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Coexistence of localization and transport in many-body two-dimensional Aubry-André models
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Whether disordered and quasiperiodic many-body quantum systems host a long-lived localized phase in
the thermodynamic limit has been the subject of intense recent debate. While in one dimension, substantial
evidence for such a many-body localized (MBL) phase exists, the behavior in higher dimensions remains an
open puzzle. In disordered systems, for instance, it has been argued that rare regions may lead to thermalization
of the whole system through a mechanism dubbed avalanche instability. In quasiperiodic systems, however,
rare regions are altogether absent and the fate of a putative many-body localized phase has hitherto remained
largely unexplored. In this work, we investigate the localization properties of two many-body quasiperiodic
models, which are two-dimensional generalizations of the Aubry-André model. By studying numerically the
out-of-equilibrium dynamics of large systems, we find very long-lived localization on experimentally relevant
time scales. Surprisingly, we also observe large-scale transport along deterministic lines of weak potential,
which appear in the investigated quasiperiodic models. Our results demonstrate that quasiperiodic many-body
systems have the remarkable and counter-intuitive capability of exhibiting coexisting localization and transport
properties—a phenomenon reminiscent of the behavior of supersolids. Our findings are of direct experimental
relevance and can be tested, for instance, using state-of-the-art cold atomic systems.
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I. INTRODUCTION

Conventional equilibrium statistical mechanics relies on
the notion of thermalization, which requires that all parts
of the system exchange particles and energy. Such systems
are ergodic and obey the eigenstate thermalization hypothe-
sis [1–6]. However, there exist a class of systems that defy
thermalization due to localization of their eigenstates. In his
pivotal work, Anderson [7] showed that random disorder
present in noninteracting quantum systems can cause the co-
herent localization of particle wave functions, a phenomenon
that became known as Anderson localization [8].

One naively expects that adding interactions to a system
leads to dephasing of the coherently localized wave functions,
and to their delocalization. In other words, it leads to the
thermalization of the system. However, both analytical [9–12]
and numerical works [5,6,13–16], as well as experiments
[6,17], have shown that localization can persist to apprecia-
ble length and timescales even in interacting systems, thanks
to a phenomenon known as many-body localization (MBL)
[5,6,9,10,18]. This phenomenon has been investigated in dis-
ordered spin chains [13,15,19], systems with spinful fermions
[20–22] and bosons [23–25]. MBL has since attracted signifi-
cant interest in the literature as a generic mechanism that may
prevent thermalization in closed interacting systems and is
robust with respect to small local perturbations (e.g., changing
the disorder or interaction strength) [6].
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The existence and stability of the MBL phase is now
considered to be established in one-dimensional disordered
systems, where it is proven [12]—under certain plausible
assumptions—that once the disorder strength exceeds some
critical value, a system is localized and its dynamics re-
mains frozen indefinitely. Whether the same is true in higher
dimensions is still under debate. Recent experiments on two-
dimensional (2D) random systems indicate that MBL can
survive on intermediate timescales [26], and several theoreti-
cal works support this scenario [27–32], while others dispute
it [33–38]. The MBL phase has been argued to be destabilized
through the appearance of thermal bubbles mediated by rare
regions of weak disorder that appear in random systems. Such
thermal bubbles act as local thermal baths, which thermalize
their vicinity and grow according to a mechanism dubbed
the avalanche mechanism [16,33,34,36,39–42]. The growth
of thermal bubbles is unbounded for dimensions larger than
one [33,34], meaning that the MBL phase cannot survive in
the thermodynamic limit.

Decades after Anderson’s work [7], it was shown that
quasiperiodic potentials can also lead to similar localization
phenomena in noninteracting systems [43–45]. In contrast to
random systems, however, quasiperiodic potentials are deter-
ministic and lack stochastic rare regions. They are therefore
not directly susceptible to avalanche instabilities and one may
wonder whether, in the presence of interactions, quasiperiodic
systems may host a thermodynamically stable MBL phase in
higher dimensions [46].

One of the most famous quasiperiodic models studied in
both 1D and 2D is the Aubry-André (AA) model [43]. The
quasiperiodicity in the AA model comes from the cosine
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modulation of onsite energies that is incommensurate with
the underlying lattice. The AA model in two and higher di-
mensions does not host rare regions, but, depending on its
realization, it can have deterministic lines of weak potential
(WPLs) [47–49]. Such lines are delocalized in the noninteract-
ing case [47] and are expected to be thermal once interactions
are present [48,49]. A natural question then arises: can WPLs
destabilize the MBL phase in 2D quasiperiodic models, in
analogy to the avalanche mechanism for random systems?

In this work, we explore the localization properties of
the 2D many-body Aubry-André model by studying its out-
of-equilibrium dynamics. The main question we answer is
whether this model supports a stable long-lived MBL phase.
More precisely, we investigate the influence of the determin-
istic weak potential lines on the MBL phase. By analyzing the
decay of the particle imbalance, we obtain evidence for a crit-
ical point WC/J of an MBL transition, and we show that WC/J
is not sensitive to changes in the system size. This suggest that
the MBL phase is stable over experimentally relevant lengths
and timescales. Indeed, the same system size scaling that
evidenced the instability of MBL in random 2D system [37]
shows instead stability in quasiperiodic 2D systems, raising
the intriguing question of its possible stability in the thermo-
dynamic limit. Furthermore, by analyzing specific samples,
we explicitly demonstrate how the WPLs fail to thermalize the
system in the MBL phase, in contrast to the avalanche picture
for disordered systems, at least on our accessible length and
time scales. Even if the coexistence of ergodic WPLs and lo-
calized bulk were to be a finite time effect, it is at the very least
remarkable, and possibly of fundamental and practical impor-
tance, because it highlights an exceptional separation of time
and length scales that appears to be unique to quasiperiodic
systems.

Although ergodicity is broken in the MBL phase, the WPLs
are capable of supporting transport of particles in certain
situations. The coexistence of ergodicity breaking without
the complete suppression of transport is another main re-
sult of our work, intuitively reminiscent of the behavior of
supersolids. To the best of our knowledge, it has not been hith-
erto predicted in many-body out-of-equilibrium quasiperiodic
systems.

The outline of this paper is as follows. In Sec. II, we
introduce the Hamiltonian of the 2D quasiperiodic model and
discuss the two types of Aubry-André potentials used in our
analysis. Section III presents a summary of the single-particle
properties for both realizations of the potential. In Sec. IV,
we introduce the methods we use to study these many-body
systems, together with the observables that serve as a mea-
sure of localization. Secs. V–VII present the main results of
this paper. There we show evidence of localization in our
finite-size many-body interacting systems, we demonstrate its
stability at timescales of at least O(100) hopping times, and
we discuss the role of weak potential lines on localization
and transport properties. Our findings are summarized and an
outlook is presented in Sec. VIII.

II. MODEL

We consider a system of hard-core bosons with nearest-
neighbor interactions on a 2D square lattice with open
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FIG. 1. (a) Sketch of the systems studied in this work. The ki-
netic energy of the particles is determined by a uniform hopping
parameter J . The particles are subjected to an external quasiperiodic
potential Ui j of strength W and interact via nearest neighbor coupling
V . (b) Illustration of the potential U S for the separable AA model
considered in this work, with diagonal weak potential lines. (c) Il-
lustration of the potential U NS for the nonseparable AA model, with
horizontal and vertical weak potential lines. Selected weak potential
lines are highlighted by dashed ovals.

boundary conditions. Particles are subjected to an external
potential that is incommensurate with the underlying lattice,
i.e., quasiperiodic. The Hamiltonian is given by

H =
∑

〈i j;i′ j′〉

[
− J

2
(b†

i jbi′ j′ + H.c.) + V n̂i j n̂i′ j′

]
+

∑
i j

Ui j n̂i j,

(1)

where the pair of indices i j labels the sites (i, j) of a square
lattice; b†

i j/bi j are bosonic creation/annihilation operators that

act on site (i, j); n̂i j = b†
i jbi j is a bosonic density restricted to

be ni j � 1; the summation over 〈i j; i′ j′〉 couples only adjacent
sites; and Ui j is the onsite potential. Accordingly, particles
move on the lattice with constant hopping J , and interact
with nearest-neighbor interaction strength V , see Fig. 1(a). In
this work, we set V = J and work in units where h̄ = 1. The
discrete quasiperiodic potential Ui j is taken from a continuous
function U (x, y) given by the sum of two perpendicular cosine
functions that can be (i) aligned with the underlying lattice
(which we denote U S), or (ii) form a 45◦ angle with the lattice
(which we denote U NS):

U S(x, y) = W {cos(2πb x + φx ) + cos(2πb y + φy)},
U NS(x, y) = W {cos[2πb (x + y) + φ+]

+ cos[2πb (x − y) + φ−]}. (2)

The frequency is taken to be the inverse of the golden mean,
b = 2/(1 + √

5). Examples of the potentials in Eq. (2) are
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FIG. 2. Single-particle localization properties of the 2D separa-
ble AA model. The left panel shows the IPR of each eigenstate.
The three panels on the right show the spatial dependence of the
density of three eigenstates at E ≈ 0 taken from the (i) extended,
(ii) critical, and (iii) localized phases. Note that different colorbar
intensity scales are used in (i)–(iii). The system size used in all the
plots is Lx × Ly = 21 × 21.

shown in Figs. 1(b) and 1(c). In the noninteracting case,
Hamiltonian (1) with potential U S is separable into x- and
y-components, while with potential U NS it becomes nonsepa-
rable; hence, we refer to the two models as the separable and
nonseparable 2D Aubry-André (AA) models.

