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A B S T R A C T   

An improvement in energy efficiency of Battery Thermal Management Systems (BTMS) can increase range and 
reduce well-to-wheel emissions of Battery Electric Vehicles (BEV). In this work, the potential of a predictive 
BTMS using Quantile Convolutional Neural Networks (QCNN) was examined. The QCNN provided quantile 
predictions of battery temperature based on input data from both previous and following drive segments. The 
predictive control was designed to choose battery cooling thresholds based on a weighted sum of battery cooling, 
ageing and derating costs derived by the quantile predictions. The predictive BTMS was analyzed concerning its 
adaptability to different routes ahead, tunability of cost weights as well as robustness to uncertainty of inputs. A 
setup with unchanged ageing costs reduced average cooling costs by 9% compared to a fixed threshold strategy 
in a set of 18 scenarios. Simplifications and limitations were discussed to provide a base for further improve
ments, for example concerning the limited freedom of cooling threshold choice. In conclusion, the developed 
framework was able to use QCNN predictions to increase the BTMS energy efficiency while taking ageing and 
derating effects into account.   

1. Introduction 

Driven by emission reduction goals, the share of Battery Electric 
Vehicles (BEV) is steadily rising and expected to surpass the worldwide 
share of passenger cars with combustion engine by 2040 [1]. Improving 
the energy efficiency of BEV can further reduce well-to-wheel emissions 
and provide higher ranges [2]. This motivates to develop more efficient 
Battery Thermal Management Systems (BTMS) considering their impact 
on energy consumption [3]. 

A predictive BTMS can reduce the energy consumption compared to 
an on-off controller with fixed hysteresis thresholds [4,5]. If the pre
diction shows a relatively low increase in battery temperature, active 
battery cooling and the corresponding energy consumption may be 
avoided. It can be based on physical or stochastic models [5–9]. Sto
chastic model predictive control incorporates statistical information 
about the prediction horizon, such as chance constraints or empirical 
probability distributions (e.g. of battery heat generation) [4,10]. Chance 
constraints assume time-independent distribution functions and 
scenario-based methods focus on the expectation value, which are both 
strong simplifications [10]. 

Predictive control with large prediction horizons is favorable con
cerning the search for a global optimum and provides enough time for 
the BTMS to anticipate upcoming events [11]. On the other hand, large 
horizons can be computationally expensive for classic model predictive 
control. This can be addressed by a two-layer control, for example 
combining model predictive control with dynamic programming as in 
[12] or with other global planning methods [11]. 

Predictive control based on Neural Networks (NN) shows further 
potential due to their aptitude to represent complex, nonlinear systems 
such as BTMS [13–15]. An improved performance of predictive control 
using NN is also observed for vehicle power control and vehicle dy
namics [16–19], as well as for thermal management of buildings [20] 
and for heat exchangers [21]. This motivates the usage of a Quantile 
Convolutional Neural Network (QCNN) for battery temperature pre
diction in a predictive BTMS control, as described in [22]. The QCNN 
provides quantile predictions for five different battery cooling thresh
olds over a prediction horizon of 20 km in a sample size of 250 m. Thus, 
the cooling thresholds can be utilized as control parameter in a predic
tive control. The prediction uncertainty can be directly included, 
without the assumption of fixed distribution functions or expectation 
values. 

* Corresponding author. 
E-mail addresses: andreas.billert@partner.kit.edu (A.M. Billert), stefan.erschen@bmw.de (S. Erschen), michael.frey@kit.edu (M. Frey), frank.gauterin@kit.edu 

(F. Gauterin).  

Contents lists available at ScienceDirect 

Transportation Engineering 

journal homepage: www.sciencedirect.com/journal/transportation-engineering 

https://doi.org/10.1016/j.treng.2022.100150 
Received 30 August 2022; Received in revised form 9 November 2022; Accepted 10 November 2022   

mailto:andreas.billert@partner.kit.edu
mailto:stefan.erschen@bmw.de
mailto:michael.frey@kit.edu
mailto:frank.gauterin@kit.edu
www.sciencedirect.com/science/journal/2666691X
https://www.sciencedirect.com/journal/transportation-engineering
https://doi.org/10.1016/j.treng.2022.100150
https://doi.org/10.1016/j.treng.2022.100150
https://doi.org/10.1016/j.treng.2022.100150
http://creativecommons.org/licenses/by/4.0/


Transportation Engineering 10 (2022) 100150

2

Model predictive control (for BTMS) can choose control parameters 
(e.g. battery cooling activation) in order to minimize predefined cost 
functions within a moving horizon [8,9]. Such cost functions can 
represent cooling energy consumption or temperature-related increase 
in ageing. Cost weights determine the balance between the contradicting 
goals of reducing energy consumption and keeping the battery tem
perature in a range of low ageing. Cooling costs can be derived from the 
energy consumption of BTMS components. Ageing costs can be calcu
lated based on empirical relations as given by [23] and [24] and as done 
in [8,9,14]. They can incorporate the effect that high battery tempera
tures accelerate cyclic and calendric ageing. Temperature-dependent 
limitation of maximum available battery power, also called derating, 
can significantly reduce battery ageing [25,26]. On the other hand, the 
limitation of charge or discharge current results in reduced vehicle dy
namics and charging performance, which can be addressed by including 
derating costs. 

