

www.kit.edu

Development of diamond based KIDs

F. Mazzocchi, D. Strauß, and T. Scherer

Institute of Applied Materials (IAM-AWP), Karlsruhe Institute of Technology

Contents

1. Introduction

- Application
- Kinetic Inductance Detectors
- Why diamond?

2. Simulations

- Frequency tuning
- Cross-Talk analysis
- Quality factors tuning
- Complete detector simulations

3. Experiments

- SC thin film characterization
- Microwave characterization
- THz characterization
- 4. Conclusions

Introduction – Application

$$n_L \neq n_R \to \Delta \varphi \to \theta_f$$

$$\theta_F = \frac{e^3}{2\epsilon_0 m_e^2 c} \frac{1}{\omega^2} \int n_e(z) B_{\parallel} dz,$$
$$\int n_e(z) B_{\parallel} dz \approx J.$$

- Polarimetric diagnostic for nuclear fusion plasma
- THz spectral detection range
- Incident power: $\mu W \rightarrow a$ few mW
- Cross polarization rejection capabilities, multi-pixel design
- Radiation hardness
- Small footprint
- Reliability → few moving parts

Introduction - Kinetic Inductance Detectors

- Superconducting (SC) thin film LC micro-resonators
- Photons → Cooper pair breaking → excess e⁻ → L_K↑ → S₂₁ Δω & Δφ
- LEKID: discrete inter digital capacitor (IDC) and inductor → easy freq. tuning (FDM) & inductor uniform current

- Depth and width of the resonances are strongly dependent on coupling k
- Design optimization: no saturation & no overlap → evaluation of coupling strength/Q_C
- SC of choice: Niobium Nitride (T_C (bulk) >16 K)

Introduction – Why diamond based detectors?

Wavelength (µm)

- Extremely low heat capacity C and extremely high thermal conductivity → fast response (thermal detectors)
- Transparency \rightarrow no substrate events
- Low losses and low dielectric constant (especially at microwave frequencies) → potential for very high internal quality factor
- Radiation hardness
- Mechanical stability \rightarrow thin substrates (<20 µm) possible
- High breakdown voltage → no radiation generated charge carriers → transparent at very high radiation intensities.

- Diamond and Related Materials, 3 (1994) 747-751
- IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 3, NO.I, MARCH 1993

100

KIT IAM-AWP

80

70

60

50

40

20

10

Transmission (%)

Detector design and optimization - simulations

SONNET Software

Analysis: Maxwell's equations, solving for J planar multilayer geometries Parameters: L_k , ϵ_r , tan(δ)

Frequency Tuning

Single pixel analysis, variation of IDC finger numbers and length

Cross Talk Analysis

2 identical pixels, bare / box / open box inter-pixel distance variation

Q_c / t-line coupling

Single pixel, bare / box / open box feedline – pixel distance variation

Substrate materials Silicon (not shown), Sapphire, Diamond (poly)

Frequency Tuning

Substrate	Thickness	٤ _r	tan(δ)	L _k (NbN)	v (range)	Δv
Sapphire	330 µm	10.06	5*10 ⁻⁶	7.28 pH/□	1.35 – 1.9 GHz	36.7 MHz
Diamond	700 µm	5.67	10 ⁻⁵	22.77 pH/□	1.25 – 1.75 GHz	33.3 MHz

- Diamond lower ε_r compensated by thicker substrate \rightarrow similar frequencies
- 3 different combination of equally spaced resonances selected for production

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors - DPG2022

Cross-talk analysis

- Larger separation = stronger cross-talk
- Diamond: lower $\epsilon_r \rightarrow$ smaller cross-talk
- Shielding structures *increase* the cross-talk (contrary to literature reports)
- Tilted 2x2 configuration \rightarrow ungrounded shields = coupling booster

Q_C Evaluation

- Power intensive application \rightarrow prioritize stronger coupling (low Q_C) \rightarrow deeper resonances, no saturation
- Expected Q_0 under illumination $\approx 10^3 10^4$, optimum coupling, max resp: $Q_C = Q_0 = 2Q_L$
- For the same configuration, diamond present lower coupling compared to sapphire
- Fully enclosed shielding pushes the Q_C toward values in the 10⁵ range