Note that the phases φx,y,+,− translate the potential with
respect to the underlying lattice [50], and they do not play
a role in the localization properties when the system is in
the thermodynamic limit. However, since we can numerically
study only finite-size systems, the phases serve us as genera-
tors of samples with different realizations of the potential over
which we average the observables we calculate. In this way,
together with using large enough samples such that finite-size
effects are mitigated, we aim to obtain information about the
behavior of the system in the thermodynamic limit.

III. SINGLE-PARTICLE PROPERTIES

Before discussing the many-body physics of the separable
and nonseparable AA models, let us recap the known local-
ization properties of their noninteracting (V = 0) limit.

We start with the separable model [46,51]. The 2D sys-
tem in this case inherits the localization properties of the
1D AA model, namely, a metal-to-insulator transition that
occurs uniformly throughout the spectrum at the critical
point W/J = 1 [43,46,51–53]. This can be seen from the
left panel of Fig. 2, where we show the inverse partic-
ipation ratio (IPR) of each eigenstate. The IPR of an
eigenstate ψ (En) with eigenenergy En is defined as IPR(En) =∑Lx×Ly

m=1 |ψm(En)|4/∑Lx×Ly

m=1 |ψm(En)|2, where the sum is over
all states in the spectrum, and it serves as a measure of

FIG. 3. Single-particle localization properties of the 2D nonsepa-
rable AA model. The left panel shows the IPR of each eigenstate. The
three panels on the right show the spatial dependence of the density
of three eigenstates that are (i) extended over the whole system, (ii)
extended only over WPLs, and (iii) localized. The potential strength
used for (ii) is W/J = 50. Note that different colorbar intensity scales
are used in (i-iii). The system size used in all plots is Lx × Ly =
21 × 21.

localization [54,55]. In the thermodynamic limit, it tends to
0 for extended states while it remains equal to 1 for states
localized on a single site. In the right three panels of Fig. 2,
we show spatial density profiles of three representative states
taken from the (i) extended, (ii) critical, and (iii) localized
phase.

Conversely, in the nonseparable AA model there is no
uniform metal-to-insulator phase transition. A large fraction
of the states remain extended even above the W/J = 1 point
[47–49], see the left panel of Fig. 3 where the IPR of all eigen-
states is shown. It is easy to understand the existence of the
aforementioned extended states by rewriting the potential in a
multiplicative form: U NS(x, y) = 2W cos(2πb x) cos(2πb y),
where we have set without loss of generality φ+ = φ− = 0
[50]. For a fixed x (y) line, the potential in the y (x) direction
is a cosine with strength W (x) (W (y)) that can be arbitrary
small. This means that the system will contain weak potential
lines (WPLs) that lie in the x and y directions and are charac-
terized by having a potential strength much smaller than W ;
this is illustrated in Fig. 1(c), where two lines with vanishing
potential are shown. Generally, throughout the text we refer to
WPLs as lines that encompass sites with an effective potential
strength that is smaller than a critical point WC where a 1D
AA chain localizes [56]. In the thermodynamic limit, it is
always possible to find WPLs with arbitrarily small values of
the potential even when W is extremely large. Therefore there
will be some eigenstates in the spectrum that are extended
over such WPLs; see the panel marked (ii) in Fig. 3.

Note that U S also hosts WPLs, but they always connect
next-to-nearest neighbor sites that lie along a lattice diagonal,
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see Fig. 1(b). The matrix element that connects two closest
sites in such WPLs is proportional to J2/Ui j , and particle hop-
ping along the diagonal is again quasiperiodic, thus leading
to localization for large enough W/J . Further details of the
analysis of noninteracting WPLs in the separable model can
be found in Appendix A.

IV. OBSERVABLES AND METHODS
FOR INTERACTING SYSTEMS

Let us now turn to study the behavior of the interacting
models. To probe the localization properties, we investigate
the quench dynamics from an initial state where the occupied
sites always neighbor unoccupied sites, forming a checker-
board pattern. Such a state corresponds to half-filling and, in
the absence of the external potential, it is generally expected
to thermalize quickly, usually within a few hopping times.
For all our numerical calculations, we use finite systems with
open boundary conditions. The observable we concentrate on
is the particle imbalance, defined as the memory of the initial
checkered state:

I (τ ) = 2

LxLy

∑
i, j

(−1)i+ j 〈ψ (τ )| n̂i j |ψ (τ )〉 . (3)

The choice of a prefactor is appropriate for a half-filled system
to ensure that, at the initial time τ = 0, the value of the
imbalance is I (0) = 1. In localized systems, the imbalance is
expected to saturate to a constant value for τ � 1, while in
ergodic systems it decays towards zero in the long-time and
thermodynamic limit. As we will see in the next section,
the imbalance averaged over different samples with randomly
chosen phases φx,y,+,−, see Eq. (2), approximately follows an
inverse power-law behavior for the timescales studied here (cf.
Fig. 4),

I (τ ) ∝ τ−γ , (4)

where the bar denotes averaging, and the exponent γ depends
on W/J . The vanishing of γ inside the MBL phase reflects the
persistence of the memory of the initial state and serves as a
quantitative measure of localization in interacting systems.

The numerical method we use for our simulations is time-
dependent variational principle (TDVP) [57] applied to matrix
product states (MPS) [58]. Geometrically, this method can be
viewed as the projection of the time evolution onto the MPS
manifold:

d

dt
|ψ〉 = −iPMPSH |ψ〉, (5)

where PMPS is the projection operator, and the size of the
variational MPS subspace scales polynomially with the bond
dimension χ . MPS algorithms probe the low-entanglement
subspace of the entire Hilbert space (exponentially large in
system size), which makes these methods especially suitable
for simulating disordered systems [59]. Convergence of the
algorithm can be checked by increasing χ . Compared to other
MPS approaches, TDVP has the advantage that time evolution
respects the conservation of global quantities—in particular,
for the case of the unitary evolution of a closed system, the
energy [60]. Like all MPS-based methods, however, TDVP is

FIG. 4. Log-log plot of time evolution of the average imbalance
for the (a) nonseparable and (b) separable interacting AA models at
different values of W/J . Dashed grey line is the noninteracting case
with W/J = 10 in both models. The insets show the decay coefficient
γ , Eq. (4), extracted from fits to the averaged imbalances of the
interacting systems. The fitting window we used is τ ∈ [50, 100]. In
all plots, we used systems of size Lx × Ly = 16 × 5, averaging over
64 different samples. All results converged with a bond dimension
χ = 128 and a time step δτ = 0.05. Error bars are 1σ intervals based
on a bootstrapping procedure [63].

restricted to the low- to moderately entangled subspace of the
Hilbert space, a drawback compared to exact diagonalization
(ED) methods that probe the entire Hilbert space. This implies
that dynamics can be simulated only up to relatively short
times for ergodic systems—meaning in our case the limit of
small W/J . This is because the entanglement grows rapidly in
ergodic systems. As the strength of the quasiperiodic potential
is increased, the available timescales likewise increase as the
system becomes only weakly ergodic or even nonergodic.
In this case, timescales of O(102J−1) are accessible, with
system sizes much larger than those accessible to ED: O(102)
compared to around 20 sites only for ED. Further details and
benchmarks are presented in Appendix C, and an extensive
discussion of the benefits and drawbacks of the method is
presented in Ref. [59].

Notwithstanding the caveats mentioned above, TDVP is a
powerful numerical method that allows us to study the dynam-
ics up to a hundred hopping times—a timescale comparable
to state-of-art experiments [17,46,61]. In our simulations, of
course, we have full control of the closed system and insight
into its microscopical behavior. For instance, we can choose
the initial state without any errors; there is no decoherence
and loss of particles caused by coupling to the environment;
the system can be scaled from small to relatively large sizes;
and a high tunability of parameters in the Hamiltonian allows
for simulating a wide range of physical phenomena. TDVP is
one of the few methods suitable for treating large interacting
systems in two dimensions, and is especially suited for simu-
lating nonergodic systems [37,59,62].
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V. MANY-BODY PROPERTIES

We numerically calculate the averaged imbalance (4) at
different values of W/J for finite systems of size Lx × Ly =
16 × 5. The results for both the nonseparable and the separa-
ble AA model are shown in Figs. 4(a) and 4(b), respectively.
Over the accessible timescales, and for potential values close
to the MBL transition (W/J � 10), we find that the dynamics
of the averaged imbalance is well approximated by an inverse
power-law decay. The decay of the imbalance slows down
with increasing W/J until it saturates to a constant value for
W/J � 20 − 30. The insets in Figs. 4(a) and 4(b) show the de-
cay coefficient γ obtained from the curves in the main panel.
With increasing W/J , γ decreases rapidly. The error bars are
1σ intervals estimated using the bootstrapping procedure [63].
It shows a drastic reduction around W/J = 20 and essentially
vanishes for W/J � 30 (within 2 and 3 standard deviations,
for the S and NS models, respectively). These finite-time
simulations suggest that there is a dynamical transition from
an ergodic to a localized phase in both models occurring
somewhere between W/J = 20 and 30.

