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Abstract — The actual progression of pitting on ball 
screw drive spindles is not well known since previous 
studies have only relied on the investigation of indirect 
wear effects (e. g. temperature, motor current, structure-
borne noise). Using images from a camera system for ball 
screw drives, this paper elaborates on the visual analysis 
of pitting itself. Due to its direct, condition-based 
assessment of the wear state, an image-based approach 
offers several advantages, such as: Good interpretability, 
low influence of environmental conditions, and high spatial 
resolution. The study presented in this paper is based on a 
dataset containing the entire wear progression from 
original condition to component failure of ten ball screw 
drive spindles. The dataset is being analyzed regarding the 
following parameters: Axial length, tangential length, and 
surface area of each pit, the total number of pits, and the 
time of initial visual appearance of each pit. The results 
provide evidence that wear development can be quantified 
based on visual wear characteristics. In addition, using the 
dedicated camera system, the actual course of the growth 
curve of individual pits can be captured during machine 
operation. Using the findings of the analysis, the authors 
propose a formula for standards-based wear quantification 
based on geometric wear characteristics. 
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I. INTRODUCTION 

Ball screw drives (BSD) are among the most commonly used 

components for the conversion of rotary into translational 

motion in modern machine tools (Forstmann, 2010). The 

operating time to failure of BSDs varies significantly in 

different environments depending e.g., on the respective load 

spectrum (Fleischer et al., 2013). Without a reliable wear 

quantification system, this can result in unforeseen component 

failures, leading to unplanned downtime, increased repair 

times, and, in particular, to higher costs (Dehli, 2020). 

Therefore, maintenance has subsequently changed from former 

reactive to modern preventive, predictive, and even proactive 

approaches (Stamboliska et al., 2015). Consequently, condition 

monitoring technologies are complemented by advanced 

statistical methods for the estimation of reliable component 

lifetimes and time-of-failure predictions. This presupposes a 

reliable detection and quantification of the current wear state 

and progress. In the context of BSDs, there are several 

approaches to this, all of which are based on the detection of 

indirect effects caused by advanced wear and tear. The 

objective of this paper is to present the first direct time-

continuous measurement approach for quantification of the 

current wear state on BSD spindles. The images resulting from 

the here proposed approach might lead to less measurement 

uncertainty, high spatial resolution, and good visual 

interpretability of the results by maintenance staff. Therefore, 

an analysis of the visually detectable wear progress on BSD 

screws based on an integrated camera system developed by 

(Schlagenhauf et al., 2019) and (Schlagenhauf et al., 2020) is 

carried out. For this purpose, ten BSD spindles are 

systematically worn out under controlled conditions in a 

suitable test facility at the wbk Institute of Production Science 

at KIT, Karlsruhe. The wear progress starting with the early 

emergence of pits and proceeding to the ongoing spread of 

pitting is detected and analyzed until the final failure of the 

component. For the first time, the growth of defects on BSDs is 

mathematically described based on images. From this, a 

standards-based visual wear quantification approach is 

proposed and validated. 

II. RELATED WORK  

 Wear Phenomena on Ball Screw Drives 

Initially (Haberkern, 1998) defines the three mechanisms of 

sudden early failure, slow loss of preload, and late failure as 

the underlying principles of BSD failure. Sudden early failures 

are caused by plastic deformations in the BSD-System 

(Haberkern, 1998), (Spohrer, 2019). Because of the sudden 

occurrence of sudden early failures, a visual, time-continuous 

observation is not possible. Slow loss of preload is caused by an 

abrasion effect of the BSD balls as a result of a constant lapping 

process due to the smallest vibrations or constant short-stroke 

operation (Haberkern, 1998). Consequently, this is not a wear 

phenomenon of the BSD spindle itself and will therefore not be 

considered in detail in this paper. 

According to (Haberkern, 1998) and (Forstmann, 2010), the 

third mechanism, late failure, is caused by periodic loads, as 

they frequently occur in rolling or pitching contacts. This wear 

mechanism leads to the wear phenomenon known as pitting. 

Even though (Haberkern, 1998) states that slow late failure 

hardly occurs in industrial scenarios with gentle operating 

conditions, we show that it happenes under high but realistic 

loads. According to (Haberkern, 1998) and (Imiela, 2006), 

tribological wear mechanisms even occur on a properly 

assembled and lubricated BSD since the lubrication film is 

regularly interrupted due to reversing operating modes. 

