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1 Introduction

The Maxwell equations form the foundation of the classical theory of electromagnetism
and play an important role in physics and technical applications. In vacuum, the system
of equations (also called microscopic Maxwell equations) is given by

dive = py , (1.1a)
divb =0, (1.1b)
curle = —0,b, (1.1¢)
curlb = j,, + dee, (1.1d)

where e is the electric field and b the magnetic induction, while p,, is the charge den-
sity and j,, the corresponding current density. The index m indicates that these are
microscopic quantities, i.e. they include all charges in the system. For mathematical
convenience, we use a unit system where the physical constants ¢y and gy both take
the value 1. The Gauf laws (1.1a) and (1.1b) describe the facts that charges are the
sources of the electric field and that the magnetic induction is source-free (there are no
magnetic monopoles). According to Faraday’s law (1.1c), vortexes of the electric field
are caused by time-variations of the magnetic induction. On the other hand, Ampére’s
law (1.2d) states that vortexes of the magnetic field are caused by currents as well as
time-variations of the electric field. The term 0O;e is also called Maxwell’s displacement
current.



In matter, it is usually hopeless to determine these quantities, since the amount of
charged particles is of the order of 10%® per cubic centimeter. An exact treatment of the
microscopic equations is fortunately not necessary in practice since every measurement
involves an averaging process over some macroscopically small but microscopically large
volume. Therefore, the rapid spatial and temporal fluctuations of the fields are not
accessible in experiments and it thus makes sense to introduce macroscopic fields E = (e)
and B = (b), where (-) represents a suitable averaging process. As described e.g. in [21]
or [16], this leads to the macroscopic Maxwell equations

divD = p, (1.2a)
divB =0, (1.2b)
curlE = —0,B, (1.2¢)
curl H=J+09,D. (1.2d)

Here, p is the macroscopic charge density. The bound charges in the material usually
compensate each other in the averaging process and therefore p is caused by free excess
charges. Analogously, the macroscopic current density J is due to the flow of free charges
and linked to p by the continuity equation

Bp+div =0. (1.3)

This identity follows from (1.2a) and (1.2d) and implies charge conservation. We divide
the current density J = Jy + oE into an externally applied current density J, and
induced currents ¢ E where o is the conductivity of the material which is assumed to be
nonnegative and scalar-valued.

In contrast to the quantities E and B, which are measurable due to the Lorentz force

F = ¢(E+v x B) (1.4)

acting on a point charge ¢ with velocity v, the electric displacement D and the magnetic
field H are auxiliary quantities. So far, the system (1.2) is under-determined and has
to be complemented by laws relating D and H to E and B. A result of the averaging
process are the expressions

D=E+P+..., H=B-M+..., (1.5)

where P and M are the density of electric respectively magnetic dipoles in the medium.
The dots indicate the densities of higher order moments which are neglected in the
following. Material laws describe the dependencies P = P(E,B) and M = M(E, B).
These are obtained from physical models for the material in question and can be very
complicated. In this work, we consider a model that is often used in nonlinear optics, see
e.g. [6]: We mostly neglect magnetic effects and assume that M is always proportional
to B. The polarisation is assumed to depend only on E. In addition to a linear and
instantaneous term analogous to the relationship between M and B, P also has nonlinear



contributions which depend on past values of the electric field. An example of the type
of material laws considered in this work is the Kerr effect described by

PO(E)(t) = /OOO /OOO /OOO RO (71, 73, 73) (Bt — ) - B(t — 73))E(t — 71) dry dry drs,

where R®) is called a response function. Subsection 3.4 contains a detailed description
of the model for the polarisation.

We consider the Maxwell equations in a bounded domain G C R? and need to prescribe
boundary conditions on G. A common choice, which we also use here, is to assume
that G is surrounded by a perfect conductor. Then the boundary conditions are

vxE=0, v-B=0 ondG, (1.6)

where v is the outer unit normal vector on 0G.

The goal of this work is to study the local wellposedness of the above model. To this
end, we use a well known result, [26], which under certain regularity conditions allows
us to absorb the two divergence equations in (1.2) and the boundary condition for the
magnetic induction in (1.6) into the initial conditions, see Lemma 3.7. The resulting
reduced system of equations can then be written in the form of an abstract retarded
evolution equation which is treated using semigroup theory and perturbative methods.

We show local wellposedness in H?(G) of the Maxwell system subject to the boundary
conditions (1.6) and equipped with a retarded and nonlinear material law for P, which
is of scalar type, see Assumption 3.19. The latter class includes the Kerr effect. H?-
solutions are needed to deal with the nonlinearity. To obtain such solutions, one has to
add further compatibility conditions for the initial fields besides (1.6), see Theorem 3.23.
Our assumptions on the material law ensure that P respects these conditions.

This work is split into two parts. In Section 2, the notion of retarded evolution
equations is introduced in an abstract setting and the concepts of classical and mild
solutions are defined. Using methods from nonlinear evolution equations as described
e.g. in [22], local wellposedness for mild solutions is established and conditions are
formulated which ensure that a mild solution is a classical one. Section 3 then deals
with the application of the abstract results to the above system of Maxwell equations.
It begins with a short overview over the trace operators needed in the formulation of
the boundary conditions. Then the mentioned reduction of the system of equations is
formulated. In order to apply the results from Section 2, two major steps are necessary:
It has to be shown that the differential operator appearing in the reduced set of equations
generates a strongly continuous semigroup on an appropriate space and that the used
model for the polarisation leads to a nonlinearity with properties as required by the local
wellposedness results from Section 2. To be able to use the semigroup-based approach
of the abstract setting, a restriction to certain scalar-type material laws is necessary.
These steps are performed in Subsections 3.3 and 3.4. Finally, the local wellposedness
results for the Maxwell system are formulated in Subsection 3.5.

In the following, we use for a,b € R the notation a <y b if a < ¢b for some ¢ = ¢()\)
independent of a and b, as well as a ~, b if a <y b and b <) a. For Banach spaces X



and Y, we write X — Y if X is continuously embedded into Y and X ~ Y if they are
isomorphic. If A: D(A) C X — X is a closed linear operator, the symbol [D(A)] stands
for the Banach space (D(A),|||,), with the graph norm |[|-|| , = ||-|| + [|A-||. We write
B(X,Y) for the space of linear bounded operators from X — Y and often just write
||| instead of |||l x y for the operator norm. The duality pairing between X and its
dual X* is denoted by (x,x*)y, v« for x € X and 2* € X*. Furthermore, the space of
bounded and uniformly continuous functions from J C R to X is denoted by BUC(J, X)
and equipped with the supremum norm. We additionally require the space

BUC!(J,X) :={f e C"JX)| f, [ € BUC(J, X)} .

The function spaces used in Section 3 consist of real-valued functions.

We are not aware of works that show wellposedness for the Kerr effect, say, on domains
with boundary conditions. Local wellposedness in H? was proven for general instanta-
neous nonlinear material laws, [26], |27], [23], even for interface problems. These papers
are based on completely different methods which in future work we want to adapt to the
retarded case in order to tackle more general material laws.

Recent results for Maxwell equations with linear retarded material laws on bounded
Lipschitz domains can be found e.g. in [20] and [15]. There, also the magnetisation
includes retardation effects and in [15], P and M depend on both E and H (so called
bianisotropic material laws). Treatments of nonlinear material laws with retardation
include [19] and [3]. In [3], a more general expression for the polarisation than used
here is considered on the full space. The work [19] considers Maxwell equations on a
bounded domain and uses a different form of bianisotropic material laws which have to
be globally Lipschitz.



2 Abstract retarded evolution equations

Here we introduce the abstract setting used to treat the Maxwell equations in Section 3.
The formulation of the problem as an evolution equation with retardation effects is based
on Section VL6 in [9], where the linear case is treated.

2.1 Assumptions and solution concepts

The following assumptions are made throughout this section.

Assumption 2.1. Let (X, ||-||) be a Banach space and A be a linear operator on X with
domain D(A) that generates a strongly continuous semigroup T(-) on X. Let

F: BUC((—O0,0],X) — X be a map with F(0) = 0 that is Lipschitz on bounded sets,
. €., there exists an increasing function L : (0,00) — [0,00) such that for every r > 0 it

holds
HF(U) F)l| < L(r) [lu— ||,

for all u,v € BUC((—00,0],X) with |lul|, = sup,<, [[u(®)]] < r and ||v]|, < r. Addi-
tionally let f € BUC((—o0 ],X) and g € C(I1,X) where I =[0,00) or I = [0,tena) for
a topqg > 0.

If J is an interval containing (—oo, 0] and u is a continuous function from J to X we
define for ¢ € J the shifted function u, € C'((—o0, 0], X) by w(s) := u(t + s).
The abstract retarded evolution equation treated in this work has the form

u'(t) = Au(t) + Fu) +g(t), tel,
u(t) = f(t), t<0.

The function F' describes a nonlinear response of the system which is not instantaneous:
The response at time ¢ depends not only on the state u(t) of the system at time ¢ but
also on all previous states, i.e., on the whole function wu;. It is therefore not sufficient to
prescribe u(0) as an initial condition. Instead, we have to specify the whole history f of
the system.

The term F(u;) is well defined and continuous in ¢ by the lemma below if u is a
continuous function fulfilling the second condition of (2.1).

(2.1)

Lemma 2.2. Let J be an interval with (—o0,0] € J and 0 < supJ < supl and
let w e C(J,X) satisfy u(t) = f(t) for all t < 0. Furthermore, let b > 0 be such
that (—oo,b] € J. Then u € BUC((—o0,b],X), the map t + w, is contained in
BUC((—o0,b], BUC((—00,0], X)) and t — F( 1) € C(J, X).

Proof. 1) The assumption on f implies that u is bounded and uniformly continuous on
(—00,0]. Since [0,b] is compact and u continuous, this is also the case on [0,b]. The
continuity of u on (—oo, b] then yields u € BUC((—o0,b], X) which implies that for any
t < b, the shifted function u; is bounded and uniformly continuous on (—oo, 0].



2) The map ¢ : (—o0,b] = BUC((—00,0],X) given by ¢(f) = u, is well defined
according to the above observations. Let ¢ > 0. By 1), there exists a 6 > 0 such that
|u(r) — u(s)|| < e forall 7,5 < bwith [r —3| <¢. Let r,s < b with |r — s| < 4. Then

lo(r) = ¢($)lpuc(-o0,x) = P llur(7) = us()lf = sup Jlulr + 7) —uls + 7)|| < £

which shows that ¢ is uniformly continuous. The boundedness follows from

SUP [ (8)lluc((—oo,01,x) = SUPSUP [Ju(t + 7| = sup flu(s)[| < oo.

b <0 s<b

3) The previous steps imply that F' o ¢ is continuous on (—o0,b]. Since b > 0 is
arbitrary as long as (—o0,b] C J, we can conclude F o p € C(J, X). O

Remark 2.3. Fxcept for Lemma 2.17 and Theorem 2.18, in this section we use the
condition [ € BUC((—O0,0],X) only to ensure the continuity of t — F(u;). We can
thus replace the space BUC((—oo, 0], X) by C’b((—oo, 0], X) if this continuity assumption
15 true for other reasons. This is the case in the specific model for F used in Section 3.
Hence we can work in Cb((—oo, 0], X) there with the exception of Proposition 3.25 which
15 based on Theorem 2.18.

There are different concepts of solutions for (2.1). We consider “classical” and “mild”
solutions in the sense of Definitions 2.4 and 2.6.

Definition 2.4. Let J be an interval with (—o00,0] C J and 0 < supJ < supl. A

Junction u € C(J,X)NCYJN[0,00),X)NC(JN[0,00),[D(A)]) is called a (classical)
solution of (2.1) on J if it satisfies (2.1).

Classical solutions satisfy Duhamel’s formula (2.2) stated below. The lemma easily
follows from Corollary 4.2.2 in [22] using the inhomogenity h(s) = F(us) + g(s).

Lemma 2.5. Let J be an interval with (—o00,0] C J and 0 < sup J < sup [ and let u be
a classical solution of (2.1) on J. Then u is given by

m)—{“ )+ i Tt — 8)(F(u,) + g(s)) ds, t € J(0,00), 22)

@), t<0.

The expression (2.2) is well defined even if u is only continuous with values in X and
not necessarily differentiable which motivates the following weaker solution concept.

Definition 2.6. Let J be an interval with (—o0,0] € J and 0 < supJ < supl. A
function u € C(J, X) satisfying (2.2) is called a mild solution of (2.1) on J.

According to Lemma 2.2, a mild solution on an interval J is bounded and uniformly
continuous on all closed subsets of J.



2.2 Local wellposedness for mild solutions

The goal of this section is to investigate the local wellposedness of (2.1) for mild solu-
tions. The approach is analogous to the treatment of semilinear evolution equations in
Chapter 6 of [22]. The main idea is to consider (2.2) as a fixed point problem which can
be treated with Banach’s fixed point theorem. We set My := supy<,<; [|T(t)]| € [1, 00).

Lemma 2.7. Let Assumption 2.1 be true, p >0 and 7 € (0,supI) N (0,1]. Then there
exists a time by = bo(p, L, Mo, T) € (0,7] such that for each f € BUC((—O0,0],X) with
I flle < p, and each g € C(I,X) with supy<i<, ||g(t)|| < p, there is a mild solution
w of (2.1) on (—o0,by). It is the only mild solution of (2.1) on (—oo,by] satisfying
Sup;<y, ||u(t)|| < 14-2Mop. For each b € (0,by], the restriction U oy is also the unique

mild solution on (—o0,b] satisfying sup,, ||u(t)|| < 14 2Mop.

Proof. Let p > 0,7 € (0,supI)N(0,1),b € (0,7], f € BUC((—00,0],X) and g € C(I, X)
with [|f| . < p and supg<,, [|g(t)|| < p. We set r := 1 + 2Myp and define

E(b,r) = {v € C((—o0,b], X) Y —so0] = f, stl<1£)||v( ) < T} :

This is a closed subspace of the Banach space BUC((—oo, b], X) and therefore complete.
We define the map ® on E(b,r) by

| TWFO)] + fo T(t = s)(F(vs) +g(s)) ds, t € (0,b],
q)(v)(t)_{f(t) 1<0.

Clearly, a function v € E(b,r) is a mild solution of (2.1) on (—o0,b] if and only
if it is a fixed point of ®. Observe that ® maps into BUC((—oo,b},X) since f €
BUC((—oo, 0],X),(I)’U is continuous on (0,b] and

1@ (0)(#) = SO < IT(@) [£(0)] = F(O)]| + Mo (L(T)T+ sup Hg(é‘)\l> —0

s€[0,b]

ast — 0. For v,w € E(b,r) and t € [0,b], using b < 1, we have the estimates

[@(w)(®)] < Mo (IIf(O)H +/0 (I (vs)ll + ||9(8)|!)d8>

< M <p +OL(r)r +b sup ||9(8)H> < Mo(2p +0L(r)r),

s€[0,7]

10 () () - D(w)(D)]] < My / |F(0,) = Flw,)]| ds < MebL(r) sup [Jo, — w,]|..

s€[0,b]
< MobL(r) sup sup [[v(s + ) — w(s + 7|
s€[0,b] 7<0

= MobL(r)sup ||v(T) —w(7)| .

7<b



So with

1 1
b L, M, ‘= mi 2.
0(p7 ) 077—> min {7—7 MOL(T)TJ 2MOL(T)} 9 ( 3)

® is a strict contraction (with constant 1/2) on E(b,r) for all b € (0, by], and the claim
follows from Banach’s fixed point theorem. O

Next we show that mild solutions can be concatenated and shifted.

Lemma 2.8. Let Assumption 2.1 be true, by > 0 and u be a mild solution of (2.1) on
the interval (—oo, by].
1) Let by > 0 with by+by < sup I. Define ]7: (—00,0] = X and g : [0,supI—b;) - X

by f(t) = u(t+b1) and §(t) = g(t+by). Let v € C((—00,bs], X) be a mild solution
of

<
~
—~
~~
N—

Il

Av(t) + F(v,) +g(t), te€[0,supl —by),
o(t)=f(t), t<0,
on (—00,bs]. Then w : (—00,by + by] — X defined by

w(t) = {u(t), t< by,

U(t—b1>, b1 <t§bl+b2,
is a mild solution of (2.1) on (—o0,by + by].

2) Let B € (0,by). Define f : (—00,0] = X and § : [0,supI — B) — X by f(t) =
u(t+p) and g(t) = g(t + B). Then v : (—o0,by — 5] = X given by v(t) = u(t + 5)
s a mild solution of

V'(t) = Av(t) + F(v) +g(t), tel0,supl —p),
o(t) = f(t), <0,
on (—oo,by — f].

Proof. 1) The function w is continuous and a mild solution of (2.1) on (—o0,b;]. For
t € (by, by + by] we have

t—b1
w(t) =v(t —by) =T —by)u(b)] + / T(t — by — s)(F(vs) +g(s)) ds .
0
We substitute o = s + by in the integral and insert

u(br) = T(0)[F(0)] + / Ty — 5)(Fus) + g(s)) ds,

deriving

b1
w(t) =70t~ ) (TOFO]+ [ 100 ) (Flw) +.9(5) s



+ /b Tt —0)(F(vg—p,) + g(oc —b1)) do.

In order to combine the two integrals, we note that for s € [0,b1] and 7 < 0 it holds
us(7) =u(s +7) = w(s + 7) = ws(7)
and therefore u; = wy. Similarly, in the second integral for o € [by,t] and 7 < 0 we get
Wo(T) =w(oc+7)=v(c —by +T) = vy_p,(T)
in the case ¢ + 7 > by, while for 0 + 7 < b; we obtain
We(T)=w(oc+7)=ulc+71)= f(a —b+7)=v(0—=b1+7T) =05, (7).

It follows v,_p, = w,, while g(o — by) = g(0) is clear by definition. Thus, we arrive at

w(t) =T()[f(0)] +/0 T(t = s) (F(ws) + g(s)) ds,

which shows that w is also a mild solution of (2.1) on (—o0, by + bo].
2) We have v € C((—oo, by — f], X) and for ¢t € (0,b; — (] the equation

t+8
olt) = ult+B) = T+ DO+ [ T+ =3) (Flu) +9(s)) s
B
=10 (T + [ 76 - 9(Flu) + 9(5) ds )
+ /OtT(t — 8)(F(usyp) + g(s+ B)) ds

t
=T()[u(B)] + / T(t - s)(F(vs) +g(s+ B)) ds. O
0
The mild solution obtained in Lemma 2.7 is only unique under a condition on its size.

The next result states that mild solutions are in fact unique unconditionally.