VI. STABILITY OF THE TRANSITION

In this section, we discuss whether the transition discussed
above is stable upon increasing the system size, which by ex-
trapolation indicates possible stability in the thermodynamic
limit. In a recent paper [37], some of us showed that for a
2D model with a random onsite potential, the critical disorder
strength WC/J diverges with increasing system size due to
the avalanche instability. This suggests that the MBL phase
is unstable in higher dimensional random systems in the ther-
modynamic limit [33,34,37,39].

To test if the same is true for separable and nonseparable
interacting AA models, we numerically calculate the averaged
imbalance for several systems with fixed Lx = 16 and varying
Ly. We then extract the decay coefficient γ from Eq. (4) and
show its dependence on W/J in Fig. 5. In both quasiperiodic
models, γ (W/J ) behaves similarly with increasing Ly, see
Figs. 5(a) and 5(b), and such behavior is markedly different
from the case of random disorder, see Fig. 5(c). In the latter,
curves for larger Ly shift towards higher values of W/J , in
agreement with WC/J diverging with Ly [37]. In the former, on
the other hand, curves for different Ly lie on top of each other
suggesting that WC/J does not depend on Ly. These results
provide evidence that the MBL phase in quasiperiodic AA
models is more stable than in random systems.

Surprisingly, the transition points in the interacting sepa-
rable and nonseparable AA models occur at similar values,
even though their single-particle properties are different. Fur-
thermore, in the averaged imbalance and its decay coefficient,
we do not see any signatures of the WPLs, which may have
been a priori expected to play a similar role to rare regions in
random systems in destabilizing the MBL phase.

To gain deeper insight into the differences between the sep-
arable and nonseparable AA models, we analyze each sample
separately. In Figs. 6(a) and 6(b), we show the imbalance of
each sample inside the MBL phase, for W/J = 30. In the non-
separable model, Fig. 6(a), there are some samples in which
the imbalance slowly decays, (see e.g., the one highlighted by
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FIG. 5. Decay coefficient γ of the average imbalance, Eq. (4),
as a function of potential strength W/J and width of the system Ly

for the (a) nonseparable, (b) separable, and (c) random models. In
all plots, we used Lx = 16 and do the inverse power-law fit over
a time window τ ∈ [50, 100]. The averaging was performed over
32 samples for Ly = 2, 3, 4, and 64 samples for Ly = 5 in the
quasiperiodic cases, while for random disorder, we used 32 samples
for every Ly. All results converged with a bond dimension χ = 128
and a time step δτ = 0.05. Error bars are 1σ intervals based on a
bootstrapping procedure [63].

a dark green line). Such decay occurs in samples that contain
WPLs (cf. Fig. 7), where the potential only weakly perturbs
the particle motion. However, most of the samples do not
contain such WPLs when the phases of the potential, Eq. (2),
are chosen randomly. Therefore the decay due to the WPLs
becomes negligible after averaging over many samples. In the
separable model, Fig. 6(b), no imbalance decay is observed at
long times. This is a feature of the checkerboard initial state,
which leaves the diagonal WPLs either completely fully or
empty, and therefore particles cannot move along such WPLs.
In Sec. VII B 1, we shall analyze the diagonal WPLs starting
from different initial states and observe nonvanishing trans-
port even when the rest of the system is strongly localized.
Note that some samples in Fig. 6(b) saturate at significantly
lower values due to the short time dynamics where particles
hop between pairs of sites with similar values of onsite poten-
tial, e.g., see the top two rows of sites in Fig. 1(b).

In Figs. 6(c) and 6(d), histograms of the decay coefficient
for the nonseparable and the separable model, respectively,
are shown as a function of W/J close to the MBL transition
point. In the separable model, Fig. 6(d), the width of the dis-
tribution of γ rapidly reduces with increasing W/J , resulting
in a growing number of counts around γ = 0. In the non-
separable model, Fig. 6(c), the width of the distribution also
reduces with increasing W/J , but much more slowly than in
the case of the separable model. Comparing the distributions
at W/J = 30 from Figs. 6(c) and 6(d), we observe that in
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FIG. 6. Imbalance I for 64 samples with different randomly
chosen phases φ in the case of (a) nonseparable and (b) separable
AA model. We set W/J = 30, well inside the localized phase. The
dark green line in (a) shows one of the imbalance curves that decays
even though the system is in the localized phase. In (c) and (d),
distributions of γ across different samples and as a function of W/J
for the nonseparable and the separable AA model are shown. The
system size used in all plots is Lx × Ly = 16 × 5, and the fitting
widow used in (c) and (d) is τ ∈ [50, 100]. In all plots, system is
initialized in a checkerboard state. All results converged with a bond
dimension χ = 128 and a time step δτ = 0.05.

the latter, the peak around γ = 0 is twice as high as in the
former. This difference comes from the ergodic WPLs in the
nonseparable model, which increase the value of γ in samples
that contain them. Even for extremely large W/J , where the
distribution of γ in the separable model becomes a delta peak
located at γ = 0, in the nonseparable model, the distribution
is still expected to have a finite width.

VII. WEAK POTENTIAL LINES (WPLs)

In this section, we focus on the WPLs and we investigate
their impact on the behavior of the system. For simplicity, we
tune the phases in the potential so that it vanishes exactly
along the WPLs. Furthermore, we set W/J = 50 which is,
according to the analysis from previous sections, deeply in the
localized phase. The main goal of this section is (i) to confirm
that thermal WPLs do not spread out to the localized parts of
the system and (ii) to study transport along the WPLs.

A. WPLs in the nonseparable AA model

Let us start with the interacting nonseparable AA model.
First, we investigate the behavior of the particle density in two
samples, one containing a WPL in the x direction with the
vanishing potential, Fig. 7(a), and the other with no WPLs,
Fig. 7(b). To create the aforementioned samples, we first
set the phases of the potential to φ+ = φ0 + δφ+ and φ− =

n̂(τ)n̂(τ)
τ [J-1]
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FIG. 7. Time evolution of the density in the nonseparable model.
The two top panels show, respectively, a sample with (a) and without
(b) a horizontal WPL. A dashed oval marks the WPL in (a) where
the potential is tuned to vanish. The bottom panels (c) and (d) show
snapshots of the density 〈n̂(τ )〉 at three different times, calculated us-
ing the potentials shown in (a) and (b), respectively. The system size
is Lx × Ly = 16 × 5 and we set W/J = 50, deeply in the localized
phase. All results converged with a bond dimension χ = 128 and a
time step δτ = 0.05. Note that we use open-boundary conditions in
both the x and y directions.

−φ0 + δφ+, so that we obtain

U NS
i j = 2W cos(2πb i + δφ+) cos(2πb j + φ0), (6)

where δφ+ and φ0 shift the potential along the x and y direc-
tions, respectively. Now, by tuning φ0, we set one sample to
have a horizontal WPL in the middle ( j = 3), i.e., cos(2πb ×
3 + φ0) = 0, whereas we set the second configuration to not
contain any horizontal WPLs. The residual phase parameter,
δφ+, is chosen randomly. Furthermore, we set W/J = 50 for
both samples, which is in the localized phase, see Figs. 4 and
5(a). We numerically calculate the time evolution of the parti-
cle density 〈n̂i j (τ )〉 starting from an initial state that resembles
a columnar density wave with a period of two sites, see the
τ = 0 snapshot in Figs. 7(c) and 7(d). Such an initial state
reduces the transport signature of particles hopping between
two neighboring sites with similar values of the potential, see
Fig. 7(b) where pairs of sites that are located at j = 2 and 3
(counted from the bottom) have almost degenerate values of
the potential, i.e., Vi, j=2 ≈ Vi, j=3.

The evolution of the density is shown in Figs. 7(c) and 7(d).
In the former, the density quickly spreads over the WPL while
remaining localized away from it. In the latter, the density
profile does not change for at least one hundred hopping times,
which is the longest time that we simulated.

To quantitatively show the difference between samples
with and without WPLs, we calculate the averaged imbalance
I (τ ), Eq. (4), as well as the y-dependent averaged imbalance

I j = 2

Lx

Lx∑
i=1

(−1)i+1 〈ψ (τ )| n̂i j |ψ (τ )〉 . (7)
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FIG. 8. Quantitative effect of the WPLs. (a) Imbalance defined
in Eq. (3), and modified for a columnar density wave as the initial
state, averaged over samples with (red line) and without (blue line)
horizontal WPL. (b) and (c) show the y-dependent imbalance defined
in the main text, averaged over samples with and without horizontal
WPL, respectively. The index j labels the rows of the system starting
from the bottom. In all plots, we use Lx × Ly = 16 × 5, W/J = 50,
and we average over 10 different samples all having the same number
of horizontal WPLs. All results converged with a bond dimension
χ = 128 and a time step δτ = 0.05.

The former is the same observable we used in the previous
sections, but modified for a columnar density wave as the
initial state, while the latter can capture the impact of the
WPL on its localized neighborhood. For the two categories of
samples, we use the same value of φ0 as in Figs. 7(a) and 7(b),
and average over different randomly chosen δφ+. Note that
the number of horizontal WPLs is conserved when changing
δφ+.

