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Abstract
In recent years, computer vision algorithms have become more powerful, which enabled technologies such as autonomous
driving to evolve rapidly. However, current algorithms mainly share one limitation: They rely on directly visible objects. This
is a significant drawback compared to human behavior, where visual cues caused by objects (e. g., shadows) are already used
intuitively to retrieve information or anticipate occurring objects. While driving at night, this performance deficit becomes
even more obvious: Humans already process the light artifacts caused by the headlamps of oncoming vehicles to estimate
where they appear, whereas current object detection systems require that the oncoming vehicle is directly visible before it can
be detected. Based on previous work on this subject, in this paper, we present a complete system that can detect light artifacts
caused by the headlights of oncoming vehicles so that it detects that a vehicle is approaching providently (denoted as provident
vehicle detection). For that, an entire algorithm architecture is investigated, including the detection in the image space, the
three-dimensional localization, and the tracking of light artifacts. To demonstrate the usefulness of such an algorithm, the
proposed algorithm is deployed in a test vehicle to use the detected light artifacts to control the glare-free high beam system
proactively (react before the oncoming vehicle is directly visible). Using this experimental setting, the provident vehicle
detection system’s time benefit compared to an in-production computer vision system is quantified. Additionally, the glare-
free high beam use case provides a real-time and real-world visualization interface of the detection results by considering
the adaptive headlamps as projectors. With this investigation of provident vehicle detection, we want to put awareness on
the unconventional sensing task of detecting objects providently (detection based on observable visual cues the objects cause
before they are visible) and further close the performance gap between human behavior and computer vision algorithms to
bring autonomous and automated driving a step forward.
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1 Introduction

Humans have five senses, and, out of those, visual per-
ception is likely to be the primary information relevant for
driving a vehicle (Sivak, 1996). This fact is one reason
why visual perception is essential in robots and assisted
(autonomous) driving. In the last years, visual perception
by machines has made tremendous progress by using Neural
Networks (NNs; e. g., Ren et al., 2015; Redmon et al., 2016;
Deng et al., 2009) and achieved superhuman performance
for some tasks (He et al., 2016). However, while progressing

3 Karlsruhe Institute of Technology, Karlsruhe, Germany

4 NEC Laboratories Europe GmbH, Heidelberg, Germany

5 Institute of Product Development, Leibniz University
Hannover, Hannover, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10072-7&domain=pdf
http://orcid.org/0000-0003-2248-8062


Autonomous Robots

Fig. 1 The three characteristic states howanoncomingvehicle becomes
visible. The images correspond to the scene 309 of the PVDN dataset
(Saralajew et al., 2021). Each visualization shows a cropped area of
the entire image (shown in the upper right corner). Left: First visible

light artifacts at the guardrail (indirect light instance). Middle: Vehicle
becomes visible (direct and indirect light instances). Right: Vehicle is
visible (direct and indirect light instances)

heavily in specific directions like object detection or action
recognition, the abilities are far behind the general-purpose
human performance, which is, for instance, reflected in the
problemof adversarial robustness (e. g., Eykholt et al., 2018).

Another reason why computer vision systems cannot
compete with humans in general-purpose tasks is that com-
puter vision systems are mostly trained to solve one specific
task. For this, the vision task is formulated in a mathemati-
cal framework. For example, in object detection, the most
studied field in computer vision, the objects are marked
by bounding boxes, and the task is to predict and classify
those bounding boxes (e. g., Liu et al., 2019). Often, this
sufficiently reflects our human visual performance. But, in
general, human visual perception is more complex. Humans
reason about the environment based on complex learned
causalities using all the available information. If we hear a
siren, for instance, we expect the occurrence of an ambulance
and try to visually estimate the point of occurrence. Such
causalities to enrich our environmental model are present in
everyday life: In daylight, we use shadow movements and
illumination changes to reason about moving objects with-
out having direct sight, and if we drive a car through a village
and see a ball rolling on the street, we expect the occurrence
of playing children.

Another example for complex causalities to enrich the
environmental model happens while driving at night. At
night, humans show impressive abilities to foresee oncoming
cars by analyzing illumination changes in the environment
like light reflections on guardrails (see left image in Fig. 1),
a brightening of a turn ahead, or unnatural glares in trees.
Drivers use this provident information to adapt their driv-
ing style proactively, for example, by turning off the high
beam in advance to avoid blinding of oncoming drivers or
by adapting their driving trajectory. In the scope of safe
and anticipatory driving, where time matters and the ear-
lier information is received the better it is, this human ability
is obviously handy and outperforms current computer vision
systems used in vehicles. Oldenziel et al., 2020 analyzed
this discrepancy between the human detection capabilities
and an in-production computer vision system and quanti-
fied that humans are approximately 1.7s faster. One reason

why state-of-the-art object detection systems are behind
human capabilities is that object detection systems rely on the
assumption that objects have clear, visible object boundaries.
Even if this assumption comes with a lot of advantages, like a
well-defineddescription for the enclosing bounding boxof an
object, it is not inherently applicable to light artifacts—since
usually light artifacts (illuminated areas) have no clear object
boundaries and the position of these light artifacts does not
directly correspond to the location of the light source. Due
to this assumption, the earliest point in time an oncoming
vehicle can be detected by state-of-the-art computer vision
systems is after almost full visibility (see the right image in
Fig. 1).

Nowadays, vehicles are increasingly equipped with driver
assistance systems, and manufacturers are working on self-
driving cars. Therefore, while driving, more and more tasks
are controlled or supported by systems such that the algo-
rithms havemore andmore responsibility to operate correctly
in our complex environment. For safe and anticipatory driv-
ing, time matters and 1.7s are a non-negligible unexplored
potential to, for instance, plan driving trajectories, understand
the environment, or simply control the high beam to avoid
glaring of oncoming vehicles.

In this paper,1 we study the task of detecting light arti-
facts caused by the headlights of oncoming vehicles so that
we can reduce the aforementioned time difference. To illus-
trate the usefulness (and to visualize the detection results in
the real world and in real time), a test car is equipped with
such a detection algorithm, and the information is used to
proactively control the glare-free beam system2 (e. g., Böke
et al., 2015; Fleury et al., 2012; Kloppenburg et al., 2012;

1 Note it is the continuation of earlier work (Oldenziel et al., 2020;
Saralajew et al., 2021) by our team with further improvements of the
algorithm and the first detailed presentation of the entire pipeline.
2 A glare-free high beam system is an ADAS where the camera inter-
acts with a vehicle headlamp that consists of several adjustable pixels
like a video projector but with a coarse resolution. By processing the
information of detected vehicles of the driver assistance camera, the
goal of the headlamp is to illuminate the environment as much as pos-
sible (adapted high beam) without blinding other drivers—pixels that
would illuminate other drivers are turned off.
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2016). To this end, a full detection pipeline is implemented
consisting of

1. the detection of light artifacts using the car’s front camera,
2. the distance estimation to all detected light artifacts to

provide a three-dimensional localization, and
3. the tracking of the light artifacts to perform a plausibility

check and to handle occlusions.

Consequently, by detecting their light artifacts, it is possible
to detect that vehicles are oncoming before they are directly
visible—this means to providently detect oncoming vehi-
cles. In particular, this investigation focuses on the first two
points because state-of-the-art approaches cannot be directly
applied for the detection of light artifacts. Consequently, on
the computer vision level, our contributions are

• a fast and straightforward computer vision algorithm that
is able to detect light artifacts and

• an investigation of methods to estimate the distance to
light artifacts to estimate their three-dimensional posi-
tion.

On the system level, the contribuions are

• the investigation of the toolchain to integrate such a prov-
ident vehicle detection system in a vehicle to control an
Advanced Driver Assistance System (ADAS) and

• the analysis of the time benefits that can be gained when
using such a detection system in vehicles.

The outline of the paper is as follows: First, in Sect. 2, the
terminology is presented that is used throughout the paper.
Then, in Sect. 3, the current state of the art in vehicle detection
at night is reviewed. This section also covers state-of-the-art
methods for distance estimation for camera-based systems.
Based on this, limitations of vehicle detection systems with
respect to their applicability for provident vehicle detection
are highlighted in Sect. 4. In Sect. 5,we present the developed
provident vehicle detection pipeline. To show the feasibility
of such a system in a production car environment, multiple
experiments are performed in a real-world environment. The
experiments are described and evaluated in Sect. 6, and Sect.
7 gives a conclusion and a future outlook.

2 Terminology

The following terminology is used:

Light artifact: Any form of artificial light
in the image causedbyhead-
lamps. This includes light

reflections, glaring of areas
above a street, headlamp
light cones.

Direct light instance: Light artifacts that are light
sources (direct view to the
headlamp).

Indirect light instance: Light artifacts that are not
direct light instances like
reflections on guardrails.

Provident vehicle detection: Detect the presenceof oncom-
ing vehicles in an image
(even if they are not in
direct sight) by detecting
light artifacts caused by the
vehicle’s headlights.

Proposal generation: An algorithm to extract rel-
evant regions (proposals) of
an image in the form of
boundingboxes.These regions
should contain light arti-
facts.

