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Abstract—Safety-critical real-time systems must be carefully
designed to guarantee both functional and temporal correctness.
State-of-the-art approaches to achieve this are often based on
formal notations capturing both the desired functionality and
relevant timing properties. This work is concerned with the
design of embedded software systems for emerging fields such as
the Urban Air Mobility (UAM) sector. In this context, it deals with
scenarios that benefit from a less formal programming model, but
for which guarantees on functional and timing behavior must
still be provided. We propose a concept to specify and simulate
the behavior of embedded real-time software in a deterministic
manner. It combines the Logical Execution Time (LET) paradigm
with a flexible, code-based approach for behavior specification
and performs discrete-event (DE) simulations to determine how
exactly the designed system responds to given stimuli. We
describe this concept, present a reference implementation us-
ing Ptolemy II as simulation backend, and discuss its application
to a pilot assistance system from the UAM sector.

Index Terms—Model-based design, real-time systems, em-
bedded software, Logical Execution Time (LET), Ptolemy II,
discrete-event simulation, avionics.

I. INTRODUCTION

Embedded systems in safety-critical environments are often
required to guarantee functional and temporal correctness.

To facilitate the development of these systems, synchronous
languages such as LUSTRE [1] or ESTEREL [2] have been
proposed. They are based on a programming model where
concurrently executed programs respond to inputs in an in-
stantaneous manner [3]. Compiling synchronous programs
to suitable target platforms leads to an implementation for
which guarantees on functional and timing behavior can be
derived. This zero-delay abstraction is also referred to as
the Zero Execution Time (ZET) paradigm [4]. Today, syn-
chronous languages are commonly used for the design of
real-time systems in various domains, for example as part of
the SCADE tool suite [3]. However, the zero-delay assumption
can turn the compilation of a synchronous program into a
challenging task [5]. In addition, from a usability point of
view, designers in a particular use case might prefer to treat
a system as interacting software entities with non-negligible
execution times. If this is the case, an abstraction in which
these times are explicitly specified can be beneficial.

978-1-6654-9799-2/22/$31.00 ©2022 IEEE

The time-triggered programming language GIOTTO [6],
which introduced the Logical Execution Time (LET) abstrac-
tion [4], replaces zero-delay with unit-delay computations. It
considers periodically executed tasks, where each task reads its
inputs at exactly the start of its period and writes its outputs
at precisely the end of its period [6]. Deployed to a target
platform that enforces this abstraction, a GIOTTO program
exhibits deterministic timing and data-flow behavior. Since the
period of a task serves as a time buffer that can be used for
inter-task communication, the paradigm is particularly suited
for distributed applications. From a software development
perspective, it supports the integration of arbitrary code, e.g.,
written in the C programming language. Especially in the
automotive domain, it is therefore increasingly used to achieve
temporal correctness in on-chip and system-level scenarios. It
is available, for instance, as part of the AUTOSAR timing
extensions [7]. Compared to synchronous languages, however,
the lack of a formal model that describes the behavior of in-
dividual tasks makes it difficult to reason about the functional
correctness of LET-based systems.

The development of embedded software for emerging fields
such as Urban Air Mobility (UAM) is increasingly sub-
ject to requirements not fully addressed by conventional
design methodologies. Unmanned Aerial Vehicles (UAVs),
for instance, are embedded into a regulatory environment
where adherence to strict safety requirements is necessary [8].
At the same time, they require an integration of compu-
tationally intensive features such as collision avoidance or
passenger entertainment systems [9]. Combined with the
trend towards a consolidation of functions on multiproces-
sor system-on-chip (MPSoC) devices [10], this creates a
need for approaches that support the explicit specification
of non-negligible execution times, the efficient compilation
to complex target platforms, and an automatic derivation of
functional and temporal guarantees.

To address these challenges, we present a tool-supported
behavior specification and simulation methodology based on
the LET paradigm. It supports the integration of arbitrary code
to describe the envisaged behavior of software entities and exe-
cutes automatically generated discrete-event (DE) simulations
to determine how exactly the overall system will respond to
certain stimuli.
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More specifically, the contributions of this work can be
summarized as follows. We present:

« a behavior specification methodology that combines a
metamodel capturing the software architecture of a sys-
tem with a code-based programming model to describe
the functional behavior of individual software entities;

« a simulation strategy that translates specified behavior
into deterministic DE simulations and allows the user to
execute these simulations in custom environments; and

« areference implementation of the proposed concept that
employs the Ptolemy II framework [11] as its backend to
execute generated simulations.