(Sommer et al., 2018) state that many wear processes involve a 

sequence of different wear mechanisms since the basic wear 

mechanisms adhesion, abrasion, surface disruption, 

tribochemical reaction, and ablation rarely occur individually 

from each other. These observations are also supported by 

(Helwig, 2018) who investigated the wear characteristics on 

ball screws and expressed the assumption of mutually 

influencing wear mechanisms. (Sommer et al., 2018) explain 

this by detached wear particles, which can be a starting point 
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for further wear when a ball rolls over them. Accordingly, 

(Schopp, 2009) conducted structure-borne noise analyses on 

ball screws during destruction tests and derived a three-phase 

wear curve of BSDs depicted in Figure 1 which was also 

presented by (Munzinger et al., 2009) and (Spohrer, 2019). 

 
Figure 1 Wear curve (structure-borne noise) for BSD 

(schematic) according to (Schopp, 2009). 

Initially, the wear signal (e.g., structure-borne noise) is 

constant, since no to minimal wear occurs (area I). With 

increasing running performance, the measured signal increases 

linearly, indicating the formation and progression of wear (area 

II). (Schopp, 2009) concludes that wear must be present in the 

system from approximately 60 % (= 𝐿𝑝𝑖𝑡𝑡𝑖𝑛𝑔) of the service 

life. The gradient of the curve rises sharply at approximately 

90 % of the service life due to mutually reinforcing wear 

mechanisms (Forstmann, 2010) and finally culminates in the 

mechanical failure of the system (area III). (Schopp et al., 2009) 

emphasize that a reliable wear prediction from structure-borne 

noise is inaccurate before reaching 60 % of the service life. 

Furthermore, the noise of the sensor signals and thus the 

uncertainty increases with advancing service life. It can thus be 

stated that, although a damage condition has basically been 

captured by structure-born noise, the exact wear progression 

has not yet been represented in image data. 

 Service Life Standard for BSD 

The service life of BSD is defined by (DIN ISO 3408-1, 2011, 

p. 13) as "the number of revolutions that a ball screw nut (or a 

ball screw) performs with respect to the ball screw (the ball 

screw nut) before the first signs of material fatigue appear on 

either the screw, nut, or rolling element" [transl. by the authors]. 

An empirically derived calculation rule for the nominal life 𝐿10 

is defined by (DIN ISO 3408-1, 2011) as well. The rule dates 

back to (Lundberg & Palmgren, 1952) and is based on the 

dynamic axial load rating 𝐶𝑎. Based on the service life, the 

failure of a component is defined according to one exact point 

in time (the point in time when wear occurs), while the 𝐿10 is 

more of a statistical statement about the minimum time, that 

90% of ball screws can be operated under the same load. The 

nominal lifetime is calculated with: 𝐿10 = (
𝐶𝑎

𝐹𝑚
)3 ∗

106 [𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠]. The service life calculation also depends 

on the used type of nut. Criticizing the service life definition, 

(Huf, 2012) and (Klein & Brecher, 2011) state that reaching the 

service life does not necessarily result in the practical 

inoperability of the system. Additionally, (Schaeffler, 2000) 

describes that after the occurrence of a defect, the system can 

usually still be operated for a certain amount of time. (Drescher, 

2015), (Imiela, 2006), and (Münzing, 2017), on the other hand, 

describe that ball screws often have to be replaced before 

reaching their theoretical service life due to contamination in 

the system, incorrect operation, or excessive wear. In addition, 

(Fleischer et al., 2013), (Haberkern, 1998), and (Schopp, 2009) 

observed service lives of ball screws that were significantly 

above, as well as below, the calculated nominal service life. 

(Haberkern, 1998), (Münzing, 2017) and (Spohrer, 2019) 

classify the calculation rules for the 𝐿10 life of ball screws given 

in (DIN ISO 3408-5, 2011) as being insufficient for real 

applications. (DIN 631, 2020) defines the service life of profile 

rail guides, which have a lot in common with BSDs. This 

standard has already been used by (Münzing, 2017) as the 

foundation for a novel definition of service life for BSD. 

According to this, the end of service life is reached as soon as a 

pitting zone on the raceway exceeds 0.3 times the ball diameter. 

As a function of the rolling element diameter 𝐷𝑤 and the 

diameter of a damage (pitting) 𝑑𝑠, it holds: 𝑑𝑠 ≥ 𝐷𝑤 ∗  0.3. 

However, to use this definition, continuous and quantitative 

monitoring of the damaged areas on the entire BSD spindle 

surface is necessary. A fact not taken into account by this 

formula is that there is no specific service life limit, which is 

generally valid for all applications. Instead, depending on the 

respective accuracy and smoothness requirements, a BSD can 

often be used beyond the occurrence of pitting of a certain size.  