Proposal classification: An algorithm to extract the
proposals that correspond
to light artifacts through
classification.

Object detector: The entire detector consist-
ing of proposal generation
and proposal classification.

3 Related work

For autonomous driving and ADASs, the detection of vehi-
cles is of highpriority to performcritical tasks like emergency
braking maneuvers or automatic high beam control. The
commonly used sensor for that is a driver assistance camera
that captures images in the visual wavelength range (e. g.,
Rezaei & Klette, 2017). These images are then analyzed
to detect vehicles and to estimate the distance to detected
vehicles to determine the three-dimensional position. The
following two paragraphs present related work for these two
topics (vehicle detection and distance estimation) as they
are key for our contributions. Additionally, a final paragraph
presents related work for provident vehicle detection.
Vehicle detection:

The methods for vehicle detection by camera images
depend on the visibility conditions. For example, under good
visibility conditions (e. g., daylight), vehicles are detected
based on feature descriptors like edge detectors and symme-
try arguments using classifiers like support vector machines
on top (e. g., Sun et al., 2002, 2006; Teoh & Bräunl, 2011) or
are being detected by end-to-end trained deep NNs (e. g., Fan
et al., 2016; Hassaballah et al., 2021; Carranza-García et al.,
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2021).Under this condition, detectors often assume that vehi-
cles can be localized mainly by their contours, which is also
supported by the fact that the most commonly used annota-
tion method for objects is by bounding boxes that inherently
require clearly visible object contours to reliably annotate
them (see the survey of Liu et al., 2019).

If the visibility condition deteriorates, the detection per-
formance of the aforementioned methods decreases because
of the reduced visibility of object features such that spe-
cialized detection algorithms are required. For instance, for
adverse weather conditions like snow or fog, Hassaballah et
al., 2021 proposed a promising image enhancement strategy
afterwhich the aforementioned detectors can be applied, and,
for nighttime, researchers studiedwhether a style transforma-
tionbetweennighttime anddaylight images canbeperformed
by a generative adversarial network (Shao et al., 2021; Lin
et al., 2021). Even if the latter idea is promising, it is not
mature enough to compete with the performances of special-
ized detection algorithms for nighttime (in terms of detection
rates and computational efficiency).

At nighttime, due to low contrast, vehicles are usually
detected by locating their headlamps and rear lights singulari-
ties in the image space caused by the luminous intensity of the
light sources with rule-based algorithms (e. g., López et al.,
2008, Alcantarilla et al., 2011, Eum & Jung, 2013, Sevekar
& Dhonde, 2016, Pham & Yoo, 2020). However, besides
rule-based approaches, methods using NNs (e. g., Oldenziel
et al., 2020, Mo et al., 2019, Bell et al., 2021) or different
imaging sensors like infrared cameras (e. g., Tehrani et al.,
2014, Niknejad et al., 2011) have been investigated as well.
For vehicle detection at night, it is difficult to judge which
method is superior to another as the domain has not agreed
on a benchmark dataset like the KITTI benchmark for day-
light (Geiger et al., 2012), which is also criticized by other
authors (Sun et al., 2006, Juric & Loncaric, 2014)—authors
reported results with around 90% accuracy and small error
rates for both rule-based and NN-based classifiers on their
private datasets (e. g., compare the evaluations of Mo et al.,
2019 and Satzoda & Trivedi, 2019). Nevertheless, it has to
be expected that rule-basedmethods are superior if computa-
tional complexity constraints apply (e. g., see the number of
parameters and the number of GFLOPs in Table 2 of Sarala-
jew et al., 2021) and if somebody wants to use the detections
for high-stakes decisions (Rudin, 2019). Therefore, as the
scope of this work is to apply the detection algorithm in
a test vehicle for a driver assistance system, we focus on
a rule-based proposal generation algorithm with a shallow
NN on top to classify the proposals (whereas the NN is not
specific to our approach and can be replaced by any other
classification method).

Distance estimation:

As we consider the application of the detection pipeline
in a test car to realize a prototypical customer functional-
ity, requirements by law have to be considered. Assuming
the usage of the detected vehicle information to control the
vehicle’s high beams at night, the distance at which a visi-
ble vehicle must be detected is regulated by the respective
UNECE Regulation, 2016 to avoid blinding of other drivers:
“The sensor system shall be able to detect on a straight level
road: (a) An oncoming power driven vehicle at a distance
extending to at least 400m; (b) A preceding power driven
vehicle or a vehicle-trailers combination at a distance extend-
ing to at least 100m” (Â§6.1.9.3.1.2).

In order to ensure such largedetectiondistances, researchers
who developed the detection pipeline for automotive use
cases rely primarily on the distance estimation by a ground
plane assumption (e. g., Alcantarilla et al., 2011, Juric&Lon-
caric, 2014, Eum & Jung, 2013, Chen et al., 2008, Kuo &
Chen, 2010, Schamm et al., 2010):3 Knowing the extrinsic
and intrinsic parameters of the camera mounted in the vehi-
cle and assuming or estimating the ground “plane” in front of
the vehicle, the distance to vehicles can be estimated. Using
this technique, Alcantarilla et al., 2011 reported detection
distances of up to 700m for oncoming and 200m for pre-
ceding vehicles. Other authors purposefully used the known
calibration of the camera and different assumptions like a
known distance between headlamp pairs or vanishing point
estimation to estimate the distance to vehicles (e. g., Chen et
al., 2012, Chen, 2009).

In addition to the methods mentioned before, researchers
investigated single image depth estimation approaches by
the use of deep NNs (e. g., Eigen et al., 2014, Laina et al.,
2016), where the idea is that deep NNs can learn to contex-
tualize a scene and the arrangement of objects to the depth
information. Often these methods only return relative depth
information that is only accurate in the close range so that it
might not be applicable for our purpose. Another approach is
depth estimation by structure frommotion (e. g., Furukawa et
al., 2004, Saponaro et al., 2014, Gallardo et al., 2017), where
the structure (depth) is estimated by analyzing the move-
ment of objects. In principle, this is similar to the distance
estimation by stereo vision systems (Hamzah & Ibrahim,
2016) because, in both approaches, correspondences between
images have to be found and analyzed. However, the latter is
not applicable for our use case since we focus on monocular
camera systems. Finally, in general, several of the mentioned
concepts are used in depth estimation from video (e. g., Zhou
et al., 2017, Ranftl et al., 2016,Gordonet al., 2019), where the

3 Note that other sensors like radar and LiDAR (even if progressing
constantly) cannot provide a reliable distance estimation up to such large
distances (e. g., see the range specifications by Kukkala et al., 2018).
In addition, a single sensor solution is also preferred in the context of
low-cost solutions.
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goal is to provide an accurate distance estimate by analyzing
consecutive images of a video.

In summary, all these methods have pros and cons and
require certain assumptions to be valid. Therefore,we discuss
their applicability for our use case in the following sections
and, additionally, investigate a use case specific approach that
uses predictive street data in order to locate light artifacts.

Provident vehicle detection:
The provident detection of objects was already stud-

ied by other authors: In daylight, Naser, 2019 providently
detected objects by analyzing shadow movements; At night-
time, Oldenziel et al., 2020 and Saralajew et al., 2021 studied
the task to providently detect oncoming vehicles by detecting
light artifacts produced by their headlights.

Oldenziel et al., 2020 analyzed the discrepancy between
the human abilities and an in-production computer vision
system in detecting oncoming vehicles. Notably, based on
the results of a test group study, the authors specified the
deficit in detecting oncoming vehicles providently by 1.7 s
on average in favor of humans. Since this is a significant
amount of time, the authors studied whether it is possible to
detect oncoming vehicles based on light artifacts by training
a Faster-RCNN architecture (Ren et al., 2015) on a small
private dataset annotated by bounding boxes. The presented
results showed that the NN learned the task to some extent.
However, the analysis of the detection results raised concerns
whether an annotation method with bounding boxes (even
if most commonly used) is a good annotation scheme for
light artifacts due to a high annotation uncertainty because
of unclear object boundaries—light artifacts are fuzzy and
of weak intensity such that clear boundaries are missing.
These results are partly orthogonal to Bell et al., 2021, where
the authors annotated vehicles in nighttime images of traffic
surveillance cameraswith keypoints because the blurry edges
of the vehicles due tomotion blur and the saturated pixels due
to the bright light cones of vehicles headlamps did not allow
a reliable annotation of the vehicles by bounding boxes.

The annotation by keypoints causes the difficulty that the
majority of state-of-the-art object detectors cannot be applied
because they require bounding boxes (e. g., Liu et al., 2019).
For this reason, Bell et al., 2021 used foveal classifiers (a set
of classifiers where each classifier is trained to provide the
classification result for a particular image region). The disad-
vantage of this approach is that the localization performance
depends on the number of classifiers and their distribution
over the image. For their use case (traffic surveillance), how-
ever, this approach is feasible and provides good results. But
for the application of provident vehicle detection, the lim-
ited localization performance and the dynamics of oncoming
vehicle scenarios are expected to negatively affect the appli-
cability of this detection approach. To overcome this and
to apply state-of-the-art object detectors, the authors pro-

posed a simple transformation by sampling bounding boxes
of randomsize around eachkeypoint in order to derive bound-
ing boxes. Based on this, they trained a YOLOv3 (Redmon
& Farhadi, 2018) and a Faster R-CNN network, but these
networks scored worse than their foveal classifier in the pre-
sented evaluation. Whether this result is partly due to the
simplicity of their bounding box generation, perhaps caus-
ing unexpected biases, is unclear.

