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ON VARIABLE VISCOSITY AND ENHANCED DISSIPATION

XIAN LIAO AND CHRISTIAN ZILLINGER

Abstract. In this article we consider the 2D Navier-Stokes equations with
variable viscosity depending on the vertical position. As our main result we
establish linear enhanced dissipation near the non-affine stationary states re-
placing Couette flow. Moreover it turns out that the shear flow overcompen-
sates for weakening viscosity: decreasing viscosity leads to stronger enhanced
dissipation and increasing viscosity leads to weaker dissipation than in the
constant viscosity case.

1. Introduction

In the present paper we are concerned with the two-dimensional incompressible
Navier-Stokes equations in the presence of large (stratified) viscosity variations

{
∂tv + v · ∇v − div(µSv) + ∇p = 0,

div v = 0.
(1)

Here t ∈ [0, ∞) and

(
x
y

)
∈ T × R denote the time and space variables. The

vector-valued function v = v(t, x, y) : [0, ∞) × R2 → R2 and the scalar function
p = p(t, x, y) : [0, ∞) × R2 → R denote the unknown velocity vector field and the
unknown pressure of the two-dimensional flow, respectively.

The symmetric part of the velocity gradient

1

2
Sv :=

1

2
(∇v + (∇v)T )

denotes the symmetric deformation tensor. The viscosity coefficient

µ = µ(x, y)

is a given non-constant positive scalar function. More precisely, we consider the
case of stratified viscosity µ(y) depending on the vertical direction only and study
its interplay with 2D shear flows.

Viscous stratification is a typical phenomenon not only in nature (e.g. in the
atmosphere and ocean flows) but also in industrial application (e.g. in the chemical
and food industry). The (in)stabilities in viscosity-stratified flows have attracted
constant interests of physicists [Cra69, GS14, Hei85, Lin44, HB87, Yih67]. While
additional dissipation at first sight suggest stabilization 1, in experiments viscosity
exhibits dual roles [Dra02, Chapter 8, pp. 160]: a stabilizing role due to the dissi-
pation of energy and a more subtle destabilizing role. Yih [Yih67] showed that the
instability in a low Reynolds number flow can be caused by viscosity stratifications

Date: October 22, 2021.
1The Orr-Sommerfeld eigenvalue Problem has only positive eigenvalues for Couette flows, which

implies the stability of Couette flows for all Reynolds number, but experiments showed instability
under small but finite perturbations.
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(see also Craik [Cra69] for the study of flows with continuous viscosity stratifica-
tion). These results motivated decades of active researches on the instability caused
by viscosity interfaces, see [GS14] for a review paper on this topic.

In this paper we consider the model (1) of the fluids with equal density/temperature
but different viscosities, which can for instance be used to describe the trans-
port of the highly viscous oil and an immiscible low viscous lubricant (see e.g.
[JRR84, PV91] for the relevant instability analysis). We then study the asymptotic
behavior of perturbations to the shear flow solutions

µ = µ(y), v =

(
U(y)

0

)
,(2)

which satisfies the hydrostatic balance

∂y(µ∂yU) = 0.(3)

This condition implies that as µ decreases ∂yU increases and vice versa.
As an additional assumption, while we allow µ and hence ∂yU to change by

several orders of magnitude, we require that locally there is not too much oscillation:
∥∥∥∂y ln(µ(y))

∥∥∥
W 1,∞

≤ 0.001.(4)

Thus, for instance µ may decrease exponentially but only with a small exponent c.
As a consequence of the balance relation (11) one observes that the variable

viscosity coefficient changes the slope of the underlying velocity profile, such that
the viscous stratification comes into play, even at high Reynolds numbers 2. More
precisely, as we discuss following Theorem 1.1 as the viscosity decreases towards
zero, the effective dissipation µ(∂yU)2 rate becomes larger. This also helps to
explains wall heating or cooling techniques (corresponding to the liquid flows or
gas flows respectively) in industrial application, which produce less viscous flow
near the wall, and hence stabilize the flows [BG81].

In recent years there has been extensive research on the stability study of the
shear flows (10) for the inviscid fluids with

µ = 0,

and for the viscous fluids with constant viscosity

µ = const. > 0.

Since the literature is extensive, we here do not provide a complete overview but
refer the interested reader to the following recent works for further discussion
[Jia19, LX19, WZZ18, IJ18, Wid18, YL18, BMV16, EW15, LZ11, WZZ17, BGM17,
BM15, DWZ20, LZ11]. We, in particular, recall that for linearized equations around
Couette flow

µ = const. > 0, U(y) = y,

it can be shown by explicit calculations that the interplay of shearing and dissipation
leads to damping with a rate

exp(−C 3
√

µt),

2The viscosity variations increase the order of the Orr-Sommerfeld equation from two to four,
which makes a difference in the dynamics even at high Reynolds numbers (contrary to the intuitive
expectation of negligible viscous effect).
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and thus on a time scale µ− 1
3 much smaller than the dissipation time scale µ−1.

This phenomenon is hence called enhanced dissipation (see [BVW18] for further
discussion and the analysis of the nonlinear problem).

Given a particular value of the viscosity at a given point, µ(y0), in this paper we
are interested in the change of the (local, effective) dissipation rates if µ varies as
y > y0 increases. For instance, how much of an increase or decrease of µ is required
to change the dissipation rate by a factor of 10? As our main results we establish
stability of the linearized equations and prove damping with a local rate µ(U ′)2,
which is inversely proportional to 3

√
µ.

Theorem 1.1. Let µ ∈ C2(R) with µ > 0 be a given stratified viscosity profile.
Then a stationary solution of the Navier-Stokes equations (1) on T × R in the
presence of the variable viscosity µ is given by a shear flow v = (U(y), 0)T such
that

µ∂yU = const.(5)

and the linearized equations around this solution in vorticity formulation read

∂tω + U∂xω = U ′′v2 + div(µ∇ω) − div(µ′∇v1) − µ′′v2,

v = ∇⊥(−∆)−1ω,
(6)

where U ′ = ∂yU and U ′′ = ∂2
yU denote y derivatives.