 State-of-the-art Wear Detection Approaches for BSD 

Wear analysis approaches for BSDs are divided into load-based 

and condition-based approaches (Munzinger et al., 2010), 

(Hennrich, 2013). Load-based approaches estimate the wear 

condition of a component based on the cumulated loads applied 

to it during operation (Hennrich, 2013). They can be measured 

effortlessly during operation but lead to a reduced prediction 

quality (Broos, 2012), (Huf, 2012). Condition-based 

approaches, on the other hand, determine the current wear 

condition based on actual wear characteristics (Hennrich, 

2013). They are either measured directly or indirectly based on 

secondary variables. The state-of-the-art wear quantification 

approaches for BSDs mainly utilize indirect measurement 

principles based on the detection and quantification of wear 

effects, rather than the wear characteristics themselves. 

(Hennrich, 2013), (Helwig & Schütze, 2018), (Xi et al., 2020), 

(Schmid et al., 2010), and (Schopp, 2009) present structure-

borne noise-based approaches. (Veith et al., 2020), (Herder, 

2013), (Möhring & Bertram, 2012), and (Imiela, 2006) utilize 

the pre-tension loss in the nut caused by wear. The loss of pre 

tension is a relevant quality measurement and could also be 

regarded as relevant as the late failure which is considered in 

this work. Though the here presented approach has advantages 

in terms of interpretability of the specific damage feature 

pitting. (Riaz et al., 2021), (Riaz et al., 2020), (Spohrer, 2019), 

(Yagmur, 2014), (Hennrich, 2013), (Verl et al., 2009), (Q. Yang 

et al., 2020) and (Cipollini et al., 2019) make use of the control 

internal motor current to indicate wear in the system. (Münzing 

& Binz, 2017), (Broos, 2012), (Stockinger, 2011), and (Imiela, 

2006) presented model-based approaches, and (A. 
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Mannesmann, 2021) measures the temperature on the flange of 

the nut to quantify wear. (Cheng et al., 2019) use the 

temperature in the roller bearings of train wheels for the 

monitoring of their condition. Additional approaches, using the 

temperature of gear units can be found in (Touret et al., 2018). 

(Okwudire & Altintas, 2009) use a finite element model 

incorporating the axial, torsional and lateral dynamics of the 

Ball Screw to increase the modelling of the positioning 

accuracy. This approach enables engineers to better plan the 

fatigue life of an BSD in high speed applications. (Jia et al., 

2019) use the motor current of a feed axis to extract the 

statistical ling term characteristics of the system, which are then 

used to improve the health assessment of the system. (Xi et al., 

2020) present a model to monitor the loss of stiffness of a ball 

screw drive based on the motor current. (Benker et al., 2019) 

use vibration signals of the BSD to build a probabilistic 

classification model to make decision regarding wear in the 

BSD-System. (H. Yang et al., 2021) predict the remaining 

useful lifetime of BSDs by integrating the backlash of the BSD 

into a stochastic degradation model. (Hinrichs et al., 2021) 

analyze the impact of compressing data for the use in 

algorithms for the condition monitoring of BSD. (Alqatawneh 

et al., 2021) successfully investigate the use of neural networks 

for the condition monitoring of a transmission based on 

structure-borne noise. (Krishnakumar et al., 2018) investigate 

several methods based on machine learning techniques to 

analyze vibration data of a machine tool for prognostics health 

management of cutting tools. They show that the use of a neural 

network is best suited for this task. (Lee et al., 2021) study the 

application of deep learning techniques on vibration data of a 

roller bearing. As a result they could match the wear state of the 

bearing with an accuracy of > 90%. (Serin et al., 2020) give a 

detailed review about the use of deep learning techniques for 

the analysis of motor current, structure-borne noise and 

airborne sound for condition monitoring purposes. Further 

work on challenges regarding the analysis and control of 

machine tool feed drives is presented by (Altintas et al., 2011) 

which review the characteristics of several common machine 

tool feed drive systems. (Butler et al., 2022) give a recent 

overview of condition monitoring approaches for machine tool 

feed drives. 

Given the current state of research, there is no well-known 

direct measurement approach and, in particular, none that is 

image-based.  

 Camera System for Wear Analysis on BSD 

The foundation for the here presented visual wear progression 

analysis is an image dataset representing the whole lifecycle of 

multiple BSDs. The dataset contains images of the spindle 

surfaces in a high time and spatial resolution. It is generated 

using a camera system presented in (Schlagenhauf et al., 2019). 