Lemma 2.9. Let Assumption 2.1 be true and u,v be mild solutions of (2.1) on (—oo,T}]
respectively (—oo, Tz]. Then uw = v on (—oo, T3] with Ty = min{Ty, T,}.

Proof. Without loss of generality, we can assume T} < T,. We define

ti=sup{t < Ty |u(t)=o(t) for all t <7} .
Then we have ¢ > 0 and by continuity u(t) = v(t). We assume ¢ < Tj. According
to Lemma 2.8, the functions u = u(- +t) and v = v(- + ) are mild solutions on
a time 7 € (0,sup I —1) N (0, 1] and set

~

f(t)

s ug<t>u} |

0<t<r

p = max {sup

t<0

10



Lemma 2.7 yields a time by = by(p, L, My, 7) > 0 such that there is for each b € (0, by
a unique mild solution w = w® on (—o0,b] corresponding to f and ¢ which satisfies
lw(t)|| < 1+2Mop for all t € (—o0,b]. Since u and v are continuous and sup, [|u(t)|| =
sup,<o |[0(t)|| < p, there exists a time b, € (0,bo] with 7+ b, < 71 and [|[a(t)]], |o(t)] <
1+ 2Myp for all t < by. It then follows & = w = ¥ on (—o0, by]. Shifting back yields
u(t) = u(t - t) = 0(t —t) = v(t) for all t < £+ by which contradicts the definition of
t. O

The preceding lemmas lead to the notion of a maximal mild solution.

Definition 2.10. Let Assumption 2.1 be true. The maximal existence time s defined
by

t*(f, 9, F,A) :=sup{b> 0| there ezists a mild solution of (2.1) on (—00,b]} .

The interval J*(f, g, F, A) := (—oo,t*(f,g, F, A)) is called the maximal existence in-
terval and a mild solution of (2.1) on J*(f,g,F, A) is called maximal mild solution.

The quantity by in Lemma 2.7 is a function of My and therefore the maximal existence
time depends on the semigroup’s generator A. In the application to Maxwell equations,
A contains material parameters, which is why we explicitly write this dependence in the
form t+ =t*(f, g, F, A).

The following theorem states existence and uniqueness of a mild solution on the max-
imal existence interval and gives a blow-up condition.

Theorem 2.11. Let Assumption 2.1 be true. Then the following assertions hold.
1) There exists a unique mild solution u of (2.1) on J*(f,g, F,A).

2) Ift*(f, g, F, A) < sup I, then there exists a sequence (ty) in (0,t+(f,g,F, A)) with
tr = t7(f, g9, F, A) and ||u(ty)|| = oo as k — oc.
Proof. 1) This follows from Lemma 2.7, Lemma 2.9 and the definition of J*(f, g, F, A).
2) Let t* = t*(f,g9,F,A) < supl. Assume C := sup,,+ ||u(t)|]| < co. We choose
7€ (0,supl —tT)N(0,1] and 7 € [T+ tF,sup ). Let (tx) be a sequence in (0,¢") with
tp, >t ask — oo. Then 7+, < 7 for all k € N. We define g : I —t;, — X by
gi = g(- + ty) for k € N and set p := max {C, supy,> [|g(t)|| }. Then we have

sup [|gx(t)|| < sup [[g(t)]| < p
0<t<r 0<t<7

for all £ € N. By Lemma 2.7, there exists a time by = by(p, L, My, 7) > 0, independent
of k, such that the problem

V'(t) = Av(t) + F(v) + gr(t), te€ (I —tx)NJ0,00),
o(t) =ult+t), t<O0,

has a mild solution v; on (—oo, by for all & € N. We now pick k large enough that
tr +bo > tT. Using u, vy and Lemma 2.8 we can to construct a mild solution of (2.1) on
the interval (—oo,t; 4 bo] which contradicts the definition of ¢. O

11



We now look at the continuous dependence of the mild solution on the data f, the
external forcing term g, the nonlinearity F' and the generator A. To this end we need
to specify what it means for two maps F' and F' describing the system’s response to be
close. This can be done with the help of the following definition.

Definition 2.12. Let v : [0,00) — [0,00) be a continuous and increasing function with
W(zx) >0 for all x > 0. We define

V= {F : BUC((—00,0],X) — X | F(0) =0, F is Lipschitz on bounded sets }
and on V' the map ||-[[, by

F
IFl, = suwp [|F ()]
ueBUC((—(C)XJ,O],X) (0 (SuPtgo Hu(t)“)

u

as well as the set

Vy={FeVI|IIFll, <o}

In the linear case we can choose ¢ to be the identity and obtain the usual operator

norm. In the application to the Maxwell equations we consider nonlinear material laws

with nonlinearities up to a fixed order N and will choose ¥ (x) = ZnNzl x". The next

lemma states that the definition above can be used to estimate how close F and F are
provided they belong to the same space V.

Lemma 2.13. Let ¢ be as in Definition 2.12. Then (Vw, HHHu;) is a normed vector
space.

Proof. Let F,G € V with corresponding functions Lg, Lg describing the Lipschitz prop-
erty and o € C. We have aF'(0) + G(0) = 0 and for every r > 0 the estimate

[(aF + G)(u) = (aF + G)(0)| < |af [F(u) = F(0)|| + |G(v) = G(v)]
< (aLp(r) + La(r) lu = vl
holds for all u,v € BUC((—o0, 0], X) with [Ju|, <, [jv], < 7. SoV is a vector space.
Now we assume F,G € V;,. The properties of ||-|| immediately yield ||aF[[,, = [a| [| F]],,

and [|F'+ G|, < £, + G, I I£], = 0 we get F(u) = 0 for all u # 0 which
together with the assumption F'(0) = 0 leads to ' = 0. So |[-[[,, is a norm. O

We can now formulate a first result on continuous dependence of the mild solution on
f,gand F'. Here A is kept fixed. Continuity with respect to A is treated in Theorem 2.16.

Theorem 2.14. Let Assumption 2.1 be true. Assume there exists a function ¢ as in
Definition 2.12 such that F is contained in V,. We choose some b € (0,t7(f, g, F, A)).
Then there exist constants 6 = §(f, g, F, A,b,¢) >0 and ¢ = c(f, g, F, A, b,v) > 0 such
that for all f, J?E BUC((—00,0],X), g, € C(I,X) and Fe Vy satisfying

mase{ = 171 sup o)) |

gl |F = F|l, ¢ <6 (24
sl =g, [|1F = Fll, } <6 2.4

the following statements hold.
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1) tﬂf,ﬁ,ﬁ,/l) >b.

2) Let u and u be the maximal mild solutions of (2.1) with f, g, F replaced by f,ﬁ, F
respectively f,q, F. Then we have the estimate

a0 a0l < e(IlF =7l + sw lar) =G| + [|F = Fll,)  (25)

for all t € (—o0, b].

Proof. Let u be the maximal mild solution of (2.1) on (—oo,t*(f,g7F, A)) and let
b e (0,¢t7(f, g, F,A)). Since u is bounded on (—o0,b] we have R = R(f, g, F, A,b) :=
1+ sup, [|u(t)|| < oo. By assumption, F' is Lipschitz continuous on the set

Bruc(0, B) = {v € BUC((—00,0}, X) | o], < R}

with constant L = L(f, g, F, A,b). Let §y € (0,1) and f, ]/”\, 7,7 and F as in the claim, but
satisfying (2.4) with dy instead of 6. We denote the maximal mild solution corresponding
to f,qg, F by u and define

b= sup{ﬁ € (0,0] ‘ B < t*(fN’, §,F,A), ilngu(t) —u(t)] < 1}. (2.6)

This number is positive because of ¢t (]7, q, ﬁ, A) > 0,09 < 1 and the continuity of u — .
Note that b < b < t7(f,g,F, A) < supI. We also have b < t*(f,g, F,A) as otherwise

the blow-up criterion of Theorem 2.11 would yield a sequence (t) converging to b from
below with ||%(t)|| — oo for kK — oo, contradicting (2.6).
We set My, := supy<,<;, | T(t)|| € [1,00) and write the difference of the solutions as

ult) — (t) = () (£(0) — F(0))
n / T(t — )(Flu) — F@,) + @) — F@) + g(s) — 5(s)) ds

for all £ € [0,b). For all r € [0,b) we have sup, ., [[u(7)|| < R and thus
F(i,) — Fu,)|| < ||F - F u <||F-F
£~ F@)| < |1F = Flll o (swlamn]) < I1# - Fll o)

for all s € [0,r]. Since r € [O, b) is arbitrary, the inequality holds on [O, ) This leads
to the estimate

lut) - a(t)| < My | £(0) = F(O)| + My ( / F(w) - P ds

N /0 |F () — F(i)||ds + /O la(s) — (8] ds)

13



< Mb(Hf —fll + L/O sup [[u(r) — u(7)|| ds (2.7)

Ol = Fll () + b sup Jlg(r) a<7>\|>

for all t € [0, ) For t < 0 we have

[ut) = a0 = |£(6) = F0)] < sTgIng(T) - J@)l- (2.8)

We define the function ¢ : [0,b] — [0,00) by ¢(t) = sup,, ||u(r) — u(7)||. To show

that it is continuous, we set w := u — u and choose ty € [0, } and € > 0. Since w is

continuous, there exists a p > 0 such that for all 7 € R with |7| < p and ¢+ 7 € [0, 0]
it holds |||w(to + 7)| — |[w(to)||| < e. This leads to

sup, w(7)|| — sup, w(t)|| <e, hel0,pl,
e ) — o) = {5z 0] =50, ()] 0.
P, <gy [0(7) | = $up, cposn l(T)] <2, h € [=p,0).

Estimate (2.7) and (2.8) and Gronwall’s inequality yield

olt) < Myl = Tl + b0 (B|F = Fll, + sup llo(r) =TI (29)

for all t € [O, ) By continuity, (2.9) is true on [0, } We now choose a sufficiently
small radius §y = do(f, g, F, A, b,1) such that p(t) < 1/2 for all t € [O,g}.

Assume b < b. Then, using the continuity of v and u, we can find € > 0 with b+& < b,
b+e<tt(f, g, F,A), b+ <t (f,g,F,A) and sup_, - |lu(r) — u(7)|| < 1. This leads
to the contradiction b > b + € by (2.6). In conclusion we have b = b<tt (f, g, ﬁ, A).

Let u be the maximal mild solution corresponding to f,ﬁ, F'. By the above we have
t7(f, 9, F, A) > b as well as sup,, [|[u(7)|| < R. The same calculation leading to (2.9)

with u, f, g replaced by u, f, g yields
() = w(o)l < (|17 - Fll+ sup 13() — 501 + || 7 - F],
0<t<b

for all t € (—oo, b] with
c:= Mymax {1,b,b)(R)} M = ¢(f, g, F, A, b,1)) . ]

Since in the application to the Maxwell equations the generator A contains material
parameters, we also want to study the continuous dependence on A. For this we modify
the above proof using the Trotter-Kato theorem. Allowing for variations in A leads to a
weaker result for the continuous dependence of the mild solution on the data: Instead of
a local Lipschitz continuity as in (2.5), we only get continuity, see (2.10). We formulate
an argument used in the proof of Theorem 2.16 as a separate lemma. It is a direct
consequence of the Trotter-Kato theorem.

14



Lemma 2.15. Let A, Ay be linear operators on X with domain D(A) which generate
strongly continuous semigroups T(+) and Ti(-) satisfying |T ()], [|Tx(-)|| < Me** for all
k € N and t > 0 with some constants M > 1 and w € R. We further assume that
Ay = Ay as k — oo for all y € D(A). Then for any b > 0, the following statements
are true.

1) Let (xy) be a sequence in X converging to some x € X as k — 0o. Then

lim sup ||Tk(t)zr — T(t)x|| =0.

k—o00 0<t<b

2) Let K C X be compact. Then

lim sup |[Th(t)z — T(t)z] = 0.
k—o0 0<t<b,
zeK

Proof. Let b > 0. We set M, := supg<,<, Me“* < co. By the Trotter-Kato theorem (see
Theorem I11.4.8 in [9]), we have Ty (t)x — T'(t)z as k — oo for all x € X, uniformly on
[0,0]. Assertion 1) now follows from

sup ||Ty(t)xy — T(t)x| < sup || Th(t)wr — Ti(t)z]| + sup [|Ti(t)z — T(t)z|
0<t<b 0<t<b 0<t<b

< My ||xg — || + sup ||Tk(t)x — T(t)x|| — 0
0<t<b

as k — oo. We prove 2) by contradiction: Let the claim be false. Then there exists a
subsequence (T}, (+)) of (T%(:)), a sequence (¢;) in [0,b] and & > 0 such that

sup || Ty, (t;)z — T(t;)z|| > €

zeK

for all j € N. Let j € N. Since z + ||T},(t;)z — T(t;)z|| is continuous on the compact
set K, there exists a vector x; € K satisfying

[T, (t))x; — T(t))zs || = sup [T, () — T(t;)z|| -

Further, (z;) has a subsequence (z;,) converging to some zo € K as [ — co. This leads
to the contradiction

< sup

€< HTkjl (tjl)le - T<tjz)sz
0<t<b

Th, (D, = T(0)z]| + sup 7@ — T(t)as

0<t<b

< sup
0<t<b

Th, (5, = T + My llz = 2]l > 0

as | — oo, where we use 1) for the first term on the last line. O

We now prove the main result on continuous dependence in this setting.

15



Theorem 2.16. Let Assumption 2.1 be true and u be the mazimal mild solution of (2.1)
on (—oo,t*(f,g,F, A)) Assume there exists a function 1 as in Definition 2.12 such
that F € V. Letb € (0,t7(f, g, F, A)) and (fx), (gx) and (F},) be sequences in the spaces
BUC((—O0,0],X),C’(],X) respectively Vi, satisfying

1k = flls =0, sup Jlge(t) —g(®)I =0, ||Fx—Fl, =0
0<t<b
as k — oo. Let Ay be linear operators on X with domain D(A) which generate strongly
continuous semigroups Ty (+) satisfying |T(C)||, |Te()|| < Me*t for all k € N and t > 0
with some constants M > 1 and w € R, as well as Ayy — Ay as k — oo for all

y € D(A). For all k € N, let uy, be the mazimal mild solution of (2.1) with f,g,F, A
replaced by fr, g, Fi, Ax. Let € > 0. Then there exists an index K € N such that

t(frr gy Fio, Ax) > b and - sup [lug(t) —u(t)]| < e (2.10)

t<b
forall k> K.

Proof. We use the abbreviations ¢t := t7(f, g, F, A) and t} = t* (fx, gk, Fx, Ax). Let
b € (0,£7). As in the proof of Theorem 2.14, we set R := supg<,<; [u(t)[| + 1, M, :=
Supg<;<, Me*!, denote the Lipschitz constant of F' on Bpyc(0, R) by L and set

by := sup {ﬁ € (0,0] ‘ B <t sup||lu(t) —ur(t)| < 1} . (2.11)
t<B
Again we have 0 < by <t for all k € N. For k € N and ¢ € [0, b;), we estimate

5
[Ju(t) — wn(t Z

with

and treat the terms separately. Since s — F(us) + g(s) is continuous, the set

{F(us)+g(s) | s €[0,b]}
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is compact in X and Lemma 2.15 implies that d; ; and ds converge to 0, uniformly on
[0,b]. We can estimate the next term by

t
@MwSMw/Emeﬁ—va®
0

T7<s

for all ¢ € [0,b;) and k € N. As in the proof of Theorem 2.14, the last two terms are
estimated by

dy k(1) < MybP(R)|[F = Felll, . dsk(t) < Mpb sup lg(s) — gi(s)]]

0<s<b

for all ¢ € [0,b;) and k& € N. For negative times, we use

[u(t) = u @ <[ = fill -

Let € € (0,1/2]. Combining the above results, there exists an index K € N such that

e L ML [Tsup o, |lu(T) — up(7)| ds,  t e [0,bg),
Ju(t) — () < {5y, T ME o SPes

ge” MY t<0
for all £ > K. For k € N as in Theorem 2.14 we define the continuous function
@k : [0,bg] = [0,00) by @i(t) = sup,<; [|u(1) — up(7)||. It follows

t
or(t) < ce Molb MbL/ vr(s)ds
0

for all t € [0,b;) and k > K. Gronwall’s inequality now yields ¢ (t) < e for all ¢ € [0, by)
and k£ > K. Assume there exists an index ky > K such that by, < b. Then we can find
as in the proof of Theorem 2.14 a positive number & such that by, + € < b,b+2& < ¢,
b, + & < t, and SUD,<p, 12 ||u(7) — ug, (7)]] < 1 which leads to the contradiction by, >
bk, + € by (2.11). Therefore we have b = b, <t} for all k > K.

Finally, the continuity of ¢y yields ¢x(t) < e for all t € [0,b] and k > K. O

2.3 From mild to classical solutions

The aim of this section is to find conditions for f and g which ensure that a mild solution
is also a classical one. As a first step, we show that if the system’s history f and the
inhomogenity ¢ have additional regularity, then the mild solution is locally Lipschitz
continuous in the space BUC((—oo, 0], X).

Lemma 2.17. Let Assumption 2.1 be true and let f € BUC'((—o0,0], X)) with f(0) €
D(A) and g € C*(1,X) org € C(I,[D(A)]). Let u be the mazimal mild solution of (2.1)
on (—oo,t7(f,g,F)). Then the map ¢ : [0,t7(f, g, F, A)) — BUC((—00,0], X)) defined
by p(t) = w is locally Lipschitz continuous.
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Proof. We write t+ =t*(f, g, F, A) and split u = v + w with

o(t) = [Tt —s)g(s)ds,  te(0,t),
o, t<0,

wit) = T@)[fO)] + [y T(t — s)F(us)ds,  te(0,t),
O f), t<0.

Let be [0,t7),0<ty<to+h<band 7 <0.
1) By Corollaries 4.2.5 and 4.2.6 in [22], v is continuously differentiable on [0,¢). If
to + 7 > 0, we estimate

lo(to+h+7)—v(to+7)]| < sup |10/ (s)|| I
to+7<s<tg+h+T1

In the case to+ 7 < 0 <tg+ h+ 7, we obtain

[o(to+h+7)—v(to+7)[ =llvto +h+7)| < sup  |[V'(s)[[h.
0<s<to+t+7

If to+ h+7 <0, it follows tg + 7 < 0 and therefore ||v(tg +h + 7) — v(tg + 7)|| = 0. So
with L, = Ly (b) := supgejo y [[V'(§)]], we arrive at

sup ||v(to+h+7) —v(to + 7)|| < Lyh. (2.12)
7<0

2) We now turn to w and again consider three cases. First, let to+7 > 0. The formula
for w yields

w(to+h+7)—w(to+7)

=T(to + 7)(T(h)[f(0)] — £(0)) + /o T(to+ 7+ h—s)F(us)ds
+ /tO+T+h T(to+7+h—s)F(us)ds — /tO+T T(to+7—s)F(us)ds.

