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Related work about MPC in the context of district cooling

mainly focuses on coupling over local cooling networks and

on the control of a single building. Coccia et al. [3] evaluate

a single building with an MPC in a local cooling network

with thermal energy storage and variable-load heat pumps. As

only a single building is evaluated, electrical coupling effects

between buildings are not considered. In contrast, Buffa et al.

[4] couple building cooling with a district cooling network,

but individual cooling for each building is not considered.

Similarly, Ma et al. [5] examine a single building and imple-

ment a price-based demand response. Ma et al. [5] state that

MPC is highly suited for pre-cooling and shifting load from

peak hours. While most literature in the context of district

building cooling evaluates single buildings and local cooling

networks, the present paper considers district-level control of

individual building cooling, where we couple the buildings

over the electrical grid.

On the district level, the buildings’ loads need to comply

with global limits such as peak power demand. Therefore,

MPC can coordinate the different buildings with one of three

different MPC architectures: 1. decentralized, 2. centralized,

or 3. distributed MPC.

1. Decentralized MPC (DeMPC): Each building has its

MPC, which does not take any interdependency with the

other buildings into account.

2. Centralized MPC (CeMPC): The MPC calculates the

full optimization problem and explicitly accounts for

global constraints and coupling conditions.

3. Distributed MPC (DiMPC): The coordination is done

globally, while the main computational effort is dis-

tributed among the individual subsystems.

Mork et al. [6] compared these three different MPC ap-

proaches on the single-building level, with a multi-zone build-

ing model. In that case, each room is considered as one subsys-

tem to be optimized. In addition, the authors compare the three

MPC approaches to rule-based control and PI control. They

found out that 1) the distributed MPC approach outperformed

the centralized, and 2) that a decentralized approach is a

suitable approach to account for global limitations. According

to Mork et al. [6], future work could include up-scaling of

the system to larger systems and the integration of additional

coupling constraints. Consequently, the next step involves the

investigation of the various MPC approaches on the district

Abstract—The present paper develops and compares three 
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scheduled DiMPC reduce the peak load of the total cooling power 
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buildings adequately.
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I. INTRODUCTION

The energy demand for cooling appliances increases for the 
main share of European countries, partly due to temperature 
increases from climate change. Larsen et al. [1] point out that 
the cooling demand in 2050 will increase in the range of 25 %
to 50 % relatively to 2010. A portion of countries will exceed 
a doubling in cooling demand during this period [1]. This 
significant demand increase adds burdens to the power grid. 
As a key solution to reduce this burden, Demand Response 
(DR) programs could balance the load of cooling appliances 
and thus stabilize the power grid.

In that context, Model Predictive Control (MPC) offers the 
large potential to provide DR while maintaining thermally 
comfortable conditions for the occupants inside buildings. This 
model-based control strategy defines an optimal input trajec-

tory as it accounts for future predictions of system dynamics, 
weather forecasts, occupants’ demands, and electricity prices 
[2]. In addition, MPC can consider sets of constraints for 
output and input limitations, e.g. due to thermal boundaries 
or technical limitations. MPC can be applied for Heating, 
Ventilation, and Air Conditioning (HVAC) systems of single 
buildings or for entire building districts.

In the present work, we develop an MPC strategy for build-

ing cooling in a smart district. In this context, the following 
paragraphs present existing work about MPC for smart district 
cooling with different approaches, centralized vs. decentralized 
MPC, and the handling of power limitations on a district level.







where Pnom is the nominal power of the cooling system, ugrid

is the grid capacity and usched is a limit given by the scheduler.

The values of the nominal power of the cooling systems

Pnom of the different buildings can be found in Table II.

Using the stage cost (8) we perform an economic optimization

considering time-varying prices to provide DR.

TABLE II: Construction year and nominal cooling power Pnom

in kW of the considered buildings.

Bldg. i 1 2 3 4 5 6 7 8 9

Year 1981 1973 1973 1980 1969 2011 2015 2008 2018
Pnom 190 180 250 180 170 250 540 1000 230

D. Scheduling

In scenario 3, we use a modified weighted round-robin

scheduling to avoid grid congestion. In the following the

number of MPCs will be denoted with M . For every time

step, this scheduler receives the k-step ahead predictions of

the inputs ui(k|t), i ∈ {1 : M}, k ∈ {t : t + N − 1} of

each MPC i. It then uses these predictions to calculate a

k-step ahead prediction of the grid constraints usched, i(k|t),
i ∈ (1,M), k ∈ {t+1 : t+N − 2} for each MPC i as shown

in Algorithm 1.