Complete Detector Simulations

No cross-talk: adjacent pixels sufficiently separated in frequency

Additional capacitive effects \rightarrow Detector resonance frequency (purple) lower than single pixels (colored) \rightarrow low ϵ_r of diamond greatly limits this effect

Final design: No shielding, 3 Prototypes

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors – DPG2022

Film deposition and characterization

DC reactive magnetron sputtering

- Sub. temp: 850°(Sa), 750° (Di)
- Deposition rate 0.065 nm/s

Photolithography and RIE

- Positive tone UV Photolith.
- RIE: 30 sccm SF₆ + 6 sccm O₂

Thin film Characterization

Multi channel DC dipstick, 4 terminal probing

$$\Delta(T) \approx 1.74 \cdot \Delta(0) \left[1 - \frac{T}{T_{\rm c}} \right]^{\frac{1}{2}}$$

R/T curve $\rightarrow \qquad \qquad \rightarrow \qquad L_k = \frac{\hbar R_s}{\pi \Delta}$
$$\Delta(0) = 1.76 \cdot k_{\rm B} T_{\rm C}$$

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors - DPG2022

SC thin film DC characterization

- Lattice and CTE mismatch between Di and NbN lead to low quality SC films
- Film degradation apparent under optical microscope, no flaking
- High L_{K} value for the film on diamond

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors – DPG2022

Microwave characterization setup

- OFHC Cu detector box + dipstick
- Direct connection with VNA
- -20 dBm injected power + 20 dB attenuator at port1
- Transition to SC marked by -60 → -40 dB baseline jump

A Resonance measurements

- Deep and sharp resonances
- Measured Q_C \approx 3-5 * 10³ ~ 2/3 Simulated Q_C
- Simulations ≈ measurements (ΔL_K ~10-15%)

- Simulations: first order (1.25 1.55 GHz) + higher order (5.15 - 5.35 GHz)
- Measured: higher order, collective resonances only (3.6 → 4 GHz), Q~10²
- High resonator internal losses

Detector THz response: measurement setup

- BWO source @ 900 GHz, 20 µW on detector
- 23 Hz chopper
- LHe bath cryostat

- Detector box with temp. sensor and heater
- 27 dB gain, 1-6 GHz bw cryo amplifier + external RT amplifier
- -10 and -20 dB attenuators

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors – DPG2022

Detector THz response

- Measurement Temperature: 4.5 K
- $\tau_{sa} = 6 \text{ ms} \rightarrow \text{bolometric response}$
- Responsivity: 0.1 deg./ μ W, noise avg. ~ 3*10⁻⁸ W/ \sqrt{Hz} (high T + RT ampli)

- Measurement Temperature: 5.5 K
- $\tau_{Di} = 1 \text{ ms} \rightarrow \text{bolometric response, faster dynamics}$
- Responsivity: 0.03 deg./ $\mu W,$ noise avg. ~ 3*10-8 W/ \sqrt{Hz} (high T + RT ampli)

Cross polarization rejection

- Polarization selector: waveplate + liner polarizer
- Capacitor contribution negligible (low J)
- Detector design effective in rejecting cross-polarization

Summary

- Polarization sensitive KIDs based on diamond substrates have been studied and developed for fusion plasma applications
- Design finalized through simulation study for multiplexing, cross talking and coupling strength
- NbN films on diamond suffer from low quality, caused by the lattice and CTE mismatch
- Bolometric response, $\tau_{\rm Di} < \tau_{\rm Sa}$
- First investigation of diamond as substrate for LTSC detectors → first step toward the optimization of this technology
- Next steps: film quality improvement with AIN buffer layer, single crystalline diamond epitaxial growth on iridium

BACKUP

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors – DPG2022

KIT IAM-AWP

Future outlook - Heteroepitaxial KID

NbN (5-40 nm)

AIN (10 nm)

Diamond (20-100 um)

Iridium (10-30 um)