The system as depicted in Figure 2 mainly consists of an 

OV5647 camera, a light source with a diffuser, and a 

communication interface. The assembly can be mounted to 

various ball screw nuts using interchangeable mounting 

adapters. The enclosed housing prevents the penetration of 

contaminants and chips as well as ambient light influences from 

the outside. As shown in (Schlagenhauf et al., 2019), this 

guarantees a consistent image quality. A dataset is generated in 

an iterative process by repeatedly performed camera drives. 

During a camera drive, the BSD spindle is rotated until the 

camera unit has traveled the area of interest of the spindle. 

Samples of an image dataset generated in this way are shown in  

. The three images are taken from the same spindle spot at 

consecutive points in time. Preliminary tests have shown that 

the image quality remains mainly constant throughout the entire 

test and that contamination, e.g., by the lubricant, has only a 

small effect on the image data. 
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Figure 2: Setup of the test bench and detailed view of the 

integrated camera system. Best viewed on screen. 

Figure 3: Three consecutive spindle states t1 - t3 from the image 

dataset generated by a camera system for BSD 
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III. OWN APPROACH 

According to the state of the art, there is a variety of indirect 

measurement variables and methods proven to be suitable for 

wear detection. As shown in various papers (see II.C), different 

wear mechanisms and effects can be detected particularly well 

by distinct measurement methods. In contrast to these indirect 

approaches, image data offers the opportunity for direct, visual 

wear detection. The objective of this work is to understand the 

evolution of pitting on the surface of BSD spindles. Therefore, 

the visually detectable wear phenomenon pitting is evaluated 

regarding defined wear parameters to quantify the wear 

progression on BSDs. In addition, a formula based on existing 

component lifetime standards is defined as a suggested 

termination criterion for condition-based maintenance of BSDs. 

To this end, the wear progression from the initial emergence of 

pitting, through the superposition of wear mechanisms, to the 

final failure of a BSD is examined using images of spindle 

surfaces. The image dataset is generated in destruction tests at 

the Institute of Production Science at the Karlsruhe Institute of 

Technology. 

 Experimental Setup 

The destruction tests are performed on a test bench which can 

wear up to five spindles at a time. In the presented tests, a total 

of ten spindles are worn under constant conditions in five runs 

of two spindles each. The spindles are Bosch Rexroth Spindles 

with a diameter of 32 mm, a lead of 20 mm, and a ball diameter 

of 3.969 mm. The product name which can be used in the 

configurator (Rexroth, 2022) is BASA / 32x20Rx3.969 / FEM-

E-B - 3 / 02 / 1 / 2 / T7 / R / 21KXXX / 21KXXX. The Ball Screw 

drives have a dynamic axial load factor 𝐶𝑎of 23.6 kN with a 

correction factor of 0.9 and a pre-tension-class of C3. Two BSD 

nuts are mounted on each spindle, together with the camera 

system presented in chapter II.D. The two nuts are connected 

by tension rods to apply a specific axial tension force. The axial 

forces are set considerably high (0.4*𝐶𝑎 at 20°C which results 

in ~ 0.6*𝐶𝑎 at an operating temperature of 50°C) to obtain 

realistic results in a reasonable test time. The experiments are 

run with a constant speed of 400 revolutions per minute. The 

wear tests terminate as soon as a critical temperature of 70 C is 

exceeded at a BSD nut flange. The value of 70°C is based on 

(skf, 2022) where it is stated that the allowed operating 

temperature of classical BSDs is up 110°C. Since the authors 

measure the temperature at the nut flange, an maximum allowed 

temperature of 70°C is chosen. The BSDs are lubricated 

following manufacturer’s specifications. The experimental 

setup is depicted in Figure 2. A camera drive is automatically 

triggered every four hours during the entire wear test (= time 

resolution). Within a camera drive, the images are recorded 

with the spindle being rotated by 22.5 ° in between each one (= 

spatial resolution), thus capturing the entire spindle. Two 

spindles with two nuts each are mounted. Through a tension 

rod, which connects the nuts, the nuts are loaded with the load 

described above (0.4*𝐶𝑎). The central spindle is load free and 

connected with the motor. The loaded spindles follow the 

central spindle via a gearbox (gear in Figure 2). The tension 

rods are not directly acting on the nuts but on the adapters on 

which the nuts are attached. The flanges for the nuts are 

constructed in such a way, that no tilting moments can occur at 

the nuts. Additionally, the loads at the tension rods are held at 

the same level. This ensures an even load distribution. The size 

of the pittings was extracted manually from the image data. By 

Figure 4: Exemplary growth of seven randomly picked pits from multiple BSDs. 