The deployment of specified behavior to target platforms,
which involves the actual scheduling of software entities, goes
beyond the scope of this paper. Conceptually, this process is
equivalent to the compilation of traditional LET programs [6],
but special care must be taken to guarantee consistency with
all details reflected in the DE simulation. The associated
challenges will be tackled in future work.

This paper is structured as follows: We first give a high-level
overview of the proposed design methodology in Section II.
Section III describes the behavior specification step in more
detail, while Section IV focuses on the simulation strategy. Our
implementation is described in Section V, before Section VI
covers related work and Section VII closes the paper with our
conclusions and future research directions.

II. HIGH-LEVEL CONCEPT

The starting point of the proposed design methodology is
a platform-independent model of software entities and their
interaction in the envisaged system. We refer to this model
as the software architecture and to each entity it contains
as a Software Component (SWC). Data flow from an output
of a SWC to an input of a SWC is referred to as a channel.
In the methodology, the LET paradigm is applied at this
level of abstraction. More specifically, a task from the LET
programming model [4] is conceptually equivalent to a SWC,
while inter-task communication is represented via channels.

Furthermore, a SWC can be simulated as an actor as it is
defined in the Ptolemy II context [11]. Using a pilot assistance
system from the UAM sector, the next section illustrates how
this capability contributes to the goal of this work.

A. Motivation: Simulation of a Pilot Assistance System

The system used as a motivational example is the Tacti-
cal Air Risk Mitigation System (TARMS) shown in Fig. 1.

It is equipped with a Terrain Awareness and Warning Sys-
tem (TAWS) that, according to DO-367 [12], has to issue
warnings and cautions in response to situations such as an
excessive rate of descent. In addition, the Collision Avoid-
ance System (CAS) employs a neural network trained with
flight maneuvers [13] to issue advisories for the prevention
of collisions with intruder aircraft. The input and output ports
of the TARMS embed it into the scope of the surrounding
aircraft. More specifically, the Instruments block generates
messages (z) to request certain actions from the aircraft’s
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Fig. 1. Logical architecture of a sample system

‘ Stimulus generation ‘_,_’$ TARMS +—> z
(a) Open-loop case

P—— TARMS — ]

— At |« i Pilot DE—

(b) Closed-loop case
Fig. 2. Possible simulation setups integrating the TARMS

instruments. Analogously, the Aircraft State Acquisition and
the Intruder Localization functions query the aircraft for its
state (1) and information on surrounding vehicles (z2), re-
spectively. For the purposes of this paper, we map each logical
function shown in Fig. 1 to a dedicated SWC. The ability
to implement these SWCs using arbitrary code is desirable,
since it allows us to make use of a readily available Rust [14]
implementation of the TAWS and to realize the CAS by
integrating C code that was automatically generated using a
state-of-the-art machine learning library.

Formal methods to analyze safety properties of embedded
systems, such as the approach presented in [15], can be applied
to derive requirements that the TARMS needs to fulfill. An
example of these requirements is the following: “When the rate
of descent is at least (...) and the height above terrain is (...),
then a Mode 1 caution alert is emitted within 2 seconds.”
Due to its formulation as an end-to-end requirement from x;
to z, it cannot be met by a functionally correct implementation
of the TAWS itself. The application of the LET paradigm
supports the designer to achieve temporal correctness at the
system level, but the nominal functionality of the Instruments
block must still be considered: if it prioritizes its inputs in
an unsuitable manner, the TAWS-related deadline might be
missed. Therefore, the simulation shown in Fig. 2a is a simple
yet powerful approach to collect evidences for the fulfillment
of the above requirement.

In addition, this strategy makes it is possible to execute a
model of the system in the context of its environment. From
a control systems point of view, this environment usually cap-
tures the controlled plant and the plant’s physical surroundings.
In such a simulation, SWC actors are concurrently executed
with actors that represent the heterogeneous environment. The
closed-loop simulation in Fig. 2b shows a possible application
of this capability. Using an executable model of the pilot’s
response to TARMS signals (%) and a model of the aircraft
itself (including its physical surroundings), it is possible to
gather additional evidences for the verification of specified
system behavior.