Using f(0) € D(A), we can write

which leads together with a substitution to
h h
w(ty+h+71)—wty+7) :/ T(t0+T+S)Af(0)ds+/ T(to+7+h—s)F(us)ds
0 0

+/00 Tty + 7 — ) (Flugen) — Flus)) ds. (2.13)
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The quantities K = K(b) = suppc,<; [|[T(s)||,C = C(b) = supgc,<p || F(us)]| and
r = 1(b) = SUPg<s<p SUPs< ||us(t)|| = sup<, [|u(t)|| are all finite. Using the Lipschitz
property of F' and to+ 7 < g in the last integral, we obtain from (2.13) the estimate

|lw(to +h+7) —w(te+ 7)||

to 2.14
< K||Af(O)Hh+KC'h+KL(T)/O sup ||usn(o) —us(o)|| ds. (2.14)

o<0

Now, let tg+ 7 < 0 <ty + h + 7. We similarly arrive at
w(to+h+7)—w(to+7)=w(to+h+7)— f(to+7)

to+h+1
=T(to+h+7)[f(0)] = f(0) + f(0) = f(to+7) +/0 T(to+7+h—s)F(us)ds

0

:/Oo+ ”T(S)A[f(o)] ds + f’(s)ds+/00+ *TT(t0+r+h—5)F(us)dS_

to+7

Using to+ h+ 7 < h and [tg + 7| < h, we estimate

lw(to+h+71)—w(to+7)|| < K||Af(0)|| h+ sg;o) If'(s)||h+ KCh. (2.15)

It remains to treat the case tg + h + 7 < 0. Here we have

lwto +ht7) —wlto+ )| = [lf (to + b+ 7) = f(to + 7)I| < sup[f'(s)]|
The inequalities (2.14),(2.15) and (2.3) lead to the bound

to
sup [|wg+r(7) — weo (7)|| < b + 5/ sup s+ (T) — us(7)]| ds (2.16)
0 7=

7<0

with constants

a=al) =K |AfO)|+KC+ sup 1), B=p(b) :=KL(r).
Since

SUD [[ g+ (T) =ty (7)|| < sup [|[wegn(7) — wio ()| + sUP [[U541(T) — v (T)]]
7<0 7<0 7<0

we conclude from (2.12) and (2.16)

to
SUP [|ut44(7) = way (T < (@ + Lo) b+ 5/ SUP [|ts 4 (7) — ua()l ds. (2.17)
T 0 7=

For ¢ty = 0, this yields ||¢(h) —¢(0)]|, < (a + L,)h. Now let t, > 0, which implies
b > h. We define p : [0,b — h] — [0,00) by

p(t) = sup |[ugn(7) — ue(7)]| .

7<0
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Since p is continuous (see below), we can apply Gronwall’s inequality to (2.17) obtaining
p(t) < (a+ L,)e”h
for all t € (0,b — h]. These results imply the estimate
lp(to + h) = ¢(to)llo = p(to) < (a+ Ly) ek

for all to € [0,b — h].

It remains to show the continuity of p. We define k : (—o0,b — h] — [0,00) by
k(t) = |Ju(t + h) — u(t)|. Let € > 0. Since k is uniformly continuous on [0,b — h|, there
exists 0 > 0 such that

k(B — k()] < (2.18)

£
2
for all £,¢ € [0,b — h] with [t —¢| < 5. Let t € [0,b— h) and s € [0, min{6,b — h — t}].
We want to show that

lp(t+s) — p(t)] =supk(t +s+7) —supk(t +7) = sup k(o) —sup k(o)

7<0 7<0 o<t+s o<t

is bounded by e. This is of course true if sup, <., k(c) = sup,, k(o). In the other case
we have - -
supk(o) < sup k(o) = sup k(o).
o<t o<t+s t<o<t+s
Then there is a time oy € (¢, + s] such that k(og) > sup,«,,, k(c) — /2. Using (2.18),
we arrive at -
sup k(o) < k(og) + = <k(t)+e <supk(o)+¢
o<t+s 2 o<t
which proves that p is continuous from the right. Continuity from the left is shown in
the same way. O

Analogously to Theorem 6.1.5 in [22], using the preceding lemma, we can state a
criterion which ensures that the mild solution is a classical one. It essentially requires
that the system’s history is differentiable and satisfies the evolution equation at the
initial time and that the external force is differentiable. Also a technical assumption
on the nonlinearity is necessary, which is fulfilled by the specific model used for F' in
Section 3, see Lemma, 3.22.

Theorem 2.18. Let Assumption 2.1 be true, g € C'(I,X) and f € BUC'((—o0, 0], X)
with f(0) € D(A), f'(0) = Af(0) + F(f) + g(0). Let F € C*(BUC((—o0,0],X), X)
have the property that for all b > 0 and u € BUCl((—oo,b),X) the map t — F(uy) is
contained in C*([0,b), X) with derivative F'(u;)(u');.

Then the maximal mild solution of (2.1) is a classical solution of (2.1) on the mazimal
existence interval.
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Proof. Let b € (O, tt(f, g, F, A)) and u be the maximal mild solution of (2.1). The main
step of the proof consists of showing u € BUC! ((—o0,b), X).
1) If we assume u to be differentiable, we can set v = «’ and formally obtain

V(t) = Av(t) + Fl(u)o +4'(t),  t€[0,0],

v(t) = f'(t), t<0. (2.19)

This problem serves to define a candidate for the derivative of u.
2) Similarly as in Lemma 2.7, we obtain a solution of (2.19): We set

K := sup ||T(s)|| <oo, L:= sup |[F'(us)] < o0,
0<s<b 0<s<b
where we use that s — F’(u,) is continuous since F' is continuously differentiable and

s +— u, is continuous by Lemma 2.2. We equip the space F := BUC((—OO, b, X) with
the equivalent norm |[[v||,, := sup,<;, pa(s) [|[v(s)|| where o := 2K L and

{e_‘“, s € (0,0],

1, s<0.

On E we define the map ® by

{T®U@H+ﬂT@—$@WM%+¢@D®,t€®M7
f(@), t<0.

D(v)(t) =

Note that ®(v) € E for all v € E. Let v,w € E. We compute

t
18 (v) = ®(w)]|, = sup /eﬂwww—@ﬁwwﬁwu—%ms
0<t<bd ||Jo
t
<KL sup‘/”e—a“—$(kssup (e llos = wellueq o))
0<t<b Jo 0<s<t b

t
< KL sup / e =) ds sup e sup||v(r) — w(r)|
0<t<b Jo 0<s<b r<s

KL 1
< 2 up po(r) o) — ()] = 5 o — vl
& r<p

Hence, ® is a strict contraction on the complete space E, and Banach’s fixed point
theorem yields a unique v € E with ®(v) = v.

3) In this step we verify that the map v is the derivative of u. Let b e (0,b) and
h € (0,b— b). We define wy, : (—oo,g] — X by

(u(t + h) —u(t)) — v(t).

SRS

wh(t) =

Since wy, is continuous, the map ¢y, : [0,b] — [0, 00) given by @, (t) = sup, <, [|[wa(7)]| is
also continuous (see the proof of Theorem 2.14).
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Let t € [0,5]. As in (2.13) we have
u(t+h) —u(t) =T()(T(h)] —|—/hTt+h—s F(us) + g(s)) ds

+/O T(t — 5)(F(usn) — F(us) + (s + h) — g(s)) ds.
Using v = ®(v) and f'(0) = Af(0) + F(f) + g(0), we obtain
wh(t) = Sl(h, t) + Sg(h, t) + Sg(h, t) + S4<h, t) + S5(h, t)
with
Si(h,t) =T(t)

HTMIFO)] - £(0)) ~ T()AF(0),

Su(ht) = 70) [ T(h = 9)F(w.)ds = TOF ().
1 i
Sahut) = 370) [ 7= s)g()ds = T(0)500).
Sy(h,t) = /0 T(t—s) [% (F(usn) — Fluy)) — F'(us)vs} ds,
Salht) = [ 7 =3)[3 (ot + 1) = 9(9) =g (9] s,

Since f(0) € D(A), the first term can be estimated by

1

1810001 < & || (MO - £0) = AF(0)| = () > 0

as h — 07. For the second and third term we use that 7'(-) is strongly continuous and
s+ F(us) as well as g are continuous. It follows

ISa(h. Ol € K sup |T(h=)F(w) = F(7)]| = aalh) = 0.
ISs(h 0]l K sup [T = s)a(s) = 9(0)] = aa(h) 0

as h — 0%. The fourth term is split as Sy(h,t) = Sy1(h,t) + Si2(h,t) with

Sia(h,t) = /0 T(t— S)% [F(usin) = Flus) = F'(us) (ugin — us)] ds,

Sualht) — /0 T(t — 8)F(us) (wn)s ds

Since t — u, is locally Lipschitz continuous by Lemma 2.17, there exists a constant [ > 0
such that sup, < ||us1n(7) — us(7)|| < Ih for all s € [0,]. Together with

Fluein) = Plu) = [ P+ (i = ) dr
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1
— / F’ (us + 7 (ugyp — us))(us+h — ug)dr
0

for all s € [0,¢] we find

1S41(h, t)|| < Kbl0<sg£) . |F'(us + T(usen — us)) — F'(ug)|| =: au(h) — 0
0<r<1

as h — 0". Here we use that F” is uniformly continuous on the set
{us +71(u, —ug) |0<7<1,0<7r,s<b} C BUC((—O0,0],X) ,
which is compact as the image of the compact set [0, 1] x [0,b]? under the continuous

map (7,7,8) — us + 7(u, — us). The other part of Sy(h,t) is estimated by

¢ ¢
|Sa2(h, t)]| < KL/ sup || (wp)s(7)]| ds = KL/ sup ||wp(7)] ds.
0 0

7<0 T7<s
For the remaining term, as above the uniform continuity of ¢’ on [0, b] yields

1S5(h, )] < Kb sup |lg'(7) = g'(s)[| =t as(h) — 0
0<s<b—h,
s<7<s+h

as h — 07. These estimates lead to

||wh(t)|]gal(h)+a2(h)+a3(h)+a4(h)+a5(h)+KL/0 sup [wn(o)| ds  (2.20)

o<s

for all ¢ € [0,b]. In order to apply Gronwall’s inequality to ¢, we also need to estimate
|lwn(t)|| for negative times.

Let ¢ > 0 and t € (—h,0). We use f(0) € D(A) and Af(0) = f'(0) — F(f) — g(0) in
the expression

t+h
un(®) =3 (T WO+ [T h = (P + g(9) ds = ) - 110,

to obtain
) =3 [ IO =rO) s+ [ (760 - £0)ds+ £0) - 1)

+h t+h
+%/0 T(t+h—s)(F(us)+g(S))d3—/O T(s)(F() +9(0)) ds.

Substituting o = ¢ + h — s in the third integral and using [¢| < h yields

len®l < sup IT(s)F(0) = F(O)ll +2 sup_[If*(s) = S (O

0<s< —h<s<0
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+Oigg T sup 1 (o) +9(0) = F() =00 (221

as h — 0T,
Now let t < —h. Then we have

wnt) = 3 (P = F0) = 0 =3 [ (76) = F(B) ds.

Let € > 0. Since f’ is uniformly continuous by assumption, there exists § > 0 such that

lwn ()]l < sup [[f'(s) = f(O) < e (2.22)

t<s<t+h

for all A € (0,6), uniformly in ¢ € (—o0, —h).
Combining the estimates(2.20), (2.21) and (2.22) leads to

t) ga—l—Zai(h)—l—KL/Ot(ph(s)ds

for all ¢ € [0,b]. Gronwall’s inequality now yields

S €+Zaz oK Lb

for all ¢ € [0,b]. This implies wy, () — 0 as h — 0 for all ¢ < b. Therefore u is differen-
tiable from the right with the continuous right-hand side derivative v. An application
of the Hahn-Banach theorem and Corollary 2.1.2 of [22] yield u € C*([0,b), X).

4) To conclude that u is a classical solution of (2.1) on (—o0,b), we note that u :
[0,0) — X given by

() = T(O(0)] + /0 T(t — 5)(Flus) + g(s)) ds

where u is regarded as a given function, is a classical solution of the inhomogeneous
evolution equation (without retardation)

u'(t) = Au(t) + F(u) +g(t), t€]0,b),
u(0) = f(0)

by Corollary 4.2.5 of [22]. Since & = u on [0,b), we have u € C([0,b), [D(A)]) and
u'(t) = Au(t) + F(u) + g(t), t€][0,b),

which finishes the proof. O
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3 Maxwell equations

Now we aim to apply to results for the abstract retarded evolution equation to the system
of Maxwell equations in a domain filled with a material whose polarisation depends on
the electric field locally in space but nonlinearly and noninstantaneously. The boundary
conditions of a perfect conductor are used.

This section is structured as follows: We first state some necessary properties of trace
operators before we formulate the Maxwell system (1.2) with (1.6) in a way suitable for
the use of semigroup theory. Subsection 3.3 is concerned with the strongly continuous
semigroup generated by the linear differential operator in the Maxwell equations while in
Subsection 3.4 the chosen model for the polarisation is studied. A restriction to certain
scalar-type material laws is necessary for our semigroup approach. In the last subsection
we show the local wellposedness of the Maxwell system.

3.1 Trace operators

We work in Sobolev spaces of real-valued functions on a domain G C R3. Since we
supplement the system of Maxwell equations with boundary conditions, we need trace
operators to give meaning to the restriction of functions (or their normal respectively tan-
gential components) to the boundary. The following two definitions as well as Lemma 3.2
are from Chapter 4 of [17].

Definition 3.1. Let G C R? be open. We define the spaces
H(cwl, G) == {u e L2(G)? ‘ Jv e LA(G)?
/ u-curly dor = / v-dr (Vo € C'EO(G)?’)},
€ G
H(div,G) = {u e L2(Q)? ‘ Jw e L2(G) :

/Gu~Vgod3::—/Guxpdx(VgoeCfo(G))}.

The functions v and w in the above definition are unique if they exist and are denoted
by curlu respectively divu. We write

(u|v) L2 (Gym :—/u~vdx
G

for the inner product on L?*(G)™ where m € N. Recall that we use real function spaces.

Lemma 3.2. Let G C R?® be open. The spaces H(curl, G) and H(div,G) are Hilbert
spaces when equipped with the inner products

(U|U)H(cur1,c;) = (U|U)L2(G)3 + (CUT1U|CU1"1”)L2(G)3 )

(U|0) graiv.cy = (U[V) p2(qys + (divuldive) e g -
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We also need the subspaces obtained by the completion of test functions with respect
to the induced norms.

Definition 3.3. Let G C R3 be open. We define the spaces
Ho(curl, G) = W”"‘H(curl,(}) . Ho(div, Q) == W”'HH(div,G) '

Certain regularity properties of the boundary 0G are required in the following. We
specify these using Definition 1.2.1.1 of [13].

Definition 3.4. Let G C R? be open. We say that G has a Lipschitz boundary if for
every x € OG there exists a neighbourhood V,, of x in R3, a new system of orthogonal
coordinates (y1,yz2,ys) and a Lipschitz function ¢, with the following properties.

1) The set V, is a cube in the new coordinates,

VxZ{yER?’ ‘ —a; < y; < a; for alli€{1,2,3}}.

2) The function ¢, is defined on (—ay,a1) X (—ag,az) and maps into [—az/2, as/2]
such that
Gﬂ‘/}c = {y S Vx | Yz < ¢x(y1>y2)} 5
OGNV, ={yeVe|ys=dulyr,v2)} -

If ¢, above can be chosen in C™ (respectively C™!) for a positive integer m, then OG is
said to be of class C™ (respectively C™?).

If G is an open subset of R? with a Lipschitz boundary, the outer unit normal vector
v can be defined almost everywhere on dG due to Rademacher’s theorem. The next
theorem yields the existence of the required trace operators and states some useful
properties, taken from Chapter I of [12] and Chapter IX of [7]. We use the notation

(@) = {9l | v € C= (R}

Theorem 3.5. Let G C ]1&3 be open with a compact Lipschitz boundary. Then C>°(G) is
dense in H'(G) and C*(G)? is dense in H(curl, G) as well as in H(div,G). The traces

tru=ul,, ueCX(G),
trru=u|,, xv, u € C2(G)?,

tryu=ul, v, ue€ C>®(G)?
can be extended to linear bounded operators (denoted by the same symbols)

tr: HY(G) — HY?(0G),
tr, : H(curl, G) — HY2(0G)3,
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tr, : H(div,G) — H'*(0G) .
The operators tr and tr, are surjective and the kernels of the traces are given by
N(tr) = Hy(G), N(tr,) = Ho(curl,G), N(tr,) = Ho(div,G).
Let uw € H(div,G),v € H(curl,G), o € H'(G) and ¢ € H'(G)3. The following Green’s

formulas hold

/ u-Vodr = —/ divu o dz + (tr ¢, try W) g1/2 90y« 5-1/2(06) » (3.1)
G G

/ v-curlyde = / curlv - ¢ dx + (tra, tr, U)Hl/g(aG)ng,l/g(aG)g ) (3.2)
G G

In the last line, tr1) is understood componentwise.

The next lemma collects some results which are helpful for the formulation of con-
straints imposed on the fields. It is mostly based on Remark 3.3 in [14] and the comments
after Lemma 2.1 in [8].

Lemma 3.6. Let G C R3 be open with a compact Lipschitz boundary and let xk €
WLe(@G) satisfy k > n for some constant n > 0.

1) Let m € {0,1} and F € H™(G)*. In the case m = 1, let d;x additionally be
contained in WH3(Q) for all i € {1,2,3}. Then divF € H™(G) is equivalent to
div(kF) € H™(G) and we have the estimates

18 Fll ey Sncs IF sy + 1AV g (3.3)
HdiV(“F)HHm(G) SkiG ”F||Hm(c)3 + HdiVFHHm(G) :

2) Let m € {0,1} and F € H™(G)3. In the case m = 1, let O;x additionally be
contained in W3(G) for all i € {1,2,3}. Then curlF € H™(G) is equivalent to
curl(kF) € H™(G) and we have the estimates

[ewrl F | g (ys Sknc 1E [ grmys + learl(6F) | g e (3.5)
Jeusl(F) | o I s+ e Pl (3.6)
3) Let ¥ € H(curl,G). Then tr,(kF) = 0 is equivalent to tr,(F) = 0.
4) Let ¥ € H(div,G). Then tr,(kF) = 0 is equivalent to tr,(F) = 0.
Proof. The assumptions on ~ imply that x~! possesses analogous properties, namely
ke Wh(@) and k7! > ||x[|Z} > 0, see Lemma 3.9.