Additionally suppose that µ only varies gradually, in the sense that

‖
µ′

µ
‖L∞ + ‖U ′∂y

µ′

µ
‖L∞ < 0.001,

1

sup µ
‖F(µ′)‖L1(R\(− sup(µ)−1/3,sup(µ)−1/3)) < 0.001,

(7)

where F(µ) denotes the (tempered) Fourier transform and that µ is bounded above
and below and sufficiently small so that

(sup(µ))2

inf(µ)
< 0.1.(8)

For instance, µ may grow at a (small) exponential rate from a value ν2 to 0.1ν
with ν < 0.1. For simplicity of presentation also assume that U ′ ≥ 1 (which can be
assumed without loss of generality after rescaling). Then the linearized equations
(6) are stable and exhibit enhanced dissipation. More precisely, there exists a time-
dependent family of operators A(t) with

0.1‖ω(t)‖L2(U ′dy) ≤ ‖A(t)ω(t)‖L2(U ′dy) ≤ ‖ω(t)‖L2(U ′dy).

Furthermore, if
´

ω0dx = 0 then for all times t > 0 it holds that

d

dt
‖A(t)ω(t)‖2

L2(U ′dy) ≤ −0.001(‖(µ(U ′)2))1/6ω‖2 + ‖
√

U ′v‖2).

Moreover, under further regularity assumptions these results also extend to stability
of the “profile” W (t, x, U(y)) := ω(t, x− tU(y), y) in higher Sobolev norms HN (see
Proposition 5.1 for a precise statement).

Let us comment on these results:
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• We remark that due to the balance relation (5) it holds that

µU ′ = const. =: σ.

Hence, one observes that the local dissipation rate satisfies

3
√

µ(U ′)2 = 3

√
µ(U ′)2µ

1

µ
=

3
√
σ2

1
3
√

µ(y)

and thus is proportional to µ(y)−1/3. Thus a decrease of µ by a factor
1000 corresponds to an increase of the dissipation rate by a factor 10. Con-
versely, increasing the viscosity compared to µ(y0) corresponds to weaker
dissipation.

• Our assumptions on µ ensure that the effective dissipation rate µ(U ′)2 is
always smaller than one. The dependence in terms of a third root hence
reflects the enhancement of the mixing rate due to shear.

• The nonlinear constant viscosity Navier-Stokes problem has been studied
in [BVW18]. This article extends these results in the linearized case to the
stratified viscosity problem. In particular, we extend the by now common
Cauchy-Kowalewskaya approach to the setting where U ′(y) and µ(y) may
vary by many orders of magnitude (but may do so only gradually). We
expect these methods to be of interest of their own for the wider community
and applicable also to other related problems (e.g. the variable viscosity
Boussinesq equations).

• Unlike in the constant viscosity setting for the shear flow considered in this
article the second derivative of the shear U ′′ is non-trivial and does not
approach zero under the (variable viscosity) heat flow. Hence, as in the
inviscid setting [Zil17] we require a smallness condition to control the cor-
rection term U ′′v2 in the linearized equation (this condition further allows
us to control derivatives of the viscosity). This motivates our assumption
(7) (see Section 3.1 for further discussion).

• We remark that in view of (5) the shear flow U is strictly monotone and
hence invertible (but U ′ might be very large). In our analysis it will prove
advantageous to thus equivalently consider the variable z = U(y) and the
profile W moving with the shear. Moreover, stability is most naturally
phrased in terms of spaces L2(dz) + L2(U ′dy).

• The first condition in (7) allows µ to grow exponentially but only with
a small exponent. In particular, this implies that level sets of the form
{y : 10j < µ(y) < 10j+1} for j ∈ Z are bounded below in size, which we
exploit in a partitioning construction in Section 4. The second condition
in (7) should be understood as a regularity assumption on the relative
change µ

sup(µ) , which should decay at very large frequencies (larger than

sup(µ)−1/3).

As we discuss in the following corollary the weighted dissipation estimate implies
exponential decay, if ω remains suitably localized.

Corollary 1.2. Let W (t, x, U(y)) := ω(t, x − tU(y), y) be as in Theorem 1.1, let
M ⊂ R and suppose that on a given time interval (t1, t2) ⊂ (0, ∞) a fraction at
least θ ∈ (0, 1) of the L2 energy is localized in M . That is,

‖W (t)‖2
L2(M) ≥ θ‖W (t)‖2

L2 .
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Then for all t ∈ (t1, t2) it holds that

‖W (t)‖2
L2 ≤ exp(−0.001θmin

M

3
√

µ(U ′)2(t − t1))‖W (t1)‖2
L2

Proof. By Theorem 1.1 it holds that

∂t‖W (t)‖2
L2 ≤ −0.01‖cW‖2

L2

with c := (µ(U ′)2)1/6. By assumption the left-hand-side can be bounded from
above by

−0.001 min
M

c θ‖AW (t)‖2,

which yields the result. !

We stress that the time interval considered in this corollary might be very small
if M is a region with a very fast effective decay rate, since then the L2 energy
(or enstrophy) in that region can be expected to decay much faster than in other
regions and hence will correspond to a much smaller fraction than θ after a time.

Based on the local dissipation rate at first sight one might also conjecture an
estimate of the form

‖ exp( 3
√

µ(U ′)2t)W (t)‖L2 ≤ C‖W (0)‖L2.

to hold. However, such an estimate cannot be expected to hold in general, since
the Biot-Savart law is non-local and not decaying quickly enough. More precisely,
if W is highly localized in a region M , then the velocity field generated by W
exhibits decay away from M in terms of a power law of the distance dist(y, M).
Hence, supposing for the moment that W remains localized and that M is a region
with small decay rate, we expect W to decay with slower rate. In particular, if M ′

is a different region with much higher damping rate, then the decay of the Biot-
Savart law in terms of dist(M, M ′) is not sufficiently strong to compensate for the
difference in dissipation rates.