- Iridium is the best substrate for growth of single crystal diamond
- It has the ability to promote single crystal growth even when used as interlayer with a very rough main substrate, with large lattice mismatch.
- The diamond films grown on Ir have highly improved alignment and extremely low mosaicity → above a certain thickness, the films are single cryst.
- MBE and PLD deposition techniques
- Extreme corrosion resistance
- Iridium could additionally work as backshort / ground plane for a microstrip based KID
- AIN buffer layer for increased film quality
- Appl. Phys. Lett. **78**, 192 (2001)
- Appl. Phys. Lett. 91, 061501 (2007);

Film deposition and characterization

DC reactive magnetron sputtering

- Sub. temp: 850°(Sa), 750° (Di)
- Deposition rate 0.065 nm/s

Photolithography and RIE

- Positive tone UV Photolith.
- RIE: 30 sccm SF₆ + 6 sccm O_2

Thin film Characterization

• Multi channel DC dipstick, 4 terminal probing

• R/T curve
$$\rightarrow \Delta(T) \approx 1.74 \cdot \Delta(0) \left[1 - \frac{T}{T_c} \right]^{\frac{1}{2}} \rightarrow L_k = \frac{\hbar R_s}{\pi \Delta}$$

$$\Delta(0) = 1.76 \cdot k_B T_C$$

YBCO Deposition on diamond

Coefficient of Thermal Expansion

YBCO can be directly grown on poly-Di, but

- Very low quality film ($T_c = 17K$)
- Very difficult patterning
- No sharp separation of layers of SC and sub.

YBCO deposition is an O_2 dependent process \rightarrow decomposition of Di

- \rightarrow Si₃N₄ / YSZ Buffer layer system
- Coefficient of thermal expansion (CTE) and lattice matching → avoid film cool down cracking
- Yittrium Stabilized Zirconia: growth template for Di nucleation
- Si₃N₄ acts as a barrier for the diffusion of oxygen and carbon, protects Di during YBCO depo.

"M. Ece et al. / Superconducting films on diamond by PLD"

YBCO Deposition on diamond - state of the art films

YBCO (0.2-0.5 µm)

YSZ (0.1-0.3 µm)

StoN4 (0.1-0.3 µm)

Diamond (3-4 µm)

SI

- 2-4 μm thick nanocrystalline (< 0.2 μm) diamond films, 500-1000
 Å roughness, over Si wafers.
- Pre-annealing of diamond films at 680-800 C for 1-3 hours in high vacuum (2.6x10⁻⁶ Torr) outgassing of H from diamond
- 0.1 0.3 μ m Si₃N₄ deposited by RF-magnetron in 10-20 Torr of Ar @ 680-750 C
 - 0.1 0.3 µm YSZ deposited by reactive RF-magnetron @ 680-750 C, in 10-30 Torr of mixed Ar/O₂
 - YBCO grown in-situ, off-axis reactive RF magnetron @ 660-750
 C, in 200-300 mTorr of mixed Ar/O₂
 - In situ post deposition annealing, with O₂ venting (600-760 Torr),
 30 min @ 500 C
 - $T_C = 84$ K, $\Delta T_C = 8$ K, $J_C \sim 10^3$ A/cm²

"IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 3, NO.I, MARCH 1993"

YBCO Deposition on diamond – lower quality example

- Si/YSZ buffer layer (polycrystalline)
- Plasma CVD deposition of 1 µm amorphous Si layer, vacuum annealing @ 700 C for crystallization
 - YSZ and YBCO deposited by laser ablation, 650 C sub. temp., 200 mTorr $\rm O_2$
 - T_{C-zero} = 50 K, onset = 87 K \rightarrow 25 K wide transition, low responsivity
 - 200x200 µm² bolometric micro-bridge, direct laser writing
 - 18 V/W responsivity, 6.3x10⁻⁹ W^{1/2}/Hz NEP

"Superconducting YBa2Cu3O7 bolometer on polycrystalline diamond," Proc. SPIE 2159, High-Temperature Superconducting Detectors: Bolometric and Nonbolometric, (20 May 1994)"

Francesco Mazzocchi - Development of diamond based Kinetic Inductance Detectors – DPG2022