Algorithm 1: Modified weighted round robin schedul-

ing of grid capacity ugrid.

Input : ugrid, Pnom,i, ui(k|t), i ∈ {1 : M}, k ∈ {1 : N}
Output: usched,i(k|t), i ∈ {1 : M}
for i← 1 to M do

wi ← Pnom,i/10000;
oi ← i;
uleft,i ← 0;

end
for k ← 1 to N do

uleft, grid ← ugrid;
for i← 1 to M do

uleft,i ← uleft,i + ui(k|t);
usched,i(k|t)← 0;

end
while 0 < uleft, grid do

for i← 1 to M do

if 0 <
∑M

i=1
uleft,oi then

if 0 < uleft,oi then
t← min(woi , uleft,oi , uleft, grid);
usched,oi ← usched,oi + t;
uleft,oi ← uleft,oi − t;
uleft, grid ← uleft, grid − t;

end
else

t← min(woi , uleft, grid);
usched,oi ← usched,oi + t;
uleft, grid ← uleft, grid − t;

end
end
for i← 1 to M do

oi ← (oi + 1) mod M ;
end

end
end

Fig. 3: Outside temperature and global solar radiation for the

simulation period.

III. EVALUATION

For the evaluation of the smart district model, we use

input/output data resulting from a CityGML energy ADE [17].

The energy ADE enriches typical CityGML 3D building mod-

els with thermal energy related information for an EnergyPlus

[18] simulation. Therefore, we also include reference temper-

ature profiles and 2022 weather data from DWD [19] into

the simulation. With the resulting time series of input/output

data, we identify the grey-box model from Sec. II-B. This

simulation data is used for potential analysis and could be

replaced by real measured data of a smart district.

Next, we present the simulation results of the considered

MPC formulations for a specific time range in summer 2021

(July 12 to August 2) when the outside temperatures were

rather high. We use a prediction horizon of 8 h with a sampling

period of 15min for all our simulations. The disturbances

during the simulation period are shown in Fig. 3. We use

historical data from the German day-ahead electricity market

as price signal [20], which we scale to (0, 1). We assume

perfect forecasts for all disturbances and the price signal. For

a formulation including forecast uncertainties, we refer to [21].

To solve the optimization problems, we use CasADI [10].

The impact of the different scenarios on DR and thermal

comfort performance is quantified in Tab. III with the Key

Performance Indicators (KPI) [2]: Grid Costs (GC) and Mean

Absolute Error (MAE):

GC =

M∑
i=1

(
N∑
j=1

pj

∫
j

uj dtj)i, MAE =
1

N

N∑
j=1

|ŷ − yj | .

(11)

The GC are the sum of a product of the dynamic energy price

pi and used energy
∫
i
ui dti over the entire evaluation period

with n steps for each building. The MAE is the difference

between reference temperature ŷ and actual air temperature

y of each building. Superior performance is characterized by

lower GC and lower MAE (temperature close to the reference

of ŷ = 21 °C).

1. Decentralized MPC (DeMPC): First, we look at sce-

nario 1 (see Fig. 1). Since every building gets the same price

signal and the disturbances for all buildings are the same,

they behave very similarly, as shown in Fig. 4. We note that

air temperatures and cooling power demand are high during



TABLE III: Comparison of simulation results of different scenarios.

Scenario
Mean Tair (°C) / MAE (K) Energy

GC

Bldg 1 Bldg 2 Bldg 3 Bldg 4 Bldg 5 Bldg 6 Bldg 7 Bldg 8 Bldg 9 (MWh)

DeMPC 21.92 / 1.32 21.65 / 1.24 21.56 / 1.27 21.64 / 1.25 21.70 / 1.25 21.90 / 1.30 21.76 / 1.30 21.48 / 1.32 21.49 / 1.27 122.4 72.40
CeMPC 21.87 / 1.31 21.65 / 1.25 21.52 / 1.27 21.61 / 1.25 21.67 / 1.25 21.75 / 1.27 21.68 / 1.29 21.39 / 1.32 21.49 / 1.27 126.0 77.89
DiMPC 21.69 / 1.21 21.62 / 1.22 21.49 / 1.25 21.59 / 1.22 21.64 / 1.22 21.64 / 1.21 21.59 / 1.22 21.41 / 1.29 21.51 / 1.26 128.0 78.95

Fig. 4: DeMPC simulation results showing the temporal sim-

ilarities of the different buildings’ temperatures and cooling

power demand.

the middle of each day except in the beginning from July

13 to July 15 when the outside temperatures are so low that

additional cooling is not necessary. Furthermore, temperatures

never exceed 23 °C and mean air temperature are well inside

the acceptable range (see Tab. III). Nonetheless, we observe

especially high power demand on July 31 when energy prices

are at their lowest while the outside temperatures are high. We

take this peak in demand as our baseline for the local grid’s

capacity which we try to reduce 50% in scenarios CeMPC

and DiMPC. This would allow the local grid to have some

over-provisioning for the expected higher power demand due

to more building cooling being installed in the future.