The remainder of our article is structured as follows:

• In Section 2 we introduce function spaces, changes of variables and nota-
tional conventions used throughout the article.

• As a first model setting in Section 3 we establish linear L2 stability for
the case when µ varies only by a bounded factor. This allows us to more
clearly present the main tools of our proofs and discuss the necessity of
assumptions.

• In Section 4 we extend these L2 stability results to the general setting by
constructing local versions of several estimates. Here the non-local structure
of the Biot-Savart law and the interaction of the localization and dissipation
require careful analysis.

• Using the linear L2 stability results as a building block, in Section 5 we
establish linear stability in HN and thus prove Theorem 1.1.

2. Stationary Solutions and Notation

In this section we establish that the shear flow U given in Theorem 1.1 indeed is
a stationary solution. Furthermore, we derive the linearized equation around this
state in vorticity formulation.

In our analysis of the Navier-Stokes equations it is often convenient to work in
Lagrangian coordinates moving with the underlying shear flow (U(y), 0). Moreover,
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since we assume that U is strictly monotone there exists a change of coordinates y -→
z = U(y) which straightens out the flow lines. For easier reference the equivalent
formulations of the equations with respect to these coordinates are also collected in
this section. Moreover, we define Sobolev spaces and multipliers with respect to z.

We remark already here that this construction requires further refinement for
the general situation, but provides a good description if one additionally assumes
that µ is globally comparable to a constant, which is the model setting of Section
3. In Section 4 we replace this global change of variables by a family of suitably
localized coordinate changes, which accounts for the fact that µ and hence ∂yU
may change by many orders of magnitude.

Lemma 2.1 (Stationary solution). Let µ ∈ C2(R) be a given function with µ > 0,
let C ∈ R \ {0} and define

U(y) =
C

µ(y)
.

Then v(x, y) = (U(y), 0) ∈ C2(R2;R2) is a stationary solution of the Navier-Stokes
equations with viscosity µ.

The linearized equations in vorticity formulation around this solution are given
by

∂tω + U(y)∂xω − U ′′v2 = div(µ∇ω) − div(µ′∇v1) − µ′′∂xv2,

v = ∇⊥∆−1ω
(9)

Proof of Lemma 2.1. Following Theorem 1.1 we make the ansatz

µ = µ(y), v =

(
U(y)

0

)
.(10)

The Navier-Stokes equations (1) then reduce to the following equations
(

−∂y(µ∂yU) + ∂xp
∂yp

)
=

(
0
0

)
.

The second equation ∂yp = 0 implies p = P (x) for some function P depending only
on x, while ∂y(µ∂yU) depends only on y. Hence, both functions need to equal a
common constant, which yields the hydrostatic balance relation

∂y(µ∂yU) = C0(11)

and p = P (x) = C0x + C1, where C0, C1 ∈ R are constants. In particular, spe-
cializing to the case C0 = 0, we verify that our choice of U yields a stationary
solution.

If we also allow for C0 to be possibly non-trivial there are many solutions of
potential interest:

• The Uniform flow: U = const.
• The Couette flow: U = y, with µ = const. or µ = C0y + C2.
• The Poiseuille flow: U = y(1 − y), with µ = const., y ∈ [0, 1].
• The shear layer: U = tanh(y), with µ = sech−2(y).
• The jet or wake: U = sech2(y), with µ = y cosh2(y) coth(y).

In this article we restrict to the case C0 = 0 since then for non-vanishing viscosity
the (non-trivial) shear flow U has no critical points, which would pose an obstacle to
damping estimates. Furthermore, in view of physical applications we additionally
assume that the effective damping rate µ(∂yU)2 is not large.
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In the following let U, µ be solutions of (11) which hence are solutions of the
Navier-Stokes equations in velocity formulation. We may then obtain the equation
for the vorticity

ω = ∇⊥ · v, with ∇⊥ =

(
−∂y

∂x

)
,

by applying the operator ∇⊥· to the velocity equation (1). Notice that

div(µSv) =

(
2∂xµ∂xv1 ∂yµ∂yv1 + ∂yµ∂xv2

∂xµ∂xv1 + ∂xµ∂xv2 2∂yµ∂yv2

)
,

v = ∇⊥∆−1ω =

(
−∂y∆−1ω
∂x∆−1ω

)
.

We may calculate(see also [HL20])

∇⊥ · div(µSv) = [(∂yy − ∂xx)µ(∂yy − ∂xx) + (2∂xy)µ(2∂xy)]∆−1ω

which can be equivalently expressed as

∆(µω) − 2µ′′∂xv2 = div(µ∇ω) − div(µ′∇v1) − µ′′∂xv2.

Thus we arrive at the vorticity formulation for the Navier-Stokes equations with
viscosity µ:

∂tω + v · ∇ω = ∆(µω) − 2µ′′∂xv2 ≡ div(µ∇ω) − div(µ′∇v1) − µ′′∂xv2.(12)

Finally, we linearize the vorticity equation (12) around this shear flow to arrive
at the following linearized equation

∂tω + U(y)∂xω − U ′′(y)v2 = ∆(µω) − 2µ′′∂xv2 ≡ div(µ∇ω) − div(µ′∇v1) − µ′′∂xv2.
(13)

!

In the following we introduce some equivalent reformulations of linearized equa-
tions (9) in order to simplify our notation. We first observe that in the equations
(9)

∂tω + U(y)∂xω − U ′′v2 = div(µ∇ω) − div(µ′∇v1) − µ′′∂xv2,

v = ∇⊥∆−1ω

all coefficient functions do not depend on x explicitly.
Hence the evolution of the x-average of the vorticity which we denote by ω=

decouples as

∂tω= = ∂y(µ∂yω=) + ∂y(µ′ω=) = ∂yy(µω=).

The x average hence evolves as in a variable coefficient heat equation and does not
influence the evolution of the orthogonal complement

ω $= = ω − ω=.