1) We show (3.3). Let F € L*(G)? with div(xF) € L*(G). We compute

divF = div (¢ 'kF) = V (k') - (kF) 4+ £ div(kF) = =k 'Vk-F+ " div(kF) (3.7)
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in H!(G). Hence, div F belongs to € L*(G) and satisfies

||d1V FHLQ(G’) < Hﬁ_lHLoc(G) ||/{||W1700(G) ||F||L2(G)3 + HI{_I{‘Loo(G) ”dlv(l{F)HLQ(G)
Sk 1Fl r2qys + [[div(EF) || 12 -
Now we consider m = 1. Let F € H'(G)? with div(kF) € H'(G). Then we have (3.7)
in L?(G). Since k= € W1°°(@G), the second term is contained in H*(G). Let j,m €
{1,2,3}. We note that §; := x~'0;x is contained in W"*(G) N L>(G) and therefore
&;F; € L*(G). By Theorem 3.5, there exists a sequence (ug) in C2°(G) converging to Fj
in H'(G). Let ¢ € C>°(G). Using the embedding H'(G) < L%(G), we obtain

/ £ Fj0npdr = lim / §jupOmpdr = — lim (&;0mug + Onéjug) pda

k—o00 G

=~ [ (€0uF;+ 0uF) e
G

Since &0, Fj + 0n&;F; € L*(G), we conclude k'Vk - F € H'(G) with

3
On (K7'VE-F) = (§0nF) + 0n;Fy) .

j=1
The estimate (3.3) now follows from (3.7), where the constant depends on G since the
constant in the embedding H'(G) < L5(G) depends on the domain. The other half of
claim 1) can be shown by an analogous computation using

div(kF) = Vk-F + kdivF.
In this case, k! is not needed and the estimate (3.4) does not depend on 7.

2) The proof is analogous to that of 1), using
curl F = curl (k7 'AF) =V (k7') x (kF) + &' curl(xF)
= -k 'Vk x F+ ! curl(sF),

curl(kF) = Vk x F + kcurl F.

3) By 2), both kF and F have a tangential trace on 0G. Let ¢ € H'(G)?. The

claim follows from tr(H(G)?) = HY?(0G)?, the fact that multiplication by x is an
isomorphism on H'(G)? and the calculation

(tr @, tr7 (KF)) jp o0y w1206y = / (kF - curlp — curl(kF) - ¢) dz
G

= / (kF - curlp — (Vi x F) - ¢ — k- curl F) dz (3.8)
G

= / (F - curl(kp) — kg - curl F) do = (tr(ke), tr, F) tn206ys xm-1/2(00)0
€

using (3.2).
4) This is proven analogously to 3), using (3.1) instead of (3.2), see Remark 3.3
of [14]. O
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3.2 Maxwell equations

Formulated using trace operators, the perfectly conduction boundary conditions (1.6)
take the form
tr, E=0, tr,B=0.

The next lemma is a slight modification of a result found in [26] (see also Lemma 7.25
in [25]). It states that under certain regularity conditions the two divergence equations
in (1.2) and the boundary condition for the magnetic induction in (1.6) are redundant in
the sense that if they are fulfilled at the initial time, then they also hold for later times.

Lemma 3.7. Let G be open with a compact Lipschitz boundary and b > 0. Let E €
C([0,b], H(curl, G)),B € C'([0,b], H(div,G)), H € C([0,0], H(curl, G)),

D € C([0,b], H(div,G)) N C*([0,b], L*(G)?), p € C*(([0,b], H(G)) and

J € C(([0,0], L*(G)?) be solutions of

oD=cwlH-J, OB=—-culE, 0p+divI=0, inG,tec]|0,b]. (3.9)
Then the following statements hold.
1) If divD(0) = p(0), then divD(t) = p(t) for all t € [0,].
2) If divB(0) = 0, then divB(t) = 0 for all t € [0,0].
3) Iftr, E(t) =0 for allt € [0,b] and tr, B(0) =0, then tr, B(t) = 0 for all t € [0, b].
Proof. 1) Let t € [0,b],h € R\ {0} such that ¢t + h € [0,b] and ¢ € Hj(G). The

calculation

: 1 :
(p, 0, div D<t)>H1(G)><H 1@ = lim - i (o, divD(t + h) = div D(8)) 3 (cyx-1()

) =
= — lim — / Ve (D(t+h) —D(t))dz = —/ Ve -0,D(t)dx
h—0 h G
= (p,divO,D(t ))H&(G)xH*l(G)
shows 0, divD(t) = divd;D(t) in H~Y(G) for all ¢t € [0,b]. Inserting (3.9) yields
9, divD(t) = div(curl H(¢) — J(¢)) = — div J(¢) = d,p(2)

for all ¢ € [0, b], where we have used divcurl H(¢) = 0 in H'(G). Therefore we conclude

leD / atp )

for all t € [0,5)].
2) We obtain analogously

0 divB(t) = div9,B(t) = — divcurl E(t) = 0

29



which implies div B(¢) = divB(0) = 0 for all ¢ € [0, b]. B
3) Let t € [0,0],h € R\ {0} such that t+ h € [0,b] and ¢ € C°(G). We use (3.1) in
the calculation

(trep, O tr,, B<t)>H1/2(8G)><H*1/2(6G)

= }1}2})% (tre), tr, (B(t +h) — B(t)>>H1/2(8G)><H—1/2(8G)
1 .
= lim 7 (/G V¢ - (B(t+h) — B(t)) dz + /GQZJ -div(B(t + h) — B(t)) dx)
= / Vi - 0B(t) dz,
¢

where we have used that the divergence of B is constant by step 2). Equations (3.9) and
using (3.2) yield

<tI‘ % 81& tru B(t)>H1/2(8G)><H—1/2(8G) = — / V?ﬂ - curl E(t) dx
a
= — / Cur]_ vw . E(t) dx -+ <tr VQﬁ, tI“T E(t))Hl/Q(aG)gXH_l/Q(aG)g .
G
Since curl V¢ = 0 and the tangential trace of E(¢) vanishes by assumption, we get

(trep, Oy tr,, B(t»Hl/?(aG)xH*l/?(aG) =0.

The density of C>°(G) in H'(G) and the surjectivity of tr from H'(G) to HY?(0G) now
imply 0, tr, B(t) = 0 for all ¢ € [0, b] which together with the initial condition for tr, B
finishes the proof. 0

The above lemma suggests to study the reduced system

oD=curlH-J, 0B=—-curlE, inG,t>0

(3.10)
try E=0, t>0.

We do not take the continuity equation (1.3) explicitly into account. The free charge
density (which does not appear in the above system) can be obtained from an initial
value and the free current density by

p(t):p(O)—/OdivJ(s)ds, t>0.

It is still needed to specify to the relationship between P,M and E,H. We mostly
neglect magnetic effects and assume a linear, isotropic and instantaneous relationship of

the form
M = ynH

between the magnetisation and the magnetic field characterised by a scalar-valued mag-
netic susceptibility x,, which can depend on the spatial variable z. The polarisation
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in our model consists of an analogous term with an additional contribution P that is
nonlinear and noninstantaneous, i.e.

P =y.E+PE),

where X, is scalar-valued, can depend on x and is called the electric susceptibility. The
model used for P is specified and studied in Subsection 3.4. It requires the field E to
have at least H?-regularity. Defining the permeability u := 1+ y,, and the permittivity
€ :=1+4 xe, we can write

B=uH, D=cE+P(E).

We choose v = (E,H) to describe the state of the fields. Using J = Jy + oE and
assuming that € and g have no zeros in G, the system (3.10) takes the form

1 -1 5
atu:( ce 1 ¢ Curl)u_g_l(atP+J0)7 £>0,

—p~teurl 0 0 (3.11)

try E=0, t>0.

As a first step towards interpreting this equation in the abstract setting of (2.1), we
want to identify the linear operator appearing in (3.11) as the generator of a strongly
continuous semigroup on an appropriate subspace of H?(G)%. This is the subject of the
next subsection.

3.3 Maxwell semigroup

In order to specify the required properties of the material parameters ¢,y and o, we
introduce for an open set G C R3 the space

Z(G):={a e Wh*(G) | 6;a € W"3(G) for all i € {1,2,3}}

and equip it with the norm

3
||04H2(G) = ||Oé||W17<X>(G) + Z Haz‘OéHWLs(G) :
i=1

Lemma 3.8. Let G C R3 be open. The space Z(G) is a Banach space.

Proof. Let () be a Cauchy sequence in Z(G). Then it is a Cauchy sequence in WH>(G)
and therefore converges to some a in W (G). Further, for any i € {1,2,3}, (;ay) is
a Cauchy sequence in W3(G) and thus converges to a 3; in the space W13(G). Let
¢ € CP(G). The calculation

/@agpdx: lim/&-akgpdx:/ﬁigpdx
Iel k—o0 G Ie

shows d;a = 3; € WH3(G) which implies o € Z(G). O
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The next lemma states that under an additional assumption on the boundary 0G, the
space Z(() is a Banach algebra if |-, is replaced by an equivalent norm c|[-[| ;.
with a suitable ¢ > 0. Furthermore, if « € Z(G) is bounded from below by a positive
constant, then a~! is also contained in Z(G).

Lemma 3.9. Let G C R? be open with a compact boundary of class C* and let o, B €
Z(G). Then afp € Z(G) and we have ||af 7 S llall 7 18l 2y If @ = n for some
positive constant 1, then o™ € Z(G) with

HO‘_IHZ( ST 2”O‘HZ +07° HOéHZ . (3.12)

Let m € {0,1,2} and w € H™(G). Then au is contained in H™(G) and we have
laull gy Sa llallze 1ull gy, where for m € {0,1}, the constant is independent of

Proof. The assumptions on G imply that we can identify W1>°(G) with the space of
bounded Lipschitz continuous functions on G.

1) Let o, 8 € Z(G). Then aff € WH(G) since the product of two bounded Lips-
chitz continuous functions on G is again a bounded Lipschitz continuous function. By
Rademacher’s theorem, af is differentiable almost everywhere on GG and the product

rule yields 9;(a8) = ;a8 + a0, € W3(G) with
8381(045) = 83'81'065 -+ &-oc@jﬁ + (9joz3i6 + Oé&j&iﬁ

for all i,j € {1,2,3}. Therefore af is contained in Z(G) and we have the estimates

B lre(y = m2x {28l oy 10D ey 102D ey 105D e}

S ”aHZ(G) Hﬁuz(G) J

3
10:(aB) 3136y = 10:@B) iy + S 10:0:(aB) 25y S llaldiesy 1816
j=1

which imply {[af5][ 5 S llall z) 181l 26y
2) Now let o € Z(G) Wlth a > n > 0. We choose functions f, g € C'(R) with bounded
derivatives and f(t) =t~ ( y=t2forallt >n. Then o ! = f(a),a™? = g(a) and
the chain rule yields o=t a2 € Wh*(G) with
0; (ofl) = f'(a)0a = —a 20, O (072) = ¢'(a)dia = —2a O
for all i € {1,2,3}. By the product rule, 9; (a™') € W13(G) with
0;0; (04_1) = 20[‘3(%0481-04 — a_28j8ioz.

So we obtain o' € Z(G) and the estimate (3.12).

3) The last assertion follows from Hoélder’s inequality in the case m = 0, while for
m € {1,2} we use the product rule and in the case m = 2 also the embedding H'(G) —
L5(@G) as in the proof of Lemma 3.6. O
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The following assumptions are used throughout the rest of this work.

Assumption 3.10. The set G C R? is a bounded domain with G of class C*'. There
exists a constant n > 0 such that the conductivity, permittivity and permeability fulfill

oe,n€Z(G), o>0, e u>n.

The assumptions imply that the domain G fulfills the cone condition and therefore the
estimate || /92y S 1flm2) 9]l m2q) holds for all f,g € H?*(G) by Theorem 4.39
in [1]. (When equipped with an equivalent norm, H?(G) is a Banach algebra.)

We now define the space X := L?(G)°, equipped with the inner product

<(E>H)‘(E’ﬁ)> = <€E‘E)L2(G)3 - (MH‘ﬁ>L2(G)3

X

and the associated norm
1/2
1B )= (112 2y + 2 H )

Due to the properties of € and u, X is a Hilbert space with a norm that is equivalent to
the usual L?-norm, since

_ B 1/2
ol oo <07 Nl <0772 (ellmiy + ilimy) - Nellgzye (3:13)

for all u € X. On X, we define the linear operator

—oe ' e lcurl
A= (_Mlcuﬂ ; ) (3.14)

with domain D(A) := Hy(curl, G) x H(curl, G). The boundary condition for the electric
field is thus incorporated into D(A). As in 8], the subspace

Xaiv i = {(E,H) € X | div(uH) = 0, tr,(uH) = 0, div(¢E) € L*(G)}

: . (3.15)

= {(E,H) € X | div(uH) =0, tr,(H) = 0, div(E) € L*(G)}
is defined, which also takes into account the divergence condition and the boundary
condition for the magnetic induction, as well as a regularity condition for ¢E. Here,
div(yH) = 0 and tr, (uH) = 0 are understood in H~'(G), respectively H~'/2(0G). The
last line in (3.15) follows from Lemma 3.6. On Xgi,, we define the inner product

((E,H)‘(E,ﬁ)) - ((E,H)’(E,ﬁ))LZ(G)6 + (div(=E) div(gﬁ))L

Xdiv (©)

and the corresponding norm

) 1/2
1By, = (IE ) + divEB) ) -
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In [8], the X-norm is used instead of the L?(G)%mnorm in the first term on the right hand
side, which leads to an equivalent norm (with constants depending on ¢, ). As stated
in [8], Xaiv is a Hilbert space (in [8], G is a cuboid, but the proof also works for domains
satisfying Assumption 3.10).

We further define the operator Ag;y : D(Aaiv) € Xaiv — Xaiv as the part of A in Xy,

D(Adiv) = {U S D(A) N Xaiv } Au € Xdiv} , Adivu = Au
for all u € D(Aqgiv). As shown in [8], the identity
D(Aﬁlv) = D(Ak) N Xdiv

holds for all & € N (again, the proof in [8] for cuboids transfers to our case).

It is known that the Maxwell operator A generates a strongly continuous semigroup
T(-) on X: By Lemma 2.2 in [1], iA is self-adjoint in the case o = 0. An application
of Stone’s theorem and a perturbation argument for the case o # 0 then show that A
generates a contraction semigroup on X, see Proposition 3.5 of [14]. Here we temporarily
work in the space L?(G,C)® of complex-valued functions. Since the coefficients of A are
real-valued, restricting the semigroup to real-valued functions yields a semigroup on
L*(G)S,

It turns out a restriction 7'(-) to Xgiy is a strongly continuous semigroup on Xgiy,
generated by Agiy. The following result is proved in Proposition 2.3 of [8].

Proposition 3.11. Let Assumption 3.10 be true. Then the operators A and Ag gen-
erate Co—semigroups T(-) on X, respectively Taiv(-) on Xaw. Moreover, Ty () is the
restriction of T(+) to Xaiy, and for all t > 0 we have the estimates

”T(t)HB(X) <1, HT<t)||B(L2(G)) < Cep s

”lev(t)HB(Xdlv) SJ 1 + CE,MJ? + CEH“J] H8‘|LOO(G) Ha-gilHWLOO(G) t 557/1:‘7777 1 +t

| ) 1/2
with cepn = 172 (Il iy + Ml ey

Proof. We only supplement the proof in [8] by explicitly writing out the dependence of
the constants on ¢, ;1 and 0. The estimates for T'(-) follow from (3.13) and the fact that
T(-) is a contraction on X. For the remaining estimate, let ug = (Eq, Hy) € Xg;y and set
u(t) = Tuiy(t)uo = (E(t), H(t)). According to equation (2.7) in [3], we have the identity

t
div(E(t)) = e div(cEqo) — / MoV B(s) ds,
0

1

with k = oe™", which yields

Hdiv(sE(t)) HL2(G) < ||diV(5E0)||L2(G) +1 ||5V"fHLoo(G)3 oiggt HE(3)||L2(G)3

(3.16)
S HdiV<5E0)HL2(G) +1 H‘€|’L°°(G) HHHWLoo(G) Ceopn HUOHLZ(G)G :
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Since
lu)lx,, < T2y + |divEERG) || ) < e Iuoll 2iye + [|div(EEM®) || 12 -
the estimate for Ty, (+) is true. O

We now show a regularity result needed below. For k € N, we denote the space
D(A% ) endowed with the graph norm ||uHA§ = ||u||XdV + HAquHXd' by [D(A% )]

Lemma 3.12. Let Assumption 3.10 be true. The space [D(Aaw)] is continuously em-
bedded into H'(G)° with |[ull g1y S6 deppon [ull 4, for all u € D(Agiy), where

ey = (L4+77") (1 + llellwrocgy + il + ||<7||Loo(G)> :
Proof. Let v = (E,H) € D(Aqgy). Since E € Hy(curl,G), we have tr, E = 0 by
Theorem 3.5. From (3.15) and Lemma 3.6 follows tr, H = 0 as well as divE € L?*(G)
and divH € L*(G). We further have (K,L) := Au € L*(G)® which implies curl E =
—pL € L*(G)? and curlH = ¢K + oE € L*(G)3. Theorem IX.1.3 in [7] now yields
u € HY(G)® and
HuHiﬂ(G)b‘ ~a |’UHi2(G)6+HCUTIE\’i2(G)3+HCUTlHHi2(G)3+HdiVEHiZ(G)SJFHdiVHHiz’(G)S
Due to div(uH) = 0, the estimate
HleHHLQ(G) = HV (,Uil) HLQ(G) H,u 1V,LL HHL2 < 7771 HM”WL‘X’(G) HHHLQ(G)3
holds. We further have

chrlEHLz(G)s < ”MHLO@(G) H'uil CurlEHL2(G)3 ’
||CurlHHL2 5 < HgHLOo He_l curl H — 05_1EHL2 )3 + HU”LOO(G) HEHL?(GP ’
||dwEHL2<G> = |- Ve B+ (B iz

<" (lellwaeiey 1Bl oo + I4VEB a(cy )
Setting d. ,, -, as in the claim and using div curl = 0, we obtain the estimate
[P @2 sy [ 1320 + 1AV (ER) |2 + |7 carl H — o7 B[}
HY(G)S NG €,14,05M) L2(@)6 L2(G) L2(G)3

+ HM_I CurlEHiQ(G)3 + ||div(0E)||iz(G))

2 2 2
=2 o (lullyy, +1Aully,,) = d2, 0 lluly,,
which finishes the proof. m
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Since the expression (3.28) below for the polarisation requires us to work in H?(G)S,
the space Xg;, is not sufficient and we have to further restrict the semigroup. To this
end, we define the subspace

X, = {(E,H) € D(A},) | div(¢E) € H'(G)}
of Xgiv, equipped with the inner product

((E,H)‘(f},ﬁ)) = ((B.H) | (B,H)) 000 + (AQ(E,H)‘AQ(E,I:I))

X2 L2(G)S

+ (div(sE)‘div(eﬁ))Hl(G) .