The first column shows the initial state, the last column shows the worn state. 
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knowing the spindle diameter and the resolution of the images, 

a conversion to mm2/pixel was made. The analysis of the area 

was then done using the software GIMP. 

 Pitting Image Dataset 

The pitting image dataset is generated from a total of 500.989 

images taken during the destruction tests. During the 

experiments, 148 pittings were located on the surfaces of the 

spindles. The growth of each pitting is depicted in the image 

data. As a result, the pitting image dataset represents the entire 

damage history of each location on the spindles where pitting 

occurred. Each 24-bit sRGB image has a resolution of 

2592 x 1944 pixels. 

IV. RESULTS AND DISCUSSION 

The analysis of visually detectable wear is performed using the 

image dataset presented in the previous chapter III.B. Figure 4 

shows seven randomly selected wear progressions from the 

dataset. The first column depicts the installation condition of 

the spindle, while the last column shows the worn surface 

sections at the end of the wear tests. The effect of heavy 

contamination and debris on the visibility of pitting is found to 

be largely negligible in the aggregated data. This is evident in 

Figure 4 as well. The images are evaluated with respect to the 

following parameters: Axial length, tangential length, and area 

of pitting for each timestamp and pitting location. In addition, 

the total number of pits for each timestamp and the time of 

initial visual appearance of each pit are considered. The results 

of the empirical analysis will be presented in the following. 

During the destruction tests, the formation and growth of a total 

of 148 pitting areas are observed on the surface of eight 

spindles. Two out of ten spindles show no visually detectable 

wear (BSD 9 & 10) although they were strained with the same 

loads as BSD 7 & 8, which show a multitude of pits. The results 

show no clear evidence why there are not defects on those two 

spindles. Due to the termination criteria of 70°C, it was not 

possible to investigate whether pitting would have occurred at 

a later stage. Though this could be assumed as likely. As 

depicted in Figure 5, the spread in the amount of pitting is also 

reflected in the achieved lifetimes of the analyzed BSDs. The 

box plot shows the observed lifetimes of the ten spindles 

normalized to their nominal lifetimes. The median of the 

spindle’s service life is on average significantly higher than the 

nominal lifetimes according to (DIN ISO 3408-5, 2011). At the 

same time, however, an extreme spread of the lifetimes can be 

observed: One spindle has already failed at about 50% of the 

𝐿10, while other spindles have reached more than ten times 𝐿10 

without any visible pitting. 

The strong discrepancies in both the number of pits and the 

observed lifetimes underline the additional value that reliable, 

continuous wear monitoring provides compared to a classical 

lifetime calculation alone. 

 

 Amount of Pitting Spots 

Figure 6 depicts the number of pits for each BSD over the 

normalized lifetime of each spindle.  

Since the absolute lifetimes of the spindles vary significantly 

(Figure 5) and the main interest of the authors lies on the 

relative growth of the pittings, the course of each pitting was  

normalized. Here, 100% represents a worn spindle. From now 

on, the normalized lifetime is used to describe the lifetime of a 

pitting on the spindle with respect to the component failure. 

Following (Schopp, 2009), the wear development of the BSDs 

can be divided into three phases. After an initial period without 

pitting, the first phase of minor initial pitting starts at approx. 

20 % of the BSD’s lifetime. Characterized by an increased 

emergence of pitting, the second phase starts at approx. 60 % of 

the lifetime. The highest rate of pitting is observed in the third 

phase starting at approx. 80 %, therefore resulting in a strong 

increase in pits. (Forstmann, 2010) assumes that wear particles 

influence each other, from which he develops the theory of 

mutually reinforcing wear mechanisms (e. g. wear particle-

enriched lubricant acts like an abrasive medium). For the first 

time, this assumption is visually supported by the analysis of 

the image data, as all eight BSDs affected by pitting experience 

a high increase in defect incidence towards the end of their 

lives. 

The number of pitting areas alone only provides a limited 

indication of the BSD’s wear progression. Therefore, following 

the growth of the pitting areas is examined in more detail. 

 Surface Area of Pitting 

Figure 7 depicts the total surface area of pitting on each spindle. 

Again, a three-phase progression is observed for 6 of the 

spindles, where this is especially obvious for four of the 

spindles. The total pitting area barely increases up to approx. 