B. Logical Execution Time (LET) in the Context of SWCs

The original LET concept combines the time-triggered
execution of tasks with support for mode switches [6]. More
specifically, in GIOTTO, a set of modes serves as the top-level
entity of a program. For each mode, the designer needs to
specify periodic tasks as well as conditions that transition the
program into another mode. From a modeling point of view,
each task consists of input and output ports. Furthermore, enti-
ties referred to as connections represent the data flow between
such ports [6]. From an implementation perspective, sequential
code with known Worst-Case Execution Time (WCET) needs
to be provided for each task. Tasks are periodically invoked.
Logically, they have to read values from their input ports at
exactly the start of their period and write values to their output
ports at exactly the end of their period, both in zero time.
During this period, the sequential code needs to be executed
to produce the required output values. In other words, tasks
exhibit read-execute-write semantics [16]. Finally, note that
every port keeps its value until it is updated [17]. This means
that inter-task communication exhibits last-is-best semantics
or, in other words, that queuing is not directly supported.

Like an LET task, a SWC from our concept has input and
output ports, is associated with user-provided code that is
periodically executed in a time-triggered manner, and has a
logical runtime that constraints port access as outlined above.
Unlike conventional LET tasks, however, the notion of a SWC
has been specifically designed to facilitate a deployment
to targets such as a real-time operating system compliant
with ARINC 653 [18] or the Classic Platform of AUTOSAR.
Therefore, a port in our concept supports both sampling and
queuing semantics. The logical runtime of a SWC is further
decoupled from its period, which can lead to significantly
reduced end-to-end latencies [19]. Finally, the concept defines
a programming model that imposes specific requirements on
how user-provided code needs to interact with input and output
ports to facilitate a deterministic simulation.

The following definitions introduce the terminology we use
with respect to LET-related aspects of the methodology.

Definition 1. The set of all SWCs in a software architecture
is given by S = {s; | 1 <i < N}. In what follows, a symbol
with index ¢ will always relate that symbol to s;, while N de-
notes the number of SWCs in the system.

Definition 2. For every s; € S, an LET frame of s; is a time
interval that corresponds to exactly one execution of the code
provided for this SWC; it is referred to as L;.

Note that starting from time ¢ = 0, a conceptually infinite
sequence of L; instances is associated with each s; € S.

Definition 3. The sequence of LET frames for s; € S is
completely specified by the LET parameters associated with
the SWC. These parameters are given as ¢; = (r;, 7, 1}),
where r; denotes the logical runtime of the SWC, 7; describes
the time offset at which the first L; begins, and T; refers to
the period between two consecutive releases of L;.

A tuple of LET parameters ¢; is valid if and only if the
conditions 0 < r; < T; and 0 < 7; < T} are met.

Definition 4. The beginning of a specific L; is referred to
as activation event of s;. Such events occur at the points in
time given by t = 7; + 5 - T; Vj € Ng.

Definition 5. The termination of a specific L; is referred to
as termination event of s;. It occurs exactly r; time units after
the activation event that initiated the LET frame.

C. Overview of the Design Methodology

The proposed methodology in Fig. 3 can be divided into
two portions: a behavior specification and a simulation step.
Each step is associated with a tool that generates artifacts
from provided user inputs as well as from previous generation
results and built-in libraries, if applicable. They are referred
to as the GEN tool and the SIM tool, respectively.

The entry point into the methodology is a software archi-
tecture model. Combined with metadata, it is captured in a
user-provided input artifact we refer to as the system model (1).
Invoking the GEN tool (2) on this artifact triggers an automatic
generation of a SWC code skeleton for each specified SWC (3).
Using an Application Programming Interface (API) we de-
veloped as part of this work, the toolchain user populates
these skeletons with platform-independent SWC code (4). The
result of this procedure is a deterministic description of the
envisaged system-level behavior—both from a functional and
from a timing point of view. Combined with a built-in library
that implements the functions of the API, it can be passed to
a backend that deploys it to a specific target platform.
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As described above, however, the deployment process is
beyond the scope of this work. Therefore, the remainder of
the development flow continues to consider logical time only.
Synchronization with physical time, for example as part of the
interaction with a sensor node on a target platform, is part of
future work on the deployment concept.

Definition 6. The specified behavior of a system under con-
sideration is its system model combined with user-provided
code for each SWC in that model. It is both logically and
temporally deterministic.