An analysis of a predictive BTMS can consider its adaptability to 
different drive profiles, tunability of its design parameters as well as 
robustness to inaccurate predictions of the system behavior [5,6,27]. 
Adaptability to different speed and height profiles is expected, consid
ering their impact on energy consumption, and hence battery temper
ature [8,28]. The effect of varied design parameters (e.g. cost weights or 
set points) on contradicting cost goals or cost-related quantities can be 
visualized using Pareto curves in order to find the most suitable pa
rameters [5,29]. Robustness analysis deals with the impact of inaccurate 
or noisy predictions on controller performance [27]. For instance, a 
Gaussian noise can be added on the foresight speed data which is used as 
predictive control input [11]. 

In this work, a predictive BTMS is presented, which uses the best 
performing QCNN from [22] for battery temperature prediction. It 
considers costs for cooling energy consumption, ageing and power 
derating to choose the most suitable battery cooling threshold at each 

control interval. In contrast to classic model predictive control, the 
prediction uncertainty is directly given by the prediction model and can 
be included in the calculation of costs. The limited choice of control 
values in form of hysteresis thresholds reduces complexity in the opti
mization process and allows larger control intervals and prediction ho
rizons. Therefore, the focus of this work is a more strategic view on 
predictive BTMS with a large horizon. The predictive control is tested 
and analyzed for various drive profiles concerning its adaptability, 
tunability and robustness. Discussion and conclusion provide a further 
outlook on current potentials and limitations and build the base for an 
optimization in a future work. 

2. Method 

In this chapter, a framework of a predictive BTMS is described. Fig. 1 
depicts the elements of the framework. The vehicle is represented by a 
black-box simulation model as Functional Mock-up Unit (FMU). At each 
iteration, its outputs are processed for further usage in the loop and as 
output to enable further analysis after the simulation. The given drive 
profile leads to an update of parameters. Each time when a defined 
control distance sc is passed, a QCNN predicts the battery temperature 
for different battery cooling thresholds as quantiles over a fixed pre
diction horizon. The total costs over the prediction horizon are calcu
lated based on the predicted quantiles for each threshold. The battery 
cooling threshold with lowest total costs is chosen as new threshold and 
updated in the vehicle model. The simulation ends when the total dis
tance of the given profile send is reached. Each step is further explained in 
the following paragraphs. 

2.1. Data processing 

In each iteration, simulation output from the vehicle model is 

Nomenclature 

Latin Symbols 
A Surface 
c Heat capacity; costs 
h Heat transfer coefficient 
k Horizon size 
m Mass 
Q̇ Heat transfer rate 
R Inner resistance 
s Drive distance 
T Temperature 
t Time 
w Weight 

Greek Symbols 
δ Partial derivative 
μ Mean value 
σ Standard deviation 
τ Constant in cooldown function 
θ Slope angle 

Subscripts 
a Ageing 
amb Ambient 
b Battery 
c Control; cooling 
cool,e Threshold to end cooling 
cool,s Threshold to start cooling 
cooldown Cool down 

d Derating 
end End 
eod End of drive 
i Index i, related to horizon step 
init Initial value 
p Specific value (of heat capacity) 
q Quantile 
s Surrounding 
t Total 

Abbreviations and Acronyms 
BEV Battery Electric Vehicle 
BTMS Battery Thermal Management System 
D Dynamic profile, refers to US06 
DOE Design Of Experiments 
eod End of drive 
FMU Functional Mock-up Unit 
H Highway part of Artemis profile 
LD Less Dynamic 
MD More Dynamic 
MSE Mean Squared Error 
NN Neural Network 
QCNN Quantile Convolutional Neural Network 
R Rural part of Artemis profile 
RAM Random Access Memory 
SOC State Of Charge 
SOH State Of Health 
T Tsirakis profile 
U Urban part of Artemis profile  
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sampled into 250 m segments. At the beginning of the drive or when the 
control distance sc is reached, all input data for the QCNN need to be 
prepared, also sampled to 250 m segments. This includes the data from 
previous segments as history data and the remaining drive profile as 
foresight input data. Engineered features are added to complete the set 
of input features. All input data are shaped into a history horizon size of 
5 km and to a foresight horizon size of 20 km. If all previous segments do 
not cover 5 km or if the remaining drive is less than 20 km, the missing 
values are set to zero and masked in the horizon input feature. For the 
first prediction at time 0, the history input data of ambient and battery 
temperature are set to their initial values. All data are normalized by the 
same normalization factors that were used for training and testing the 
QCNN. 

