9 0.2 24.2 31.7

Table III: Average metrics in the moderate traffic scenario.

Algorithm Total reward Disc. reward Collision rate [%] Timeout rate [%] Number of steps

Belief RL 89.7 73.5 2.9 0.3 20.0

Random MCTS 54.9 27.8 3.0 0.1 45.7

Neutral MCTS 16.7 12.8 0.0 79.8 25.4

IR MCTS 77.9 51.9 0.6 0.0 36.5

Q-Zero 94.7 76.8 0.2 0.0 22.3

Q-MCTS 92.8 74.1 1.0 0.1 23.6

V -MCTS 70.0 43.5 0.0 22.2 48.5

Table IV: Average metrics in the dense traffic scenario.

Algorithm Total reward Disc. reward Collision rate [%] Timeout rate [%] Number of steps

Belief RL 90.7 79.1 2.5 0.0 14.5

Random MCTS 50.9 30.7 4.7 2.9 39.1

Neutral MCTS 15.1 13.2 0.3 79.9 16.9

IR MCTS 77.6 56.7 0.5 0.0 29.6

Q-Zero 96.2 83.1 0.1 0.0 16.1

Q-MCTS 95.4 79.9 0.0 0.0 19.4

V -MCTS 31.7 15.5 0.0 57.4 66.0

Table V: Average metrics in the fast traffic scenario.

approaches can be used to learn more realistic cooperation
models from human driving data.
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