The corresponding norm

) ) . ) 1/2
1)L, = (1B I e + A D[ + v ER) By )
is stronger than the norm in Xg;y, so Xs — Xgjy.

Lemma 3.13. Let Assumption 3.10 be true. The space Xy is a Hilbert space and the
continuous embeddings Xy — [D(A3))] — [D(Aaw)] — HY(G)® hold with constants
depending on the norm of €, pu,0 in Z(G) and on 7. In the case [D(Agy)] — HY(G)S,
the constant also depends on G.

Proof. 1) Let u = (E,H) € D(A?%,). By Proposition 3.11 and Theorem II.3.8 in [9], 1
is in the resolvent set of Agi, and ||(I — Aaiy) 1| Sepoy 1- Therefore we have

lAully,, = 17 = Aa) (7 = A Aull ., Sepon (IAully,, +[[4%] ., ) - (3.17)
The formula )
Au=T(1)u —u — / (1—5)T(s)A%uds
0
(see Section II.1 in [9]) yields

lAully,. Semom lullx,, + [ A%]|, - (3.18)

Inserting this estimate into (3.17) shows [D(A3,,)] < [D(Aaw)]-
2) For u € X5, we calculate
2 : 2
lulls, = llull,, + 4%y, = lulza@e + v ER) G + A% g0
+ Hdiv(a%’lE — ot curl H) H;(G)S
and use
div (0’¢'E — g ' curlH) =V (0% 7?) - (¢E) + ¢ > div(¢E)
— eV (0571) . (5’1 curl H — 05’1E) —oV (05’1) -E
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to estimate
Huuigiv Se.om ||U||2LQ(G)6 + ||A2UH2LQ(G)6 + HdiV(EE)H?{l(G) + ||AuHiQ(G)6 :
For the last term we use the same calculation as for (3.18) to obtain
lAul 2oy S lAully S Tl + [ 4% ¢ Sepnn Tull o + A% e - (3:19)
This finally leads to
lullia Sepnom el Z2icpe + | A%0]|2 600 + iV ER) g -

Together with Lemma 3.12, we have the continuous embeddings X, < [D(4%,)] —
[D(Aqiy)] = HY(G)®.

3) Now let (u;) = ((Ey,Hy)) be a Cauchy sequence in X,. By the above, (uy) is
a Cauchy sequence in [D(A% )], implying that there exists an element u = (E,H) of
[D(A3,)] such that uy — u in [D(A3,,)] as k — oo. In particular, (Ex, H) — (E, H)
and A%(E;, Hy,) — A*(E,H) in L*(G)® as k — co. Furthermore, (div(cEy)) is a Cauchy
sequence in H'(G), so div(eE;) — ¢ in H'(G) as k — oo for some ¢ € H'(G). Since
E; — E in H'(G), we have div(¢E;) — div(¢E) in L*(G) as k — oo, which implies
div(¢eE) = ¢ € H(G). In conclusion, u € X, and uj, — v in X, as k — oc. O

We can now prove that further restricting Ty, (-) to X, yields a strongly continuous
semigroup.

Proposition 3.14. Let Assumption 3.10 be true. The restriction Ty(-) = Tdiv(-)|X s
2

a Co-semigroup on Xo. The generator is given by As : D(Ay) C Xy — Xo, Asu = Au,

with domain D(Ay) := {u e X, ‘ Au € Xg}. For all t > 0, we have the estimate

IT2() | pxy) S 1+ Copun + (H“HWLOO(G) + e pron(L + llell oo () ||"‘3||W17°°(G)> ¢

2
+ egpon ( (14 lell e ) Nl ey + el I nmies ) 2

2
+ ey el ooy Il e gy 22
Scponc L1,

1

where Kk = o™+ and

Geon = e €l ey (1 + Cen) (14 16l i) 15l e
Proof. Let ug = (Eo, Hy) € X, and u(t) = (E(t), H(t)) := Tuiv (t)uo for ¢ > 0.
1) We first prove that X, is invariant under Ty (). By Lemma I1.1.3 in [9], T4 (+)

leaves D(AZ% ) invariant. It remains to show that the divergence condition in X, is
preserved by Tyiy(+). The map u € C' (Rxg, Xaiy) N C (R, [D(Aqiv)]) satisfies

u'(t) = Au(t), t >0, u(0) = g
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and therefore
OreE(t) = —oE(t) + curlH(t), t>0

in L?(G@)3. Integration yields
t t
cE(t) = eEy — / oE(s)ds —|—/ curl H(s)ds, t>0. (3.20)
0 0

Since div is a bounded operator from L*(G)* to H '(G)? and divcurl = 0, equa-
tion (3.20) yields

div(eE(t)) = div(eEo) —/0 div(cE(s)) ds
= div(eEy) — /t oe~ ! div(eE(s)) ds — /t eV (oe7') -E(s)ds, ¢>0
' " (3.21)
in H7'(G)3. Due to the embedding [D(Aq)] < H'(G)®, we have u € C(Rxo H'(G)%)

and the above identity also holds in L?(G). We consider (3.21) as an integral equation
in L?(G) of the form

w(t) = w(0) — /0 rw(s)ds — /0 eVek - E(s)ds (3.22)

for w := div(¢E), where the last term is a given inhomogenity and we set x := oe~ L.

Let w and w be solutions of (3.22). Then the estimate

t
Jeo(®) = T g2y < 1l / l(s) = F(5)ll 2 s

holds for all ¢ > 0 and Gronwall’s inequality yields w = w, so a solution of (3.22) is
unique. We now set

t
w(t) :== e "w(0) — / e "=V k - E(s) ds
0

for ¢ > 0 and show that this is a solution of (3.22). Since multiplication with an element
of L*(G) is a bounded operation on L*(G) and t — e € C*(Rxo, W'*(G)), we have
t — e " div(cEg) € C'(Rxo, L*(G)) with

Ore " div(eEg) = —ke " div(eEy)

for all t > 0. Furthermore, eVk - E € C(Rzo, L2(G)) which implies

t
{t > e_“t/ e”eVk - E(s)ds| € C' (Rso, L*(G))
0
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with derivative

t
—me”t/ eV -E(s)ds +eVr - E(t).
0

This leads to
w'(t) = —kw(t) —eVk - E(t)

for all £ > 0 and integration shows that w is a solution of (3.22). Therefore,
t
div(eE(t)) = e " div(cEy) — / e "1=9eVk - B(s) ds. (3.23)
0

Since Vi € (L>(G) N W1’3(G))3, it follows V- E € C(Rso, H'(G)) as in the first
part of the proof of Lemma 3.6. Therefore the integrand is contained in C(Rzm Hl(G)).
Together with div(¢E,) € H'(G) we infer div(¢E(t)) € H*(G) and so u(t) € X, for all
t > 0.

2) In this step, we show that T5(-) is a Cy-semigroup on Xs5. The properties T5(0) = [
and Ty(t 4+ s) = To(t)Ts(s) for all t,s > 0 are directly inherited from Ty, (). Using
the strong continuity of Ty () and Xo C D(A2,) yields u(t) — uo and A?u(t) =
Taiy (1) A%ug — A?ug in Xg, < L*(G) for t — 0F. From (3.23), it additionally follows
div(¢E(t)) — div(eEo) in H'(G) as t — 07. We thus have u(t) — ug in X, as t — 0T
and thus T5(-) is a Cy-semigroup on Xo.

3) The generator of Ty(-) is given by the part of Ay, in Xy, i. e., the restriction of Ag;y
to D(Ag) = {u € D(Agiv) N Xo ‘ Au € XQ} = {u e X, ‘ Au € Xg}, see Section I1.2.3
in [9].

4) Tt remains to estimate the norm of the semigroup. By Proposition 3.11, we have

[l 2y < Cepum luoll p2gye

_ |02 (3.24)

HAZu(t) uOHLQ(G)G < Cepnm ”AZUOHL?(G)6

e
We estimate div(¢E(t)) in H'(G) using (3.23). The first term can be treated with
|| " div(eEo) HHl = He_mHWLoo(G) 1div(¢Eo) || 11
< (14 tIRlhrme) ) 10V
For the integrand, we argue as in part 1) of the proof of Lemma 3.6 to obtain
1€V E(s) i) Se llellwroe 15l 2 TEGS) 5@ -

Lemma 3.12 yields [|E(s)|| ;1 (g S¢ deypon |u(s)]|4,,,- We now treat the terms in

[u(s) 4, = Nluls)llx,,. + [[Au(s)lx,.
~ Hu(S)HLz s HdIV(EE )HL2 + || Au(s )HLQ o Hdlv(aE )||L2

The first term has already been considered in (3.24). The third one can be estimated by

”AU(3>”L2(G)6 = ”T(S)AUOHH(G)G <2 [Auolly S o (HUOHX + HA2u0||X)
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S CE,#J? (Hu0||L2(G)6 + ||A2UOHL2(G)6) ?
where we have used (3.19). For the last term, we calculate

Hdiv(aE(s = HEV% -E(s) + rdiv(eE(s

))HL2(G) ))HL2(G)

< Ceun ||5||Loo((;) H“HWLOO(G) ||u0||L2(G) + HK“HLOO(G) HdiV(EE(S)) HL2(G) :

We combine these results with the estimate (3.16) for ||div(cE(s)) and obtain

HL2(G)

() Ly S Cenn (14 el ey Ielhneen (14 (14 16l ecy ) 5) ) Huoll e
+ Ce,pim HAQUOHLz(G)G + (1 + HKJHLOO(G)> Hdiv<€E0)HL2(G)6

S 1+ cepn) (1 + HﬁHLoo(G)) (1 + H5HL°<>(G) ”’wal»oo(G) (1+ 5)) [uolly, -

Using fle ey < 1+ [6lloeqy ¢ and [E(3)ieys S degnon [00) Loy » caua-
tion (3.23) next yields

HdiV(EE(t))”Hl(G) Se (1 + 6l @) t> |div(cEo) HHl(G’)
t
+ e / (14 Il rmey (= 9)) (14 Nl I llpamgey (14 5) ) ds [l

with a. . defined as in the claim. Evaluating the integral and combining with (3.24)
finally leads to the estimate for [|75()||x,)- O

The next lemma allows us to identify X, with a subspace of H*(G)S.

Lemma 3.15. Let Assumption 3.10 be true. It holds
X, ={(E,H) € H*G)° | tr; E = 0,tr, H=0, tr-(curl H) = 0, div(uzH) = 0}

and X, is closed in H*(G)°. We further have ||[ullx, ~e ponc [ullg2igp for all u € Xs.
The equivalence depends on n,G and the norm of €, u, o in Z(Q).

Proof. 1) Let u = (E,H) € X,. In particular, u € D(Aqgiy) = D(A) N Xgiy which implies
tr, E =0 and tr, H = 0. Lemma 3.6 and Lemma 3.13 as well as div(eE) € H'(G)
and div(pH) = 0 yield divE € H'(G) and divH € H'(G). Since (K,L) := Au €
[D(Agiv)] — HYG)®, both curlE = —uL and curlH = ¢K + oE are contained in
H'(G)3. We can now apply Corollary 2.15 in [2] to conclude u € H*(G)°.

2) To prove the other inclusion, let v = (E,H) be an element in the set on the
right-hand side of the claim. By Lemma 3.6, we have div(¢E) € H'(G). Also, u is
contained in Hy(curl, G) x H(curl, G) = D(A) and in Xgiy, therefore u € D(Aqgiy). We
set (K, L) := Au. Using Lemma 3.6, we see tr, K = 0 which implies K € Hy(curl, G) by
Theorem 3.5. Further, L = —p~!'curlE € H'(G)? C H(curl,G). Combining, we have
(K,L) € D(A) and therefore u € D(A2% ).
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3) Let (uy) = ((Ex, Hy)) be a sequence in Xo, u = (E,H) € H*(G)S and ux — u in
H?*(@)® as k — oo. The embeddings H?(G)? — H(curl, G) and H?*(G)? — H(div, Q)
and the continuity of the trace operators tr,, tr, imply

tr; E= lim tr, E, =0 and tr, H= lim tr, H, = 0.
k—o0 k—o0
Similarly, tr,(curlH) = limy_,, tr,(curlH;) = 0. The continuity of div : H'(G)?
L?*(G) yields together with pyH; — pH in HY(G)? as & — oo the limit div(uH)
limy o div(uHy) = 0. Therefore, u € X5, showing that X, is closed in H?(G)S.

4) We now prove the norm equivalence. Let u = (E,H) € X,. The definition of the
norm in X yields

4

lullx, Semon Null 2gyo + llenrTHI o gy + [Jeurl (u™F carl B) ||, )4 (3.25)

+ chrl (e 'E 5+ chrl (7" curl H) HLQ(G)B + | div(eE) | g1 (e

Mz
Ss,u,a,n,G HUHH2(G)6 )

where we have used ||div(5E)||§{1(G) Sec ||EH12LIQ(G)3, see Lemma 3.6. Corollary 2.15 in |2]
(see also Proposition 1.4 in [11]) implies

ull 2o Se lull 2 (gys + leurl Ef| gy gys + llcurl H| g1 gys + |div B 1 ) + [[div H[ 11y -

We use Lemmas 3.6 and 3.13 to treat these terms. For the last two, we obtain
||diVE||H1(G) SenG ||E||H1(G’)3 + ||diV(5E)||H1(G) Semonc ullx, -
HdiVHHHl(G) SunG ||H||H1(G)3 SeonG HU”X2 :

The terms involving the curl operator can be estimated by

eurlEl| s s + lleur H s s e || (curl B, curl H) |, (3.26)

S lleurl Ef| o6y + [[eurl H|[ 1265 + Hag_l

(3111r1EHL2(G)3 + ||»s_1 curl curlH||L2(G)3

+ ||t curl curlE”Lz(G)3 + [|div(e curl E)|[ ;2 () + [[div(o curl E) | 2 -
Since we have
el Ell 2 gy + llewrl Bl s + [lo™ curl Bl s Som Nl gye Seumom el
and

|div(e curl E)|| o) + [[div(e curl E)|[ ;2 = [[Ve - curl E| 1o ) + [[Vo - curl Ef| 15 g,
Seo [l gy Semona lullx, -

only two terms in (3.26) remain. These can also be bounded by [[ul| y, via

H&?fl curl curlHHLz(G)3 Sn chrl (ee7' curl H) ||L2(G)3
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= HV& X (5_1 curlH) HLQ(G)3 + H€ curl (5_1 curlH)||L2(G)3

Sen H[ g1y + | curl (67" curl H) — p~ " curl (oe™

+ || curl (ce'E)

E) |l 26y
2y

sauﬁmi?HuHXQ

and

H,u CurlcurlEHL2 )3 Sn chrl ([L[L curlE)H
= HVM X curlE)

L2(G)3

HLQ(G):), + Hucurl curlE HLQ(G

Sepnom HE“Hl(G)g + HUQE’QE —oe 2curlH — ¢! curl (/L curl E) HLZ(G)3

+ ||02€’2E —oe? CurlHHLg(G)s
Ss,u,a,n,G ||u||X2 : -

In addition to the perfectly conducting boundary conditions (tr, H = 0 is equivalent to
tr, B =0 by Lemma 3.6) and the magnetic divergence condition, the space X, includes
the requirement tr,(curlH) = 0. We assume tr, J; = 0 and material properties such
that the polarisation is always parallel to the electric field, which implies tr, P = 0.
Then this requirement is a natural consequence of the boundary condition tr, E = 0 and
equation (1.2d), since

tr, curlH = tr, J + tr, 9;D = tr, Jo + tr (cE) + 0, tr, D = 0

by a similar calculation as in the proof of Lemma 3.7.

3.4 Model for the polarisation

This subsection describes the noninstantaneous part P of the polarisation. We assume
that it depends only on E and not on H and contains nonlinearities of up to order V.
According to a model commonly used in nonlinear optics (see e. g. Chapter 2 of [6] and
also [3]), we can write

N
P(E) =) P"(E) (3.27)
n=1
with components
(n)
PV (E)(t, ) (3.28)

t t
/ R§§}1...jn(t — 81,y t— 8, 2)Ej (s1,2) ... Ej, (Sp,x) dsy ... dsp,

_ (n)
- / RJ()]1 jn H E — Tk, T dT
R, k=1
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for jo € {1,2,3} where R™ = (R§ZJ)1 )Ry x G = R3" is called the nth order
polarisation response function and R™ (7'1, ..., Tn,x) is a tensor of rank n + 1 for each
(1, ., Tnyx) € RZ, x G. Here and in the following we use Einstein’s convention of
summing over repeated indices. The above model is local in space, i. e., the polarisation
at point x is only influenced by the electric field at the same point. It is however
noninstantaneous, since P(E)(¢,z) depends on the values of E(s,z) for all s < ¢ (due
to causality, there can be no dependence on E(s,z) for s > t). The model incorporates
time invariance in the form that in the second line of (3.28), the response functions only
depend on the time differences t — s; for 2 = 1,...,n. From now on, we usually omit the
spatial variable x.

Since N € N can be chosen freely, (3.28) can contain products of arbitrarily many
field components. For the expression to be well defined, we therefore require the fields to
have at least H?2-regularity, so the products are again in H?(G) by the Banach algebra
property. Equation (3.28) is understood as a Bochner-Lebesgue integral.

The response function R™ has a property called intrinsic permutation symmetry (see
Section 2.1.3 of [6]): Denoting the group of permutations on {1,...,n} by S,, we can
split R™ as

R = R(ws) 4 pna)

(n,s) (n) (na) _ pn) _ pns)
R]O]n (Tla ey n TL' Z ]0]0—(1) e 7—0—(1), e 7'7—0-(771)) s R = R R .

oESH

Since (3.28) contains summations over ji, ..., j, and integrations over 7y, ..., 7,, R™%
yields no contribution and therefore R™ can be assumed to be symmetric under the
exchange (jj, 1) <> (g, 7)) for I,k € {1,...,n}.