Given the specified behavior, a simulation binary is au-
tomatically created for each SWC (5). This artifact is an
executable for the host platform that, whenever it is invoked,
simulates an LET frame of the respective SWC by executing
its associated code and responding with all outputs generated
by the execution. Based on these binaries, the user composes
a simulation setup (6), i.e., a textual description of how the
specified behavior shall be executed. Most importantly, this
description captures the environment to simulate, e.g., by
instantiating a behavioral model composed using Ptolemy II.
Invoking the SIM tool (7) on this description performs a DE
simulation of the specified behavior in the respective environ-
ment by spawning and repeatedly invoking every simulation
binary. While the simulation takes place, the tool generates
an execution trace (8), which contains a deterministic de-
scription of all activation and termination events. Every such
event is associated with all received input port values or,
alternatively, all generated output port values.

III. BEHAVIOR SPECIFICATION METHODOLOGY

In this section, the input artifacts that need to be provided
to the behavior specification step of the methodology are
described in more detail.

A. Modeling of the Software Architecture

The class diagram in Fig. 4 shows the metamodel that inputs
provided to the GEN tool need to conform to. The entry

t artifacts processed by the GEN tool

point into an object hierarchy instantiated from this metamodel
is a SystemModel object. It configures the base time unit
used in the model and contains a SoftwareArchitecture
instance. As already described in Section II, a software
architecture consists of its SWCs and the channels that
interconnect them. In the metamodel, this is reflected by
the SoftwareComponent and ChannelInstance objects
that are contained in a SoftwareArchitecture. The logical
runtime r; of an s; € S is set directly in the object rep-
resenting s;. Its remaining LET parameters are captured in
an ActivationPattern object, where the offset property
corresponds to 7; and the period property represents 7;.
The following OCL [20] constraints formalize the already
introduced validity requirements of these parameters:

context SoftwareComponent
inv: activation.period >=
inv: runtime > 0

runtime

context ActivationPattern
inv: offset < period

Since all these properties are of the Duration type, i.e.,
they are represented as unsigned integers, the requirement
that 7, > 0 for all 1 <7 < N is met by definition.

Input and output ports are modeled as SwcPort instances
contained in the ports property of the SoftwareComponent
they are part of. For a queuing port, which is represented by
the QueuingPort class, the capacity specifies the length
of the queue. Queues must have room for at least one value.
Therefore, the following invariant must hold:

context QueuingPort
inv: capacity > 0

Using the SwcPort::direction property, a port is set
as either an input or an output. The SwcPort: : scope prop-
erty determines whether this port is used for communi-
cation within the system or for communication with the



environment. An internal port (scope = INTERNAL) can
only connect to other internal SWC ports. An external
port (scope = EXTERNAL) must not be connected as part of
the software architecture. Instead, in an actual deployment of
the system, these ports implement interactions with external
entities, e.g., using sensors or actuators.

Example. Consider again the TARMS example from Fig. I.
Under the assumption that every logical function block from
this figure is mapped to a dedicated SWC, the alerts issued
by the TAWS need to be modeled as an internal port. x1, xo,
and z need to be modeled as external ports.

Finally, the SwcPort : :dataType property associates every
port with the data type of the values it is able to handle.
The available data types cannot be specified as part of the
system model. Instead, they are provided by the GEN tool!.
Every data type has a predefined, fixed size, e.g., 8 bytes for
an IEEE double-precision floating point number or 8n bytes
for an n-element array of such numbers (with an arbitrary but
fixed n € N). This size allows backends and the presented
simulator to allocate sufficiently large buffers for ports.

A channel is represented by a ChannelInstance object. It
establishes a unidirectional connection from its source port
to its sink port. A channel can only be specified between two
internal ports of the same mode (either sampling or queuing)
and of the same data type. Furthermore, it must lead from an
output to an input port:

context Channellnstance

inv: source.oclType() = sink.oclIType()

inv: source.dataType = sink.dataType

inv: source.scope = PortScope ::INTERNAL
and sink.scope = PortScope ::INTERNAL

inv: source.direction = PortDirection ::OUTPUT
and sink.direction = PortDirection ::INPUT

The write property of a SwcPort contains references to
all the channels for which it serves as the source. Therefore,
an output port can write an arbitrary number of channels.
The read property of a swcPort references the channel from
which it receives its data. An input port can be associated with
at most one channel. Internal input and output ports that are not
connected to a channel must be explicitly specified as “open”
using the openSpec property of the software architecture. This
requirement acts as a sanity check for model instances and can
be formalized as follows:

context SoftwareArchitecture
inv: components.ports
—>select(scope = PortScope ::INTERNAL)
—>select(openSetter —>isEmpty ())
—>forAll(read —>notEmpty () or write —>notEmpty())
inv: openSpec
—>forAll(read —>isEmpty () and write—>isEmpty())
inv: openSpec

—>forAll(scope = PortScope ::INTERNAL)

"However, the design methodology is able to deal with any data type whose
values can be stored using a statically allocated buffer. The specific GEN tool
we introduce in Section V makes use of this property to allow custom data
types to be defined using a flexible plugin mechanism.