60 % of the lifetime (area 1). From 60 % to 80 % a slow 

increase in the total pitting area is observed (area 2). Exceeding 

approx. 80 % of the lifetime, a sharp increase in the total pitting 

area is observed (area 3). Though, since this is not totally clear 

for all of the spindles, further experiments are necessary to 

strengthen these results. 

normalized lifetime [%]

Figure 6: Time progression of the amount of pitting spots on 

the surface of the spindles. 

Figure 5: Locality, spread, and skewness groups of the 

observed spindle lifetimes normalized to their calculated 

nominal L10 lifetimes. 
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Figure 7: Time progression of the total area of pitting on the 

surface of the spindles 

Two phenomena arising mainly at the last 20 % of a BSD’s 

lifetime are hypothesized: First, the increased emergence rate 

of pits in the third phase leads to many new pits (see 

area 3, Figure 6). Second, these late-arising pits have a 

significantly higher growth speed due to mutually reinforcing 

wear mechanisms as stated by (Forstmann, 2010). This is also 

coincident with Figure 8, which depicts the temporal 

development of each pit’s surface area. Each of the 148 curves 

illustrates the surface area evolution of a pit. For the sake of 

readability, the legend has been omitted from the plot. The exact 

course of the pittings is not relevant at this point. What is rather 

relevant, is the fact that

 
Figure 8: Time progression of the surface area of 148 pits 

the majority of the pits emerge after passing 80 % of the 

lifetime, and the growth speed increases significantly towards 

the end of the BSD’s lifetimes. This underlines the hypothesis 

of mutually influencing wear mechanisms. 

 Geometric Dimensions 

Pitting only occur on the side of the ball raceway that is 

subjected to strong surface pressure by the passing balls as a 

result of the axial load applied to the BSD nuts during the tests. 

Since pitting is directly related to ball contact, it is reasonable 

to assume that the characteristics of pitting growth differ 

spatially. Therefore, the upcoming chapter analyzes the pitting 

growth in two directions: Parallel to the raceway direction (= 

tangential spindle direction) and orthogonal to the raceway 

direction (= axial spindle direction). 

 
Figure 9: Time progression of the tangential length of pits. 

The 100% mark corresponds to the formulation of the service 

life limit in chapter F. Outlook: Standards-based Wear 

Quantification. 

Figure 9 depicts the pitting growth in the tangential direction. 

Once again, it is observed that the growth rate rises with 

increasing lifetime. Although the qualitative trend is similar to 

the pit’s surface area (Figure 7), the gradient of the curves does 

not increase to the same extent as previously observed. The 

primary reason for this is the strongly increasing appearance 

rate of pits towards the end of the BSD’s lifetime, which leads 

to a disproportionate rise in surface area. The figure also depicts 

the mark for the life time of the component discussed in section 

F. It can be seen that the components can be operated beyond 

reaching the defined 100% lifetime mark. A crucial observation 

is the absence of a fixed growth limit in Figure 9. This becomes 

particularly clear when considering the axial expansion. 

According to Figure 10, the growth of pits orthogonal to the 

raceway, on the other hand, starts with a phase of rapid growth, 

followed by a phase of flattening, linear growth. In contrast to 

the tangential expansion of the pitting surfaces, the axial 

expansion is limited by the geometry of the balls of the BSD. 

Therefore, at the end of the wear test, the maximum axial 

expansion of the pitting areas reaches just one-tenth of the 

maximum tangential expansion. This effect is also depicted in 

Figure 10. 

 
Figure 10: Time progression of the axial length of pits. Best 

viewed on screen. 

 Mathematical Representation of Pitting 

A key requirement for a visual-based approach to wear 

quantification on BSDs is a mathematical description of pits 

based on geometric features. To this end, we suggest an elliptic 

approximation of a pit’s surface area due to its axial boundary. 

strong 

increase

moderate increase

initial appearance

p
it

ar
ea

[m
m

2
]

ar
ea

[m
m

2
]

ta
n

g
en

ti
al

 l
en

g
th

[m
m

]
a
x

ia
l 

le
n

g
th

[m
m

]



Schlagenhauf et al.: Analysis of the Visually Detectable Wear Progress on Ball Screws  

The surface of a pit is therefore given by: 

𝐴𝑝𝑖𝑡 =
1

2
𝑎 ⋅

1

2
𝑏 ⋅ 𝜋 with 𝑎 as the axial length and 𝑏 as the 

tangential length of the pitting. At a very early stage of growth, 

the length of the major and minor axes can be assumed to be 

equal (𝑎 = 𝑏), which is also evident from the top row of Figure 

11. The figure shows a randomly picked course of pit growth 

from the image dataset. With this assumption, the circular 

surface area is given by  

𝐴𝑝𝑖𝑡,𝑖𝑛𝑖𝑡 =
1

4
𝑏2 ⋅ 𝜋 with 𝑏 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 

which is a special case of an ellipse. 