We assume the elements RJ(O) . to be contmuously differentiable in RZ, with values
in H*(G) and that they and their derivatives can continuously be extended onto RZ,

which we write as R . € C? (R2y, H*(G)). We also need integrability of the response

JO---In
functions and their time derivatives, as well as a mild decay property.

Assumption 3.16. For alln € {1,...,N},jo,..-,jn € {1,2,3} and | € {1,...,n} it
holds
R . e CY(RL,, HX(G)) N LY (R%y, HX(G)),
0, R . e LR, H¥(G)),
R e L' (IR, H*(G)) .

Jo-- ]n

oRY

An example for the case of a bounded domain filled with a homogeneous material

would be
R(n) (7—1, ey Th, .],’) — K(n)e* 27:1 AiTi

with a tensor K™ of rank n + 1 and constants Ay, ..., \, > 0 characterizing the decay
of the material’s memory. Appendix A.2 contains a description of the Lorentz oscillator
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model which can be used to describe the reaction of bound electrons to an electric field.
It can be seen that the decay of the corresponding response functions is due to damping
effects.

Due to the Banach algebra property of H2(G), the expression for P™ (E)(t) is well-
defined as a Bochner integral if E € C,((—o0, ], H*(G)?). In this case the estimate

POE 0] g S (s By ) 3 [,

LY (RYo,H?(G))

holds.
The Maxwell equations involve the time derivative of the polarisation which is given
by the following lemma.

Lemma 3.17. Let G be as in Assumption 3.10 and let Assumption 3.16 be true, T > 0
and E € Cy((—00,T), H*(G)?). Then PM(E) € C'((—o0,T), H*(G)?) with derivative

0,P (E)(t)

/ / 0TZR]0 T ) By (=) By (t— 1) dr . dT,
0

=1

+/0 /0 RY (e, 0Tty oy T) By (6= 10) o By (E— Tim0) By ()

. Ejl+1(t — Tl+1) Ce Ejn(t - Tn) dTl oo dTl_l dTl—i—l vee dTn (329)

zz/na}z;gjn H d¢+/8Rn o O Bt =) dr
=1 k=1 k=1

forallt <T,ne{l,,...,N} and jo € {1,2,3}.
Proof. Let n € {1,,...,N},jo € {1,2,3}, Ty, 11 € R with Ty < Ty < T and a < T. We
define v](:):D—)HQ(G) by

vt s) = R (t— 1, t—5)Ejy(51) ... By, (50)

JO---In

with D := {(t,s) = (¢,81,...,5,) € R"" |t <Ty,8; <t,...,s, <t}. The map v](-:f) is
continuous and the chain rule implies that in every (¢,s) € D°, the partial derivative of
(n)

v;,” with respect to ¢ exists and is given by

Za R%l Jn t—817...,t—Sn)Ejl(Sl)...Ejn<Sn). (330)

By Assumption 3.16, 8tv ") can be continuously extended to D (We denote the extension
by the same symbol). For a < Ty, we further define f ", and Fo oot [To, Th] = H*(G)
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ﬁmwa[m&me,f%Mwaztwﬁm@mszm@.

1) For any t € [Ty, T1] we can estimate

1@ = 10, )

H2(G)
no 3
< (sup IIE()|],s ) / R (s t—sol  ds.
<”STI e jl,.z,jgzl (=0t \(atyn 170" H2(G)
We now substitute 7; =t — s;,1 = 1,...,n. Then s € (—o0,t)™\ (a,t)" is equivalent to

7€ (0,00)"\ (0,t —a)" C (0,00)" \ (0,Tp —a)".
Therefore we have

| = 7005,

H2(G)

7T—0

H2(G)

3
Z /(0,<><>)”\(O,To—a)n

7777 Jn=1

s<amuE@mHmm)
J1

p<T1

as a — —00, SO fé% converges to fg;)wo, uniformly on [Ty, T1].

2) Let t € [Ty, T1) and a < Tp be fixed. Let h € (0,77 —t). Then

(om0 0) =1+ b

S

with

]‘ n n
I = /(at)n m <U§O)(t+h,8> —v§o)(t, S)) ds,

L o
[2 Z:/ E/I}J(O)(t‘i‘h,é’)ds.
(a,t+h)™\(a,t)™

We first treat I;. The integrand converges to (3.30) for every s € (a,t)™ as h — 0. It
is further bounded by

< 00

su
i H(G)

(5,8)6 [t»Tl] X [a,t]"

81527](‘:) (57 S) ‘

for all h € (0,7} —t). Therefore, Lebesgue’s theorem yields

I — Gtvj(:) (t,s)ds
(a,t)"
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as h — 07. For I, we split the region of integration into disjoint sets via
C=CUCU...UC,

with
= {s € (a,t+h)" | s >t for exactly m components sk}

and set
Iy = E/c vj(-:)(t + h,s)ds

for m € {1,...,n}. The first contribution to I5 is given by

oS [ [ [

(n)
v, (£, 81,y 811,81, 8141y« -+, Sn) ds1 ... dsi_1ds;dsiyq ... dsy, .

We now set

I, := / / (t,81,. s S1-1,t, 8141y -+, Sp)dsy ..., dsi_1dsjq ... dsy,

I=
1 t+h
O U A S [T

(n)

Let € > 0. Since v;” is uniformly continuous on the compact set

Do = {(t,s) e R™! |t € [Ty, T1], s € [a,t]"}
there exists d € (0,77 — t) such that for all [ € {1,...,n} the estimate

<e¢

) (n)
v (t+hys) — v (81,811, 8141, - Sn) H2(G)

holds for all sq,...,8_1,841,.-.,8, € [a,t] and s; € [t,t + h] with h < §. Thus,

<n(t—a)e

Hm - 72,1\
H2(G)

for sufficiently small h, implying I»; — .7271 in H?(G) as h — 0. The other integrals
vanish as h — 0T, since

HIZmHH?(G) <A™t —a)"™™ sup
(t,8)EDq

0" (t, 5) ‘

Jo

H2(G)

for all m € {2,...,n}. Combining these results, fg;l € O([To, Th), H*(@)) is differen-
tiable from the right with right derivative

QELZ?O(t) ::/ 8tv§g)(t, s)ds (3.31)
(a t)"
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noot t
+Z/a/a v](-g)(t,sl,...,sl_l,t,slﬂ,...,sn)dsl...dsl_ldslﬂ... ds,, .
1=1

3) We now show that 9((17,;)0 € C([Ty,T1), H*(G)). Then we can conclude as in the proof
of Theorem 2.18 that fé’;?) is contained in C'([Ty, T3), H*(G)) with %féj}l (t) = gé?o (t).
Let ¢ > 0. The function g((lflj)o is a sum of terms of the form

L(t) :== / w(t,s)ds,
(a;t)*

where k € {n,n — 1} and w € C(D, H*(G)) with
D= {(t,s) R |t < Ty, 81 <t,....8, <t} .

Let t € [Ty, T1) and h € [0,7) —t). As in step 2), we use that w is uniformly continuous
on

Dy = {(t,s) e RM | t € [Ty, T1), s € [a, 1]}
to obtain a 6 € (0,71 —t) such that ||w(t + h, s) — w(t, s)|| 2 < € for all s € [a, t]* if
h < 6. Then, for h <9, we have

LG+ ) = Ll

< [ ) = w9l ey ds+ [ it + o)l 0
(a,t)* (a,t+h)*\(a,t)*

<clt—af + sup [ult, o)l (£ = o) — (- 0)).

(t,5)€Dq

which shows L(t + h) — L(t) as h — 07. Next let t € (Ty,71) and h € (T —¢,0]. We
can similarly estimate

IL(t + h) — L) g2

s/ WW+m@—mem@®+/ ot, )l s
(a,t+h)k (a,t)F\(a,t+h)F

<e(t+h—a)+ sup [[w(t, 8)|| g2 ((t—a)f = (t+h—a)")
(t,8)€Dg

for sufficiently small |h|, proving L(t + h) — L(t) as h — 0~.
4) We define ") o by (3.31) with a replaced by —o0, so g™ () is the right hand

—00 —OO,jO

side in the claim (3.29) (using 7, =t — s;). We have

(n) () <
Ya.jo () goo,jo(t)Hm(G) S Rk
The first term

ds
H2(G)

8,:1}5-:) (t, s)‘

K = /
(—oo,t)”\(a,t) "
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converges to 0 as a — —oo, uniformly in ¢ € [T,77) as in step 1), using that by
€ L*((0,00), H*(G)) for all | € {1,...,n}. The second

p<T1

KoY 3 (s 1E0)

Rg.") (t—s1,.. t—5.1,0,t = 541, 1 — 8p)

H2(G)
dsy...ds;_1dsjpq... ds,

(n)

also vanishes as a — —oo as in step 1), uniformly in ¢ € [Ty, T1). In particular, g7, . is
contained in C([Tp, T1), H*(G)).

5) Let ¢ > 0 and t € [Ty, T7). Since g@am is continuous, there exists ¢ > 0 such that

<e

L o ()
5[ e as a0
‘ 12(C)

for all h € R\ {0} with ¢t + h € [Ty, 7)) and |h| < 6. Furthermore, the uniform

convergence of < fézz) = g((lf;-)o to g, ;, implies the existence of an A € R such that
4 65732)(3) — g(—ngoij(S)HH2(G) <e¢forall a < Aandse [Ty, T1). Thus,
fﬁré)o,jo (t + h> B fy}))o,jo <t) (n) t
h - g—oo,jo( )
H?(G)
N G R Y A O
= O/EIEIOO h - g—oo,j() (t)
H2(G)
— (L[] d ()
< i - —_f\n AL
< Tm_ ( AR P OETENE e
L )
+% 9 s jo(8)ds — 925 5, (1) < 2
hJe ’ e
for all h as above, which proves the claim since € > 0 and the interval [Ty, T7) C (—o0,T')
are arbitrary. O

The lemma motivates the definition of a map Fj, : Cy((—00,0]), H*(G)%) — H?*(G)°
by

= k=1

+ / R™ (0TI E
GRTZLO JO---In H J

k=1

Fjo (E’ H) - _5_1 Z [ /n anRj(‘:.)..jn (T) H Ejk(_Tk) dr
Y (3.32)
T) k( Tk) dr
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for jo € {1,2,3} and Fj,(E,H) = 0 for j, € {4,5,6}. Here the variable ¢ is missing in
contrast to (3.29) and F' is actually independent of H. If Assumption 3.16 is valid and
u=(E,H) € Cy((—o00,T), H*(G)®) for some T > 0, we can thus write

_{4(@ﬁ%magzzpam

for all ¢ < T (multiplication by ™! is an isomorphism on H?*(G)? by Lemma 3.9, so

Lemma 3.17 remains true for e P(E)).
The next lemma yields the Lipschitz property of F' required by Assumption 2.1.

Lemma 3.18. The map F is contained in C*(Cy((—o00,0], H*(G)®), H*(G)5). The
derivative F' is bounded on bounded sets. In particular, F is Lipschitz on bounded
sets.

Proof. Let jo € {1,2,3}, Assumption 3.16 be true and v = (E,H),v = (E,ﬁ) €
Cy((—o0,0], H*(G)®) with v # 0. We have

ﬂo(u + U) o Fjo(u)

N n
oy Z / R ()| T] Bn(=m) | Bsn(=mu)dr  (333)
n=1 |l,m=1

+Z/ Ry 5, () | T Bin(=m) | B (=7 dr

2
+0 ((sup ||U(t)||H2(G)6>
+<0

Let (L(u)v);, be given by the linear (in E) terms on the right hand side of (3.33). So

we obtain
[ F'(u+v) = F(u) = L(w)vl| gz gy

Eopltl
Tl
Slﬂ

N——

— 0
||U||Cb((—oo,0},H2(G)6)
as v — 0.
For jy € {4,5,6} we have (L(u)v);, = 0. The estimate
L ‘&R”) H ()
[[£(u) ||H2 ) Seon 221] z]: 1[; U g00n || R%,H2(Q)) Jo-Inll L1 orn o, H2(G))
n= 0 n=—

n—1
- (sup ||U(t>||H2(G)6) (SUP [v(t) HH2(G)6)
<0 t<0

shows that L(u) is a bounded operator from Cb( 00, 0], H*(G)%) to H*(G)®. Hence
F is differentiable with F'(u) = L(u). Also u ( ) is bounded on bounded sets.
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It remains to show the continuity of the derivative. Let u = (E,H),v = (E,H) and
w = (E,H) be contained in Cy((—o00,0], H*(G)%). Similar to the above calculation, we
get

H (F’(u +w) — F'(u

<. 33|y

n=1m=1 LIl=1

. (sup
=0 k=1

1 (5.0 - Batt) - f[ B, (1)
v ik

D ellr2(ae

Oy, RJO n

J0---Jn

L

Ll(aR’;Osz(G))]
(sup
G)3> =0

S S SuPth ||’U(t)||H2(G)(’ and

LY(R7,H2(G

k#m

The estimates sup,q || £}, (t)‘
= H

sup ﬁ (Ejk (t) — )

<0

W||z:

= oy
n—1 n—i %
Y (sl (sup Hw<t>||H2(G>6)
—~ \i<0 <0
now lead to ||F'(u+ w) — F'(u)|| = 0 as w — 0 in C,((—o0, 0], H*(G)°). O

To be to able to write (3.11) in the form of equation (2.1) (with Ay and X, instead of
A and X)), the property

F maps Cy((—00,0], X2) to X» (3.34)

is required. Unfortunately this is in general not the case: P does not need to be parallel
to E, so v X E = 0 on G does not imply v x P = 0 on dG. Therefore we need to restrict
ourselves to scalar-type material laws, defined in the following way.

Assumption 3.19. We assume the polarisation to be described by a scalar-type material
law, i. e., for every n € {1,..., N}, there exists a map R™ : R%, x G x (R3)(n_1) — R
which s multilinear in the last n — 1 arguments and satisfies

o) [[EY =R™ (r,2,ED,... E"V) B (3.35)

k=1

R

Jo---Jn

for all jo € {1,2,3}, 7 € R%,z € G and EV, ... EM™ € R®.
An example is the Kerr effect which is a third order effect described by

RO (r,EW E®) = RO)(r)(EW . E®)
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In this case, the nonlinear part of the polarisation is given by

PO(E)(t) = /OOO /Ooo /Ooo RO (71,79, 75) (B(t — 71) - Bt — 7)) E(t — 75) dry dry dr

In Appendix A.1, it is shown that such scalar-type laws arise in the special case of
homogeneous and isotropic materials with inversion symmetry.

The required properties on the response functions from Assumption 3.16 carry over
to scalar-type laws, as stated in the next lemma. We denote the ith unit vector in R?
by e; and again omit the spatial variable x.

Lemma 3.20. Let Assumptions 3.16 and 3.19 be true. Then
R (- €my, o rem, ) € C (R, HA(G)) N L (R, HA(G))

for-allmy,...,myu_y € {1,2,3} and n € {1,...,N}. Let E € Cy((—00,0], H*(G)?) and
l € {1,...,n}. For any n € {1,...,N}, the maps @(”),\Ilgn) r RY, — H?(G)3 and
2 ORL, — H*(G)? given by

P =R™ (T, E(—7),... ,E(—Tn_l))E(—Tn) ,

O (1) = 9, R™ (1, B(=71), ..., B(=70 1)) E(=7),

2™ (r) = RM (7’, E(—7),... ,E(—Tn_l))E(—Tn)

z
~—~
\]
~—

satisfy
™ o™ e LN(R2, H}(G)®), E™ e L'(oR%,, H*(G)?).

>0
For the map F from (3.32), we obtain F(E,H) = (F(E),0) with

FE)=—2c"') [i /R ) o (7)dr + /8 N 2 (1) dT] . (3.36)

n=1

Proof. Tnserting the unit vectors E® = e,, into (3.35) for my € {1,2,3} and k =
1,...,n, we obtain

R (1) =R (1 ey, ) o (3.37)
for all 7 € R%;,jo € {1,2,3}. Hence R;Z}nlmn is uniquely determined by R™. For-

mula (3.37) and Assumption 3.16 yield

RO (- my ) = 1R<”> € C'(R%y, H*(G)) N L' (RZ,, H*(G))  (3.38)

3 MpM1 ..My,
as well as

OnR™ (- emy,. .. em, ) € L'(RZ, HA(Q)) ,
R (- emys. s €m, ) € L'(0R2,, H*(G))

|8Rgo
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for all [ € {1,...,n} (in (3.38), the index m,, appearing twice on the right hand side
implies a sum over m,, according to the sum convention).
Since ™ is continuous in H?(G)? and

|30 HH2G)3N(supHE( >\|H2(G)3> Cmax RO ems s em) [

e L'(RZ,),

we have ®™ € L'(R2,, H*(G)?). The statements for @™ and E™ are shown analo-
gously. From (3.37) further follows

n

O Ry, o ) [ Ei(=m) = 0. R (1,50, €5 1) Gjos | | B (=)
k=1 k=1 (339)

=9, R™ (r,E(—=7), ... ,E(—Tn_1)>EjO(—Tn)
for all jo € {1, 2,3}, which implies (3.36). O

We can now prove that (3.34) is satisfied for scalar-type material laws. In the following,
the restriction of I to C’b((—oo, 0], X2) is again denoted by F.

Lemma 3.21. Let Assumptions 3.10, 3.16 and 3.19 be true and let u € C’b((—oo, 0], Xg).
Then F(u) € X,. Further, F is contained in C*(Cy((—00,0]), X>), Xs) and the deriva-
tive F' is bounded on bounded sets. In particular, F is Lipschitz on bounded sets.

Proof. Let u,v € C’b((—oo,O],Xg). As a consequence of Lemma 3.18, we only need to
show F(u) € Xy and F'(u)v € X,. Since the magnetic components of F'(u) vanish,
i.e., F(u) = (F(E),0), by Lemma 3.15 it suffices to prove tr. F(E) = 0 to conclude
F(u) € X,. We use (3.36). Let n € {1,...,N}and l € {1,...,n}. We have

trT/ \Ill(n) (1)dr —/ tr, \Ill(n) (1)dr
2o %o

due to the continuity of tr,. The same calculation as in (3.8) yields

tr o tr, T >
< re,tr l (T> H/2(8@Q)3xH—-1/2(8@G)3
_ <tr (aﬂ'R(n) (7—7 E(—7),... ,E(—Tnfl))go) ,tr, E(—Tn)>H1/2(ag)3><H—1/2(BG)3 =0

for all ¢ € H'(G)? which implies tr, ¥\ (7) = 0. Analogously tr, ™ (7) vanishes. It
follows tr, (¢F(E)) = 0 and therefore tr, F(E) = 0 by Lemma 3.6. Using the expression
for F'(u)v from Lemma 3.18, we see as above that F'(u)v € Xs. O

To use Theorem 2.18, we need a differentiability property of F.