The name of SoftwareComponent and SwcPort instances
is subject to the following constraints:

context NamedElement

inv: name—->notEmpty () implies name.size () > 0

context SoftwareArchitecture
inv: components—>isUnique (name)

context SoftwareComponent
inv: ports—>isUnique (name)

An instance of this metamodel, which is now completely
described, can be supplied to the GEN tool. The next section
presents the programming model that the user is expected to
follow during the population of SWC code skeletons.

B. Development of Code for SWCs

The programming model we present as part of this work
is defined as an API formulated in the C programming
language. Although not covered by this work, the development
of alternative APIs that provide a higher-level abstraction using
languages such as C++ or Rust is conceivable.

Targeting this API, the GEN tool creates two hooks for
each SWC specified in the software architecture:

void swc_init(void);
void swc_invoke(struct swc_port_map #port);

The swc_init hook is intended for non-recurring initializa-
tion steps, while swc_invoke captures code to execute during
an LET frame of the respective SWC. Code supplied to each
of these hooks must be guaranteed to behave determinis-
tically on all supported target platforms. Most importantly,
this means that it must not exhibit undefined, unspecified,
or implementation-defined behavior, while no functions with
inherently non-deterministic behavior are called.

The swc_port_map passed to swc_invoke contains an
accessor for each defined port. Depending on the data type and
the mode (sampling or queuing) of the port, such an accessor
allows clients of the API:

o to check the validity of a sampling input and, in case it

is valid, to obtain the current value of the port;

o to determine if a queuing input is empty and, in case it is

not, to obtain and remove the next value from the queue;

o to set the value of a sampling output; and

 to determine if a queuing output is full and, in case it is

not, to push a value into the queue.

The exact nature of such an accessor is determined by the
data type and, therefore, under the control of the GEN tool.

Example. The aircraft state passed to the TAWS in the
system from Fig. 1 consists of various state variables. For
the purposes of this example, we consider a subset of these
elements: the longitude, the latitude, and the altitude of the
aircraft. The former two state variables are given by an angle
encoded using a signed 32-bit variable, while the altitude is
given by a length encoded as an unsigned 32-bit variable.
The output provided to the Instruments block is a sink rate



alert state encoded using an unsigned 8-bit variable. Modeling
the inputs as sampling ports and the output as queue with a
capacity of one leads to the following port map:

struct swc_port_map {
struct port_access_i32_s_in
struct port_access_i32_s_in
struct port_access_u32_s_in
struct port_access_u8_q_out

longitude;
latitude ;
altitude ;
sink_rate;

}s

Functions to interact with, e.g., a signed sampling port are
wrapped in a port_access_1i32_s_1in instance. Depending
on how exactly the GEN tool implements the data type, a
possible declaration of this data structure is as follows:

struct port_access_i32_s_in {
int32_t (xconst read)(void);
bool (xconst is_valid)(void);

e

Using these interfaces, it is possible to access the input and
output ports of the TAWS in a type-safe manner.

In the presented programming model, interactions with input
and output ports have the following system-level effects:

o Writing a value to a sampling output buffers it within
the SWC for the duration of the LET frame. At the
termination event, the most recently written value is
transferred to sampling inputs connected via a channel
or, alternatively, released to the environment.

« Reading from a sampling input returns the value that the
port held during the activation event of the LET frame.
It retains this value until it receives a more recent one.

e Writing a value to a queuing output adds it to an
internal first-in-first-out (FIFO) buffer of the SWC. At
the termination event, all elements from this buffer are
appended to the connected input queues or, alternatively,
released to the environment. This clears the buffer.

o Reading from a queuing input returns the values that the
queue contained during the activation event of the LET
frame. More specifically, every read operation removes
and returns the next FIFO value. Unconsumed values are
discarded at a termination event.

The provided API allows developers of SWC code to query
the status of individual ports and, therefore, to prevent illegal
operations such as reading from an invalid sampling input or
writing to a full output queue.