The results for I (τ ) and I j (τ ) are shown in Fig. 8. The
total imbalance averaged over samples without horizontal
WPLs has a value close to 1 at all times, while in the samples
that contain a horizontal WPL the imbalance decays over
time, see Fig. 8(a). The decay in the latter case is due to the
ergodic WPL, which can be seen from Fig. 8(b), where the
y-dependent imbalance I j (τ ) is seen to decay only when
j coincides with the position of the horizontal WPL, i.e.,
when j = 3. For other values of j, the y-dependent imbalance
remains close to unity with a small deviation from it due to
the presence of vertical WPLs, see Appendix B. For samples
without horizontal WPLs, I j (τ ) does not decay for any j.

We can safely conclude that a thermal WPL in the non-
separable AA model does not thermalize its closest localized
neighborhood, at least on the simulated timescale of one hun-
dred hopping times [64]. Therefore we argue that the system
remains nonergodic for W � WC, where WC/J ≈ 30 as fol-
lows from Figs. 4(a) and 5(a), but transport is not zero for any
W/J and also independent the initial state.

B. WPLs in the separable model and state-dependent transport

As discussed in Sec. III, the separable AA model exhibits
diagonal WPLs, with no direct hopping between their sites.
Therefore, to move along the WPL, particles need to hop
to sites outside the WPL which have finite onsite poten-
tial, and consequently make the transport properties more
complex.

In the rectangular geometry discussed thus far, the diagonal
WPLs span only a few sites, resulting in a relatively weak
impact on the averaged observables. To maximize the effect
that we want to study, we use a square geometry, Lx = Ly,
and choose the phases φx and φy in Eq. (2) such that one
WPL (with potential equal to zero) always lies on the longest
diagonal, see the dashed oval in Fig. 9(a). We then compare
the time evolution of the density of particles 〈n̂(τ )〉 in two
samples that are deeply in the localized phase. One of the
samples contains a WPL with zero potential, Fig. 9(a), and
the other one does not, Fig. 9(b). While in the latter the initial
density profile stays constant for all times, in the former we
notice some changes of the density on sites that belong to
the WPL. More precisely, we see once again that the initial
density profile smears out on the WPL and stays unaffected
away from it.

To quantify the behavior observed in Fig. 9, we calculate
the averaged imbalance I(τ ), for samples with and without
diagonal WPL. For the averaging, we adopt a similar proce-
dure as for the nonseparable model discussed in Sec. VII A.
We first write the phases in Eq. (2) as φx/y ≡ ±φx′ + φy′ , so
that we obtain

U S
i j = 2W cos(πb (i + j) + φy′ ) cos(πb (i − j) + φx′ ), (8)

where φy′ controls the y′ position [cf. Fig. 11(a)] of the WPL
marked with a dashed oval in Fig. 9(a), and φx′ shifts the
potential along the x′ direction. The averaging is then done
over samples with different φx′ . Note again that such averag-
ing preserves the number of WPLs along the x′ direction, and
therefore the WPL marked with a dashed oval in Fig. 9(a). The
number of WPLs along the perpendicular direction, y′, can
change from sample to sample, but due to sample averaging,
their impact on the final averaged observable is small.

In Fig. 10(a), we show the averaged imbalance, defined in
Eq. (4) and modified for a columnar density wave as the initial
state, and compare the cases with and without zero-potential
WPL. For the latter case, the averaged imbalance quickly
saturates to a value close to 1. In the former, the imbalance is
expected to oscillate around a value slightly lower then 1 and,
assuming that a complete delocalization occurs only on sites
along the WPL, never go below 1 − Ldiag/L2 = 1 − 8/64 =
0.875. Furthermore, since the particles that move on the diag-
onal WPL need to tunnel through high potential barriers given
by the values of the onsite potential of the sites adjacent to the
WPL, their hopping amplitudes are t eff

i ∝ t2/Ui,i±1, t2/Ui±1,i.
In some places throughout the WPL, the effective hopping
is t eff

i � t and the oscillations in the imbalance caused by
the finite size of the WPL have a large period. Our numer-
ical results in Fig. 10(a) are indeed consistent with these
expectations.

After analyzing the averaged imbalance of the whole sys-
tem, we turn to the microscopic behavior of particles on the
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FIG. 9. Time evolution of the density of particles in the separable model. In the leftmost panels, a single sample with (a) and without
(b) diagonal WPL is shown. A dashed oval marks the WPL in (a) where the potential is tuned to vanish. (c) and (d) show snapshots of the
density 〈n̂(τ )〉 at four times calculated using the potential landscape shown in (a) and (b), respectively. The system size is Lx × Ly = 8 × 8 and
we set W/J = 50, deeply in the localized phase. We used a bond dimension χ = 128 and a time step δτ = 0.05.

WPL and its surroundings. To check whether the ergodic WPL
hybridizes with neighboring sites, therefore seeding a thermal
phase, we concentrate on the partial imbalance calculated
separately for several diagonals that lie along the x′-direction.

FIG. 10. Quantitative effects of the diagonal WPL in the sepa-
rable model. (a) Imbalance of the whole system defined in Eq. (3)
averaged over samples with (red line) and without (blue line) diago-
nal WPL. The system is deeply in the localized phase with potential
strength set to W/J = 50. (b) and (c) show the diagonal imbalance
defined in the main text for the localized and thermal phase, respec-
tively. A negative/positive j denotes the diagonals below/above the
main diagonal marked with a dashed oval in Fig. 9(a). For (a) and
(b), we used bond dimension χ = 128, while for (c) we had to use a
higher bond dimension, χ = 256, to reach convergence. In all plots
we use a square system of size Lx × Ly = 8 × 8 and we average over
10 different samples, as described in the main text. A time step used
in all plots is δτ = 0.05.

Such imbalance is defined as

Idiag
j = 1

Ldiag
j /2�

∑
�r∈ j−th diag

(−1)α�r 〈ψ (τ )| n̂�r |ψ (τ )〉 , (9)

where �r marks the position of sites that are part of the di-
agonal, j indicates the position of the diagonal, with j = 0
being the main diagonal, explicitly marked in Fig. 9(a), and
±1 are the neighboring diagonals above/below it, respec-
tively. Ldiag

j is the number of sites on the j-th diagonal and
α�r ≡ 〈ψ (0)| n̂�r |ψ (0)〉 + 1. In Fig. 10(b), we show the nu-

merically obtained Idiag
j for the main diagonal and two of its

neighboring diagonals in each perpendicular direction. While

Idiag
0 shows the same oscillatory behavior as the imbalance of

the whole system I, the other Idiag
j �=0 remain constant and never

go below 1. In contrast, when the system is in the ergodic

phase, all diagonal imbalances Idiag
j decay, as it can be seen in

Fig. 10(c) where the potential strength is set to W/J = 5. We
therefore conclude that WPL does not destabilize localized
parts of a 2D system, at least on the simulated timescales.
Furthermore, if the system is initialized in a columnar density
wave, a finite particle transport occurs along the diagonal
WPLs.

1. Transport through the WPL

To investigate transport of particles along the diagonal
WPL in more detail, we turn to a simpler system shown in
Fig. 11(a), known as a diamond chain [65–67]. This quasi-
one-dimensional geometry corresponds to three neighboring
diagonals of a 2D square lattice. We set the hopping t to be
constant (i.e., t = J/2, where J = 1) and the onsite potentials
to be

U u
j = 2W cos(−πb + φy′ ) cos(2πb j + πb + φx′ ),

U m
j = 2W cos(φy′ ) cos(2πb j + φx′ ),

U d
j = 2W cos(πb + φy′ ) cos(2πb j + πb + φx′ ), (10)
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FIG. 11. Many-body diamond chain and its localization proper-
ties. (a) By removing sites from a 2D separable AA model (left) that
do not belong to the WPL or to its neighboring diagonals, one arrives
at the diamond chain (right). The sites that were part of the WPL
in the 2D system now belong to middle sites of the diamond chain
and are denoted with m. Sites from the upper/lower diagonal in the
2D model lie on the upper/lower sites in the diamond chain and are
denoted with u/d . (b) The average particle imbalance defined on the
middle chain, see the main text, and calculated for an initial state that
resembles the density wave used in Figs. 9 and 10, reproduced in the
inset. The imbalance decays for all values of W/t and there is no sign
of a localization transition. We used systems with L = 20 unit cells
and the averaging was performed over 10 different samples. We also
used a time step δτ = 0.1 and a bond dimension χ = 128.

corresponding to any three adjacent diagonals of the separable
AA model that extend in �x′ direction. To obtain a WPL, we
need to set φy′ = π/2 + δ, where δ is small enough, such
that the on-site potential on the middle chain (m) is much
smaller than on the upper (u) and lower (d) chains. The case
δ = 0 describes a WPL with zero potential. With a diamond
chain geometry, we can simulate the dynamics of substantially
longer WPLs than the ones studied in square and rectangular
systems.

Single-particle properties of a diamond chain are discussed
in detail in Appendix A. In the case of a zero-potential WPL
(δ = 0), the states in the spectrum with E �= 0 undergo a local-
ization transition at the critical point WC/t = √

2/| cos(πb +
π
2 )|, see Eq. (A7). At E = 0, there exist an extensive number
of states that remain extended for any W . The wave function
of these states spreads mostly over the middle chain m with
excursions into u and d chains at positions j where the on-
site potential U u,d

j is weak. On the other hand, for a WPL
with finite onsite potentials, i.e., when δ �= 0, a mobility edge
develops and the localization of E �= 0 is no longer uniform
throughout the spectrum. Furthermore, there are no extended
zero energy states, but all states localize above some W . By
adding the interactions to a many-body diamond chain with
δ �= 0, we expect a many-body localization transition to occur,
see Appendix A and Fig. 13, because all the states in the
spectrum are localized above a certain potential strength. For

δ = 0 case, the interactions will lift the degeneracy of E = 0
states and localize them, therefore, again leading to a many-
body localization.