Lemma 3.22. Let Assumptions 3.10, 3.16 and 3.19 be true and b > 0.
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1) Letu € Cb(( 00,b), Xg). Then the map t — F(u;) is contained
in C'((—o0,b), Xa).

2) Let u € Cl(( 00,b), X»). Then the map t — F(u;) is contained
in C'((—o00,b), Xs) with derivative F'(u;)(u');.

Proof. Let b > 0,u = (E,H) € Cy((—00,b), X5) and j, € {1,2,3}. We have

Z/ wljo (t,7 dT~|—/R fj(:)(t,T)dT]

n

Eo (ut

with functions ¢} : (=00, b) x R2y — H*(G), & : (—00,b) x ORZy — H*(G) defined
by

Y (1) = 0 R (1 B(t — 1), .. B(t — 1)) Ejy(t — 7).,

&Mt m) = RO(LEW —71), ... E(t — 701)) B (t — 7).
Let n € {1,...,N}. The Banach algebra property of H*(G)? implies that the map
(t,7) = Ej,(t—m7,)Ej (t—71) ... Ej,_, (t—T,_1) is contained in C’b((—oo, b) xR%, H2(G’))
for all jy,...,Jn—1 € {1,2,3}. Writing

O (1) = 0 R™ (1,5, ey B (t—T0) o By (= Tt ) Ejy(t— 7))

f(n)(t, T) = R(n) (’T, ejl, e ,ejnfl)Ejl (t — Tl) e Ejn71 (t — Tn_l)Ej0<t — Tn) s

JO

and using Lemma 3.20 we see that

i) v (t,-) € L' (R, HA(G)) and €/ (t,) € L (ORZy, H(G)) for all t € (—o0,b),

ii) 1/15(7;3)( ,7) € C((—00,b), H(G)) for all 7 € RZ as well as
e, T) € C((—o0 ,b),H2(G)) for all 7 € ORZ,,

Jo

1ii) lem T ’ ) <a gl( )( ) for all (¢,7) € (—o0,b) x R, as well as

m” o < W (7) for all (t,7) € (—00,b) x IR,
H

~ Jo

where the functions 91(?[)) € LY(R?,) and h%) € LY(OR",) are given by
00 = (s I ) 1R (s
s<

h§§)(7) - (Sslilb)”u(s)HHZ(G)G) [R™ (r, ejl""’ej"—l)HHQ(G) '

By a corollary to Lebesgue’s theorem, ¢ — Fj,(u;) is contained in C((—o0,b), H*(G)).
Since u; € Cb((—oo, O],XQ) for all t < b and the H* and X,-norms are equivalent by
Lemma 3.15, Lemma 3.21 yields ¢ — F(u;) € C((—00,b), X,).
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To show 2), let u = (E,H) € C} ((—00,b), X5). Then the map
t— Ej1 (t — Tl) C.. Ejn71 (t — Tnfl)EjO(t — Tn)

is contained in C} ((—o0,b), H*(G)) for all ji,...,jn—1 € {1,2,3} and 7,..., 7, € Rxo.
The derivative is given by

OE, (t—m)E;,(t—1)...Ejj(t—T1,)+- -+ E;,(t—11) ... Ej,_,(t —Tpo1)0Ej (t — 7).
Then we have
i) wl(?())(,T) € C((—o0,b), H*(@)) for all 7 € RZ as well as
&M, 7) € CY((—00,b), HX(G)) for all 7 € IRZ
i') |9 (t.7)]
et

<¢ g1, (1) for all (t,7) € (—o0,b) x R, as well as

H2(G)

<a EJO(T) for all (¢,7) € (—o0,b) x ORZ,,,

H2(@)

where the functions :(jl(?’()) € L'(R2,) and E;Z) € L'(0R”,) are given by

n—1
”gl(?g(r) - (Sglb) HU(S)HH2(G)6> (SliEHul(S)HH%G)G) H@TZR(”) (Tv SRR ’ejn*I)HHQ(G) ’

s<b

n—1
h%)(T) = (SUP ||U(S>HH2(G)6> (S;g) Hu/<S)HH2(G)6) HR(H) (7'7 €y 7ejn71) ||H2(G)

As above, it follows that ¢ — Fjo (u) is contained in C*((—o0,b), H*(G)) with

Z/ &ﬂ/} tTdT+/

=1 IR

at Jo (ut

0 (t,7) dT] :

n=1

We insert the expressions

" (t,7) = O, R (1,e5,, ey ) | OB, (t = T0)Ejy(t — 1) ... Bjo(t — 1)

L,jo

4+ -4 Ejl (t — 7‘1) . Ejn—l(t - Tn—l)atEjo(t - Tn)

= aTlR(") (T, 8tE<t - Tl), E(t — TQ), R ,E(t — Tnfl))EjO(t — Tn)
+- 4+ RM (1, E(t —71),E(t —72),...,E(t — 701)) O Ejy (t — T)
and
2,1 (t,7) = R (1, 0B(t — 1), E(t — 1), ..., B(t — 71)) Ejy (t — 72)
o+ RO(EE—71),E(t—7), ..., Bt — 7-1)) 0B}y (t — ) -

Comparison with (3.33) shows 0, F}, (u;) = (F’(ut)(u’)t)jo. In particular, we have that
t — F(u,) is contained not only in C*((—o0,b), H*(G)®) but in C*((—o00,b), X5). O
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3.5 Local wellposedness results

We are now in a position to formulate the reduced system of Maxwell equations (3.11)
as an abstract retarded evolution equation of the form (2.1), provided Assumptions 3.10,
3.16 and 3.19 hold. Under the condition that the external current density J, is contained
in C([, H2(G)3) for I = [0,00) or I = [0, tenq) for some tong > 0 and satisfies tr, Jo(t) =0
for all t € I, we can define g : [ — X5 by

g(t) = - <Joét)) :

In this setting, the problem (3.11) takes the form

u'(t) = Agu(t) + F(uy) +g(t), tel,

u(t) = f(t), t<0, (3.40)

in the space X, where f = (Ey, Hy,) € G, ((—oo, 0], Xg) contains the history of the fields.
The boundary condition for E is included in the definition of X5. The expression (2.2)
for a mild solution u = (E,H) € C(J, X3) of (3.40) on an interval J with (—o0,0] C J
and 0 < sup J < sup/ can here be written in the form

(1) -0 (519) - [ - (7050

for t € JN(0,00) and (E(t),H(t)) = (Ey(t),Hy(t)) for ¢ <0.

An application of the Theorems 2.11, 2.14 and 2.16 to the reduced Maxwell system
leads to the central result of this work (where A and X in Section 2 are now given by
Ay and X5). As in the abstract setting, we treat the continuous dependence on A, i.e.,
on o,¢&, 11 as a separate statement, since for fixed A, a stronger result for the continuous
dependence on Jg, Ey,, H, and the response functions can be obtained.

Theorem 3.23. Let Assumption 3.10, 3.16 and 3.19 be true. Let I = [0,00) or [ =
[0, tena) for some tenqa > 0 and Jo € C(I, H*(G)?) satisfy tr, Jo(t) = 0 for allt € I. Let
En, Hy, € Cy((—00,0], H(G)?) satisfy

trr By (t) = tr, (curl Hy (¢)) =0, tr, (uHy(¢)) =0, div(pHy(t)) =0
for allt < 0. Then the following statements hold.

1) FEquation (3.40) has a unique mild solution v = (E,H) on a maximal existence
interval (—oo, t7) with t+ =+ (Ey, H,, Jo, RY, ... RMN) 5 e u,n, G) > 0.

2) It tt < sup I, there exists a sequence (ty) in (0,t) with ty — t* and
||u(tk)||H2(G)o — 00 as k — oo.

3) Let b € (0,tT). There exist constants 6 > 0 and ¢ > 0 depending on Ey, Hy, Jo,
RO ... RN g e, u,n G and b such that for all

Jo,Jo € C(I, HX(G)?), Ep, Hy, Ey, Hy € Cy((—00,0], HX(G)?)
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o6

and RW

Lo RI

satisfying Assumptions 3.16 and 5.19 and

tr730<)_tr7J0() ) tGI,

tr, Ey(t) = trT(curlﬁh(t)) =0, trl,( n(t )) div(uﬁh(t)) =0, t<0,
tr, Ey(t) = trT(curlﬁh(t)) =0, trl,(Hh( )) = div(,uﬁh(t)) =0, t<0,
su Jt—th <65, su Jt—jt‘ <5,
ogtgb ol?) olt) H2(G)3 ogtgb ol?) ol?) H2(G)3
su Et,Ht—Et,ﬁt’ <,
sup | (B4(0), (1)) — (Ba(0) B () |,
su Et,Ht—Et,ﬁt‘ <5,
tgg’( w(t), Hu(t)) — (En(t), Ha()) ey
O, R™ (- e,....e; ) —0-R™ (- ej,... e )
nE{nl/l,%.),(N}, ‘ ZR (7ej17 Je]n—l) 1 (76]17 7e,]n—1) Ll(Rgo,HQ(G))_
Tlyeens jn71€{1,2,3}7
le{1,...,n}
R (e, ....e; J—R™( e ... e <46
ne{r?f.l.),(N}, H (76317 7ejn_1) (76317 7e]n—1) LI(ORE , H2(G)) — )
J1ye-esJn—1€{1,2,3}

we have tT (Eh, H,.Jo, RW, ...

| @), H(0) - (E@). )|

< c| sup
7<0

+

max
ne{l 7777 N}7
J1rdn—1€{1,2,3},

ne{l
J1yeensdn—1€{1, 23}

[(Ba(r), Fu(7)) —

,ﬁ(N),o,s,u,n,G> > b as well as the estimate

H2(G)
f B, (7). F1, () [To(r) = 3o(r)|
( n(7) h(T)) H%(G)S " osgggb ol7) o(7) H2(G)3
anR(n) ('7 Cj1y - - 7ejn—l) - aTlR(n) (.’ Cjrs - ’ej"—l) LY (R, H?(G))
R () A . —R™ (e ... e
(,631, 1 € 1) (’eﬁ’ ’ej”*l) LY (ORY,H?(@))

for all t < b, where (E,ﬁ) and (E,ﬁ) are the mild solutions of (3.40) with

J07 Eh7 Hh7 R
J07 Eh7 Hha R

i

4) Let b € (0,tT) and (J(()k)> 7 <E(k‘)

tively Cy((—00, 0]

sup
<0

,...

,RWY
RN

) replaced by Jo, Eh, ﬁh,ﬁ(l) : ,ﬁ(N) respectively

> , (ng)> be sequences in C’(I, HQ(G)3) respec-

h

,H*(G)?) with

0<es ‘J(()k) (t) - Jo(t)‘ ey
H (E}(lk) (t) H;" (t)> — (En(?), Hh(t)>’ H2(G)S =0



as k — oo. Let (R(l’k)) s (R(N’k)) satisfy Assumptions 3.16 and 3.19 and
n,k n
10, RO (e, egy) = 0RO (e a2y = 0
n,k n
HR( )(‘, Cjy- - 7ejn71) - R )('7ej1’ T 7ejn71) HLl(RgO,m(G)) —0
as k — oo and all m € {1,...,N} j1,...,jn1 € {1,2,3},1 € {1,...,n}. Let
(o%), (ex), () be sequences in Z(G) with o — 0,6 — €, — w in Z(G) as

k — oo and g > n,pp > n for all k € N with n > 0 from Assumption 3.10.
Additionally let

tr, I () =0, tel,
tr, Eflk) (t) = tr, (curl Hl(lk) (t)) =0, t<0,
tr, (HP (1) =0, div(mHY (1)) =0, t<o0,

for allk € N. Let ( > 0 and (E(’“),H(k’)) be the mazimal mild solution on (0,t))
of (3.40) with By, Hy, Jo, RV, ..., R™ ¢, i replaced by BEX H® JF
RWE)  RWE g ep, ps. Then there exists an index K € N such that
tf>b and SEEH(EU’C),H(’“)) — (E,H)H <(
t<

forall k> K.

Proof. The first two assertions follow directly from Theorem 2.11 and Remark 2.3. In
order to conclude 3) from Theorem 2.14, we define ¢ : [0,00) — [0,00) by ¥(x) =
SN 2™ and for v € Cy((—00,0], H*(G)®) using Lemma 3.9, (3.37) and a variant for
ORZ, we estimate

IE ) 2 cpe

1 ez Nellzo . "
S<_+ Tt )Z Z [ZH@ZR()("eju-~~7ejn1)||L1<R’;07H2<G>>

2
K K n=1 ji,....jn—1=1 LI=1

IR (s, e,) Hungo,m(G))] (St‘jg’ ”“(t)”HQ(G)S)

Sﬂm ( negl,?),(N}, HaTZ’R,(") (.7 €5, ejnq) HLl(RQO,HQ(G))
J1,-dn—1€{1,2,3},
le{1,....,n}
(. a. .

+ ne{r?,.é.l.),(N}, ”R ( 1 €15 veJn—l) ||L1(8R’;0,H2(G))>¢ (Stg(l? ||U(t)||H2(G)6) :

Jise-esin—1€{1,2,3} N
It follows
H’me SEJI ne?llf.i.),iN}, HaﬂR(n) ('7 €1y 7ejn71) HLl(RQO,H%G))
jl 7777 jn716{17273}7
le{1,...,n}

o7



+ max HR(”)(-7ejl, .
ne{l,...,N},
Jseensdn—1€{1,2,3}

. ejn_l) HLl(aRgo,H2(G)) '

Statement 3) now follows from Theorem 2.14 (in which we replace 0 by 2§ since we split
I £, into two contributions).
4) By assumption,

= maX{HUHZ(G) Mellze el 2@y - sap llokll 2y - sup llekll z(q) » sup ||NkHz(G)} < 0.
keN keN keN

Let 1) and v be as above and let F'®*) denote the map obtained from F by replacing e
by £; as well as R(™ by R*®™ for all m € {1,...,N}. Using the triangle inequality,
Lemma 3.9 and an analogous computation as in step 3), we estimate

HF(U) - F(k)(U)HHz(G)()

S emax |7
J1y-in—1€{1,2,3},
le{1,...,n}
(Haﬂwn@(-,eﬁ,...,ejn_J 0RO (e e s

>0

+ R ejes - ey) =R (e e ) | HQ(G))>

Er — &

cer <H3TZR(M€) (-, €jy- - 7ejn—1) HLI(RZO,HQ(G))

Z(G)
RO (e ve) HLI(RgmH%G)))] ¥ (igg ””(t>‘|H2<G>6) -

Since

Ep — €
Sc.on llex — 5HZ(G) 1

the above estimate yields ’HF — F(’“)‘Hw — 0 for £ — co. We define for all £ € N the
linear operator Ay on Xy with domain D(As) by replacing o,e,u in A by oy, e, f,

see (3.14). Proposition 3.14 shows that A, generates a strongly continuous semigroup
T27k(‘) on X2 with

||T2k(t)||B(X2) §G7C,n L+t

for all k € N and ¢t > 0, with a constant independent of k. So for any w > 0, there is a
constant M > 1 such that

T2l sx) - 1 T2k (Bl < Me

28



for all £ > 0. For the application of Theorem 2.16, it only remains to show As zw — Asw
in Xy as k — oo for all w = (K, L) € D(Az). To prove this convergence, we write

A27kw — AQU} = —0-5143 — 9kE K + (Bk — [) Agw + g K
EEL 0 e \0

(et 0
B’““( 0 W;Zlf)

for all £ € N. Using again Lemma 3.9, as well as

with

|owe — O-ngZ(G) S HgHZ(G) lo — UkHZ(G) + ||U||z(G) le — 5kHz(G) y
we obtain

O — OKE
I Scmeo llow — 0||Z(G) HKHH2(G)3 ’
HQ(G)B

1Bk = s cyey Somen llex = ell gy + ik = pill 2

K

ECL

which implies

| Ag pw — A2w||H2(G)6
e (106 = 0ll e + e = ell ey + ik = nls0y) (14l e + 1K Ly
— 0

as k — oo. Theorem 2.16 now implies part 4). ]

In the next step, we show that a mild solution has additional time regularity in H'(G)°.
In combination with Lemma 3.7, this implies that the mild solution of the reduced
system (3.10) of Maxwell equations is a (classical) solution of the full system (1.2)
and (1.6) in H'(G)%, provided the divergence conditions and the magnetic boundary
condition are fulfilled at the initial time and that the continuity equation (1.3) holds.

Lemma 3.24. Let the assumptions of Theorem 3.23 be true and u € C’((—oo, b),Xg) be
a mild solution of (3.40) for some b > 0. Then u € C*([0,b), [D(Aaw)]) and therefore
u € C'([0,b), H'(G)S) by Lemma 3.12. We further have u'(t) = Au(t) + F(u;) + g(t)
for all t € ]0,b).

Proof. 1) We define x : [0,b) — X5 by x(s) = F(us)+g(s). Then x € C([0,b), [D(A%,)])
by Lemma 3.22 and Lemma 3.13. Hence, the map v : [0,b) — X, given by

v(t) = /0 T(t—s)x(s)ds
is contained in C*([0,b), Xaiv) N C([0,0), [D(A3,)]) with
V'(t) = Av(t) + x(t)

99



for all ¢ € [0,b). We further have

Av(t) = /0 T(t—s)Ax(s)ds.

Since Ay € C([0,b), [D(Aqi)]), we infer Av € C*([0,b), Xaw) NC([0,0), [D(Agiv)]) with
(Av)'(t) = A%o(t) + Ax(t)

for all t € [0,b). This implies v € C*([0,b), [D(Aqw)])-

2) We set w(t) := T(t)[f(0)] for t > 0. Since f(0) € D(A2%,), the map w is con-
tained in C"(Rxo, Xaiv) N C(Rxo, [D(Aav)]) with w'(t) = Aw(t) for all ¢ > 0. Also,
Af(0) € D(Aqiv) and the identity Aw(t) = T(t)Af(0) implies Aw € C'(Rxo, Xaiw) N
C (R0, D[(Aqv)]) with (Aw)'(t) = A%w(t) for all t > 0. Therefore w is contained in
Cl (Rzo, [D(Adlv)])

3) The claim now follows from u = w + v. O

We finally apply Theorem 2.18 to the Maxwell system to obtain a classical solution
in H%(G)®. The theorem’s conditions are formulated below using Remark 2.3, Proposi-
tion 3.14, Lemma 3.15 and Lemma 3.22.