IV. SIMULATION STRATEGY

The specified behavior originating from the previous step is
both logically and temporally deterministic (cf. Definition 6).
The simulation strategy uses these properties to generate an
executable DE simulation model of all SWCs along with their
interactions via channel instances. To achieve this, each SWC
is represented as an actor, while every channel instance is
translated into a relation that forwards the outputs of an actor
to the respective destinations. In addition, the strategy allows
custom actors capturing the behavior of the environment

Environment System
(wrapping custom actors) (automatically generated)
> )1 > >
S5
A
'

D DO
[ Simulation setup L E Execution trace

Fig. 5. Simulation strategy demonstrated using the TARMS example

to be instantiated into such a model. Therefore, it accepts
user-generated behavioral models, interconnects them, and
attaches them to environment ports of SWC actors.

The simulation setup shown in Fig. 3 defines exactly one
such integration of environment actors into the DE simulation.
In general, a user of the design methodology creates a set X of
such setups, where a specific A € X instantiates environment
actors given by Ey = {ex1, exgz, ...}. In the sense of
a heterogeneous system simulation as it is supported, for
instance, by Ptolemy II [21], it is possible to use a model of
computation that differs from DE within an environment actor.
A specific e € E) could, for example, be a continuous-time
model. It is important to emphasize that non-deterministic
behavior in environment actors (both from a functional and
a temporal point of view) is generally permitted.

Example. To simulate the closed-loop scenario introduced
in Fig. 2b, a simulation setup (A € X) based on two envi-
ronment actors can be created: ey 1, which captures how the
pilot responds to TARMS signals, and ey 2, which represents
how this response affects the aircraft state as well as the
relative position to potential intruders. The internals of these
actors (along with how their ports are connected) are specified
by the creator of the simulation scenario. Based on this
description, the SIM tool generates an executable model of the
system, instantiates the two environment actors, and connects
them as specified. This results in the auto-generated DE
simulation setup visualized in Fig. 5.

If at least one environment actor in a simulation setup
exhibits non-deterministic behavior, repeated executions of
this simulation can lead to traces that differ from each other.
Although the timing and the sequence of LET frames captured
in such traces will be the same in every case, the input and
output values associated with simulated SWC events can vary.
Such a simulation setup will generally have to be executed
a large number of times to allow for a statistical analysis of
resulting execution traces. While the proposed methodology is
still applicable to such scenarios, fully deterministic simulation
setups are of particular interest.

Definition 7. A deterministic simulation setup is a simulation
setup in which every environment actor exhibits logically and
temporally deterministic behavior.
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Executing a deterministic simulation setup multiple times
leads to identical execution traces. Therefore, only one execu-
tion of such a setup will generally have to be performed.

In the following section, we describe how to generate the
executable simulation model in detail. Note that this proce-
dure is identical for both deterministic and non-deterministic
simulation setups.

A. Integration of the Specified Behavior

An executable model that captures the specified behavior of
a specific SWC without its interactions with the environment
is generated by instantiating the entities shown in Fig. 6.

In the DE simulation, the s; actor represents the consid-
ered SWC itself. A discrete clock parameterized by 7; and T;
is instantiated to generate a sequence of tokens, each of which
representing an activation event of the SWC.

On the host platform (such as an x86-based desktop com-
puter), the simulation binary associated with the SWC is
spawned and connected to the DE simulation using a suitable
inter-process communication mechanism. Via this connection,
the SWC actor is able to trigger an LET frame execution,
i.e., to call the invocation hook of the SWC by providing
its simulation binary with input port values. In response, it
will be provided with the outputs that the execution of the
hook generates. Interactions with the simulation binary take
zero model time, i.e., the s; actor produces tokens that are
synchronous with the activation event of the SWC.

Since interactions with the environment are currently ne-
glected, only internal ports need to be considered. We refer
to the number of such input and output ports as m € Ny
and n € Ny, respectively. Every input port j =1, ..., m is
associated with an additional actor in the DE simulation: Bj,
the port buffer managing that port. Analogously, all output
ports K = 1,..., n are associated with a (conceptually
combined) delay actor referred to as D;. This actor is pa-
rameterized by d;. It delays all tokens generated by the SWC
actor to align them with the termination event.