To understand the dynamics along the WPL illustrated in
Figs. 9 and 10, one ought to consider the peculiarity of the
corresponding initial state shown in the inset of Fig. 11(b).
For a strong potential, particles in the upper and lower sites are
localized and therefore restrict the hopping of particles from
the middle sites (recall that multiple occupancy of a site is not
allowed). As a consequence, particles initialized on the middle
sites are able to move only along a one-dimensional zigzag
pattern which is obtained by excluding the occupied upper and
lower sites, see Fig. 14(a). The geometry that follows from
the aforementioned zigzag pattern is known as a quasiperi-
odic mosaic lattice [68]. The single-particle spectrum of a
quasiperiodic mosaic lattice has a mobility edge given by
EC = 2V ± t2/(W | cos(πb + π

2 )|) when δ = 0, Eq. (A15) (a
full derivation is given in App. A 3 for completeness). This
means that for any value of W there exist extended states
with energies in the interval −|EC| < E < |EC|. These single-
particle states can then make the interacting system thermal
even above the transition point of a diamond chain given
by Eq. (A7). For the case of a WPL that has nonzero on-
site potential, i.e., when δ �= 0, the single-particle mobility
edge described above breaks down and a localization of all
states occurs above a certain W/t that depends on δ, see
Appendix A 3 and Fig. 14(c). The many-body system is then
also expected to be localized for strong enough potentials.
However, if δ is very small, we expect the localization in a
many-body mosaic lattice to occur at values that are much
larger than WC discussed in Sec. V. Therefore the transport
through WPLs with small enough δ can survive even if the
rest of the 2D system described by the separable AA model is
deeply inside the localized phase.

Let us now study the effect of nearest neighbor interactions
in a diamond chain, using the same TDVP method as before.
We initialize the system in the state shown in Fig. 11(b),
evolve it with the TDVP algorithm, and calculate the imbal-
ance Im on the middle chain only. This corresponds to the

quantity Idiag
0 defined in Eq. (9). Note that we do not restrict

the particles to move in a zig-zag pattern, but the simulations
are preformed on the full diamond chain lattice with the de-
scribed initial state. The result for an interacting model with
V = t is shown in Fig. 11(b). The imbalance Im decays for
all values of W/t meaning that the system does not localize
even well above the single-particle transition WC obtained in
Eq. (A7). Therefore the chain supports transport irrespective
of the potential strength, as predicted in agreement with our
previous considerations.

VIII. DISCUSSION AND CONCLUSIONS

In this work, we studied the out-of-equilibrium dynamics
of interacting hard-core bosons in two realizations of the 2D
Aubry-André model, namely, a separable (S) and a nonsep-
arable (NS) model. The time-dependent variational principle
(TDVP) was employed to numerically study the time evolu-
tion of large systems, up to ∼100 sites.

We find that a stable many-body localized (MBL) phase
exists in 2D quasiperiodic systems, at least as far as we can
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infer from the system sizes and timescales that we were able
to access—in stark contrast to analogous two-dimensional
random models, where over comparable system sizes and
time scales a clear instability is seen, in the form of a drift
with system size [37]. The occurrence of MBL is inferred
from the saturation of the averaged particle imbalance in
large systems. More precisely, by fitting a power-law decay
to the imbalance—which is found to be a good approxima-
tion over our accessible timescales of a hundred hopping
times (Fig. 4)—we observe that the decay coefficient γ

decreases with increasing potential strength W , until it van-
ishes for W/J � WC/J ≈ 30 in both S and NS models. This is
consistent with a transition from an ergodic to an MBL phase.

While we can disregard the possibility of rare weakly dis-
ordered regions due to the quasiperiodic, deterministic nature
of the potential, our systems are subject to weak potential lines
(WPLs). Within the parameter range studied in this work,
WPLs do not appear to lead to global thermalization even at
the long times studied in this work, as seen for example in
Figs. 8(b) and 10(b). To test this, we consider the influence of
system size and indeed we observe that WC remains constant
within our accessible system sizes, Figs. 5(a) and 5(b), in
contrast to similar simulations of random 2D systems [37] and
also to the additional numerics in this paper [Fig. 5(c)].

Since our study is based on numerical simulations, it is
difficult to make rigorous claims about the stability of MBL
in infinite quasiperiodic systems and at infinite times. There
could exist, in principle, extremely slow processes that are
able to thermalize the system only at length and time scales
much larger than the ones we probe. For example, resonances
between distant sites in large systems could lead to slow dy-
namics that activates at extremely long timescale [16,40,41].
Another caveat of the numerical analysis is that for finite
WPLs the many-body level spacing could be larger than the
decay rate of the localized parts coupled to the WPL, which is
given by the Fermi golden rule, and thus the avalanche would
not start. On the other hand, for infinite systems, ergodic
WPLs have infinite length with the level spacing equal to
zero, which means that they act as perfect baths. According
to Refs. [33,34,69] this would lead to an unbounded growth
of the ergodic regions until the whole system is eventually
thermalized. Nevertheless, due to the small decay rate of the
localized parts coupled to the WPL, the avalanche would be
an extremely slow process with a timescale much larger than
the ones accessible by the state-of-art experiments.

Interestingly, however, WPLs do affect the transport prop-
erties even on short timescales. This manifests in a different
way for the S and NS models, as can be seen from the
analysis of individual samples before averaging, see Fig. 6.
While the distribution of γ in the S model shrinks towards
a delta function when tuning W to larger values, in the NS
model it remains relatively broad even inside the localized
phase. This is attributed to the WPLs that spread out along
the x and y directions in the NS model, which allow for
the long range transport of particles, and therefore cause the
imbalance to partially decay. As discussed in Sec. VII A,
transport through such WPLs is not affected by the choice
of the initial state, and exists even when the rest of the sys-
tem is deeply inside the localized phase, see Figs. 7 and 8.
Such a coexistence of finite particle transport within an MBL

phase has, to the best of our knowledge, never been discussed
before.

WPLs also appear in the S model, but contrary to the NS
model, they lie on diagonals. Consequently, the transport over
them strongly depends on the choice of an initial state. The
checkerboard initial state either completely fills the sites of
the WPL or leaves them empty—hence, transport is strongly
suppressed when W > WC. In Sec. VII B we considered a
different initial state, namely, a columnar density wave, that
fills every second site of the diagonal WPL. In this case, long
range transport is indeed recovered, Figs. 10(a) and 10(b),
with particles hopping alternatively on sites above and below
the WPL in order to move along the diagonal, forming a
zigzag pattern. The behavior is equivalent to a 1D mosaic
lattice, which contains a mobility edge in the spectrum and
extended single-particle states exist at large W (which can
go to infinity in a case of a WPL with zero potential), see
Appendix A 3. Such extended states support transport both in
single-particle and many-body cases, Fig. 11(b). Since in an
infinite 2D system it is always possible to find a WPL with
infinitesimally low potential, transport over such WPL will
not be suppressed no matter how strong the potential is, as
long as the system evolves from a columnar density wave.
Note, however, that a conducting WPL does not affect the
rest of the 2D system, which remains localized. On the other
hand, if the localized 2D system is initialized in another state,
e.g., where particles are randomly distributed throughout the
system, the dynamics over a WPL can be mapped onto a
diamond chain, which has an MBL transition at finite WC.
As a consequence, no transport is possible anywhere in the
localized system described by the S model, see Appendix A
and Fig. 13.

The results presented in this work are of direct relevance to
experimental realizations, for instance using ultracold atoms
in optical lattices. A particularly promising experiment is
discussed in Refs. [70–73], where two square optical lattices
are created with pairs of perpendicular light beams. In such
a setup, by setting one optical lattice to be very deep and
the other one shallow, one can create a tight-binding square
lattice with an external 2D cosine potential, respectively.
Quasiperiodicity of the external potential then comes from the
incommensurate wavelengths of the shallow and deep lattices.
To create a separable model, two square lattices should be
aligned, while for the nonseparable model the lattices should
form an angle of 45◦. Interactions in ultracold atomic systems
can be easily tuned. Such an experiment could go a step
further and, along with testing the predictions of this paper, it
could also shed light in what is happening inside the ergodic
phase of the models (W � WC).

Our work opens up a wide range of important avenues
for investigation of MBL in 2D systems. One direction is
to study MBL in more exotic models like Bose-Hubbard or
Fermi-Hubbard models with the presence of a quasiperiodic
AA potential. Another interesting question is related to the
stability of the MBL in 2D systems that are subjected to long
range interactions, which are of particular interest for exper-
iments involving trapped ions [74]. WPLs may, in this case,
be sufficient to globally thermalize the system on timescales
much shorter than in our case of contact interactions. Fur-
thermore, using our approach it is possible to investigate the

184209-10



COEXISTENCE OF LOCALIZATION AND TRANSPORT IN … PHYSICAL REVIEW B 106, 184209 (2022)

effects of coupling the localized system to various types of
thermal baths (e.g., one- and two-dimensional baths). Our ap-
proach can also be deployed to study MBL in 2D nonperiodic
lattices like the Penrose or Ammann-Beenker tiling, which are
relevant to ongoing experiments in ultracold atomic systems
[70,71]. Such lattices with quasiperiodic arrangements of both
onsite potential and hopping should not host any regions of
weak potential, meaning that transport of particles should be
fully suppressed inside the localized phase.