The control distance sc is derived from the QCNN test metrics per 
horizon size, which are shown in Fig. 2. The quantile related metrics 
depict the occurrence of true values within and outside of the predicted 
quantiles and quantile intervals. Both quantile related metrics show bad 
performance for very small horizon sizes with few change in battery 
temperature, presumably because there are rarely true values outside of 
the predicted quantiles. They intersect for predictions of the first 2.5 km. 
Together with the Mean Squared Error (MSE) of the 0.5 quantile (me
dian), this marks a prediction horizon for which a new prediction of the 
same segments in earlier than 2.5 km is assumed to be not significantly 
more precise. In this work, the control distance is therefore set to 2.5 km. 
It will be further analyzed in Section 3 when the predictive control is 
tested. 

2.2. QCNN Prediction 

Battery temperature prediction is conducted by the best performing 
QCNN (model number 149) from [22] for five different battery cooling 
thresholds (25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, 45 ◦C). The QCNN consists of an 
input channel for history data and an input channel for foresight data. It 
uses 1D convolution layers and a custom loss function. It is trained on 
simulation, fleet and weather data[22]. provides more information 
about the model architecture, its hyperparameters, training and testing 
and the used data sets. 

For each prediction, the requested cooling threshold needs to be set 
in addition to the preparation of input data described in subsection 2.1. 
Since training data did not cover changing thresholds, the threshold is 
set equally for both history and foresight horizon. The output of this step 
consists of seven quantile forecasts (0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99) 
in 250 m segments over the prediction horizon (20 km) for each of the 
five thresholds, which results in an output matrix with size (7, 80, 5). 
This output is used in the next step to choose the threshold with mini
mum costs. 

2.3. Choice of battery cooling threshold 

The predictive control chooses the battery cooling threshold with 
lowest total costs according to the predictions for the prediction horizon. 
The calculation steps are shown in Fig. 3. At first, cooling, ageing and 
derating costs are determined for each quantile prediction of each 
threshold. The calculation of the respective costs is described in the 
following paragraphs. The total costs per quantile and threshold cq,t are a 
weighted sum of the respective costs, with a cooling weight wc, an 
ageing weight wa and a derating weight wd (1). The sum of the three 
weights is fixed to 1. The costs are averaged over all quantiles for each 
threshold, which leads to a single value of total costs per threshold ct. 
The threshold with minimum costs is set as new threshold in the vehicle 
model, and only updated when the next control iteration starts after the 
control distance sc is reached again. All cost functions are scaled into a 
range between 0 and 1, to achieve a similar order of magnitude for each 
cost term over the prediction horizon. Further balancing of the cost 
terms can be conducted by tuning their weights. 

cq,t = wc⋅cc + wa⋅ca + wd⋅cd (1)  

2.3.1. Cooling costs 
The activity of battery cooling in the prediction horizon is derived 

from the predicted battery temperature and the corresponding threshold 
with its fixed hysteresis of 2 ◦C. In the prediction example in Fig. 3, 
cooling costs would need to be calculated for each of the 250 m segments 
in the area between the two dashed lines. A tolerance value of 0.1 ◦C is 
set for the upper and lower bound of the hysteresis to cope with 

Fig. 1. Control framework including a vehicle model and a QCNN for battery temperature prediction. A predictive control is conducted each time when the driven 
distance s passed the control distance sc and when the total distance send of the profile is not reached yet. 

Fig. 2. Metrics of the QCNN on test data as given in [22], with better perfor
mance for lower values and calculated for different horizon sizes. The metrics 
include the Mean Squared Error (MSE) of the median prediction and the 
occurrence of true values within the predicted quantile and quantile interval. A 
dashed line marks the intersection of the two latter metrics. 
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inaccurate predictions. If end of drive (eod) occurs within the prediction 
horizon, predictions of segments exceeding it are neglected. For each 
quantile prediction, cooling costs are calculated as the number of all 
250 m segments with active battery cooling. The result is divided by the 
total number of segments within the prediction horizon until end of 
drive, such that the cooling costs are scaled to a range between 0 and 1 
before they are used in the weighted sum in (1). 