2. Centralized MPC (CeMPC): Next, we look at scenario

2 (see Fig. 1). As shown in Fig. 5 the total cooling power

demand does not exceed the local grid limit ugrid = 1.2MW
but overall about 2.6% more energy is needed resulting in a

7.6% higher grid cost. Additionally, we observe slightly lower

mean air temperatures as well as MAE for most buildings.

These slightly lower mean air temperatures and higher cooling

energy demand mainly come from the earlier and longer

cooling periods on July 19 and July 23, as shown in Fig. 5.

3. Scheduled Distributed MPC (DiMPC): Lastly, looking

at scenario 3 (see Fig. 1), we also see that the total cooling

power demand does not exceed the local grid limit ugrid =
1.2MW, as shown in Fig. 5. The mean air temperatures are

well inside the acceptable range, even slightly lower than in

Fig. 5: Comparison of simulation results for all scenarios in

regards to total cooling power demand.

scenario 2. Then again, about 4.5% more energy is needed

than in scenario 1, resulting in a 9.0% higher grid cost.

In summary, while DeMPC with DR is prone to cause

grid congestion in the local electricity grid, both CeMPC

and DiMPC are able to avoid grid congestion. We show that

CeMPC and DiMPC can be applied to keep the total cooling

power beneath a given maximum value while providing similar

levels of thermal comfort, albeit causing a little increase in

cooling energy demand (2.6% more for CeMPC and 4.5%
for DiMPC) and providing slightly less DR as indicated by

the 7.6% and 9.0% higher GC for CeMPC and DiMPC,

respectively.

IV. CONCLUSION

In the present paper, we show that Decentralized MPC with

Demand Response (DR) leads to a synchronous response of all

buildings and results in a peak load that may burden the local

power grid. To reduce this synchronous peak, we present two

possible solutions, Centralized MPC and scheduled Distributed

MPC. This can avoid possible grid congestion by considering

an explicit grid limit for the total cooling power of all

buildings.

For detailed evaluation, we present a baseline Decentralized

MPC scenario where every building in the district optimizes

its cooling power with regards to DR. In that baseline case,

we observe a synchronous response from all the buildings

(with a total maximum peak cooling power demand of about

2.4MW). Because such peaks put high stress on the local



power grid of the district, we develop two additional Model

Predictive Control (MPC) approaches that consider an explicit

grid limit for the total cooling power of all buildings: Central-

ized MPC and Distributed MPC.

In the Centralized MPC, we solve one central optimization

problem for all buildings and the local power grid. In the

other approach, scheduled Distributed MPC, we add a central

scheduler that communicates with the MPCs of each building

and enforces the local power grid’s constraints on maximum

power. In both cases, our results yield a 50% peak reduction of

the total cooling power in the district, compared to the baseline

case. We expect that the importance of these approaches will

rise in the upcoming years due to the increasing cooling

demand.
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7. Deutsch-Österreichische IBPSA-Konferenz: Tagungsband,
International Building Performance Simulation Association,
2018, pp. 295–302.

[18] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, et al., “Ener-
gyplus: Creating a new-generation building energy simulation
program,” Energy and Buildings, vol. 33, no. 4, pp. 319–331,
2001, Special Issue: BUILDING SIMULATION’99. DOI:
https://doi.org/10.1016/S0378-7788(00)00114-6.

[19] Deutscher Wetterdienst. “Weather data in Karlsruhe, Ger-
many.” last accessed: 02.05.2022. (2022), [Online]. Available:
https://www.dwd.de/.

[20] Bundesnetzagentur. “SMARD Strommarktdaten.” (accessed:
26.01.2022). (2022), [Online]. Available: https://www.smard.
de/home/downloadcenter/download-marktdaten.

[21] F. Oldewurtel, A. Parisio, C. Jones, et al., “Use of model
predictive control and weather forecasts for energy efficient
building climate control,” Energy and Buildings, vol. 45,
pp. 15–27, Feb. 2012. DOI: 10.1016/j.enbuild.2011.09.022.