For this reason we in the following without loss of generality assume that initially

ω= = 0,

which then remains the case for all times.
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As another consequence of the lack of x-dependence, the equations decouple after
a Fourier transform in x, which we denote by

ω̂(t, k, y) =
1

2π

ˆ

e−ikxω(t, x, y)dx.

Our equations read:

∂tω̂ + ikU(y)ω̂ − U ′′(y)
ik

−k2 + ∂yy
ω̂ = (−k2 + ∂yy)(µω̂) + 2µ′′ k2

−k2 + ∂yy
ω̂.

We may further consider the vorticity moving with the underlying shear

W̃ (t, x, y) = ω(t, x + tU(y), y).

Expressed in Fourier variables it holds that

FxW̃ (t, k, y) = eiktU(y)ω̂(t, k, y),

and hence

∂t(FxW̃ ) −
ikU ′′(y)

−k2 + (∂y − iktU ′(y))2
(FxW̃ )

= (−k2 + (∂y − iktU ′(y))2)(µFxW̃ ) +
2µ′′k2

−k2 + (∂y − iktU ′(y))2
(FxW̃ ).

(14)

As a final step we observe that by assumption U(y) is strictly monotone and
hence there exists a change of variables y -→ z = U(y), which serves as our main
formulation in the following.

Lemma 2.2 (Vorticity formulation). Let U, µ be as in Theorem 1.1 and consider
the linearized equations in vorticity formulation. Further denote the change of
coordinates y -→ z = U(y) and define

W (t, x, z) = ω(t, x + tU(y), y).

Then ω solves (9) if and only if for every k ∈ Z the Fourier transform of W with
respect to x solves:

∂t(FxW ) −
ikU ′′

−k2 + (U ′(∂z − ikt))2
(FxW )

= (−k2 + (U ′(∂z − ikt))2)(µFxW ) +
2µ′′k2

−k2 + (U ′(∂z − ikt))2
(FxW ),

(15)

where with slight abuse of notation coefficient functions are evaluated in y such that
z = U(y), e.g. U ′′ = ∂2

yU |y=U−1(z). In other words, by introducing

(16) ∇t :=

(
∂x

U ′(∂z − t∂x)

)
,

we may write the above equation for FxW as

∂tW − U ′′V2 = divt(µ∇tW ) − divt(µ
′∇tV1) − µ′′∂xV2.(17)

where

V1 =
−U ′(∂z − t∂x)

∂2
x + (U ′(∂z − t∂x))2

W,

V2 =
∂x

∂2
x + (U ′(∂z − t∂x))2

W.
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Proof of Lemma 2.2. Since by assumption

µ∂yU

equals a non-trivial constant and µ > 0 does not vanish, it follows that U is strictly
monotone and hence invertible. Thus, the above claimed change of variables exists.
Furthermore, it holds that

∂y − tU ′∂x = U ′∂z − tU ′∂x = U ′(∂z − t∂x),

which together with (14) concludes the proof. !

In the following sections we establish asymptotic stability of W in Sobolev reg-
ularity. More precisely, we will first consider the special case where U is globally
bilipschitz with comparable upper and lower Lipschitz constants in Section 3. Build-
ing on these results, in Section 4 we consider the general case, where we further
introduce modified changes of coordinates adapted to the local behavior of the co-
efficient functions. Finally, in Section 5 we bootstrap the stability results in L2 to
establish stability in HN .

Unless noted otherwise we here always work in coordinates with respect to z
and may without loss of generality assume that W is localized at frequency k /= 0,
arbitrary but fixed, with respect to x. We thus briefly write

L2 := L2(R, dz)

and use

〈·, ·〉
to refer to the inner product on that space.

3. A Model Case and L2 Estimates

In this section we consider a special case of the linearized Navier-Stokes equations
(9) in vorticity formulation

∂tω + U(y)∂xω − U ′′v2 = div(µ∇ω) − div(µ∇v1) − µ′′∂xv2,

v = ∇⊥∆−1ω,

or rather

∂tW − U ′′V2 = divt(µ∇tW ) − divt(µ
′∇tV1) − µ′′∂xV2.

W (t, x, U(y)) = ω(t, x − tU(y), y),

in which we additionally assume that µ is comparable to a constant globally instead
of just locally. More precisely, in this section we additionally require that

sup(µ)

inf(µ)
≤ 100.

We note that this further implies that U is bilipschitz and hence allows for a global
change of variables to z = U(y) (see Section 2 and Lemma 2.2). This simplification
therefore allows us to more clearly present commutator estimates and introduce
techniques of proof.

In a second step in Section 4 we use that such bounds are true locally, that is
when µ and U are restricted to bounded intervals of a given length. Extending these
restrictions to functions on the whole space which are bounded above and below
we will hence be able to use this section’s results for the “localized” problems. A
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key challenge then lies in controlling non-linear interaction due to the Biot-Savart
law and in “gluing” the various estimates in a way that preserves dissipation and
decay estimates.

The following proposition summarizes our main results for this section and em-
ploys a by now common Lyapunov functional/energy approach (see for instance
[MSHZ20, BMV16, TW19, Lis20]), where a key challenge lies in constructing a
suitable time, frequency and space-dependent operator A which captures possible
growth in the evolution of solutions to (9).

Proposition 3.1. Let µ, U satisfy the assumptions of Theorem 1.1 and additionally
suppose that

sup(µ)

inf(µ)
≤ 100.

Then there exists a time-dependent family of operators A(t) such that for any initial
data ω0 ∈ L2 it holds that

c‖W (t)‖L2 ≤ ‖A(t)W (t)‖L2 ≤ ‖W (t)‖L2 .

Furthermore, define u = inf U ′ and ν := inf µ(U ′)2 (note that ν = uµ(0)U ′(0),
since µU ′ is constant) then it holds that

d

dt
‖AW ‖2

L2 ≤ −0.001‖F(ν1/3 + ν(ξ − kt)2 +
1

1 + u2(ξ − kt)2
)F−1AW ‖2

L2 ≤ 0

In particular, the linear stability estimates in L2 of Theorem 1.1 hold in this setting.