Saralajew et al., 2021 extended the work of Oldenziel
et al., 2020 and published the PVDN dataset, the first con-
taining approximately 60K driver assistance camera images
(grayscale) annotated by keypoints for the task to prov-
idently detect oncoming vehicles at nighttime. Together
with the dataset published by Bell et al., 2021, these two
datasets are the only large-scale datasets publicly available
for the detection of vehicles at nighttime and annotated by
keypoints—other available datasets for this task use bound-
ing boxes (e. g., Rezaei & Klette, 2017, Duan et al., 2018)
or masks (Rapson et al., 2018). By using keypoints for the
annotation of light artifacts, Saralajew et al., 2021 presented
an approach to reliably annotate light reflections, which are
so fuzzy andweak in intensity that they cannot be objectively
annotated by bounding boxes (as concluded by Oldenziel et
al., 2020 and showed in a test by Saralajew et al., 2021).
Similar to Bell et al., 2021, using the keypoints as initial
seeds, the authors further explored methods to extend the
keypoint annotations to bounding boxes with low annotation
uncertainty so that state-of-the-art object detection methods
can be applied. To this end, they trained several machine
learning algorithms for the task of detecting light artifacts.
The two types of architectures used for this experiment are
YOLOv5 networks4 and a two-phase algorithm consisting of
a rule-based blob detector followed by a shallow NN. Both
methods show promising results and provide a strong base-
line for further experiments. As mentioned earlier, we build
on the latter and fine-tune the architecture such that a new
benchmark is achieved.

4 Inherent limitation of current systems

Simply said, the motivation of this work is to provide the
information about oncoming vehicles at night earlier than
current systems do—in the best case before they are directly
visible—to ensure safe and anticipatory driving. Currently,
there is a technical limitation in current systems regarding
how early they can perceive a vehicle (see Fig. 2), caused
by the commonly used object detection paradigms and the
system-related latencies.Within this section, we explain why
these limitations exist and are inherent. Knowing these lim-

4 https://github.com/ultralytics/yolov5.
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Fig. 2 Visualization of the timings of how an in-production system and
humans (provident and after direct sight) perceive oncoming vehicles
at night. The times are estimates from a test group study performed
by Oldenziel et al., 2020 and are (of course) dependent on the sce-

nario. However, they illustrate the inherent discrepancy. Additionally,
the system-related latency between “ object becomes visible” and “
object detected” is qualitatively split into the single steps

itations is essential to understand what can be achieved with
the presented approach (how fast can vehicles be detected).

4.1 Object detection paradigms

First, it must be noted that current camera-based perception
models used to detect vehicles at night are object detec-
tors. As the most reliable information source, headlamps
of other vehicles are used to detect the position of vehi-
cles. Consequently, headlamps are used as “objects” from
which succeeding systems can infer the location of vehicles
present in the image (e. g., Alcantarilla et al., 2011). While
being a robust reference, the restriction on headlamps limits
the performance of such systems, since the earliest point in
time they can perceive a vehicle is when they have direct
sight to the vehicle (see “object becomes visible” in Fig. 2
and the middle image in Fig. 1). As already mentioned in
Sect. 1, this differs from how humans estimate whether and
where a vehicle is oncoming because humans can react to
light artifacts like the light reflections on the guardrail in
Fig. 1. Thus, the question is why light artifacts are not nat-
urally being detected or tried to being detected by current
vehicle detection systems considering the apparent discrep-
ancy between humans and systems regarding this task (see
the time gap between the human provident and camera-based
object detection in Fig. 2). We can only speculate why this
is the case but expect that one reason is the object detection
paradigm: The algorithms detect objects that match an object
definition. For example, if the object detector is a bounding
box regressor, it must be possible to specify the object bound-
aries to define bounding boxes. In vehicle detection at night,

it is possible to apply this strategy for headlamps (direct
light instances) as they cause intensity singularities in the
image (extraordinary high-intensity peaks) with sharp gradi-
ents. However, for light reflections (indirect light instances),
this strategy is not appropriate since they often illuminate
almost homogeneously larger areas with small gradients, and
their intensity varies heavily depending on their strength and
other global light sources. Therefore, indirect light instances
cannot be treated as objects without further thoughts due to
their unclear object boundaries, causing annotation difficul-
ties. Building on the work of Saralajew et al., 2021, we tackle
this challenge by using keypoint annotations to derive a suit-
able object detector for detecting all sorts of light artifacts.

4.2 System-related latencies

As already mentioned in Sect. 3, Oldenziel et al., 2020 pre-
sented the results of a test group study that investigated the
detection latency of an in-production computer vision sys-
tem and humans—the results are summarized in Fig. 2. In
particular, they observed that even if, in theory, detection sys-
tems are able to detect vehicles directly after direct sight, on
average, they have a system-related latency. This latency is
caused by a small delay until the object paradigm is fulfilled,
by the image processing steps of the detection pipeline (as
described in Sect. 1), and by the time needed to perform the
plausibility check. In summary, the following steps cause the
latency in a vehicle detection system—which is also qualita-
tively visualized in Fig. 2:
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1. After the vehicle starts to become visible, there is a
system-specific time until the vehicle has a visibility sta-
tus that fulfills the object definition. After that, the object
can be potentially detected by the computer vision system
(compare the middle and right image in Fig. 1).

2. If an image is captured with an object that fulfills the
object definition, a latency in the detection is caused by
the image processing time (object detection, distance esti-
mation, and tracking). This latency is lower than the frame
rate of the camera.

3. Finally, the plausibility check causes a latency of several
frames due to semantic and temporal object validations.
This step is often performed in combination with the
object tracking in order to safely predict there is an oncom-
ing vehicle.

This latency is frequently discussed in combination with
glare-free high beam systems because of the possible caused
glare (e. g., Helmer, 2020, Chapter 3.3.1): Hummel, 2009,
Chapter 5.4.3 reported that the plausibility check causes a
latency between two and four frames, where a frame has a
processing time of 45ms, and measured a delay from captur-
ing the image until the high beam adapted of (196 ± 21)ms.5

Totzauer, 2013, Chapter 3.2.4 reported a similar result of
(288 ± 17.4)ms total system delay. Moreover, López et al.,
2008 reported a validation time of two or three frames for
oncoming vehicles. Unfortunately, they do not specify the
camera’s frame rate, so these results cannot be converted
into seconds. However, they state that the overall processing
delay is less than 200ms. The approach of Alcantarilla et al.,
2011 validates detected vehicles for five frames at a frame
rate of 30, leading to a minimum delay of around 167ms.
Summarily, current camera-based systems for detecting vehi-
cles at night are expected to have an inherent detection delay
caused by the mandatory vehicle validation procedure and
the assumption that vehicles are characterized solely by head-
lights (as discussed in the previous Sect. 4.1). Consequently,
if such a vehicle detection system is used to deploy a glare-
free high beam system, it has to be expected that oncoming
drivers are exposed to high beam light patterns when they
appear in direct sight. Whether these glare moments are crit-
ical has not yet been conclusively clarified (Helmer, 2020).

Not only object detection systems have an internal latency,
but also humans: reaction time. In Fig. 2, the human reaction
times during the test group study are illustrated. As Olden-
ziel et al., 2020 showed, the camera-based vehicle detection is
approximately 200ms faster in a fair setting (allowed detec-
tion after direct sight) than its human counterpart. However,
human detection almost reaches the minimal possible detec-
tion time, acting only approximately 800ms after the first

5 Unless otherwise specified, expressions such as 196± 21 represent a
mean of 196 with a standard deviation of 21.

indication of oncoming vehicles (compare with the reaction
times for braking maneuvers Green, 2000).

In Sect. 5, we present a detection system that is able
to detect light artifacts. Even if this system reacts to light
artifacts, it still has the inherent system-related latency.
Therefore, depending on the scenario, it does not necessar-
ily detect oncoming vehicles before direct sight but shifts as
much as possible of the inherent latency before the moment
of direct sight and, thus, detects oncoming vehicles faster
than current systems do.

5 Method

In this section, the methodology for the detection of light
artifacts is presented. First, an object detector is proposed
that can detect light artifacts. After that, different tech-
niques to estimate the distance are described. Such a distance
estimation is needed to locate the detected objects in the
three-dimensional space. Finally, a tracking algorithm is out-
lined to stabilize the detections and to perform a plausibility
check.

5.1 Object detector

The first element in the vehicle detection pipeline is the
object detector. The task here is to detect both direct and
indirect light instances within the camera image. The feasi-
bility of the light artifact detection was shown by Oldenziel
et al., 2020 through multiple practical examples. The general
setup for such a detector can be divided into the following
sub-tasks:

1. Generate region proposals based on local features;
2. Classify the proposals to reduce the amount of false-

positive detections.