2.3.2. Ageing costs 
Ageing costs ca are divided into costs for ageing during the drive ca,d 

and costs for calendric ageing after eod ca,eod, when the vehicle is parked. 
The two parts are summed, including a weight wa,eod (2). 

ca =
(
1 − wa,eod

)
⋅ca,d + wa,eod⋅ca,eod (2) 

Ageing costs during the drive ca,d are calculated using a cost function 
fa(Tb) that depends on the predicted battery temperature Tb for each 
segment. In this work, the cost function fa(Tb) is based on [8] and is 
shown in Fig. 4. Compared with [8], it is scaled to a value of 1 at 45 ◦C, 
considering the highest available cooling threshold for QCNN pre
dictions of 45 ◦C. Since ageing mechanisms depend on the battery cell 
and pack design, it needs to be adapted for later application in specific 
cars. The costs ca,d are calculated as the average of fa(Tb) of all segments 
within the prediction horizon, until end of drive if it occurs within the 
horizon. 

Costs for calendric ageing after end of drive ca,eod depend on Tb, 
which can change during parking dependent on the ambient tempera
ture Tamb. An approximation is necessary since the distance-based pre
diction model does not cover the time of a parked vehicle. Based on [30, 
p. 25-29], Eq.  (3) describes the battery temperature change over time t 
of a parked vehicle (i.e. without battery discharge or charge). It depends 
on the difference between battery and ambient temperature, with the 
remaining quantities assumed to be constant. These quantities are the 
rate of heat transfer to the vehicle surroundings Q̇s, battery mass mb, 
specific heat capacity of the battery cp,b, a combined heat transfer co
efficient hs and surface As. 

∂Tb(t)
∂t

=
Q̇s

mb⋅cp,b
=

hsAs(Tb − Tamb)

mb⋅cp,b
(3)  

The equation is further simplified to (4) using τ, which replaces the 
parameters hs, As, mb and cp,b as a constant. The constant is empirically 
determined based on vehicle fleet data which contain Tb and Tamb, using 
the first value of a drive and the last value of the previous drive. Data is 
collected from the same vehicle fleet than in [22], but for an extended 
time range of March 2021 until April 2022. Only data with parking times 
between 10 min and 6 h are considered in order to exclude unwanted 
side effects (e.g. due to weather changes during longer parking times). 
Additional filtering addresses implausible data and data with battery 
temperatures at end of drive lower than 20 ◦C, since this work focuses on 
cooling behavior at higher temperatures. After all filtering steps, the 
data set consists of 226 drives from 11 vehicles. Curve fitting provides a 
value of τ = − 0.1163, with the fitted curve shown in Fig. 5. 

fcooldown(Tb,Tamb) =
∂Tb(t)

∂t
= τ⋅(Tb − Tamb) (4) 

The cost function for end of drive ageing is given by (5). Costs are 
calculated only if the end of drive is within the prediction horizon, using 
the predicted battery temperature of the segment at the end of drive 
Tb,eod and the given ambient temperature Tamb,eod. The exponential 
function provides positive, decreasing cost values with an increase in 
temperature difference between Tb,eod and Tamb,eod. Note that this expo
nential function does not describe Newton’s law of cooling [31]. 

ca,eod = fa
(
Tb,eod

)
⋅exp

(
fcooldown

(
Tb,eod ,Tamb,eod

))
(5)  

Fig. 3. Calculation steps leading from previously obtained predictions per threshold to the choice of a battery cooling threshold. The shown prediction example is 
taken from [22]. Costs are denoted by c and their cost weights by w. 

Fig. 4. Cost function for temperature dependent battery ageing based on [8], 
after scaling to 1 at 45 ◦C as marked by the dashed line. 

Fig. 5. Curve fitting of the battery temperature change of a parked vehicle 
using vehicle fleet data. Each point represents the average value of all observed 
rates (y-axis) within buckets of 0.5 ◦C for the corresponding difference in 
temperatures at end of drive (x-axis). 
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2.3.3. Derating costs 
Derating costs describe the Tb-dependent limitation of maximum 

available power by the battery management system. In this work, they 
are defined by (6), with a scaling to 1 at 50 ◦C battery temperature, since 
the battery temperature is assumed to not exceed 50 ◦C in most cases. 
The costs are calculated as average of all predicted segments k in the 
prediction horizon until eod. Segments after eod are excluded from the 
calculation. A prediction of the requested power is not included, such 
that the costs are evaluated even when less than the maximum available 
power might be requested by the driver. Derating at low battery tem
peratures is also neglected in this work due to its focus on battery 
cooling rather than heating. 