• The operator A(t) is defined in terms of a Fourier multiplier in Definition
3.2.

• We remark that in the present setting by assumption µ and hence U ′ may
only vary by a factor 100. Therefore u is also comparable to an average
value of U ′.

• The decay by ν1/3 + ν(ξ − kt)2 quantifies the enhanced dissipation mech-
anism. More precisely, if |ξ − kt| ≥ ν−1/3 the latter term dominates, but
for frequencies with |ξ − kt| smaller than this the enhanced rate ν1/3 still
persists (see Definition 3.2 and Lemma 3.4 for further discussion).

• The last multiplier u
1+u2(ξ−kt)2 corresponds to control of the velocity per-

turbation. Since u is bounded below this contribution is dominated by ν1/3

for large frequencies. The statement of the theorem thus is that even for
frequencies where |ξ − kt| is small this control persists. In particular, this
control remains valid as ν tends to zero, which is crucial for the control of
U ′′v2 in the evolution equation (see Lemma 3.6).

• We note that here the choice of G involves a small factor 0.1, as do the dissi-
pation rates in Theorem 1.1. These small factors allow use some flexibility
in the control of interaction terms (see Section 3.1).

In the interest of clear presentation we formulate the main steps of the proof as
a series of lemmas. We then show how to use these to establish Proposition 3.1
before proving the lemmas at the end of this section.

Definition 3.2 (Decreasing Multiplier and Fourier sets). Let µ, U be a given sta-
tionary solution as in Theorem 1.1 and define the local dissipation rate ν as

ν := inf µ(∂yU)2.
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and the local shear rate as

u := inf |U ′|.

Let further

G := 0.1ν−1/3.

We then define the good set Gt ⊂ Z × R by

Gt := {(k, ξ) : k /= 0, |
ξ

k
− t| ≥ G},

and the bad set Bt as the complement (excluding k = 0)

Bt = {(k, ξ) ∈ Z × R : k /= 0, |
ξ

k
− t| < G}.

For any fixed k, if Bt ∩{k}×R is non-empty, the set Gt ∩{k}×R has two connected
components, where we denote by G−

t the half-line extending to −∞ and by G+
t the

half-line extending to +∞.
Associated with this partition we define a Fourier multiplier m by

∂tm(t, k, ξ) =

{
m(t, k, ξ)(−ν1/3 − u

1+u2( ξ
k −t)2

), if (k, ξ) ∈ Bt,

0, else.

and the asymptotic condition limt→−∞ m(t, k, ξ) = 1.
We denote the operator associated with the Fourier multiplier m by A(t):

Aφ = F−1mFφ,

where F denotes the Fourier transform with respect to x and z = U(y).

This multiplier combines features of the inviscid multiplier of [Zil17] and the
constant viscosity multiplier of [Lis20, BVW18].

• The relative decay of µ by −ν1/3 compensates for the relatively weak dis-
sipation in the bad Fourier region. Here the decay of A allows to establish
damping of AW .

• The second multiplier models the growth of v2 as given by the Biot-Savart
law or rather of U ′v2. As we discuss in the proof of Lemma 3.6 we then
use that by assumption U ′′ = U ′′

U ′ U ′ is small compared to U ′ and hence the
linearization error U ′′v2 can be controlled by this multiplier when we are
in the bad region.

As we prove in the following subsection the multiplier m (and hence the operator
A) satisfies several useful bounds and, in particular, serves to control various error
terms when W is concentrated in the bad set.

Lemma 3.3. Let m be as in Definition 3.2. Then m satisfies the following esti-
mates:

(1) There exists a constant c independent of ξ and t such that

c ≤ m ≤ 1.
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(2) The multiplier m is constant (independent of ξ and t, but might depend on
k) for large positive or negative times. By the conventions of our definition
one of these constants is chosen as 1 and the other as c:

m(t, k, ξ) = c if t >
ξ

k
+ G,

m(t, k, ξ) = 1 if t <
ξ

k
− G.

(3) The operator A is a continuous invertible operator from L2 to L2 and sat-
isfies

c‖φ‖L2 ≤ ‖Aφ‖L2 ≤ ‖φ‖L2

for all φ ∈ L2(dz).

Given this definition of our multiplier our main task in the following is to establish
suitable estimates for

d

dt
‖AW ‖2

L2/2 = 〈AW, ȦW 〉 + 〈AW, A∂tW 〉

= 〈AW, ȦW 〉 + 〈AU ′′V2, AW 〉
+ 〈AW, A divt(µ∇t)W 〉
− 〈AW, A divt(µ

′∇t)V1〉
− 〈AW, Aµ′′∂xV2〉,

where we used the equation (17) to rewrite A∂tW . More precisely, we intend to
show that the dissipation and the decay of m(t) are strong enough to absorb possible
growth and that hence ‖AW ‖2 is decreasing in time. Integrating these estimates
we thus obtain a Lyapunov functions, which allows us to prove Proposition 3.1.

The following lemma quantifies the combined strength of the dissipation mecha-
nism and the decay of the multiplier.

Lemma 3.4 (The dissipation term). Let t ≥ 0, let A, G and m be given by Defini-
tion 3.2 and let W ∈ L2 be a given function. Then it holds that

0.2〈AW, ȦW 〉 + 〈AW, A divt(µ∇t)W 〉

≤ −0.1
∥∥∥F−1

(
ν1/3 + u2(ξ − kt)2 +

u

1 + u2( ξ
k − t)2

)
FAW

∥∥∥
2
,

where u and ν are defined as in Definition 3.2.

This decay lies at the core of our damping mechanism. In the following lemmas
we show that all other contributions to d

dt‖AW ‖2 can be considered as errors.
We begin by the errors in the dissipation term due to the fact µ is non-constant.