This pipeline is used in many state-of-the-art systems as
well as in machine learning object detectors (e. g., Ren et
al., 2015). The usual approach for such a system would
be to use an NN-based system in an end-to-end manner.
As already said, we rejected this approach because of its
inevitable obscure nature and computational load. Instead,
the method proposed by Saralajew et al., 2021 with a tailored
region proposal generation algorithm and an NN classifier is
used. The resulting overall pipeline is depicted in Fig. 3. In
the following paragraphs, each module of the object detector
is described in more detail.
Pipeline:

First, a dynamic thresholding procedure is performed to
retrieve intensity regions of interest from the image. Bound-
ing box proposals are then inferred through a blob detection
in the generated binary image (1: above threshold; 0: below
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(a) (b) (c) (d)

Fig. 3 Overall object detector pipeline. First, region proposals for light
artifacts are generated using a custom approach described by Sarala-
jew et al., 2021 (“Proposal Generation”). The region proposals are then
passed to a classifier (“Proposal Classification”) for the binary clas-
sification to “light artifact” and “non-light artifact.” For both steps,
modules, as well as intermediate results (images), are shown. Image a

shows the raw input image, b the filtered image, c the binary image
inferred through the adaptive thresholding procedure (white: 1; black:
0), d the classified proposals (green: light artifact, red: non-light arti-
fact). The image used for this figure corresponds to a crop of image
number 98768 of sequence 286 in the PVDN dataset and shows the
detection of an indirect light instance (Color figure online)

threshold). The classification is performed using a small
Convolutional NN (CNN). The results are bounding box rep-
resentations of light artifacts within the image.

Image preparation—The raw image is filtered to reduce
the amount of noise present. First, the image size is decreased
to half (640×480 pixels) by a bilinear interpolation in order
to suppress small noisy image regions (it also reduces the
computational complexity of the later steps). Second, noise
is further removed by applying aGaussian blur over the entire
image. This smooths out edges and removes high-frequency
noise like salt-and-pepper noise. The effects of the filtering
are depicted in Fig. 3b.

Dynamic thresholding—Due to the low intensities for
light reflections and glares, a global thresholding strategy
is not suitable to retrieve interesting regions from the raw
image. In contrast, all considered artifacts share the common
feature of a higher intensity relative to their surroundings
(Saralajew et al., 2021). This can be used to perform dynamic
thresholding on the image. Therefore, a pixel-wise threshold
is calculated to retrieve interesting regions.

The criterion for the dynamic threshold T (x, y) at pixel
(x, y) is defined as the following:

T (x, y) = μ(x, y) ·
(
1 + κ ·

(
1 − Δ(x, y)

1 − Δ(x, y)

))
, (1)

with μ(x, y) being the local mean intensity—calculated
over a fixed-sized window w around the pixel (x, y)—and
Δ(x, y) = I (x, y)−μ(x, y) being the deviation of the pixel
intensity I (x, y) from the local mean. The sensitivity of this
threshold can be adjusted using the factor κ ∈ R. Equation
1 is adapted from Singh et al., 2011, who originally devel-
oped this technique to binarize documents.Comparisonswith
other threshold techniques showed that this method yields

high-quality results. Also, by using the integral image to
compute the local means, this method can be efficiently
implemented (Singh et al., 2011). The threshold T (x, y) is
calculated for every pixel in the filtered image and used to
infer a binary image B(x, y) with

B(x, y) =
{
1 if I (x, y) > T (x, y),

0 otherwise.
(2)

An example of such a binary image is shown in Fig. 3c.
Blob detector—The binary image contains multiple,

unconnected regions generated by the thresholding step. For
ease of use and further handling, these regions are com-
pressed into bounding boxes. This is achieved by applying a
standard blob detection routine to find connected areas and
allowing gaps of the size d—measured with respect to the
L∞ distance.6 After the bounding boxes have been com-
puted, they are filtered by removing bounding boxes where
the mean absolute deviation of the included intensity values
is smaller than a threshold s.

Classification—The bounding boxes still contain many
false positives because, simply put, all bright areas of the
image are detected. This allows for a high recall of inter-
esting regions but also yields a low precision and therefore
reduces the quality of following modules (e. g., the glare-
free high beam functionality). Therefore, a shallow NN is
added to classify each of the proposals (this strategy is similar
to a Faster-RCNN architecture). For that, to provide con-
text information for each bounding box, an enlarged region
around eachproposal bounding box is passed through aCNN.

6 The L∞ distance, also denoted as the Chebyshev distance, between
two vectors x and y is the maximum absolute deviation in any dimen-
sion: L∞ (x, y) = maxi |xi − yi |.
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The network classifies the proposal to be either true positive
or false positive (see also Sect. 6.2 for a formal definition
of true and false positive), leading to a binary classifica-
tion problem. Here, a proposal is considered true positive
if it coincides with a light artifact (direct or indirect) of
oncoming vehicles. Therefore, false-positive proposals are
all remaining regions. The reason for posing this as a binary
classification problem is explained in more detail in Sect.
6.1. As the network architecture is equivalent to Saralajew
et al., 2021, we will not discuss the classifier architecture in
detail. For more information, see Saralajew et al., 2021 or
the publicly available implementation in the corresponding
GitHub repository.

Efficiency:
The approach used to detect light artifacts was chosen to

allow for a suitable implementation in a production car,where
only limited computational resources are available. While
many detection and recognition systems designed for the
automotive context rely heavily on parallel computing (e. g.,
throughGPUs, TPUs), such hardware is not yet implemented
in most production cars, limiting the practical usage of these
systems. Even if more and more computational power is
available in the upcoming years, resources will always be
limited as the number of functions increases as well. There-
fore, two of the major requirements for the detection system
are to be computationally efficient and to not rely too heavily
on additional hardware. The simple operations used to build
the proposal generation are a result of these requirements.
The classification is still performed on a GPU but is still
efficient enough to be implemented on a production car’s
hardware with only minor adjustments. As shown in liter-
ature, end-to-end learned systems outperform conventional
methods like the proposed one. This is also partly true for our
case when computational resources are unlimited. However,
this fact changes with the constraint of limited computational
resources, as shown by the evaluation in Sect. 6.2.

5.2 Distance estimator

In real-world driving scenarios, it is often not sufficient to
just provide the spatial information of the detected object
in the two-dimensional image space. Only knowing where
the object of interest is located in the environment enables
the vehicle to react appropriately—for example, for perform-
ing emergency brakes or adjusting the adaptive high beams.
Therefore, it is necessary to compute an estimate for the
three-dimensional position of detected light artifacts.

As discussed in the relatedwork in Sect. 3, in the literature,
there are several methods described to perform the distance
estimation7 to locate objects.However, the special use case of

7 Also referred to as object localization or depth estimation.

nighttime images captured by a monocular grayscale cam-
era adds clear restrictions. The general problem is that the
images are relatively dark and low-textured (e. g., see Fig. 1),
which complicates the application of state-of-the-art depth
estimation methods. Also, light reflections can be consid-
ered non-rigid, arbitrarily deforming objects over time. In
addition, the overall goal of running the method in real-time
places a constraint on computational complexity, and the goal
of using it for a real-world use case requires a certain range.

Figure 1 presents a summary of possible applicable
distance estimationmethods.Due to the aforementioned con-
straints, the applicability of depth estimation from video and
structure frommotion is not possible. Additionally, monocu-
lar, single image depth estimation approaches have a too high
computational complexity and cannot provide the required
range, so they cannot be used for the studied approach as
well.8 Hence, the only applicable state-of-the-art method
is the object localization through ground plane approaches.
Note that this method assumes that an object is located on
the ground plane, which is not necessarily true for light arti-
facts (e. g., a light artifact on a guardrail). In previous work
about vehicle detection where the vehicle’s headlamps are
detected (e. g., Alcantarilla et al., 2011), the fulfillment of this
assumption is achieved by assuming a fixed, known height
of the headlamps and by shifting the ground plane by this
height.

To overcome the limitations of the methods listed in Fig.
1, we also evaluated a rather unconventional method for esti-
mating the distance of light artifacts by fusing the position
of the object in the image with Predictive Street Data (PSD).
The PSDprotocol contains information about the road geom-
etry ahead of the vehicle (see Fig. 4) based on map data
and GPS and is used, for instance, for advanced navigation
functionalities or adaptive cruise control. With this data, the
road lying ahead can be projected into the vehicle coordinate
system (see Fig. 5), giving a three-dimensional representa-
tion of the road geometry. For our implementation, the road
ahead described by the PSD is defined as a set of n points
P = {P0, P1, P2, . . . , Pn}, where Pi is a point in the vehi-
cle coordinate system lying on the road ahead described by
the PSD. A point was sampled for every meter. At the same
time, knowing the intrinsic and extrinsic camera calibration,9

a point (x, y) in the image can be associated with a camera
ray x (t) in the vehicle coordinate system (e. g., see Hartley
& Zisserman, 2004). Assuming that a detected light artifact

8 Even if these methods are not a good choice for the studied use case
with respect to the computational complexity, some of themwere tested
in a proof-of-concept investigation on grayscale daylight and nighttime
images. The results were not satisfying, which underlined the exclusion
from further studies.
9 For in-production vehicles with a series driver assistance camera,
these parameters are known and are dynamically corrected to account
for vehicle dynamics and so on.
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Table 1 Summary of methods for monocular visual distance estimation (three-dimensional object localization).