cd =
1
k

∑k

i=1

(
Tb,i − 40∘C

10∘C
if Tb,i ≥ 40∘C, 0 otherwise

)

(6)  

2.4. Drive profiles for analysis 

The analysis of the developed predictive battery thermal manage
ment covers its adaptability, tunability and robustness, as shown in 
Fig. 6. The simulated drive profiles consist of the US06 drive cycle 
(noted by D) [32], the Urban (U), Rural (R) and Highway (H) parts of the 
Artemis drive cycle [33] and the aggressive drive profile from Tzirakis 
et al. (T) [34]. The Design Of Experiments (DOE) used for tunability and 
robustness analysis is given by Table 1. The ambient temperature Tamb 
and initial battery temperature Tb,init are varied to cover different cases 
of battery cooling with respect to a fixed threshold of 35 ◦C (e.g. cooling 
activation during drive or from the beginning). Tamb is kept constant 
during each simulation. In total, the DOE consists of 18 scenarios. 

Two types of foresight input noise are used for robustness analysis. 
An overview is given by Table 2. Gaussian noise is considered to 
represent a more dynamic forecast (MD) than the actual profile. The 
noise is added after smoothing it with a moving average with a centered 
window of size 5. A less dynamic forecast (LD) than actual is considered 
using a centered moving average for the speed and the same Gaussian 
noise for elevation as for MD. 

3. Results 

An application of the predictive BTMS is presented in this chapter. It 
covers an exemplary analysis with respect to adaptability, tunability and 
robustness. The influence of the control distance sc is examined, as well 
as the energy saving potential. A brief overview on computation times of 
the predictive control is included. 

3.1. Adaptability 

The developed predictive BTMS is designed to adapt battery cooling 
thresholds to the battery temperature prediction and its foresight input 
data. Fig. 7 shows an example of two scenarios with the last section 
(after 55.3 km) differing in elevation and speed. For this specific 

exemplary analysis, the weights are set to wc = 0.08, wa = 0.72, wa,eod =

0.2 and wd = 0.2 such that the influence of the profile can be seen 
clearly. The total costs at each prediction and control step are calculated 
for all five cooling thresholds. Fig. 7 (c) and (d) show the total costs 
based on predictions with corresponding cooling thresholds. Tb and the 
battery cooling thresholds that are chosen by the predictive BTMS are 
included in Fig. 7 (e) and (f) for both scenarios. 

In the first scenario (Fig. 7 (a),(c),(e)), the cooling threshold is once 
raised from 35 ◦C to 40 ◦C after 17.5 km when the predicted costs for a 
threshold of 35 ◦C are higher than for 40 ◦C. The higher cooling 
threshold prevents battery cooling in this scenario and is not changed by 
the predictive BTMS until end of drive. In comparison with a fixed 
cooling threshold of 35 ◦C, the total energy consumption is reduced by 
0.62% for this scenario and the given set of weights. 

In the second scenario (Fig. 7 (b),(d),(f)), the predicted costs start to 
differ after 35 km compared to the first scenario due to different pre
dictions for the last section. Cooling is activated after 47.5 km, before 
the last section is reached. In Fig. 7 (d), the magnifier box shows the 
corresponding segments at which the costs are lower for 35 ◦C and 25 ◦C 
than for 40 ◦C (first two vertical lines) and battery cooling is active. This 
is due to higher predicted costs for a threshold of 40 ◦C compared to the 
first scenario (shown as dotted line), since the last section leads to a 
higher (predicted) heat generation of the battery. The battery cooling 

Fig. 6. The analysis of the developed predictive control includes the effect of variation of input foresight data (speed v, height h) and cost weights (ageing wa, cooling 
wc) on the predicted change in battery temperature Tb over the prediction horizon sp and the resulting costs (ageing ca, cooling cc). The DOE is shown in Table 1. 

Table 1 
Design Of Experiments (DOE) with 18 scenarios. The elevation for each section is 
denoted by ‘_’ for zero slope, ‘↑’ for positive slope θ and ‘↓’ for negative slope −
θ. A digit in front of a section (H, D, U, R or T) indicates the number of repe
titions. Each profile is simulated with varying ambient temperature Tamb and 
initial battery temperature Tb,init . This leads to 18 scenarios, as accordingly 
numbered in the first column.  