Here we recall that by the assumptions imposed in Theorem 1.1 the relative change
of µ is required to be small:

|
µ′

µ
| ≤ 0.001

as well as

|∂z
µ′

µ
| ≤ 0.001.
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This smallness together with the fact that commutator terms involve integro-differential
operators of lower order than 2 allows us to control these errors.

Lemma 3.5 (Viscosity errors). Let t ≥ 0, let A, C, ν, u and m be given by Defini-
tion 3.2 and let W ∈ L2 be a given function. Then it holds that

0.2〈AW, ȦW 〉 − 〈AW, A(divt(µ
′∇t)v1 + µ′′∂xv2)〉

≤ 0.01‖F−1

(

ν1/3 + u2(ξ − kt)2 +
u

1 + u2( ξ
k − t)2

)

FAW ‖2.

Lemma 3.6 (Velocity errors). Let t ≥ 0, let A, C, ν, u and m be given by Defini-
tion 3.2 and let W ∈ L2 be a given function. Then it holds that

0.2〈AW, ȦW 〉 − 〈AW, A(U ′′v2)〉

≤ 0.01‖F−1

(

ν1/3 + u2(ξ − kt)2 +
u

1 + u2( ξ
k − t)2

)

FAW ‖2.

The proofs of Lemmas 3.3 to 3.6 are given in the following Section 3.1. We briefly
discuss how to combine the estimates of the the lemmas to establish Proposition
3.1.

Proof of Proposition 3.1. Let A, m be given as in Definition 3.2, let W denote the
solution of the linearized Navier-Stokes equations and consider the energy

E(t) = ‖A(t)W (t)‖2
L2 .

Then by the results of Lemmas 3.4, 3.5 and 3.6 it follows that

∂tE ≤ −0.05‖F−1ν1/3 + u2(ξ − kt)2 +
u

1 + u2( ξ
k − t)2

FAW ‖2.(18)

In order to conclude we recall that by Lemma 3.3 the Fourier multiplier m cor-
responding to A is bounded between c and 1 and we may hence relate E with
‖W ‖2

L2. !

In Section 4 we will extend these estimates to the case where µ (and hence U ′)
is allowed to vary by many orders of magnitude. In particular, the values of ν and
µ then are only locally defined. A key challenge there is to show that non-local
effects and interactions between different regions in space can be controlled in a
sufficiently good way. Finally, in Section 5 we show that the damping estimates in
L2 can be bootstrapped to yield stability in arbitrary Sobolev regularity, following
an argument of [Zil21].

3.1. Proof of Lemmas. We begin by discussing the properties of the multiplier
m, which may be computed explicitly in terms of integrals.

Proof of Lemma 3.3. By definition it holds that ∂tm ≤ 0 and hence

m(t) = m(−∞) +

ˆ t

−∞
∂tm ≤ m(−∞) = 1.

Furthermore, we may explicitly compute m as

m(t, k, ξ) = exp

(
ˆ t

−∞

∂tm

m
1Bτ (k, ξ) dτ

)
,(19)
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where we used that m(−∞, k, ξ) = 1. It then holds that
ˆ G

−G
ν1/3dt = 2Gν1/3 ≤ 0.2

is bounded by a uniform constant (and further improves for k large). Furthermore,
also

ˆ G

−G

u

1 + u2t2
dt = arctan(τ)|uG

τ=−uG ≤ π

is uniformly controlled. Therefore, we may estimate

m(t, k, ξ) ≥ exp(−0.2 − π).

We further observe that for t < ξ
k − G or t > ξ

k − G it holds that

∂tm

m
= 0

and m is thus constant on these intervals. On the left interval m equals m(−∞, k, ξ) =
1, while on the right it equals

exp(−
ˆ G

−G
ν1/3 +

u

1 + u2t2
dt) := c.

Finally, by Parseval’s identity these bounds for the multiplier m are equivalent to
L2 bounds for the operator A. !

Having established these properties of the operator A we next turn to estimat-
ing the dissipation. Here for good frequencies in the sense of Definition 3.2 the
dissipation is rather strong. If one instead considers bad (that is, close to resonant)
frequencies we rely on the fact that m decreases in time t to provide sufficient decay.

Proof of Lemma 3.4. We recall that by Lemma 3.3 the multiplier m is multiple of
the identity on the connected components of the good Fourier set Gt. In particular,
when restricted to these sets A commutes with all other operators. In our proof we
hence expand

W = F−11G−
t

FW + F−11BtFW + F−11G+
t

FW =: W1 + W2 + W3

according to this Fourier decomposition. That is, we study

〈AWi, A divt(µ∇t)Wj〉

with i, j ∈ {1, 2, 3}.
We begin by discussing the diagonal cases i = j in the good regime.

Estimates for 〈AWj , A divt(µ∇t)Wj〉, j = 1 or 3:

We recall that A = Id or c Id when applied to W1 or W3, respectively. Hence, we
may explicitly compute that

〈AW1, A divt(µ∇t)W1〉 = 〈W1, divt(µ∇t)W1〉

= 〈W1, µ∂2
x + U ′(∂z − t∂x)µU ′(∂z − t∂x)W1〉

= −〈∂xW1, µ∂xW1〉 − 〈U ′(∂z − t∂x)W1, µU ′(∂z − t∂x)W1〉 − 〈(∂zU ′W1), µU ′(∂z − t∂x)W1〉

≤ −ν‖(∂z − t∂x)W1‖2 − 〈(∂zU ′)W1, µU ′(∂z − t∂x)W1〉,
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where we estimated the first summand by 0 from above and used that µ(U ′)2 ≥ ν
by definition. For the last term we recall that µ and hence U ′ is slowly varying and
we may therefore control

|〈(∂zU ′)W1, µU ′(∂z − t∂x)W1〉| ≤ ‖
∂zU ′

U ′
‖L∞‖U ′W1‖L2‖µU ′(∂z − t∂x)W1‖L2

≤ ‖
∂zU ′

U ′
‖L∞100G−1‖u(∂z − t∂x)W1‖‖µU ′(∂z − t∂x)W1‖

= ‖
∂zU ′

U ′
‖L∞100G−1ν‖(∂z − t∂x)W1‖2

L2,

where we used that (∂z − t∂x) is invertible with operator norm of the inverse map
bounded by G−1 on the good set and controlled |U ′| ≤ 100u. Since G−1 is very

small, as is ‖ ∂zU ′

U ′ ‖L∞ , it holds that

100G−1‖
∂zU ′

U ′
‖L∞ ≤ 0.001(Cond.1)

and hence this error can be absorbed into the decay. We thus note that

〈AW1, A divt(µ∇t)W1〉 ≤ −‖
√

µ∂xAW1‖2
L2 − 0.9ν‖(∂z − t∂x)AW1‖2

and by the same argument

〈AW3, A divt(µ∇t)W3〉 ≤ −‖
√

µ∂xAW3‖2
L2 − 0.9ν‖(∂z − t∂x)AW3‖2.