Method Low-textured,
dark image

Arbitrarily de-
forming objects

Computational
complexity

Large distances

Monocular, single image depth
estimation (e. g., Wofk et al.,
2019, Laina et al., 2016, Eigen et
al., 2014)

No Yes High No

Depth estimation from video (e. g.,
Zhou et al., 2017, Ranftl et al.,
2016, Gordon et al., 2019)

No No High No

Structure from motion (e. g.,
Furukawa et al., 2004, Saponaro
et al., 2014, Gallardo et al., 2017)

Partly Partly High No

Ground plane approaches (e. g.,
Alcantarilla et al., 2011, Eum &
Jung, 2013, Juric & Loncaric,
2014)

Yes Yes Low Yes

All methods are analyzed and assessed regarding their applicability to low-texture and dark images, computational complexity, applicability to
arbitrarily deforming objects (such as light artifacts), and large distances according to the requirements discussed in Sect. 3

(a) (b)

Fig. 4 Visualization of the road geometry obtained from the PSD

always lies on or at least close to the road, the ray x (t) and the
road ahead described by P are used to search for the closest
point Pi ∈ P with respect to x (t), which is an intersection
between the road ahead and the ray in the best case. This
point is then considered as the object position in the vehicle
coordinate system. The distance between a point Pi and the
ray x (t) can be calculated by

D (x (t) , Pi ) =
∥∥(pi − a) × nQ

∥∥
‖n‖ , (3)

where n and a are the parameter vectors of the ray x (t) =
a + tn, and where pi is the canonical vector representation
of the point Pi . With this, the closest point of the road ahead
is given by

P∗ = argmin {D (x (t) , Pi ) : Pi ∈ P} , (4)

which determines the position of the object in the vehicle
coordinate system—detected in the image at position (x, y)
(Table 1).

Based on the PSD data and the available ground plane
approaches, the following four methods are analyzed in the
experiments:

PSD-3D uses the PSD road geometry (three-dimen-
sional) and searches for the closest point along
a camera ray of the detected object.

PSD-3D+ follows the PSD-3D principle but corrects
the vehicle orientation (yaw angle and lateral
offset) by road markers detected with the cam-
era.10

10 The vehicle orientation is calculated using the onboard, in-
production vehicle orientation algorithm.
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Fig. 5 Vehicle coordinate system

PSD-2D follows thePSD-3Dprinciple but simplifies the
problem to a two-dimensional coordinate sys-
tem by ignoring the elevation information.

GP simply assuming the road ahead as a plane
(the so-called ground plane) and computing the
intersection of the object’s associated camera
ray x (t) with the plane (e. g., Juric & Lon-
caric,2014). In symbols, the ground plane is
assumed to be the plane defined by z = 0
(see the vehicle coordinate system in Fig. 5)
so that the intersection with the camera ray
x (t) results from the z-components of the vec-

tors a and n at the position x
(−az

nz

)
, which

determines the three-dimensional position of
the object.11

5.3 Object tracking

The object detection and distance estimation are frame-based
computations and, therefore, can be unstable with respect to
the temporal context (e. g., if a vehicle gets occluded). To
improve the detection stability, object tracking algorithms
are used

• to match the objects between different frames,
• to predict the position of occluded objects, and
• to increase the precision of the vehicle detection.

In the literature, the dominating algorithms for this are α-
β filters (e. g., Pham & Yoo, 2020, López et al., 2008) and
Kalman filters (e. g., Alcantarilla et al., 2011, Teoh&Bräunl,
2011), whereas the former is a derivative of the latter. Due
to the computational efficiency of the α-β filter and because
good estimates for the noise covariance matrices to instan-
tiate a Kalman filter are not known (especially for light
artifacts), the proposed tracker is mainly composed of α-β
filters:

11 Note that researchers also investigate how to improve the ground
plane assumption to improve the distance estimation (e. g., Alcantarilla
et al., 2011). Therefore, this simple method can be further improved.

• α-β filter in the two-dimensional image space to predict
and estimate the position of bounding boxes;

• α-β filter to predict and estimate the distances to the
objects;

• moving mean filter to estimate the confidence.

Between different frames, the object matching is per-
formed by computing the intersection-over-union between
the tracked objects and the detected objects and assigning
the detected objects to the tracked objects with the highest
intersection-over-union. To handle noise in the detections
with respect to the bounding box size, the bounding box size
of the detected objects is slightly increased before the inter-
section over union is computed.

If an object is occluded (not detected in the last frame),
the prediction of the α-β filter is used to forecast the position
of the object for a maximal number of three frames before
it is removed from the list of tracked objects. Additionally,
to increase the precision of the vehicle detection system, an
object is only output when it is already detected for a mini-
mal number of five frames and if the estimated confidence is
greater than a threshold of 0.5—thus, the tracker also oper-
ates as a plausibility checker, which is a common strategy as
discussed in Sect. 4.2. Finally, to lower the number of tracked
objects, the tracker only considers objects with a confidence
value greater than 0.1.

6 Experiments

The experiments described in this section aim

• to optimize the baseline bounding box annotation qual-
ity and, therefore, the detector performance presented by
Saralajew et al., 2021,

• to evaluate the distance estimation methods,
• to quantify the time benefit of the proposed system in
terms of a provident detection of oncoming vehicles with
respect to both human performance and an in-production
computer vision system for vehicle detection at night,
and

• to demonstrate the utility of the provident vehicle detec-
tion information by integrating the proposed detection
system into a test car and realizing a glare-free high beam
functionality.

In the following section, we describe the datasets and the
test car that is used across the experiments. After that, each
section describes an experiment mentioned above.
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(a) (b) (c)

Fig. 6 Exemplary sample of the distance evaluation data. The camera
image is cropped and brightness-adjusted for better visibility. The green
bounding boxes mark direct and the pink indirect light instances. Black

pixels in the LiDAR point cloud mean that there were no measurement
points available at that location. Also, brighter points in the point cloud
indicate greater distances (Color figure online)

6.1 Datasets, test car, and software framework

PVDN dataset: For the evaluation of the object detector per-
formance, the detection times, and run-times, the PVDN
dataset (Saralajew et al., 2021) is used. This dataset con-
tains 59746 grayscale images with a resolution of 1280×960
pixels where all light artifacts—both direct (e. g., headlamps)
and indirect (e. g., light reflections onguardrails)—of oncom-
ing vehicles are annotated via keypoints. The underlying
sequences of the images are recordings of test drives on rural
roads with a single oncoming vehicle or multiple oncom-
ing vehicles. Several images in the dataset include artificial
light sources like street lamps that increase the difficulty of
detecting light artifacts correctly.As the authors of the dataset
argue, the keypoint annotations allow for an objective anno-
tation by placing the keypoint on the intensity maximum of
each light artifact. Also, from this, an automatic generation of
bounding boxes is possible, which becomes useful because
most of the state-of-the-art object detectors rely on bounding
box annotations. Since those bounding boxes are inferred
automatically, it may happen that one bounding box cov-
ers both direct and indirect instances at the same time. This
is why the task of detecting bounding boxes on the dataset
is currently framed only as a binary classification problem,
namelywhether the bounding box covers a relevant light arti-
fact caused by an oncoming vehicle (either direct or indirect)
or not.

The images are frames of recorded video sequences so that
the temporal relationships within the images of a sequence
are preserved. Each scene is recorded with 18Hz, either with
a short exposure (day cycle, darker images) or long exposure
(night cycle, brighter images). For the experiments in this
work, the day cycle data is used as the shorter exposure results
in a stronger contrast between the background and light arti-
facts. Within the PVDN dataset, each illumination cycle is
split into a train, a validation, and a test dataset to enable
the development, evaluation, and testing of algorithms. Most
importantly, the sequences of the dataset contain tags that
mark the timestamps where

• the oncoming vehicle is first annotated by its light arti-
facts,

• the driver recognized the oncoming vehicle based on its
light artifacts (indirect or direct),

• the vehicle is first directly visible, and
• the in-production computer vision system first detected
the oncoming vehicle.

Those tags were collected during the annotation process and
the test group study, which was performed when the dataset
was recorded.

Distance evaluation data: Since the PVDN dataset does not
contain depth data, an additional small dataset for the evalu-
ation of the distance estimation methods was recorded. The
dataset consists of 24 scenes with 438 images in total (181
direct and 257 indirect light instances). Each scene contains
five consecutive image frames to later allow for time series
analyses. An exemplary sample is shown in Fig. 6. The light
instances (both direct and indirect ones)were annotatedman-
ually with bounding boxes. The ground truth depth data was
captured using a Hesai LiDAR sensor and the same camera
system that was used to record the PVDN dataset. The single
ground truth depth value for each light instance was calcu-
lated using the median of all available depth measurements
within a respective bounding box.