Lastly, the properties of the ergodic phase, i.e., the param-
eter regime with W � WC, of the models studied in our work
remain unexplored. The entanglement entropy grows much
faster inside the ergodic phase, compared to the MBL phase,
and thus the TDVP method quickly becomes impractical due
to the large bond-dimensions needed for such simulations,
which make the numerical calculations exceedingly long. One
could tackle this problem by mapping it to the analogous prob-
lem of Anderson localization on appropriate Bethe lattices
[75–77]. This simplified approach could give some insight
into the transport properties inside the ergodic phase, for in-
stance whether there is a subdiffusive regime present when
approaching WC, like in the case of random 2D interacting
systems, or it is absent like in a 1D Aubry-André model
[78,79].

Note added. While preparing this manuscript, we be-
came aware of Refs. [80,81], which use different approaches
to argue the stability of MBL in 2D quasiperiodic sys-
tems. Reference [81] also argues that large enough ergodic
inclusions—such as the WPLs—will eventually destabilize
the MBL phase and thermalize the whole system. While we
do not observe it in our simulations, as mentioned in Sec. VIII
this could be because such thermalizing process occur on
exceptionally large length and timescales, beyond the ones
studied in our work.
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APPENDIX A: DETAILS OF THE SEPARABLE MODEL

1. Single-particle properties of the diamond chain

In the first part of this Appendix, we discuss the single-
particle properties of the diamond chain shown in Fig. 11, cf.
Ref. [66]. Denoting the projection of the wave function onto
the upper, middle, and lower sites of the jth unit cell [see
Fig. 11(a)] with ψu

j , ψm
j and ψd

j , respectively, the (discrete)
Schrödinger equation of the system decomposes into the fol-

lowing set of coupled equations:(
E − U u

j

)
ψu

j = t
(
ψm

j + ψm
j+1

)
,(

E − U m
j

)
ψm

j = t
(
ψu

j + ψd
j

) + t
(
ψu

j−1 + ψd
j−1

)
,(

E − U d
j

)
ψd

j = t
(
ψm

j + ψm
j+1

)
, (A1)

with the quasiperiodic potentials U u,m,d
j given by Eq. (10).

In the case where a WPL lies in the middle chain, i.e., when
φy′ = π/2, the set of Eqs. (A1) simplifies to

(E − ε j )ψ
u
j = t

(
ψm

j + ψm
j+1

)
,

Eψm
j = t

(
ψu

j + ψd
j

) + t
(
ψu

j−1 + ψd
j−1

)
,

(E + ε j )ψ
d
j = t

(
ψm

j + ψm
j+1

)
, (A2)

where we defined

ε j ≡ 2W | cos(πb + π/2)| cos(2πb j + φx′ )

≡ W̃ cos(2πb j + φx′ ). (A3)

Note that the phase shift πb in the second cosine in U u,d
j ,

see Eqs. (10), can be trivially incorporated into φx′ , therefore,
we omit it from Eq. (A3). To analyze the spectrum of the
diamond chain and its localization properties, we map the
original lattice onto a Fano lattice [66,83] by applying local
transformations of the amplitudes⎛⎝p j

c j

f j

⎞⎠ = 1√
2

⎛⎝1 0 1
0

√
2 0

1 0 −1

⎞⎠⎛⎝ψu
j

ψm
j

ψd
j

⎞⎠. (A4)

This also locally rotates the values of the onsite potential to
ε± = (U u

j ± U d
j )/2, which in the case of Eq. (A2) leads to

ε+ = 0 and ε− = ε j . The Schrödinger equation in the new
basis reads

E pj = ε j f j +
√

2t (c j + c j+1),

E f j = ε j p j,

Ecj =
√

2t (p j−1 + p j ). (A5)

Combining the three equations from above, and using a
trigonometric identity ε2

j = W̃ 2

2 + W̃ 2

2 cos(4πb j + 2φx′ ), we
arrive at the single equation for pj(

E − 4t2 − W̃ 2

2

)
p j = W̃ 2

2
cos(4πb j + 2φx′ )p j

+ 2t2(p j−1 + p j+1). (A6)

The form of the equation above is the same as in the
1D Aubry-André model [43], which is known to have a
localization-delocalization transition at the point where the
model is self-dual, i.e., when the strength of the onsite po-
tential is two times larger than the hopping. Therefore we can
use the same self-duality argument, which includes transform-
ing p j = exp(iθ j)

∑k=∞
k=−∞ pk exp[ik(4πb j + 2φx′ )], where θ

is an arbitrary phase, and comparing the equations for pj and
pk , to conclude that the localization transition for all pj states
occurs at

W̃C

t
= 2

√
2 −→ WC

t
=

√
2∣∣ cos

(
πb + π

2

)∣∣ . (A7)
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FIG. 12. Single-particle localization properties of the diamond
chain. The IPR for all the eigenstates is shown as a function of the
potential strength W/t for (a) φy′ = π/2 and (b) φy′ = π/2 + 0.1,
with φx′ = 0 in both. In (a) a sharp transition, marked by the gray
dashed line, Eq. (A7), can be seen for states with E �= 0. In (b), there
is no such transition, and a mobility edge appears. Panels (c) and
(d) show the average displacement defined in Eq. (A8) for φy′ = π/2
and π/2 + 0.1, respectively. The system in (a) and (b) has L = 233
unit cells, while in (c) and (d), we used L = 610 unit cells. Averaging
in (c) and (d) was performed over 100 realizations of the potential
with randomly chosen φx′ .

From the numerical results in Fig. 12(a), it is clear that
all states with E �= 0 indeed undergo a transition at W̃C/t ,
as discussed above. However, there are some states at zero
energy that do not follow the same trend, and stay delocalized
even well above W̃C, as one can see from Eq. (A5). For E = 0,
the second line gives pj = 0, ∀ j, and the third line is then
automatically satisfied; the first line gives a wave function
that is nonvanishing only on the middle chain, c j , and on the
antisymmetric combination of the upper and the lower chains,
f j . There are precisely L zero-energy states and they spread
throughout the whole chain, with their weights on u, m, d sites
depending on the local configuration of the potential, ε j .

If instead we had chosen the phase φy′ = π/2 + δ, with
δ �= 0, we would have obtained a WPL with finite onsite
quasiperiodic potential. The localization properties are then
radically different, as it can be seen from Fig. 12(b). Firstly,
there is no longer a uniform localization transition for states
at E �= 0, as the spectrum develops a nontrivial mobility edge
[66]. Secondly, zero energy states that are present in the φy′ =
π/2 case are now dispersed in a finite window that depends
on W , and they localize for a strong enough potential.

Lastly, we investigate how the localization properties of the
spectrum affect the transport through the chain when a parti-
cle is initially placed in the middle chain, i.e., ψα

j (τ = 0) =
δα,mδ j, j0 at the position j0 = L/2. We calculate the average

displacement of the initial wave packet

σ = 1

N
∑
φx′

L∑
j=0

(〈ψφx′ (τ )|( j − j0)2|ψφx′ (τ )〉)1/2, (A8)

where the first sum is over N systems with different randomly
chosen φx′ . The result is shown in Figs. 12(c) and 12(d) for
cases where φy′ = π/2 and φy′ = π/2 + 0.1, respectively. In
both cases, σ grows linearly when the spectrum contains only
extended states (see curves for W/t = 0 and W/t = 1), which
is expected for a ballistic expansion, until they saturate due to
the finite system size. For W/t = 3, on the other hand, the
average displacement saturates within a few hopping times
in both Figs. 12(c) and 12(d). Therefore we conclude that
there is no particle transport when the potential is strong
enough, namely, when W > WC for a WPL with φy′ = π/2,
and when all states are eventually localized for a WPL with
φy′ = π/2 + δ.

2. Transport and localization in the interacting many-body
diamond chain

Now we turn to the many-body version of the dia-
mond chain analyzed in the previous section in presence of
nearest-neighbor interactions. The question we address here
is whether the interactions destabilize the localized phase and
introduce some finite transport over the chain. We employ the
same approach as in the main text and calculate the dynamics
of the system after preparing it in a given initial state, using
the TDVP method. We use a Néel state on the middle sites,
illustrated in the inset of Fig. 13(a), and we calculate the
particle imbalance as a function of time. The results aver-
aged over samples with different φx′ , see Eq. (A3), is shown
in Fig. 13(a). The imbalance decays to 0 for low values of
the potential W/t , but the decay slows down with increasing
W/t . For W/t � 2.5, the averaged imbalance saturates at a
finite value, indicating the presence of localization. The only
effect of interactions in this case appears to be a shift of the
single-particle transition point to a larger value of WC/t ≈ 2.5.
The presence of the many-body localized phase is expected
since all E �= 0 single-particle states localize at WC/t , given
by Eq. (A7), and extended states at E = 0 are extremely
fragile, meaning that any additional perturbation leads to their
localization. Therefore we conclude that for W/t � 2.5 there
is no transport of particles across the diamond chain when the
upper and lower sites are initially empty.