Scenario Profile Elevation Tamb (◦C) Tb,init (◦C) |θ| ∀(↑, ↓) (m/ 
km) 

1/2/3/4 H D D D _ ↑ ↓ ↑ 30/30/ 
25/30 

33.5/38/ 
33.5/30 

20 

5/6/7/8 H D D U 
U 

_ ↑ ↓ _ _ 30/30/ 
25/30 

33.5/38/ 
33.5/30 

20 

9/10/11/ 
12 

H R U U _ _ _ _ 30/30/ 
25/30 

33.5/38/ 
33.5/30 

20 

13/14/15 12T 3↓ 3↑ 3↓ 
3↑ 

30/20/ 
30 

30/25/38 50 

16/17/18 9T U U 3↓ 3↑ 3↓ _ 
_ 

30/20/ 
30 

30/25/38 50  

Table 2 
Noise types added to foresight input data. Gaussian noise is defined by mean 
value μ and standard deviation σ, centered moving average by window size.  

Noise type Speed Elevation 

More Dynamic 
(MD) 

Gaussian noise (μ = 0 km/h, σ =

20 km/h) 
Gaussian noise (μ = 0 m, 
σ = 4 m) 

Less Dynamic 
(LD) 

Centered moving average 
(window size 9) 

Gaussian noise (μ = 0 m, 
σ = 4 m)  
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threshold is not kept low for the prediction horizon of 20 km, but it is 
updated to 40 ◦C once the battery temperature is lower due to active 
cooling (third vertical line in magnifier box). The lower temperature 
results in lower, predicted costs for the last section even without cooling. 
Compared to a fixed threshold of 35 ◦C, cooling time is reduced by 65% 

and total energy consumption by 1.02%. The analysis shows the ability 
of the predictive BTMS to proactively adapt to different drive profiles 
ahead. 

Fig. 7. Drive profiles HDDUU and HDDD are shown in (a) and (b). (c) and (d) depict the calculated costs based on the prediction for each cooling threshold, with the 
less relevant thresholds as dashed line. In the magnifier in (d), vertical lines indicate prediction steps. The costs for a threshold of 40 ◦C with profile HDDUU are 
included in (d) as a dotted line. Battery temperature Tb and cooling threshold with start Tcool,s and end Tcool,e are shown in (e) for HDDUU and in (f) for HDDD. A gray 
shaded area marks active battery cooling in (b),(d),(f). 

Fig. 8. Average cooling and ageing costs are shown in (a) for DOE simulations with varied cooling (wc) and ageing (wa) weights as indicated by the colorbar. A dotted 
line connects the costs for fixed thresholds 30 ◦C, 35 ◦C and 40 ◦C. The section of the black rectangle is displayed in (b). Crosses show the results for the weight set 
(0.04,0.76) with input noise (more dynamic, MD, and less dynamic, LD). Triangles show results with the same weights but a varied control interval (from 1 km to 4 
km), while 2.5 km was used for all other simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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3.2. Tunability 

All 18 DOE scenarios (see Table 1) are simulated for nine different 
sets of cooling and ageing weights (wc, wa), varying from (0.0,0.8) to 
(0.13,0.67). The derating weight wd is kept constant at 0.2 and wa,eod is 
fixed to 0.2. The resulting cooling and ageing costs are averaged over all 
18 scenarios for each weight setting and scaled by the maximum value, 
as shown in Fig. 8 (a). They form a Pareto curve, with the weight set 
(0.04,0.76) being closest to the theoretical optimum of zero costs 
(0%,0%). It is also closest to a slope of -1, at which a decrease in one cost 
type results in an equal increase of the other cost type. The resulting 
costs for the same DOE with fixed thresholds 30 ◦C, 35 ◦C and 40 ◦C is 
included. In comparison, the Pareto curve of the predictive BTMS is 
closer to the theoretical optimum except for the weight set (0.0,0.8). The 
analysis shows the tunability of the predictive control as well as its 
potential to reduce cooling and ageing costs. 

3.3. Robustness and influence of control distance 

The influence of foresight input noise on the weight set (0.04,0.76) is 
depicted by gray crosses in Fig. 8 (b). The result with a more dynamic 
forecast (MD) than actual results in higher cooling but lower ageing 
costs, since the prediction model overestimates the rise in battery tem
perature which leads to more cooling. A less dynamic forecast (LD) re
sults in a smaller difference, again with higher cooling and lower ageing 
costs. In both cases, the resulting costs with input noise are in a similar 
range than without, and closer to the optimum than for the fixed 
threshold strategy. According to this analysis, the model shows good 
robustness to uncertainty of the foresight input data. 

Predictions and threshold adaptions are conducted in an interval of 
2.5 km. The weight set (0.04,0.76) is simulated additionally with in
tervals of 1 km, 2 km, 3 km and 4 km to analyse the effect of the control 
distance sc. The results are shown as triangles in Fig. 8 (b). In all cases 
the resulting costs are closer to the theoretical optimum of zero costs 
than for the fixed threshold of 35 ◦C. 