Test car and software framework: A test car is used as the
platform for deploying the pipeline for a real use case. It
has to be noted that the test car was also used for recording
the PVDNand distance evaluation dataset. Consequently, the
same image input specification as for the PVDNdataset hold.
Furthermore, the test car has a glare-free high beam system
(Böke et al., 2015, Knöchel-mann et al., 2019), which is used
in the experiment for visual demonstrations and for deploy-
ing a provident glare-free high beam system. Each headlight
consists of 84 LEDs, and each is almost illuminating another
solid angle (within a headlight) and can be dimmed inde-
pendently to all the other LEDs. Therefore, if an oncoming
vehicle is detected and the glare-free high beam system is
activated, the individual LEDs where the vehicle is located
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can be turned off such that the overall headlight system
stays in “high beam mode” without blinding the oncoming
vehicle—the vehicle moves in a black corridor. This corridor
can be perceived by the driver, making it possible to assess
the light artifact detection quality in a real environment.

To perform the experiments, an additional compute plat-
form is used consisting of

• two Intel Xeon CPUs with a base clock frequency of
3.2GHz and eight cores per CPU and

• one NVIDIA Tesla V100 GPU with 16GB RAM.

The implementations on this platform are done using Python
and C++ in the Melodic distribution of the Robot Operating
System (ROS).12 The ROS network consists of the following
nodes connected sequentially to each other:

1. A node that receives the image task-dependent from either
the driver assistance camera or from the dataset;

2. A node that detects the objects according to Sect. 5.1,
which is internally split into two sub-nodes where one
executes the proposal generation (CPU) and one classifies
the proposals by the shallow NN (GPU);

3. A node that estimates the distances to detected objects
according to Sect. 5.2;

4. A node that performs the tracking according to Sect. 5.3;
5. A node that publishes the tracked objects task-dependent

to either the test car’s CANbus that controls the headlights
or a buffer for further evaluations.

All nodes run single-threaded on a CPU except the shallow
NN, which is executed on the GPU.With runningmost of the
algorithm parts single-threaded on a CPU, we want to under-
line the transferability of the algorithms to a series platform
with hardware acceleration.

6.2 Object detector

The object detector described in Sect. 5.1 is conceptually
equivalent to the detector proposed by Saralajew et al., 2021
and consists of a rule-based proposal generation algorithm
and an NN-based classifier. Originally, the parameters of the
proposal generation algorithm were selected by a random
search using the PVDN dataset. To improve this selection,
a hyperparameter search for the proposal generation algo-
rithm is performed using the tree-structured Parzen estimator
approach (Bergstra et al., 2011). This approach belongs to the
family of sequential model-based optimization approaches
and is a standard algorithm for hyperparameter optimiza-
tion. Before defining the objective function, the bounding

12 https://www.ros.org/.

box quality score and the events to define the F-score, recall,
and precision is introduced (Saralajew et al., 2021): The goal
of the bounding box quality score is to define a measure to
assess the quality of a bounding box prediction algorithm by
using ground truth keypoints. Because each light artifact is
annotated by exactly one keypoint and each bounding box
should span exactly one light artifact, in the best case,

• each ground truth keypoint lies within exactly one pre-
dicted bounding box, and

• each predicted bounding box spans around exactly one
ground truth keypoint.

To formalize this concept, the following events for keypoints
and bounding boxes are introduced:

• True positive: The ground truth keypoint is covered by at
least one bounding box (light artifact covered);

• False negative: The ground truth keypoint is not covered
by any bounding box (light artifact not covered);

• False positive: The bounding box does not cover any
ground truth keypoint (no light artifact covered).

By using these events, the F-score, precision, and recall
can be computed. Additionally, to quantify the quality of
true-positive bounding boxes, the following quantities are
calculated:

• nK (b): The number of ground truth keypoints in the true-
positive bounding box b;

• nB (k): The number of true-positive bounding boxes that
cover the keypoint k.

To convert these numbers into values in the range [0, 1],
where onemeans best performance and zero worst, the recip-
rocal value is taken. Finally, the values are averaged across
the dataset to obtainmeasures for the performance of a detec-
tor:

qK = 1

NB

∑
b

1

nK (b)
, (5)

qB = 1

NK

∑
k

1

nB (k)
, (6)

where NB is the total number of true-positive bounding
boxes, and NK is the total number of keypoints covered by
bounding boxes. These two measures quantify the unique-
ness of predicted bounding boxes that are true positives
with respect to how many keypoints are contained within
a bounding box and how many bounding boxes cover the
same keypoint. For example, in an image with several key-
points, qK is low if a large bounding box spans over thewhole
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Table 2 Parameter search space
for the optimization of the
bounding box annotations.
The context for the specific
parameters can be found in
Sect. 5.1

Parameter Description Search space Step size Final value

κ Scaling parameter in dynamic
thresholding.

[0.25, 0.75] 0.05 0.4

w Window size in dynamic
thresholding.

{5, 6, . . . , 25} 1 19

s Threshold that the mean absolute
deviation of a bounding box has
to exceed to be proposed.

[0, 0.1] 0.01 0.01

d Maximal L∞ distance that is
allowed between blobs to be
considered in the same bounding
box.

{1, 2, . . . , 9} 1 4

image. The overall bounding box quality is determined by
q = qK · qB , where a value of one indicates best perfor-
mance and zero worst.

Using the definition of the bounding box quality q based
on the introduced events, the objective function h (θ) of the
hyperparameter optimization is

h (θ) = 1 − q (θ) −→ min, (7)

where θ is a hyperparameter configuration. This objective
function encourages bounding box generators (proposal gen-
eration algorithms)where each keypoint is uniquely assigned
a bounding box. The specific search space configuration can
be found in Table 2.

We optimized the hyperparameters on the official PVDN
training set, selected the best parameters based on the objec-
tive function value on the validation set, and reported the
results on the test set. These optimized hyperparameters were
then used to generate an optimized set of bounding box anno-
tations for the PVDN dataset: bounding boxes that cover a
keypoint (a light artifact) were kept as ground truth bound-
ing boxes. With these optimized bounding box annotations,
the classifier was trained to distinguish between bounding
boxes that contain light artifacts and bounding boxes that
do not. Similar to the hyperparameter optimization, all three
dataset splits of the PVDN dataset were used accordingly
to train the proposal classifier. The classifier was trained for
300 epochs with an initial learning rate of 0.001, batch size
of 64, weight decay of 0.01, and binary cross-entropy. More-
over, the Adam optimizer (Kingma & Ba, 2015) was used,
and images were augmented with horizontal flips, rotations,
crops, and gamma correctionswhile training. The confidence
threshold for a valid classification of a light artifact was set
to 0.5. To foster public use and to ensure reproduction, the
whole pipeline implemented in Python with the deep learn-
ing framework PyTorch13 is publicly available.14 In order to

13 https://pytorch.org/.
14 https://github.com/larsOhne/pvdn.

make our custom detection approach comparable to state-of-
the-art end-to-end object detection algorithms, we also report
the performance of both YoloV5s and YoloV5x.

Table 2 shows the results of the hyperparameter opti-
mization. Using these parameters to generate the bounding
box annotations, the optimized proposal generator achieves
the results reported in Table 3 (see values in parentheses).
The optimized proposal generation algorithm increases the
bounding box quality q from 50% to 70% and increases the
F-score from 84% to 93%. Therefore, the optimized pro-
posal generation algorithm shows a clear improvement of the
automatically inferred bounding box annotations compared
to the baseline. However, the performance of the optimized
region proposal algorithm is still not optimal because not
each performance value is 100%. The scores which are at
100% must be at this level due to the construction principle
of the bounding boxes: Each ground truth bounding box in
the generated annotations is a valid bounding box so that the
precision must be 100%; It is likely that each ground truth
bounding box only covers one keypoint due to the construc-
tion of the bounding boxes by non-maximum suppression so
that the quality qB must be close to 100%.

Because of the improved performance of the optimized
proposal generation algorithm, the trained object detector
shows a significant improvement of the detection perfor-
mance too, as simply more of the light artifacts are captured
by the proposal generation algorithm—for instance, notice
the improvement of the F-score by 7% and of the bound-
ing box quality q by 21%. Nevertheless, the performance
values suggest that the optimized object detector can be fur-
ther improved because, for example, there is a difference
of 11% between the achieved F-score and the achievable
with respect to the generated optimized bounding box anno-
tations.Considering theF-score of the twoYOLOv5variants,
the optimized custom object detector is slightly superior to
YOLOv5s but somewhat inferior to YOLOv5x. Moreover,
the optimizedobject detector ismarginally betterwith respect
to the bounding boxquality (achieves almost the best possible
bounding box quality). The run-times of the models clearly
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Table 3 Performance results of the proposed optimized detector, the baseline detector of Saralajew et al., 2021, and YOLOv5 architectures (trained
on the optimized bounding box annotations) on the PVDN day-test dataset

Model Image size Par. [M] Run-time [ms] Prec. Recall F-score q qK qB

Baseline 345× 240 0.9 18.2± 3.3 0.88 0.54 0.67 0.40 0.40± 0.21 1.00± 0.00

– – (1.00) (0.69) (0.81) (0.42) (0.42± 0.24) (1.00± 0.00)