The results in this Appendix tell us that transport through
diagonal WPLs in the 2D separable AA model is suppressed
if one considers random initial states. To confirm this, we
calculate the diagonal imbalance averaged over the same sam-
ples as in Fig. 10(b), but now starting from different random
product states [see the inset of Fig. 13(b) for an example of a
random state]. Contrary to the results for the initial columnar
density wave state considered earlier, Fig. 10(b), all diagonal
imbalances saturate in Fig. 13(b). A small deviation of I j=0

(where j = 0 is the position of the WPL) from 1 is due to
some of the random initial configurations that locally, i.e.,
close to the WPL, look similar to a columnar density wave.
Such local regions can be described as a mosaic lattice and
particles can spread out across that part of the WPL. Note,
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FIG. 13. (a) The average imbalance calculated over the middle
chain defined in the main text, and with the initial state resembling
a density wave only on the middle chain, as illustrated in the inset.
The decay of the imbalance slows down with increasing W/t until it
stops for W/t � 2.5. We used systems with L = 20 unit cells and the
averaging was performed over ten different samples. We used a time
step δτ = 0.1 and bond dimension χ = 128. (b) Diagonal imbalance
averaged over ten random initial states (the inset shows one such ran-
dom state) and for the same samples used in Fig. 10(b) that contain
a WPL on the main diagonal. In this case, all diagonal imbalances
saturate to a value that is close to 1. We use the same parameters as
in Fig. 10(b).

however, that such local regions are statistically limited in
size, and therefore particles remain unable to travel over the
whole WPL.

3. Mosaic lattice limit

When the many-body diamond chain is initialized in the
state shown in Fig. 14(a), see also the inset of Fig. 11(b),
particles initially located on the upper and lower sites are
localized and impede the motion of particles that are on the
adjacent middle sites. The latter can therefore hop only along
a zigzag pattern, namely, the sites highlighted in blue in
Fig. 14(a). Such zigzag pattern, together with the potentials on
the upper and lower sites, can be mapped onto a quasiperiodic
mosaic lattice. A mosaic lattice has two orbitals per site A
and B, each subject to a quasiperiodic onsite potential U A

j

and U B
j , respectively. In Ref. [68], a quasiperiodic mosaic

lattice was studied with U A
j = 0 and with U B

j given by a
cosine modulation that is incommensurate with the underlying
lattice. Such a model was shown to have analytical mobility
edges that separate localized from extended states. In this
Appendix, we show that by removing the occupied sites from
the upper and lower chains of the diamond chain, one obtains a
quasiperiodic mosaic lattice similar to the one discussed in

u

m

d

y’

x’
j

(a)

j

A B

t t

0 1 2 3

-4

4

0 1 2 3

-2

2

0

W/t W/t

(b) (c)

0.1 10.01
IPR

0.1 10.01
IPR

U
j

d
U

j

m
U

u

j-1
U

m

j-1
U

d

j-2
U

m

j-2
U

d

j+2
U

m

j+2
U

u

j+1
U

m

j+1

en
er

g
y
[t

]

FIG. 14. Mosaic lattice and its localization properties. (a) A
transformation from a half-filled diamond chain (up) with a density
wave discussed in Fig. 11(c) to a simpler mosaic lattice (down).
Black and white circles denote occupied and unoccupied sites of
a diamond chain. The transformation consists of removing the oc-
cupied sites of upper and lower chains in a diamond chain. Blue
wavy curve marks the sites in a diamond chain that are described
by a mosaic lattice. For visualization purposes, we leave the black
sites, which were a part of the blue wavy line in a diamond chain, in
the mosaic lattice after the transformation. However, we concentrate
only on the single-particle properties of the mosaic lattice, and not on
a quarter-filling as shown here. In (b) and (c), IPR of each eigenstate
is shown as a function of the potential strength W/t for δ = 0 and
δ = 0.1, respectively. We used a system with L = 233 unit cells, and
without loss of generality set φx′ = 0.

Ref. [68]. We first study a δ = 0 case which can be analyti-
cally solved.

Let us start by writing the Hamiltonian for the simplified
chain shown in the bottom of Fig. 14(a):

Hδ=0 = t
L∑

j=1

(
bA†

j bB
j + bB†

j bA
j+1 + H.c.

)

+
L∑

j=1

(
U A

j bA†
j bA

j + U B
j bB†

j bB
j

)
. (A9)

After the transformation shown in Fig. 14(a), it follows that

U A
j = 2V,

U B
j = 2W (−1) j cos

(
−πb + π

2

)
cos(2πb j + φx′ )

= (−1) jε j, (A10)

where U A
j is a background potential imposed by the localized

particles on u/d sites, and ε j is defined in Eq. (A3). The
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Hamiltonian then reads

Hδ=0 = t
L∑

j=1

(
bA†

j bB
j + bB†

j bA
j+1 + H.c.

)

+
L∑

j=1

(−1) jε jb
B†
j bB

j + 2V
L∑

j=1

bA†
j bA

j , (A11)

which under the transformation bB
j → (−1) jbB

j becomes the
model discussed in Ref. [68]:

Hδ=0 = t
L∑

j=1

(
bA†

j bB
j + bB†

j bA
j+1 + H.c.

)

+
L∑

j=1

ε jb
B†
j bB

j + 2V
L∑

j=1

bA†
j bA

j . (A12)

To show that the model above has a mobility edge, we write
the Schrödinger equations for the wave functions ψA

j and ψB
j

on the A and B sites, respectively,

(E − ε j )ψ
B
j = t

(
ψA

j + ψA
j+1

)
,

(E − 2V )ψA
j = t

(
ψB

j + ψB
j−1

)
. (A13)

By combining the two equations above, we obtain a single
equation for ψB

j(
E − 2t2

E − 2V
− ε j

)
ψB

j = t2

E − 2V

(
ψB

j−1 + ψB
j+1

)
, (A14)

which has the same form as Eq. (A6). Therefore it follows that
the model is self-dual when W̃ = 2t2/(E − 2V ), which leads
to the mobility edge

EC = 2V ± t2

W
∣∣ cos

(
πb + π

2

)∣∣ . (A15)

This analytically obtained mobility edge is in excellent agree-
ment with the numerical results for the IPR, defined in Sec. III
and shown in Fig. 14(b). The spectrum at small W contains
only extended states, while for larger W extended and local-
ized states coexist and are separated by EC.

For the case δ �= 0, which involves a finite quasiperiodic
onsite potential on the A sites, the mobility edge no longer
follows from Eq. (A15). From the numerically obtained IPR
in Fig. 14(c), we observe that the spectrum is divided into
three regions depending on W : (i) for small W all states are
extended, (ii) for intermediate W the spectrum contains both
extended and localized states, and (iii) for large W all states
are localized.

APPENDIX B: DETAILS OF THE NONSEPARABLE
MODEL

In this Appendix, we further investigate the effects of ver-
tical WPLs in the nonseparable AA model, when a horizontal
WPL is simultaneously present in the system, as briefly dis-
cussed in the main text. Figure 15 shows the corresponding
behavior of the y-dependent imbalance. When a vertical WPL
is present, we see that the imbalance decays for all rows,
labeled by j, since particles are able to travel both horizon-
tally and vertically. Without any vertical WPLs instead, the

FIG. 15. The y-dependent imbalance defined in the main text for
a single sample that contains a horizontal WPL with zero potential,
located in the middle of the sample ( j = 3). In (a), the sample has
also a vertical WPL, while in (b), no vertical WPLs are present. The
index j labels the rows of the system starting from the bottom. We
used the same parameters as in Fig. 8(b).

imbalance decays only for j = 3, which coincides with the
position of the horizontal WPL.

APPENDIX C: CONVERGENCE OF NUMERICAL
SIMULATIONS

In this Appendix, we check that our numerical simulations,
and in particular the imbalance, have indeed converged. The
two relevant parameters are the time step δτ and the bond
dimension χ . A benefit of the TDVP algorithm is its stability
with the respect to the choice of the time step [37]. We find
that δτ = 0.05 provides converged results for all system sizes
in the 2D models studied in this paper, as illustrated in Fig. 16,

FIG. 16. Convergence of the simulated dynamics of the averaged
imbalance with the time step δτ . (a) and (b) show the case of a 2D
nonseparable AA model for two different potential strengths W/J
and for two values of the time step δτ . (c) and (d) show the same
for a 2D separable AA model. The imbalances are averaged over five
different samples of size Lx × Ly = 16 × 5 and the bond dimensions
is set to χ = 128 in all plots.

184209-14



COEXISTENCE OF LOCALIZATION AND TRANSPORT IN … PHYSICAL REVIEW B 106, 184209 (2022)

FIG. 17. Convergence of the simulated dynamics of the averaged
imbalance. (a) and (b) show the case of the 2D nonseparable AA
model for two different potential strengths W/J and for two values of
the bond dimension χ . (c) and (d) show the same for the 2D separable
AA model. The imbalances are averaged over five different samples
of size Lx × Ly = 16 × 5 and the time step of δτ = 0.05 is used in
all plots.

and δτ = 0.1 is enough for our diamond chain studies in
Fig. 11. Besides the time step, the dynamics of the imbalance
also depends on the bond dimension χ , which is crucial for
determining the long-time precision of the simulations. The
error caused by the truncation of the bond dimension χ tends
to grow with time; therefore χ determines the rate at which
the simulated imbalance departs from the exact value as time
progresses. In the ergodic phase, where the entanglement in
the system grows rapidly in time, a larger bond dimension
is needed compared to the less entangled localized phase;
for more details see Refs. [37,56,57,59,62,84,85]. Since our
choice of maximum simulation time decreases upon increas-
ing the size of the system, and upon decreasing the potential
strength, then if for a certain value of χ convergence is
reached for some system size and W ′/J , we can safely use
the same χ for all smaller systems and/or all systems with
W > W ′. In Fig. 17, we show the dynamics of the averaged
imbalance for a system of size Lx × Ly = 16 × 5 sites, for
a few different potential strengths and for two values of the
bond dimension. We observe that χ = 128 is large enough
to reach convergence on a timescale of one hundred hop-
ping times for systems with dimensions smaller or equal to
Lx × Ly = 16 × 5, and for potential strengths W/J � 5 for the
nonseparable AA model and W/J � 10 for the separable AA
model.
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[38] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum chaos
challenges many-body localization, Phys. Rev. E 102, 062144
(2020).