3.4. Energy consumption reduction 

A comparison of cooling and ageing costs between the results with a 
fixed threshold of 35 ◦C and the results with predictive control is shown 
in Fig. 9. The reduction of cooling costs represents the reduction of 
battery cooling energy consumption. Additionally, the effect of reduced 
battery cooling on total energy consumption is calculated. Using pre
dictive control with weights (0.04,0.76), cooling costs are reduced by 
4% and ageing costs are lowered by 5%. The total energy consumption is 
reduced by 0.06%. Additional simulations of the DOE with weights 
(0.0485,0.7515) lead to the same ageing costs than for a fixed threshold 
of 35 ◦C, such that the result is located at a x-value of zero in Fig. 9. As a 
result, a reduction of cooling costs by 9% and of energy consumption by 

0.11% is possible with the same ageing costs. The scenario with the 
highest energy saving potential with this weight set is the 12T profile 
with Tamb and Tb,init equal to 30 ◦C. In this scenario cooling costs are 
reduced by 34% and total energy consumption by 0.57%. 

Further improvements in energy consumption will lead to higher 
ageing, thus reduced lifetime, than for the fixed threshold of 35 ◦C. 
Accordingly, the weights of the predictive BTMS can also be tuned to 
increase battery lifetime taking higher energy consumption into ac
count. The developed control offers these possibilities, which can be 
used dependent on a holistic consideration of energy consumption and 
lifetime for the according BEV. 

3.5. Computation time 

An analysis of the computation time during all simulations considers 
a separate time measurement of each simulation step, prediction step 
and step of threshold choice. The used hardware consists of an Intel i7 
(3.0 GHz) processor and 16 GB RAM. However, the predictive control 
does not need the full computational capacity of this hardware. The 
simulations are conducted with Python 3.7.5, using TensorFlow/Keras 
package version 2.5.0 for the QCNN. 

The following times are measured for simulations of all DOE profiles 
with the weight set (0.0485,0.7515). The time measurement of the 
prediction step includes the time needed for normalization and 
denormalization of inputs and outputs and covers the predictions for all 
five thresholds. The prediction step takes on average 1.11 s, the 
threshold choice step on average 0.03 s. The sum of maximum predic
tion time and maximum threshold choice time is 3.63 s, which equals a 
speed of 248 km/h that is needed to drive a distance of 250 m during 
that time. Thus, for speeds lower than that value, the predictive control 
is fast enough to set a new threshold before the next 250 m segment is 
reached. Setting the new threshold for the following 250 m segment is 
important for the control performance since the QCNN predictions as
sume the new threshold for all segments, including the one that imme
diately follows. 

4. Discussion 

The usage of a QCNN for battery temperature prediction enables a 
proactive adaption of the battery cooling threshold. The proposed pre
dictive BTMS shows better performance than a fixed threshold control, 
considering ageing and cooling costs. While the analysis shows the po
tential to improve the BTMS performance for both cooling and ageing 
costs, there are several aspects of the model and its evaluation that can 
be improved. 

In this work, prediction and choice of cooling thresholds are con
ducted only in a fixed interval of 2.5 km. This control distance can be 
further optimized, for example adapted to the boundary conditions (e.g. 
longer during highway drive, shorter during urban drive). Due to the 
distance-based control interval, the proposed predictive BTMS does not 
adapt the cooling threshold during times where the vehicle is standing. 
In comparison with a time-based interval, it is acceptable due to the 
following reasons: Firstly, battery cooling is still activated or deactivated 
according to the last chosen threshold, such that the battery will not 
reach too high temperatures. Secondly, the battery temperature is ex
pected to not change significantly during standing (except for active 
cooling) since the main input parameters do not (significantly) change at 
that time. This includes velocity, height profile and ambient tempera
ture for shorter time periods. 

The number of predefined thresholds is limited to five and only a 
fixed value can be chosen for the prediction horizon of 20 km in every 
control interval. On the one hand, this limits the freedom of adapting the 
battery cooling threshold and minimizing costs. On the other hand, it 
leads to low computation times since only five cases need to be evalu
ated. The hysteresis and control distance also prevent high stress for 
BTMS components which could occur with more frequent changes. In 

Fig. 9. Comparison of cooling costs and ageing costs with respect to the results 
with a fixed threshold of 35 ◦C. The weight set (0.0485,0.7515) shows a po
tential reduction of cooling costs by -9% with same ageing costs. 
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future works, the prediction model can be optimized online to adapt to 
individual driver behavior and regional climate conditions. 