Proposition 3.25. Let Assumption 3.10, 3.16 and 3.19 be true. Let I = [0,00) or
I =10,tena) for some teng > 0 and Jo € CH(I, H*(G)?) satisfy tr, Jo(t) = 0 for allt € I.
Let Ey, Hy, € BUC! ((—00,0], H*(G)?) satisfy

tr; Ep(t) = tr, (curl Hh(t)) =0, tr, (,uHh(t)) =0, div(,uHh(t)) =0
for allt <0, as well as

tr, (—oe 'En(0) + e cwrlHy(0)) =0, tr, (curl (0" curl E4(0))) =0,
tr, (" curl EL(0)) =0, H{(0) = —p " curl EL(0),
E| (0) = —oc 'Ey(0) + ¢ curl Hy (0) — e ', P(Ey)(0) — e 13, (0) .

Then the mazimal mild solution of (3.40) is a classical solution of (3.40) on the mazimal
existence interval.
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Appendix

A.1 Homogeneous, isotropic and inversion-symmetric materials

In this section we consider how spatial symmetries of the material lead to relations be-
tween the components of the response functions. As a result, Assumption 3.19 is fulfilled
at least in the special case of homogeneous and isotropic materials with inversion symme-
try which includes gases, liquids and amorphous materials. The discussion here is based
on Neumann’s principle which states that if the medium has a spatial symmetry then for
any tensor describing its physical properties, the components must be invariant under
changing between two coordinate systems related by the transformation corresponding
to the spatial symmetry, see Chapter 5 of [6].

We consider for n € {1,...,N} and b > 0 the expression (3.28) for the nth-order
contribution to the polarisation for two fields E,E € Cb((—oo,b), HQ(G)?’) related by

E(t) = CE(t) for all ¢ < b, where C' € R*®3 is an orthogonal matrix describing a
geometric transformation like a rotation, reflection or inversion. The polarisation caused
by the transformed electric field is given by

5(n) (n) -
P, (E)(t,x) = /Rn Ry i (T,x) H Lt — T, x)dT

>0

— R™

iy Zn — Tg, ) dT

Zk]k

n
R>O

for all t < b,z € G and iy € {1,2,3}. Let C be a symmetry transformation for the
material, i. e., it leaves the structure invariant (at least in a microscopically large volume

around ). Then P has to be identical to CP, the transformed original polarisation.
Using the orthogonality of C', we conclude

PY(E)(t,2) = (C7), . P (B)(t )

20

n
_ (n)
_/ Clo]oRzgzl in H %Jk Tk’vx) dT'

This has to hold for all fields E. Comparing with (3.28) and applying Lemma A.1 below,
we derive

M _pm T
Rj0j1---jn - Rioh---in H Cikjk (Al)
k=0
for all jo,...,jn € {1,2,3}. In particular, the inversion transformation described by

C = —1 leads to

n

(n) _ pn) _ n+1 p(n)
Rjojl...jn - Rioh...in H (_5ikjk) - ( ) R]0]1 gn 0
k=0

which implies that all even order response functions have to vanish for inversion sym-
metric materials.
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Lemma A.1. Let G C R? be a bounded domain with a Lipschitz boundary, n € N and
R™ € C(RLy, HX(G)*) N LY (R%y, HX(G)*""") have the property

(n) _ p)
Rjojl---jn(Tl’ s Ta) = Rjojg(l)...j(,(l) (70(1)7 . 77'0(1))

for all T € R%q, jo, ..., jn € {1,2,3} and permutations o € S,. If

n
SRR
An RJOJl]n 7-1’..., I Tk

>0
for all F € C’b(RZO,HQ(G)3) and jo € {1,2,3}, then R™ = 0.

Proof. Let p € C(R) with p > 0,suppp C [~1,1] and [*_p(t)dt = 1. Let 6 €
RZ, and ¢ > 0. By continuity, there exists a ¢ > 0 with B(@ 5) C RY, such that
|R™(7) — R(”)(H)HHz(G);wH <e. Let jo,...,dn € {1,2,3}. We define for ¢ € R” the
map F : Ryg — H?(G)? by

n

F(t) = Z C] ejlﬂgé_lp ((5_1(75 — Ql)) .

=1
The estimate

Z Z Cll . Cp, ]0])1 i (9[1, e ,tgln)

I1=1 =1 H2(G)
DR SUNRN ROV NN § CHEE
h=t =l Ko k=1 H2(G)
n) (n)
= ZZ |Cll o o / HRJM ll""’eln) _Rjojlln-jln(T)‘ H2(G)
lhi=1  l,=1
Hp(6 1(le _elk)) dr
k=1
<n"|c|"e
shows

Z Z ¢, ..., ]:J)ll i, ((9[1, e ,Gln) =0

l1=1 ln=1

for all ¢ € R™. Using the permutation symmetry of R, we see that the polynomial in

c given by . .
Z ce Z Cy - - Clnall-~~lnR§:;ll---jln (911, e ,Gln)

I1=1 In=1
—_——
Lh<-<ln
vanishes, where the positive factors oy, ;, result from combining terms related by a
permutation. Therefore the coefficients have to be zero from which we conclude the
claim since § € RZ; and jo, j1, ..., jn € {1,2,3} are arbitrary. ]
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We say that a material is isotropic if (A.1) holds for all rotations C' and all n €
{1,...,N}. This is e. g. the case for amorphous materials in optics. Although there is a
short-range order in the atomic structure, over microscopically large but macroscopically
small ranges the material has a random order and therefore there are no distinguished
directions concerning the macroscopic polarisation. For the same reason, amorphous
materials are inversion symmetric on the macroscopic scale. If the assumption of isotropy
holds in the whole domain G, the material has to be homogeneous, i.e., the material
properties do not depend on = € G. In a real system, the physical properties near
the material’s surface change with respect to the bulk properties due to the different
atomic arrangements. This is neglected here. We now consider the idealised case of
a homogeneous, isotropic and inversion-symmetric material. Combining the intrinsic
permutation symmetry with a general result on isotropic tensors yields that the response
functions have a simple form in this case and satisfy Assumption 3.19.

Lemma A.2. Let the material be homogeneous, isotropic and inversion-symmetric.
Then all even order response functions vanish and for all odd n € {1,... N}, there
exists a function R™ : RYy — R such that

)

jn72jn71

R™  (7,2) = R™(1)s;

JO---In Ojn(sjljé . (A2)

for all jo,...,jn €1{1,2,3},7 € RY, and x € G. In particular, Assumption 3.19 is true.

Proof. We fix an € {1,..., N} and use that R™ (7, ) is a tensor of rank n + 1 for all
7 € R%, (we drop the z-dependence, since a homogeneous medium is assumed). As seen
above, all even order response functions vanish. Therefore let n be odd. To prove (A.2),
we define

T .= {T ‘ T is a real-valued isotropic tensor of rank n + 1} ,
which forms a finite dimensional vector space which we equip with the scalar product
(T1S) = Tjo...ju S0 -

As a consequence of Theorem 2.9.A in [28], every T € T can be expressed as a linear
combination of products of (n + 1)/2 Kronecker deltas. (See also the Supplemental
Material of [10] for a more direct proof.) So there exist an integer ¢ € N and permutations
o, €S, for k € {1,...,q} such that {T} |k € {1,...,q}} forms a basis of T where

Tk.jo..jn =0

J0Joy,(n) 6jak(l)jak(2) s 5jak(n72)jok,(n71)

for k € {1,...,q} and jo, ..., jn € {1,2,3}. Using the Gram-Schmidt procedure, we find
coefficients ¢,; € R such that {T; |k € {1,...,¢}} is an orthonormal basis of T where
T = > eyTy for k€ {1,...,q}. So for a fixed 7 € R, we can write

R ()= rm(n)Te = Y crarn(7)T (A.3)

k=1
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with N
ri(T) = (R(n) (T)‘Tk> (A.4)

for all & € {1,...,q}. Letting 7 vary, we obtain functions rj, : R%; — H?*(G). Equa-

tion (A.4) implies that 7y inherits the properties of Assumption 3.16 with Rg:) ;. replaced
by ry for k € {1,...,¢}. The same arguments that led to the intrinsic permutation sym-

metry of R™ can be applied to every term in (A.3), so we obtain

(n) _ E
Rjo...jn (T) - Ck,lrk(Tla s 7Tn)(sj[)jal(n)6jﬂl(l)jak(2) - '5jcrl(n—2)jal(n—1)
k=1

q

— E Cp ﬂ“k( 71(1), e 7Taf1(n)) 6jojn5j1j2 C. 6jn72jn71 .
k=1

Equation (A.2) now follows with

RMW(7) = Z CEITE (Tgf1(1), . ,70;1(71)) .
Let 7 € RY, jo € {1,2,3} and EW, ... E(™ € R3. Equation (A.2) yields

Ry, O [EY = RO@)ED B (B2 B ) B,

Jo
k=1

Therefore, the identity (3.35) is satisfied with

R (r,EW, .. E®D) = RW(r)(EV . E?) .. (E®2 . ECD), O

A.2 Lorentz oscillator model

The Lorentz oscillator model [18] is often used in physics to describe the optical prop-
erties of dielectric materials caused by the motion of bound electrons. We consider an
electron with charge ¢ and mass m which is bound to an atom (or ion) by a potential
V' and make the following assumptions (see Section 7.5 in [16]).

Since the atom has a much higher mass, its position is treated as fixed. We further
neglect the difference between the macroscopic electric field and the local electric field
at the atom’s position in the medium (see Section 4.5 in |16] for a discussion of the local
field). Also the magnetic part of the Lorentz force (1.4) is dropped and we assume that
the amplitude of the electron’s oscillations is small which allows us to approximate the
electric field by its value at the electron’s rest position. In [16], V' is an isotropic harmonic
potential and an isotropic damping term is included in the equation of motion. Since we
are interested in nonlinear terms for the polarisation, we add anharmonic contributions
to V as in Section 1.4 of [5]. Additionally, the potential and the damping term are
allowed to be anisotropic as in [24].
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The potential is modelled by

1 1 1

2 4 ijlm
for all x € R? with symmetric tensors K", K K®) of ranks two, three and four (using
the sum convention). The equation of motion for the electron’s displacement x then has
the form

lL'Z + QFZ]ZL'] + KZ-(jl)ZEj + K-(z)l'jl'l + K(3)

il zjlmxjxlxm = E(t) (A5)
for i = 1,2,3 with F(t) = ZE(t) and a symmetric tensor I" of rank two describing damp-
ing. We assume KV and I to be positive definite with cigenvalues wi, wi,, wd and
Y1, V2, 3 respectively. We further assume the damping to be weak which we characterise

by the condition
5 1 . 2
max v, < - min w

i€{1,2,3} 2 ie{1,2,3}

0,2 °

Since (A.5) can not be solved in general, we use perturbation theory to obtain an ap-
proximation for x. To this end, we replace F by AF with a perturbation parameter A
ranging continuously between zero and one. The solution for x is then expanded in a
power series of the form

x = x4+ \2x®@ 4 \3xG)

The zero order contribution describes just a damped motion independent of E and can be
omitted for our purposes. If N stands for the number density of atoms, the polarisation
can be written as P = N¢gx leading to a corresponding series

P = \PY + \2P® 4 N3PO) 4

with P™ = Ngx(™. Here we consider only the case of one electron per atom. The
general case with several electrons per atom having different potentials and damping
constants can be treated by summing up the individual contributions, weighted with
appropriate oscillator strengths, see [16].

Equation (A.5) is solved for a given order x(™ by gathering all the coefficients in (A.5)
of A" and setting them to zero. In the calculations below, we assume that F and x(™
are sufficiently regular to justify the use of the Fourier transform and the interchange of
the order of integrations.

We start with the first order term and obtain the equation

%M 4 orx™® 4+ KOxW = F(t). (A.6)

Using the Fourier transform given by

F(t) — \/LQ_W /_ T e dw, Flw) = \/LQ_W /_ TR dt

and analogous for x(!)| equation (A.6) leads to

Aw) XV (w) = Fw), Aw):=K®M —w[ — 2wl .
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We first show that A(w) = (A;j(w)) is invertible for all w € R. The case w = 0 is clear
since KM is positive definite. Let w # 0 and assume there is a v € C? with A(w)v = 0.
We write v = a + ib with a,b € R3. Using the symmetry of K™ and I', we compute

0= (a—ib)" A(w) (a+ib)
=al (K(l) — w2I) a+ b’ (K(l) - wQI) b — 2iw (aTFa + bTFb) )

The imaginary part leads to a = b = 0 due to the positive definiteness of I" from which
we conclude that A(w) is invertible. Therefore we can write

S R(s)e 09 dedw — 7= [ ROt —
W/oo /OOA(w) F(s)e dsdw NE /OOR (t —s)F(s)ds

with the response function R : R — R3*3 given by

N q2
2mm

RY(r) = h Alw) e dw. (A.7)

Here we have chosen the prefactor such that

PW(t) = /Oo R (t — s)E(s)ds,

[e.e]

in accordance with (3.28). Causality requires R(V)(7) = 0 for 7 < 0. To see that this is
the case, we consider the elements «o;;(w) := (A(w)‘l)ij fori,j € {1,2,3}. As a result
of Cramer’s rule,

pij(w)
det(A(w))
where p;;(w) is up to a sign given by the determinant of the matrix obtained by deleting
row j and column i in A(w). Therefore p;; is a polynomial in w of degree less than or
equal to four. Let \x(w) be an eigenvalue of A(w) and v = a; + iby be a corresponding
eigenvector with ag, by € R? and |v;| = 1. As above, we obtain from

(ak — lbk)T (A(w) — )\k(w)) (ak -+ lbk) =0

(W) =

the identity
Me(w) = kK — 2iwé, — w?

with
ki =al KWa, + bl KWby, . & =alTa, +blTh,.

The estimate

g <2((alra0)" + (b)) <2 max o2 (el + ol

me{1,2,3}
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<2 max < min w? <K
- me{1,2,3}7’” mef1.2,3) O™ F

shows that \¢(w) has the roots wy + = £+/ky — & — i& which both lie in the open lower
half plane. Thus we have

pij(w)

ITioy (@ = wp)(w —wr-)

ajj(w) = —

In the case 7 < 0, the residue theorem yields

N¢?
2mm

RE;-)(T) = aj(w)e ™ dw =0,

—0o0

since we can close the integration contour in the upper half plane.
Now we look at the second order. Here the equation of motion is given by
i 4 orya? ¢ KPP+ K3 aWal) =0

for ¢« = 1,2,3. Application of the Fourier transform results in

[ st et = [ R e

Inserting 1 = [ &(ws)e ™2 dwy on the left side leads to

1 ~
K &Y (wn)30) (wn)

E%‘ (w1) K

= —\/?ngm%(Wl)Oélp(wl)amq(w2)Fp(W1)Fq(w2) >

where we have used XM (w) = A(w)~ 1F( ). The Fourier transform now yields

o)’ \/27r/ / 71 (w1)0 (wa)e ™D 4, duwy
/ / K 01 (w1) (1) g (w2) By (w1) Fy (w2)e 1592 doy duwy

- N_qs / / Rﬁ;(t — 51,1 = $2)Fp(s1) Fy(s2) sy dsy

27 (w1)d(wz) = —

with

Rgz)](ﬁaﬁ) = - (2r 2m2/ / K]lmozlj w1) (W1 ) Qg (w2)e “ilrmitesn) 4o dw,
(A.8)
Again using the residue theorem, we see R (Tl, Ty) =0 for all i,p,q € {1,2,3} if ; <0

or 7 < 0.

pq
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The third order equation takes the form
()+2F ()+K(1) (3)+2K() (1) ()+K() (1) 1(1)155711):0-

ij T ijt ¥ ijtm
An analogous computation leads to the third order response function

]%Zabc(7jJ 7?7 73

(27) 5/2m3 / / / { o B2 01 (w1 )t (w1 ) o (w20 (w2 ) e (w3) - (AL9)

— K

jhlmaij (w1)ha(wr) gy (we) agme(ws) e iwimtwenatwsms) 4o dw,y dws |

which again vanishes if 7, < 0 for an index k € {1,2,3}.

To illustrate the results from Subsection A.1, we consider the case special of an
isotropic and inversion-symmetric material. Here we have I' = ~] and K1) = wal
for positive constants 7, w? satisfying w2 > 272, We further see that K® must vanish
due to the inversion symmetry since if x is a solves the equation of motion, —x must
also be a solution if F is replaced by —F, but the term involving K® depends quadrat-
ically on x. As discussed in [5], the only possible form for the cubic term in (A.5) for
isotropic materials is K® (x - x) x; for some scalar K® e, Ki(]?’l)rn = [?(3)6im5jl for all
i,7,l,m € {1,2,3}. Therefore we have
W — w? — 2w

for all i € {1,2,3}. Using (A.7) and the residue theorem, we calculate

Aw) = (wf —w® = 2iw) I,  a(w) =

2 00 —iwT 2
M () — Nq e . N¢ ...
B () =iy | aF =t =i M = Py )
for all 7 > 0 and i,j € {1,2,3}, where v := \/w? — 72. From (A.8), we see that R(?)

vanishes and (A.9) yields
1%(3) o7 <7HJ T2, 73)

J0J1J2J3
477(3) . /
Nq K® 27Te—'y(71+72+73)
2m3p°

—050js0;

o3 01 g sin(vry) sin(v7s) (sin(vr) — vry cos(v))

for all 7 € (0,00)% and jg, j1, jo, j3 € {1,2,3}. This expression does not show the intrinsic
permutation symmetry mentioned in Subsection 3.4. As discussed there, we can replace
R®) by a symmetrised version without changing the polarisation. This leads to

4717(3) .,/
Ng K 'Vor —7(7’1—&-72—}—73)

R(?’) . (7-1’7-2’7‘3) = — 235

70J1J2J3
- 5]0]1 5]233 (VTQ COS VTQ) Sln<V7'3) + v13 cos(vTs) sin(m

( (v73) sin(7y)) si
— 0j0ja0i1is (VTl cos(v ) sin(vTs) + v73 cos(vTs) sm(ﬁ)) sin(v7y)
( (v72) sin(y)) si

- 5Jojs5mz (VTl COs V7'1) 1H<V7'2) + Ty cos(VTy) Sin
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