Tokens traversing the edges in the DE simulation can be
described as follows: The discrete clock generates a token
whenever the global model time has advanced until an acti-
vation event of the SWC is due according to Definition 4.
Such tokens are released solely to trigger the port buffers
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Fig. 7. Simulator integration of external ports

and the SWC; they do not carry a (meaningful) value. Edges
directly or indirectly associated with a port carry tokens that
capture input and output values of that port. More specifically:

o Edges associated with a sampling port carry tokens that
represent exactly one such value.

o Edges associated with a queuing port carry tokens that
encapsulate an ordered (FIFO) sequence of zero of more
such values.

In any case, the simulator is unaware of the actual values that
are wrapped within these tokens: the simulation binary makes
use of the data type framework to provide the simulator with
an encoded representation of every value, which is treated as
a black box until it is decoded by a simulation binary.

In the top-level DE simulation, wrappers for all SWCs
are generated as described above. Channel instances are then
realized by directly connecting a dashed output arrow of the
source port to the dashed input arrow of the sink port. This
means that the port buffer B;, which has not been described
yet, logically represents a channel instance. Its purpose is
to process the outputs generated by the source port in such
a way that whenever it receives the activation event, it can
provide the SWC actor with all the inputs that are necessary
to implement the programming model described above:

o For a sampling port, it keeps track of the most recently
received value and, whenever an activation event occurs,
sends a token wrapping this value to the SWC actor.

o For a queuing port, it accumulates FIFO sequences
contained in received tokens and, whenever an activation
event occurs, sends the accumulated sequence to the SWC
actor. This will clear the internal accumulator.

If a port buffer receives inputs simultaneously with an acti-
vation event, these inputs become available to the SWC actor
as part of the immediately starting LET frame. Due to the
fact that every input port is driven by no more than one
channel instance (as indicated by the multiplicities in Fig. 4),
no ambiguities between simultaneous events can arise.

B. Integration of Environment Actors

Environment actors are instantiated into the top-level DE
simulation. To allow them to interact with external ports
of SWCs, these ports are embedded into the simulation as
illustrated in Fig. 7: an environment reader (R;) is generated
for each external input, while an environment writer (W)
is generated for every external output of a SWC. R; trans-
forms tokens with native simulator data types into encoded
values that the SWC actor can again forward as a black
box. Furthermore, it samples the received value (for sampling
ports) or accumulates received values (for queuing ports) in a



manner similar to the port buffer. Wy, reverses these actions.
The dashed arrows shown in Fig. 7 are finally connected to
environment actors as specified by the simulation setup. Note
that the procedure to translate between encoded values and
native simulator types needs to be explicitly implemented into
the GEN tool for each available data type.

Definition 8. A data type has environment support if encoded
values of that type can be created from and translated into
values of a corresponding data type of the simulator.

A system model is invalid if a data type without environment
support is specified for an external SWC port.

V. IMPLEMENTATION

The reference implementation we developed as part of
this work targets the Java Virtual Machine (JVM). More
specifically, both the GEN and the SIM tool are realized as
command-line applications written in Kotlin. As the notation
for system model instances, we created a human-readable
syntax using the JSONS format [22]. The backend used to
perform DE simulations is Ptolemy II [11], which itself runs
on the JVM. It is integrated into the SIM tool by linking
against its libraries to generate DE simulations according to
the rules given in Section IV. During the generation of the
model portion that represents the specified behavior of the
system itself, only a deterministic subset of the DE simulation
capabilities provided by Ptolemy II is used.

The available implementation of the GEN tool provides
common scalar data types (such as signed and unsigned
integers) and allows toolchain users to implement their own
types using a plugin system. Wherever it is possible, environ-
ment support is implemented for built-in types. The 132 data
type, for instance, which represents signed 32-bit integers, is
mapped to the equivalent int data type of Ptolemy II.

To spawn simulation binaries, the SIM tool makes use of
the java.lang.Process interface provided by the JVM.
To establish bidirectional connections with these binaries, it
launches a local TCP server to which they connect after
executing their respective swc_init hook. These connections
are used by SWC actors whenever a swc_invoke hook needs
to be invoked to simulate an LET frame. Note that from
a Ptolemy II perspective, the TCP-based execution of SWC
actors violates strict actor semantics, i.e., the requirement
that an actor must produce its outputs before changing its
state [11]. However, the SWC actor integration strategy en-
sures that correct simulation results are still achieved.

To conclude this section, we give a brief description of how
the reference implementation can be applied to a simplified
version of the TARMS example.