 
Figure 11: Typical chronological progression of a pit 

This very early stage of growth is followed by a short phase 

with the axial length of a pit exceeding the tangential length due 

to the higher initial growth speed in the axial direction (see 

Figure 10). However, towards the end of the lifetime the pit’s 

axial expansion is bounded by the fixed ball diameter, described 

by the 𝑏𝑎𝑙𝑙– 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐: 𝐴𝑝𝑖𝑡 =
1

2
𝑏 ⋅ 𝑐 ⋅ 𝜋. 

Accordingly, the pit’s surface area 𝐴𝑝𝑖𝑡 is proportional to its 

𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏. An empirical evaluation of the proposed 

elliptic approximation was successfully performed. Figure 12 

illustrates the results of the evaluation vicariously for four 

randomly picked pits. The figure shows the area as well as its 

elliptical approximation over the normalized lifetime. For the 

calculation of the ellipse area, the tangential (b) and axial (a) 

extent of the pittings were measured from the images. The area 

was calculated using the formula 𝐴𝑝𝑖𝑡 =
1

2
𝑎 ⋅

1

2
𝑏 ⋅ 𝜋. As can be 

seen in Figure 12, the approximation matches closely with the 

empirical results. 

 Comparison of Wear Identification Approaches 

State-of-the-art wear quantification approaches for BSDs are 

usually based on indirect measurements of wear effects, such as 

pre-tension loss, structure-borne noise, or temperature 

measurements (see II.C). The camera-based approach applied 

in this paper allows for direct visual analysis of explicit wear 

features such as geometric characteristics of pitting in the image 

data. For the first time, this allows to quantitatively confirm the 

assumptions about the damage progression, which was 

previously derived qualitatively from indirect measurement 

methods. However, in comparison to indirect measurement 

methods using image data, wear can reliably be detected at a 

very early stage of development. For instance, structure-borne 

noise-based approaches as in (Schopp, 2009), (Schmid et al., 

2010), (Hennrich, 2013), (Helwig, 2018), or (Xi et al., 2020) 

are only able to reliably detect wear when approximately 60 % 

of the component’s lifetime is exceeded. Indirect approaches 

primarily quantify the overall condition of the spindle as a 

superposition of all wear spots. However, using images of the 

spindle, with the here presented approach it is possible to 

quantify the growth of each individual pit over its entire 

progression. This allows the wear condition of the spindle to be 

quantified with high accuracy at a high spatial resolution. 

Additionally, in contrast to indirect approaches (e.g., structure-

borne noise) the image data allows an intuitive interpretation of 

the wear condition by domain experts. 

 Outlook: Standards-based Wear Quantification 

The previous considerations clearly show that the point in time 

of the first pitting occurrence 𝐿𝑃𝑖𝑡𝑡𝑖𝑛𝑔 (Figure 6), as well as the 

normalized lifetime 𝐿10 (Figure 5) can vary significantly 

between different BSDs, even though they were operated under 

the same conditions. At the same time, both 𝐿𝑃𝑖𝑡𝑡𝑖𝑛𝑔 and the 

dimensions of the pitting areas are well-suited parameters for 

quantification of the late failure. At hits point, it has to be 

emphasized that the presented approach does only consider pits 

occurring on the BSD spindle, since the camera system is not 

able to consider the BSD-nut or the BSD-rolling-elements. As 

demonstrated in the previous sections, 𝐿𝑃𝑖𝑡𝑡𝑖𝑛𝑔 and the 

dimensions of pits can be precisely and reliably determined 

using an image-based visual approach. In the following, a 

formal approach utilizing this data for reliable condition-

oriented wear quantification on BSDs is presented. The 

approach is inspired by the service life standard for profile rail 

guides (DIN 631, 2020). This standard was already used by 

(Münzing, 2017) in the context of BSDs and defines the end of 

the service life of profiled rail guides as the pitting area 

diameter 𝑑𝑠 exceeding 0.3 times the ball diameter 𝐷𝑤: 𝑑𝑠 ≥
𝐷𝑤 ∗  0.3. Here, 𝑑𝑠 denotes the major axis of the elliptical 