[39] T. Thiery, F. Huveneers, M. Müller, and W. De Roeck, Many-
Body Delocalization as a Quantum Avalanche, Phys. Rev. Lett.
121, 140601 (2018).

[40] J. Léonard, M. Rispoli, A. Lukin, R. Schittko, S. Kim, J.
Kwan, D. Sels, E. Demler, and M. Greiner, Signatures of bath-
induced quantum avalanches in a many-body–localized system,
arXiv:2012.15270.

[41] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz,
and D. A. Huse, Avalanches and many-body resonances in
many-body localized systems, Phys. Rev. B 105, 174205
(2022).

[42] D. Sels, Markovian baths and quantum avalanches, Phys. Rev.
B 106, L020202 (2022).

[43] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Israel Phys. Soc
3, 18 (1980).

[44] M. Senechal, Quasicrystals and Geometry (Cambridge Univer-
sity Press, 1995).

[45] T. Devakul and D. A. Huse, Anderson localization transitions
with and without random potentials, Phys. Rev. B 96, 214201
(2017).

[46] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap,
U. Schneider, and I. Bloch, Probing Slow Relaxation and Many-
Body Localization in Two-Dimensional Quasiperiodic Systems,
Phys. Rev. X 7, 041047 (2017).

[47] A. Szabó and U. Schneider, Mixed spectra and partially ex-
tended states in a two-dimensional quasiperiodic model, Phys.
Rev. B 101, 014205 (2020).

[48] D. Johnstone, P. Öhberg, and C. W. Duncan, The mean-field
bose glass in quasicrystalline systems, J. Phys. A: Math. Theor.
54, 395001 (2021).

[49] D. Johnstone, P. Öhberg, and C. W. Duncan, Barriers to macro-
scopic superfluidity and insulation in a 2d Aubry-André model,
J. Phys. B: Atom. Mol. Opt. Phys. 55, 125302 (2022).

[50] The fact that changing the phases of the cosines does not change
the localization properties of a system in the thermodynamic
limit can be seen from the following argument. Let us imagine
a unit circle where the projections of its points onto the x axis
determine the values of the potential cos(2πbi + φ), where i
can take only integer values and b is irrational—as it is the
case in Eq. (2). Since the frequency b is irrational, by changing
i one can cover the whole unit circle. In other words, each
point in the circle can be attributed to some i. The phase φ

only rotates the coordinate system along the unit circle, but
changing i from 0 to ∞ will in any case cover the whole
circle. Therefore one can always account for a phase change
from φ to φ′ by relabelling the sites from i to i′ ∈ N such that
cos(2πbi + φ) = cos(2πbi′ + φ′).

[51] M. Rossignolo and L. Dell’Anna, Localization transitions and
mobility edges in coupled Aubry-André chains, Phys. Rev. B
99, 054211 (2019).

[52] B. Huang and W. V. Liu, Moiré localization in two-dimensional
quasiperiodic systems, Phys. Rev. B 100, 144202 (2019).

[53] V. Goblot, A. Štrkalj, N. Pernet, J. L. Lado, C. Dorow, A.
Lemaître, L. L. Gratiet, A. Harouri, I. Sagnes, S. Ravets, A.
Amo, J. Bloch, and O. Zilberberg, Emergence of criticality
through a cascade of delocalization transitions in quasiperiodic
chains, Nat. Phys. 16, 832 (2020).

[54] R. J. Bell and P. Dean, Atomic vibrations in vitreous silica,
Discuss. Faraday Soc. 50, 55 (1970).

[55] J. T. Edwards and D. J. Thouless, Numerical studies of localiza-
tion in disordered systems, J. Phys. C 5, 807 (1972).

[56] E. V. H. Doggen and A. D. Mirlin, Many-body delocalization
dynamics in long Aubry-André quasiperiodic chains, Phys. Rev.
B 100, 104203 (2019).

[57] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and
F. Verstraete, Unifying time evolution and optimization with
matrix product states, Phys. Rev. B 94, 165116 (2016).

[58] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[59] E. V. H. Doggen, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov,
Many-body localization in large systems: Matrix-product-state
approach, Ann. Phys. 435, 168437 (2021).

184209-16

https://doi.org/10.1103/PhysRevB.100.134504
https://doi.org/10.1103/PhysRevA.101.063617
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1038/s41567-018-0339-x
http://arxiv.org/abs/arXiv:1811.04126
https://doi.org/10.1103/PhysRevResearch.2.033154
https://doi.org/10.1103/PhysRevB.102.235132
http://arxiv.org/abs/arXiv:2108.08268
http://arxiv.org/abs/arXiv:2202.09072
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1103/PhysRevB.99.134305
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/PhysRevLett.125.155701
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevLett.121.140601
http://arxiv.org/abs/arXiv:2012.15270
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.106.L020202
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevX.7.041047
https://doi.org/10.1103/PhysRevB.101.014205
https://doi.org/10.1088/1751-8121/ac1dc0
https://doi.org/10.1088/1361-6455/ac6d34
https://doi.org/10.1103/PhysRevB.99.054211
https://doi.org/10.1103/PhysRevB.100.144202
https://doi.org/10.1038/s41567-020-0908-7
https://doi.org/10.1039/df9705000055
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1103/PhysRevB.100.104203
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2021.168437


COEXISTENCE OF LOCALIZATION AND TRANSPORT IN … PHYSICAL REVIEW B 106, 184209 (2022)

[60] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.
Schollwöck, and C. Hubig, Time-evolution methods for matrix-
product states, Ann. Phys. 411, 167998 (2019).

[61] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I.
Bloch, and U. Schneider, Coupling Identical One-Dimensional
Many-Body Localized Systems, Phys. Rev. Lett. 116, 140401
(2016).

[62] A. Štrkalj, E. V. H. Doggen, I. V. Gornyi, and O. Zilberberg,
Many-body localization in the interpolating Aubry-André-
Fibonacci model, Phys. Rev. Res. 3, 033257 (2021).

[63] B. Efron, Bootstrap methods: Another look at the jackknife,
Ann. Statist. 7, 1 (1979).

[64] Here we chose for convenience the extreme case of a WPL
with exactly zero potential. If this is not able to thermalize the
system, it stands to reason that neither will generic WPLs that
have weak but nonvanishing potential.

[65] J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Interaction
Induced Delocalization for Two Particles in a Periodic Potential,
Phys. Rev. Lett. 85, 3906 (2000).

[66] C. Danieli, J. D. Bodyfelt, and S. Flach, Flat-band engineering
of mobility edges, Phys. Rev. B 91, 235134 (2015).

[67] N. Roy, A. Ramachandran, and A. Sharma, Interplay of disorder
and interactions in a flat-band supporting diamond chain, Phys.
Rev. Res. 2, 043395 (2020).

[68] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q. Zhou,
and X.-J. Liu, One-Dimensional Quasiperiodic Mosaic Lat-
tice with Exact Mobility Edges, Phys. Rev. Lett. 125, 196604
(2020).

[69] A. Chandran, A. Pal, C. R. Laumann, and A. Scardicchio,
Many-body localization beyond eigenstates in all dimensions,
Phys. Rev. B 94, 144203 (2016).

[70] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider,
Matter-Wave Diffraction from a Quasicrystalline Optical Lat-
tice, Phys. Rev. Lett. 122, 110404 (2019).

[71] M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt,
and U. Schneider, Observing Localization in a 2D Qua-
sicrystalline Optical Lattice, Phys. Rev. Lett. 125, 200604
(2020).

[72] L. Sanchez-Palencia and L. Santos, Bose-Einstein conden-
sates in optical quasicrystal lattices, Phys. Rev. A 72, 053607
(2005).

[73] R. Gautier, H. Yao, and L. Sanchez-Palencia, Strongly Interact-
ing Bosons in a Two-Dimensional Quasicrystal Lattice, Phys.
Rev. Lett. 126, 110401 (2021).

[74] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body
localization in a quantum simulator with programmable random
disorder, Nat. Phys. 12, 907 (2016).

[75] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A. Scardicchio,
Anderson Localization on the Bethe Lattice: Nonergodicity of
Extended States, Phys. Rev. Lett. 113, 046806 (2014).

[76] S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio,
Return probability for the Anderson model on the random reg-
ular graph, Phys. Rev. B 98, 134205 (2018).

[77] G. De Tomasi, S. Bera, A. Scardicchio, and I. M. Khaymovich,
Subdiffusion in the Anderson model on the random regular
graph, Phys. Rev. B 101, 100201(R) (2020).
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