640× 480 0.9 52.71± 2.38 0.90 0.64 0.75 0.48 0.48± 0.26 1.00± 0.00

– – (1.00) (0.72) (0.84) (0.50) (0.50± 0.28) (1.00± 0.02)

Optimized 640× 480 0.9 21.98± 1.63 0.85 0.80 0.82 0.69 0.69± 0.30 1.00± 0.02

– – (1.00) (0.87) (0.93) (0.70) (0.70± 0.30) (1.00± 0.00)

YOLOv5s 960× 960 7.0 14.8 0.98 0.67 0.80 0.67 0.70± 0.31 0.97± 0.12

YOLOv5x 86.1 28.1 0.99 0.76 0.86 0.67 0.69± 0.30 0.98± 0.10

– – (1.00) (0.87) (0.93) (0.70) (0.70± 0.30) (1.00± 0.00)

The values in parentheses represent the performance values of the generated bounding box annotations on the PVDN day-test dataset. These
performance values for the annotations represent the maximum performance that can be achieved with the proposal generation algorithm with
respect to the performance metrics. For the baseline model, the performances are reported for two different image sizes according to the published
results in theGitHub repository. The run-times aremeasured on the specified platformwithout theROS framework. For the baseline and the optimized
model, the run-times are reported with standard deviations as the run-time for a specific image depends on the number of region proposals. Also,
it has to be noted that the proposal generation part of the baseline and optimized model are always executed on a CPU. Acronyms: “ Par.” is the
number of parameters; “ Prec.” is the precision

show that YOLOv5s is the fastest detector. However, it must
be noted that the optimized detector is just approximately
7ms slower and not as optimized as the YOLOv5s archi-
tecture. The proposal generation of the optimized detector is
single-threaded executed on a CPU, which is the reason why,
on average, 20.55ms of the overall run-time are consumed
by this step. Therefore, it must be expected that the run-time
can be greatly improved by optimizing the execution of the
proposal generation step.

In summary, for embedded and safety-critical purposes,
our custom approach is to be chosen before YOLOv5.
Because it has significantly fewer parameters and thus
requires less memory, and has high optimization potentials
for embedded hardware. Also, the proposed optimized object
detector consisting of a rule-based proposal generation algo-
rithmand a shallowNN-classifier ismore transparent than the
deep NN-architectures of YOLOv5. Therefore, the approach
is easier to validate and verify for safety-critical applications
since the model behavior can be better understood and inter-
preted. Finally, we conclude that the optimized and trained
light artifact detector sets a new benchmark for the PVDN
dataset.

6.3 Distance estimation

This section presents the evaluation of the proposed meth-
ods of Sect. 5.2 on the dataset described in Sect. 6.1. First,
the general performance of each method is evaluated on the
available data. For that, each light artifactmarked by a bound-
ing box is transformed to a single pixel by taking the center
of the bounding box. Performance results are shown in Fig.
7. It becomes clear that with a median relative error of 0.12

for direct and −0.32 for indirect light instances, the Ground
Plane approach (GP), which only considers the area ahead
as a plane, outperforms approaches PSD-3D, PSD-3D+, and
PSD-2D, which try to estimate the road geometry using the
PSD. A negative error means that the estimated distance is
less than the ground truth distance. An in-depth analysis of
the PSD shows that the positioning of the vehicle on the road
described by the PSD is often too inaccurate to give a pre-
cise enough representation of the exact road geometry ahead,
which is needed in order for the PSD approaches to work.
Especially in curves, an accurate positioning of the vehicle on
the road segment is absolutely mandatory since even a slight
deviation can cause a considerable discrepancy between the
actual road geometry ahead and the one described by the PSD
at a specific time step.

When looking at the performance of theGPmethod, a per-
formance deficit between direct and indirect light instances
becomes clear. There are several possible reasons for this.
First, the direct light instances are always located further
away from the ego-vehicle than the indirect ones. The direct
instances in the underlying data have an average distance of
83m, whereas indirect instances are, on average, 63m away.
Therefore, inaccuracies influence the relative error more for
the indirect instances. Second, indirect light instances often
span over a large area (e. g., on the street), where the acquisi-
tion of a single ground truth distance value is difficult as the
beginning of the annotated area has a different distance value
than the end. This can lead to partly inaccurate ground truth
values. Third, all of the mentioned methods strongly depend
on the quality of the intrinsic and extrinsic camera calibra-
tion. Thus, unknown inaccuracies in the calibration can also
affect the result. Finally, the assumption of the environment
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Fig. 7 Relative error results of the different methods applied on each
single light artifact

ahead being a plane could often be inaccurate. If the assump-
tion were true, the expected result for indirect light instances
on the road would be nearly perfect compared to the ground
truth, whereas all light instances located above the road (e. g.,
headlights or light reflections on guardrails) would give a too
far away distance, as the camera ray would intersect with the
plane behind the actual light artifact. However, the results
show that the direct light instances are nearly perfect (only
a little overshooting distance estimation of approximately
12%), whereas the distance estimation for indirect instances
falls too short. This indicates that the data often contains
scenes where the ground plane assumption does not hold.

To investigate whether the distance estimation can be
improved by considering the distance estimate of each pixel
within a bounding box, several heuristics are analyzed. As
the methods using the PSD already did not show satisfying
results in the first experiment, the following evaluations are
only done for the GP method. To retrieve the final distance
estimation from all distance values within a bounding box,
five simple approaches were compared with each other:

1. only considering the maximum distance value;
2. only considering the minimum distance value;
3. only considering the distance value of the lowest pixel in

the bounding box (as it is closest to the estimated plane);
4. taking the mean over all distance values in the bounding

box;
5. taking the median over all distance values in the bounding

box.

The results are shown in Fig. 8. Interestingly, the five
approaches do hardly show any improvements. Only the
approach of taking the maximum distance value within a
bounding box improves the distance estimation for indirect
light instances, whichmakes sense considering that the origi-
nal estimation for indirect light instances was often too short.

Fig. 8 Relative error results of the GP method by taking the depth
values of all pixels within a bounding box into account

Fig. 9 Relative error results of taking the mean and the median of a
series of five consecutive light artifacts

Since the annotation format of the dataset was chosen so
that the correspondence of light instances across multiple
frames can be determined, in a final experiment, the distance
estimation for the GP method is attempted to be stabilized
by considering a series of consecutive distance estimations
for the same instance. The idea is that with this, possible out-
liers can be filtered. For that, the two approaches of taking
the median or the mean of a series of distance estimations
are compared.One series consists of five consecutive images.
The results can be seen in Fig. 9 and do not show a significant
improvement or stabilization of the distance estimations. The
relative errors show an offset by roughly the same positive
amount, which is a reasonable behavior since the predictions
from previous time steps, where the instances were still fur-
ther away, increase the final estimated distance. Note that
this approach requires a tracking of detected objects across
multiple images.

To summarize, the high positioning inaccuracy of the ego-
vehicle on the road described by the PSD results in a highly
inaccurate distance estimation of light artifacts. However, the
core idea itself is promising, as it models the road environ-
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ment ahead in its actual shape. Yet, the current positioning
inaccuracies make the data unusable for this task. This lim-
itation could be tackled by using high-definition maps and
visual odometry to improve localization in the future. The
alternative approach of modeling the world ahead as a sim-
ple plane and finding the intersection with the camera ray,
however, shows satisfying results. Another advantage is that
this approach does not require any sensor data except for the
camera input and its calibration and also comes at a very low
computational cost since calculating the intersection of a line
with a plane requires only a few floating-point operations.
Still, when an object is not located directly on the ground
(e. g., light reflections on guardrails), the method becomes
inaccurate, too. For future improvements, approaches should
be analyzed that try to estimate the surface of the environ-
ment ahead in order to account for curvatures of the road
surface and thus return a better approximation than the sim-
ple plane (e. g., Alcantarilla et al., 2011). However, for the
system presented in this paper, the accuracy of this method is
considered to be sufficient, and, therefore, the GP approach
is used as the distance estimation module in our system.

6.4 Time benefit

The goal of this experiment is to evaluate the time benefit
of the proposed system in terms of a provident detection of
oncoming vehicles with respect to human performance and
an in-production computer vision system for vehicle detec-
tion at night. For this purpose, evaluations are performed on
the test and validation dataset (to increase the database) of
the PVDN dataset (see Sect. 6.1). The sequences from the
dataset are processed by the implemented ROS network, and
the detection times are computed on the image frame level of
the dataset. This means that the number of frames is counted
between the first indirect sight annotation is available (object
detectable by human annotator) and the respective system
recognizing the object in the image. By knowing that the
frame rate of the camera is 18Hz, the counted number of
frames can be converted into seconds. Note that these com-
puted times are without the system-specific processing time
(see Sect. 6.5) and that the images in the dataset include a
tag that specifies when the in-production system detected the
oncoming vehicle. Additionally, note that even if the dataset
contains images with multiple oncoming vehicles, only one
can become visible first because the images are recorded
on a two-lane road.15 Therefore, the number of frames is
countedwith respect to this first vehicle by using the available
keypoint semantics (keypoints in the dataset are associated
with the vehicles). In this context, the frame number when
the single frame or tracking-based detection recognizes an

15 A road with one lane in each direction.

Fig. 10 Detection times of the oncoming vehicle after the first indi-
rect sight of the in-production computer vision system, the proposed
system based on single frame detections (without tracker), and with
object tracking (plausibility checker). Additionally, the human detec-
tion performance is presented as a constant average value of 0.8 s after
the first perceivable light artifact of the oncoming vehicle ((Oldenziel
et al., 2020)

oncoming vehicle is determined by the first bounding box
that includes a keypoint associated with the first vehicle.