Since µ and U ′ are not constant there further is some non-trivial interaction
between different good contributions.
Estimates for 〈AWi, A divt(µ∇t)Wj〉 with (i, j) = (1, 3) or (i, j) = (3, 1):
We observe that

〈AWi, A divt(µ∇t)Wj〉 = 〈A2Wi, divt(µ∇t)Wj〉

and that A2 is a multiple of the identity. In the following we may thus for simplicity
of notation instead consider

〈Wi, divt(µ∇t)Wj〉 = −〈∂xWi, µ∂xWj〉 − 〈U ′(∂z − t∂x)Wi, µU ′(∂z − t∂x)Wj〉

+ 〈U ′Wi,
∂zU ′

U ′
µU ′(∂z − t∂x)Wj〉.

By the same argument as above

|〈U ′Wi,
∂zU ′

U ′
µU ′(∂z − t∂x)Wj〉| ≤

1

10
ν‖(∂z − t∂x)W1‖‖(∂z − t∂x)W3‖

can be considered a negligible error term.
For the remaining terms we instead exploit that Wi and Wj have disjoint support

in Fourier space and that these supports have distance at least 2G. In particular,
we may estimate

〈∂xWi, µ∂xWj〉 =

ˆ

F(µ)(ξ1)F(∂xWi)(ξ2)F(∂xWi)(ξ1 + ξ2)dξ1dξ2

≤ ‖
1

ξ1
F(∂zµ)(ξ1)‖L1(|ξ1|≥2G)‖∂xW1‖L2‖∂xW3‖L2

≤ G−1‖F(∂zµ)(ξ1)‖L1(|ξ1|≥G)
1

inf(µ)
‖
√

µ∂xW1‖L2‖
√

µ∂xW3‖L2.
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This interaction term can hence absorbed by the decay provided

G−1‖F(∂zµ)(ξ1)‖L1(|ξ1|≥G)
1

inf(µ)
≤ 0.1,(20)

which is part of our assumption (7) that the relative size of µ is slowly varying.
We remark that here F(µ) refers to the distributional Fourier transform, since µ is
bounded but not in L1.

By the same argument and using that

∂zU ′

U ′
= −

∂zµ

µ

we observe that

|〈U ′(∂z − t∂x)Wi, µU ′(∂z − t∂x)Wj〉|

≤
sup|ξ1|≥2G F(U ′)(ξ1)

u
ν‖(∂z − t∂x)W1‖‖(∂z − t∂x)W3‖,

which can be absorbed provided

sup|ξ1|≥2G |F(U ′)(ξ1)|
inf(U ′)

≤ 0.5,(21)

which holds by assumption.
Estimates for terms involving W2:
It remains to discuss the influence of the part W2 Fourier-localized in the bad set.

We first study the self-interaction term:

〈AW2, A divt(µ∇t)W2〉 = 〈AW2, A∂xµ∂xW2〉
+ 〈AW2, A(∂z − t∂x)U ′µU ′(∂z − t∂x)W2〉
− 〈AW2, A(∂zU ′)µU ′(∂z − t∂x)W2〉.

Since none of A, µ and U ′ are constant, we cannot easily appeal to the negativity
of the elliptic operator in this regime. Instead we use that

〈AW2, A(∂z − t∂x)U ′µU ′(∂z − t∂x)W2〉 ≤ CνG2‖AW2‖2
L2

since W2 is localized in the Fourier set where |ξ − kt| is not large (yet). We recall
that here G was chosen in such a way that νG2 < 0.01ν1/3 and thus the dissipation
in this bad region is weaker than desired.

Similarly, we may estimate

〈AW2, A∂xµ∂xW2〉 ≤ C‖
√

µ∂xAW ‖2
L2 ≤ Cνk2‖AW ‖2

L2 ,(22)

where we used that (U ′)2 ≥ 1 and hence inf(µ) ≤ ν. As remarked following
Definition 3.2 we may without loss of generality only consider those k for which

νk2 < 0.001ν1/3

is much smaller than the enhanced dissipation rate, since otherwise this horizontal
dissipation already achieves the desired decay. With this understanding we restrict
to this case for the reminder of the article. It then also holds that

〈AW2, A∂xµ∂xW2〉 ≤ Cν1/3‖AW2‖2
L2
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with a small constant C. Furthermore, we may control

|〈AW2, A(∂zU ′)µU ′(∂z − t∂x)W2〉| ≤ C‖
∂zU ′

U ′
‖L∞‖µU ′(∂z − t∂x)W2‖L2‖A‖2

(‖∂xW2‖L2 + ‖u(∂z − t∂x)W2‖L2)

≤ Cν1/3‖AW2‖2
L2

with a small absolute constant C, by our choice of cut-off G.
Since the decay of A yields that

〈AW2, ȦW2〉 ≤ −ν1/3‖AW2‖2
L2

these contributions can be absorbed.
Finally, it remains to discuss the cross terms

〈AWi, divt(Aµ∇t)Wj〉 = 〈AWi, A∂xµ∂xWj〉
+ 〈AWi, A(∂z − t∂x)U ′µU ′(∂z − t∂x)Wj〉

+ 〈AWi, A(
∂zU ′

U ′
)U ′µU ′(∂z − t∂x)Wj〉,

where one i, j equals 2. For the first term we estimate by

C‖√
µ∂xAWi‖L2‖√

µ∂xAWj‖L2,

which can be absorbed as above. Similarly, the second term can be controlled by

C‖u(∂z − t∂x)W1,3‖L2ν1/3‖W2‖

and the last term by

CG−1‖
∂zU ′

U ′
‖L∞‖u(∂z − t∂x)W1,3‖L2ν1/3‖W2‖.