The calculation of costs requires an accurate battery temperature 
prediction. An optimization of the QCNN, as discussed in [22], is ex
pected to further improve the BTMS performance. For example, the 
calculation of cooling costs highly depends on the prediction accuracy 
due to the indirect identification of active cooling using the predicted 
temperature and the corresponding threshold. The dependence of 
cooling power on other quantities can be added for a more holistic 
estimation of cooling costs, for instance using ambient temperature, 
cabin cooling, coolant temperature or efficiency of BTMS components. 
Ageing costs can be extended by their dependency on the SOC and an 
estimation of parking time after eod. Derating costs can be combined 
with a prediction of the actual power demand as well as the usable fast 
charging power on the battery temperature at eod in case of an up
coming fast-charging event. Similar to an online optimization of the 
prediction model, the cost weights can be adapted to individual drivers, 
regions and to driving modes (e.g. a sports mode versus an eco mode). 
Using Reinforcement Learning methods, the predictive control can be 
developed and optimized continuously based on resulting costs as 
feedback. 

Evaluation of the predictive control is based on a fixed DOE with 
limited variance in profiles and boundary conditions. The DOE needs to 
be extended by more variance, for instance by profiles from fleet data, 
since the profiles and boundary conditions have a big impact on the 
energy reduction potential. The exemplary analysis of varying input 
profiles shows plausible adaptability of the cooling threshold, but a 
more holistic sensitivity analysis may provide further insights about the 
performance in later applications. The tunability analysis can be used to 
identify the preferred set of weights, but needs to be extended by all 
remaining weights and design parameters (in this work wa,eod, wd and sc). 
Furthermore, only the average of each cost term is considered in the 
comparison of weight sets. The developed predictive control proved to 
be robust to foresight input noise, while further variance in noise can 
give a deeper understanding about its robustness and limitations. Strong 
deviations from the input foresight data could however lead to worse 
performance, for example when the driver spontaneously changes the 
route. 

Given a larger DOE, the impact on energy consumption and State Of 
Health (SOH) should be further analyzed to provide more tangible key 
metrics than predefined cost terms. Besides the consideration of a fixed 
threshold control, a comparison with other predictive control methods 
might give more insights about potential and limitations of the devel
oped method. The evaluation of computation times needs to be repeated 
with the according hardware of later application. Alternatively, the 
prediction could be conducted in a cloud system, if data transfer be
tween backend and vehicle is fast enough for the used sampling and 
control distance. In future works, the developed predictive BTMS needs 
to be tested in a real car to fine-tune its weights and validate the results. 

The proposed predictive control showed a reduction in both cooling 
and ageing costs. Considering the efforts for training the QCNN and for 
implementation of the predictive control, further improvements in en
ergy consumption or ageing should be targeted. For instance, a more 
accurate prediction model and more choices of control variables may be 
advantageous. The energy saving potential also depends on the given 
BTMS components, vehicle specifications and driving profile. For 
example, the saved cooling energy has a lower impact on total energy 
consumption in case of a dynamic profile with high energy consumption 
caused by acceleration. The developed control might show more po
tential for energy consumption reduction in other applications, for 
example to adapt heating thresholds or for BTMS of hybrid electric ve
hicles or thermal management of the electric machine. It can be also 
used for predictive control applications outside the automotive sector. 

5. Conclusion 

This work presented a predictive control of a Battery Thermal 
Management System (BTMS) using a Quantile Convolutional Neural 
Network (QCNN) for battery temperature prediction and cost functions 
for cooling, ageing and derating. The main contributions and results 
consist of the following:  

• Battery temperature predictions of a QCNN enabled the calculation 
of different types of costs for the prediction horizon in order to 
choose the most suitable cooling threshold. 

• The cost functions were partly derived by empirical or physical de
pendencies and the quantile predictions allowed a direct consider
ation of the prediction uncertainty.  

• Simulations with different routes ahead led to different predicted 
costs. Consequently, the predictive BTMS proactively adapted the 
cooling threshold accordingly, proving its adaptability.  

• A Pareto curve indicated the effect of varied cooling and ageing 
weights on the contradicting optimization goals, representing the 
tunability of the predictive BTMS.  

• Induced noise on the foresight input data resulted in low variation of 
ageing and cooling costs which confirmed the robustness of the 
proposed approach.  

• The predictive BTMS performed better than a fixed threshold control 
considering cooling and ageing costs. On average over 18 simulated 
scenarios, cooling costs could be reduced by 9% with unchanged 
ageing costs. 

Further extensions and optimization of the predictive control could 
target the cooling threshold variation, the accuracy of the QCNN, the 
calculation of cost functions and performance evaluation. Such an 
optimized control should be compared with other predictive control 
methods and applied in other domains to further understand its 
potentials. 
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