Example. We consider two SWCs from the TARMS con-
text: one representing the TAWS and the other representing
the Instruments block. The former has only one input: an
external sampling port that reads the altitude in feet as a
signed 32-bit integer from the environment. Its output is an
internal queue with a length of one requesting the emission

DE director

SWCltaws SWClinstruments

ENV

&

Fig. 8. Open-loop simulation synthesized in Ptolemy II

of TAWS alerts due to an excessive sink rate. The queue
holds a ‘1’ to request a caution alert and is read by the
second SWC, which prioritizes all received inputs and, among
other things, sets an external sampling output of Boolean type
to true whenever a sink rate caution alert is emitted.

To apply the toolchain to this example, we use the de-
veloped JSONS notation to specify a software architecture
with S = {s1, sa}, where sy represents the TAWS and so rep-
resents the Instruments block. Ports are added as outlined
above and, without loss of generality, LET parameters are set
to 1 = (100ms, 0, 100 ms) and ¢3 = (50 ms, 0, 500 ms).

Afterwards, the GEN tool is called, generated SWC code
skeletons are populated, and the SIM tool is invoked to
perform an open-loop simulation with an environment actor
that generates a deterministic sequence of decreasing altitude
values. At time t1 = 800ms, this actor provides the TARMS
with an altitude of 1522 ft, which necessitates the emission of a
sink rate caution alert. Internally, the SIM tool translates this
simulation setup into the Ptolemy II model shown in Fig. 8
and generates a textual trace that describes the observed
sequence of activation and termination events. Captured events
are displayed using ascending IDs. The following output is an
excerpt of the generated trace in which selected lines have
been manually removed for the sake of brevity:

15/instruments: TERMINATION at 550 ms
— sink_rate_caution: S(false)
19/taws: ACTIVATION at 700 ms
— altitude: S(1526)
21/taws: ACTIVATION at 800 ms
— altitude: S§(1522)
22/taws: TERMINATION at 900 ms
— sink_rate: Q(1)
24 /taws: TERMINATION at 1000 ms
— sink_rate: Q(1)
25/instruments: ACTIVATION at 1000 ms
— sink_rate_alert: Q(1, 1)
27/instruments: TERMINATION at 1050 ms
— sink_rate_caution: S(true)

This excerpt shows that in the simulated case, a sink rate
caution alert is emitted at time to = 1050 ms.

Combined with the guarantee that a correct deployment of
specified behavior exhibits exactly the interactions visible in
the trace, knowledge derived from such simulations serves
as evidence for the fulfillment of functional and temporal
requirements. This is especially the case if a deterministic
simulation setup is used, i.e., if the behavior of the simulated
environment is fully deterministic.



VI. RELATED WORK

Our simulation strategy is similar to the approach presented
in [23], which uses Ptolemy II to predict the runtime behavior
of LET models. However, it is not associated with a program-
ming model for the code-based behavior specification. The
co-simulation concept proposed in [24] defines an interface be-
tween Ptolemy II and the HLA/CERTI framework. Therefore,
it is a promising platform for an alternative implementation of
the current simulation backend, which makes use of Ptolemy II
alone. Evaluating the performance impact of such an imple-
mentation is an interesting path for future research.

The programming model PTIDES [25] defines a strategy for
the deterministic execution of software in distributed systems.
However, its focus lies on the synchronization between a
physical and a logical timeline rather than the time-triggered
execution of SWCs. It allows for a more flexible execution of
software on target platforms but cannot be used to generate
execution traces as they are derived by the SIM tool. The
language Lingua Franca [26] has extensive support for the
integration of user-provided code, but its PTIDES-based exe-
cution semantics differs again from the time-triggered nature
of our methodology. The system-level LET concept [27] is a
variant of the LET paradigm in which selected communication
processes are explicitly modeled to reduce end-to-end laten-
cies. Therefore, it is a promising idea for the extension of our
current behavior specification methodology.

VII. CONCLUSION

To facilitate the development of systems whose require-
ments are poorly addressed by traditional design techniques,
our concept combines the application of the LET paradigm
with a novel, simulation-aware programming model. It sup-
ports the integration of arbitrary code and performs a deter-
ministic simulation to derive guarantees about the runtime
behavior of the system. Despite its flexibility from a pro-
gramming point of view, we demonstrated that this approach
qualifies as a structured framework to analyze the fulfillment
of functional and timing requirements specified for modern
real-time systems. Future work will focus on the application
to more complex use cases, the scalability of the simulation
strategy, and the deployment to target platforms.
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