Figure 10 shows the results in the form of a box plot
on the respective 39 sequences of the PVDN dataset. In 18
sequences, the in-production computer vision system did not
detect a vehicle and thus has fewer measurement samples. It
can be seen that the proposed system based on the tracker
detects oncoming vehicles, on average, 1.6 s faster than the
in-production computer vision system and is as fast as a
human on average. The first detection based on a single frame
is, on average, 2.1 s before the detection of the in-production
computer vision system and 0.5 s before the detection of a
human. The delay between the single frame detection and
the tracker is caused by the plausibility phase of the tracker:
an object has to be detected for at least five frames before it
is sent as output. Five frames correspond to approximately
277ms, and this is the minimal delay inherently caused by
the plausibility checker (compare with Fig. 2). Therefore, it
is not surprising that the time difference between the single
frame detection and the tracker is, on average, 500ms. How-
ever, overall, the results clearly show the considerable time
benefit that can be achieved by such a sensing system.

6.5 Provident glare-free high beam

To demonstrate the usefulness of the provident detection
information for ADAS functionalities, we integrated the pro-
poseddetection system into the test car andused the provident
detection information to control the adaptive headlights. By
doing so, a provident glare-free high beam functionality is
realized. The results of this experiment provide useful infor-
mation about the applicability in real use cases:
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• it shows that the entire workflow of the detection system
can run in real time;

• it nicely visualizes the detection results in a real environ-
ment;

• it shows that glare-free high beam functions can be
implemented without blinding oncoming vehicles due to
latencies in the computer vision system (see Fig. 2 and
discussion in Sect. 4.2).

The glare-free high beam functionality is suitable to visualize
the detection results, as the headlights can be considered as
projectors that visualize the detected objects by turning off
the respective pixels. Therefore, any serious inaccuracy in the
systembecomes immediately visible, and thus the integration
serves as a proof of concept whether the object localization
uncertainties are in such a range that they still provide useful
information for later systems. As already said, for this exper-
iment, the proposed detection pipeline is integrated into the
test car, and test drives are performed on public rural roads
at night. To ensure that other drivers are not put at risk, the
light artifact detection pipeline is integrated in such a way
that the detection results of our pipeline are muted as soon as
the in-production system detects a vehicle. Thus, the integra-
tion of the proposed pipeline just bridges the time difference
between the provident detection and the in-production sys-
tem. To have a unique light artifact detection output, only
the detected object (after tracking) with the highest intensity
value is sent to the glare-free high beam module. Because
the system is tested on two-lane roads, this ensures that the
detected light artifact with the highest intensity always con-
verges to the vehicle’s headlamps since, after direct sight to
the vehicle, the intensity maximum is in a bounding box of
the headlamps. This concept circumvented the need

• to classify light artifacts into direct and indirect light
instance,

• to cluster direct light instances to vehicle bounding boxes,
• to associated light artifacts to vehicles, and
• to detect occurrence points of vehicles because the pro-
posed detection pipeline locates light artifacts.

Before the system is tested on public roads, the real-time
capabilities of the pipeline are analyzed by measuring the
computation times on the test car’s hardware (see Sect. 6.1).
In this context, the run-times are determined by the elapsed
time (ROS time) from receiving the node input to publishing
the output. For instance, the run-time of the proposal clas-
sifier is the time from receiving the input in the form of the
bounding boxes and the image until the classification of all
bounding boxes is determined and published. Since the cam-
era captures images with 18Hz, the requirement is that the
entire pipeline has an execution time faster than 18Hz.

Fig. 11 Run-times of the modules (described from left to right):
Run-times of the Complete Pipeline (CP), Proposal Generation (PG),
Proposal Classification (PC), Distance Estimator (DE), and Object
Tracker (OT)

Figure 11 presents the run-time analysis in the form of
a box plot. The measurements were performed on the 7030
images (test and validation dataset) of the PVDN dataset.
The average run-time of the complete pipeline (entire ROS
network) for one image is on average 0.044s so that the real-
time requirement is fulfilled. However, it must be noted that
the run-time of the pipeline is not constant. For example,
the run-time is strongly affected by the number of bounding
boxes created by the proposal generator. Moreover, with an
increasing number of components (after the dynamic thresh-
olding step) during the proposal generation, the run-time of
the bounding box creation (inside the proposal generator)
increases as well. Overall, the real-time requirement is ful-
filled for 90% of the analyzed images (see Fig. 11), and,
therefore, the system can be deployed in the test car.16 It must
be noted that the run-times of the proposal classifier and the
proposal generator are different from the run-times reported
in Fig. 6.2. This is because the evaluation here is conducted
on the test and validation dataset and that the ROS framework
causes a non-neglectable overhead due to data transforma-
tions to publish and process messages.

Figure 12 shows an example scene of the test drives on
rural roads at night. This scene illustrates very well the
accuracy and time benefit of the proposed system in a real
environment in terms of a provident vehicle detection com-
pared to the in-production computer vision system. In Fig.
12a, the first light artifact of the oncoming vehicle can be
seen. After 0.5 s, the first detection is made by the proposed
system based on a single frame, as shown in Fig. 12b. Then,
after 2.6 s, the tracker has validated the object and output’s it
correctly to the glare-free high beam module, see Fig. 12c.
Based on the result of the tracker, the end of the road is

16 If the computation is still running and the camera has already cap-
tured a new image, the new camera image is dropped in the deployed
algorithm.
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(a)

(b)

(c)

(d)

Fig. 12 Visual demonstration of the time benefit of the proposed system
in terms of a provident vehicle detection by the glare-free high beam
functionality on a recorded scene during test drives. The left images

always show the full image, and the right images always show a cropped
version of the full image. The upper part of all the images is cut off so
that the figure fits on one page
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dimmedproactively (a black gap can be seen in thewhite box)
to avoid blinding the oncoming driver. The in-production sys-
tem detects the oncoming vehicle after 3.8 s when it is fully
visible and after a significant latency, see Fig. 12d. Therefore,
the in-production system would have caused a short glare for
the oncoming driver. In this scene, there is a total time benefit
of 1.2 s of the proposed system.

This experiment provides a useful visualization interface
of the detection results in the real world. It also shows that
despite the localization uncertainties of the proposed detector
and distance estimator, the information can be used to realize
a provident glare-free high beam system. However, there are
two points that need to be clarified:

1. Why is the dimmed gap (see the white box in Fig. 12c)
larger than the detected light reflection and tends to the
left?

2. Whydoes the tracker take “so long” after thefirst detection
to detect the oncoming vehicle?

First, the reason for the size of the dimmed area is due to the
low resolution of the headlights (see Sect. 6.1), and, for safety
reasons, detected objects are always increased by a safety
margin inside the glare-free high beam module. Moreover,
the left tendency might be caused by the inaccuracies of the
distance estimation. Second, the reason for the late detection
of the tracker (in this case, 2.1 s after the first detection based
on a single frame) is because the vehicle disappears behind
the trees several times, whichmakes it difficult for the tracker
to continuously track the vehicle over multiple frames.

7 Conclusion and outlook

Extending the work of (Oldenziel et al., 2020 and Sarala-
jew et al., 2021, with this work, we presented a complete
pipeline designed for automotive use cases which is capable
of providently detecting vehicles at night. The system con-
sists of a set of algorithms solving the tasks of detection,
three-dimensional localization, and tracking of both direct
light instances (e. g., headlights) and indirect light instances
(e. g., light reflections on guardrails) caused by oncoming
vehicles. The evaluation shows that this detection pipeline
can detect oncoming vehicles almost 1.6 s earlier than con-
ventional vehicle detection systems at night, which can be
considered a significant amount of time for automotive use
cases. Also, by deploying the pipeline in a test car for the use
case of providently controlling the glare-free high beam sys-
tem for oncoming vehicles, the applicability of the proposed
detection pipeline is demonstrated not only under laboratory
conditions but also in real scenarios and in real time.

Currently, for further use cases (e. g., trajectory planning,
automatic emergency braking), the system might still lack

the necessary precision in three-dimensional localization of
the light reflections. Therefore, future work should focus on
evaluating new distance estimationmethods by extending the
currently applied ground plane assumption to a more precise
representation of the environmental geometry ahead. Addi-
tionally, in order to exploit the full potential of provident
vehicle detection, it is necessary to address the points cir-
cumvented in Sect. 6.5. One of the biggest challenges in this
context might be to identify the point where the oncoming
vehicle might appear. In addition, future work should also
investigate the applicability of the provident detection algo-
rithm in urban scenarios (e. g., at intersections in cities). If
successful, this would be an important step on the way to
computer vision algorithms that resemble human perceptual
capabilities.
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