pitting surface, i.e., the tangential pitting length (see Figure 11) 

that is parallel to the ball raceway. Since one BSD is likely to 

have many pitting zones, the pitting ellipse with the longest 

major axis is decisive for the entire spindle. This is a simplified 

assumption made here. In future work, the sum of all 

expansions could be considered instead of to the largest 

expansion. However, considering the largest expansion has 

proven to be sufficient in this case. To ensure that the 

component is replaced as late as possible within the scope of its 

application requirements, while at the same time complying 

with company-specific safety factors against unexpected 

spontaneous failure and time lead for maintenance work, it is 

proposed to add an individual scaling factor α to the definition: 
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 𝑑𝑠 ≥ 𝐷𝑤 ∗  0.3 ∗ 𝛼 with 𝑑𝑠: max. pitting Ø, α ∈
ℝ>0: individual scaling factor, Dw: ball Ø. The parameter α 

can be used to scale the allowed size of the largest pitting. If it 

is wanted that a component should be replaced as soon as there 

is a pit, α can be set to small values e.g. 0.1. Setting the value 

of α to 1 results in the formulation given by (DIN 631, 2020) 

while setting α to values larger than 1 allows a longer operation 

of the spindle. It has to be emphasized, that the value of α has 

to be chosen company and application dependent. Large values 

for α allow longer operation times but also increases the 

probability of a breakdown of the component. Smaller values 

for α results in the opposite. As a result, the service life limit is 

not absolute but depends on the component properties (Dw) and 

individual characteristics (α), thus leading to a more adaptable 

wear quantification. As shown in the experiments, BSDs can in 

fact be used to a limited extent beyond the occurrence of initial 

pitting. This fact is reflected by the proposed lifetime 

estimation. However, it should be emphasized that this service 

life definition can only be implemented reliably and with low 

expense, if the development of pitting can be continuously 

monitored in an automated manner. One suitable solution is the 

camera system for BSD that was used in this paper. Applying 

the formula to the pitting dataset, setting the value of α to 1 

yields the following results: In all cases, the termination 

criterion (𝑑𝑠 ≥ 𝐷𝑤 ∗  0.3 ∗ 𝛼) takes effect well before the 

critical temperature of 70 °C is reached on any BSD (indicating 

its mechanical failure) but after the occurrence of pitting that 

can be tolerated. This can be seen in Figure 9, where the defined 

service life is reached well before the components fail 

mechanically. Therefore, it can be validated that using image 

data of pittings on BSD spindles, together with the extended 

formulation for the life time allows the user to accurately 

indicate wear on the spindle surfaces and replace the 

components before its mechanical failure.  A promising 

extension of the system is the combination with further sensor 

variables, such as the motor current of a directly driven BSD. It 

must be investigated whether a direct assignment of the image 

data to the motor current data allows to match the defects in the 

motor current data. The possibility to use only the motor current 

in operation without the camera system has great advantages 

with regard to practical use.  

V. CONCLUSION 

The authors presented the results of an empirical analysis of the 

visually detectable wear progress on ball screw drive (BSD) 

spindles based on image data. The dataset was generated using 

an integrated camera system presented in (Schlagenhauf et al., 

2019). In contrast to state-of-the-art wear identification 

approaches that resort to indirect wear effects, the image-based 

visual analysis, on the other hand, marks the first direct 

approach. We have shown that the geometric properties of 

individual pits can be precisely analyzed in image data. 

Consequently, the wear condition of a BSD can be reliably 

quantified from images with a high spatial resolution. In 

addition, it has been shown that pits are reliably detected at a 

very early stage, allowing the entire wear progression from the 

initial formation of new pits to the growth of existing pits to be 

captured and analyzed. Hereby, the measurement uncertainty 

remains almost constant over the entire service life, whereby 

only the deposits of wear particle-enriched lubricant can 

influence the evaluations of the image data in the very last 

stages of wear. 

The approach presented here is particularly relevant for those 

applications where wear on the spindle is assumed to be the 

critical wear factor. For this reason, the approach presented here 

is not intended to totally substitute existing approaches. Nor is 

the approach presented here intended to be generally more 

suitable than existing approaches. Though, especially for the 

detection of pittings on the spindle of the BSD does the 

approach described here offer advantages over the state of the 

art. 

In further experiments, the image data could be combined with 

other non-visual signals to increase their interpretability and 

further reduce the overall uncertainty of wear quantification. 
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