We may thus use use Young’s inequality and the previously obtained damping
estimates to absorb these error terms, which concludes the proof. !

In the previous lemma we have established dissipation due the “main” term of the
dissipation operator. The following lemma shows that this decomposition is indeed
and all terms involving higher derivatives of µ can be considered lower order. We
recall here that by assumption µ is slowly varying in the sense that

‖
µ′

µ
‖L∞

and

‖∂z
µ′

µ
‖L∞

are small.

Proof of Lemma 3.5. Given the decay established in Lemma 3.4 we may use inte-
gration by parts, Hölder’s inequality and Young’s inequality to reduce our proof to
establishing bounds on norms of

µ′∇tv1

and of

µ′′∂xv2.
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In analogy to the proof of Lemma 3.4 we here again distinguish between the parts
of v1, v2 generated by the vorticity in the good region W1, W3 and the one localized
in the bad region W2.

More precisely, we note that as in [CZZ19] in these estimates we may replace
v = ∇tφ, defined in terms of the usual stream function, by simpler potential using
the averaged value u of U ′. For this purpose we define ψ to satisfy

(∂2
x + u2(∂z − t∂x)2)ψ = W = (∂2

x + (U ′(∂z − t∂x))2)φ

with suitable integrability assumptions at infinity. Then testing these equations
with either ψ or φ one obtains that the energies

‖v‖2
HN ≈ ‖∂xψ‖2 + ‖u(∂y − t∂x)ψ‖2

are comparable (in the sense of bilinear forms acting on W ).
In the following we may thus discuss

V = (−u(∂z − t

px), ∂x)ψ

in place of v.
We then observe that in the good Fourier region

F(∂xV2) =
k2

k2 + u2(ξ − kt)2
F(W )

is controlled by c−2F(W ).
Similarly, in the good Fourier region

∇tV1

can be controlled by the dissipation, since

1

1 + u2( ξ
k − t)2

≤
1

1 + G2
4 ν1/3.

It thus only remains to discuss the bad Fourier region. However, there the weight
A is chosen in just such a way that

‖(∂x, u(∂z − t∂x))ψA‖2

can be absorbed using

〈AW, ȦW 〉.

More precisely, we may estimate

u‖(∂x, u(∂z − t∂x))ψA‖2 =

ˆ

u

k2 + u2(ξ − kt)2
|AW |2

≤
ˆ

(1Bt(k, ξ)
u

k2 + u2(ξ − kt)2
+ 0.1ν1/31Gt)|AW |2,

since
u

k2 + u2(ξ − kt)2
< 0.1ν1/3

in the good region. The right-hand-side then is controlled by the decay of A and
by the dissipation, which concludes the proof.

!
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Finally we turn to the control of the error in due to the convective term:

U ′′v2 =
U ′′

U ′
U ′v2.

Proof of Lemma 3.6. We remark that in the case of very small effective viscosity
one cannot expect to control

〈AW, AU ′′v2〉(23)

in terms of the dissipation. Hence, we fall back to the estimates developed for the
inviscid case in [Zil17]. More precisely, let again u = min U ′ and define the constant
coefficient stream function ψA and ψ as the solution of the equations

(∂2
x + u2(∂z − t∂x)2)ψA = AW,

and

(∂2
x + u2(∂z − t∂x)2)ψ = W,

respectively. Note that both differential operators involve constant coefficients and
hence both ψ and ψA can be explicitly computed in terms of Fourier multipliers.

Furthermore, integrating by parts and using that v2 = ∂xφ we control (23) by

‖(∂x, u(∂z − t∂x))ψA‖L2‖A‖‖U ′′‖W 1,∞‖(∂x, U ′(∂z − t∂x))∂xφ‖L2 ,

where ‖A‖ denotes the L2 operator norm of A.
We next claim that it holds that

‖(∂x, U ′(∂z − t∂x))∂xφ‖L2 ≤ ‖(∂x, u(∂z − t∂x))∂xψ‖L2

≤ ‖A−1‖‖(∂x, u(∂z − t∂x))∂xψA‖L2 .
(24)

Assuming this claim for the moment, we may compute

‖(∂x, u(∂z − t∂x))ψA‖2
L2 =

ˆ

1

k2 + u2(ξ − kt)2
|F(AW )(t, k, ξ)|2

and hence observe that the velocity error (23) can be estimated by
ˆ

‖A‖‖A−1‖
∥∥∥∥

U ′′

u

∥∥∥∥
W 1,∞

|k|u
k2 + u2(ξ − kt)2

|F(AW )(t, k, ξ)|2

Since by assumption

‖A‖‖A−1‖‖
U ′′

u
‖W 1,∞

is small this error can thus indeed be absorbed using the dissipation and the decay
of A(t).

It remains to prove the claim (24) for which argue as in [Zil17]. That is, we test
the stream function equation

(∂2
x + (U ′(∂z − t∂ − x))2)φ = W = (∂2

x + u2(∂z − t∂x)2)ψ

with φ (or rather U ′

u φ) to obtain that

‖(∂x, U ′(∂z − t∂x))φ‖2
L2 ≤ ‖(∂x, U ′(∂z − t∂x))φ‖L2‖(∂x, u(∂z − t∂x))ψ‖L2 ,

which yields the first estimate of (24). The second estimate (24) immediately follows
from the explicit characterization of ψ and ψA in terms of Fourier multipliers (which
only differ by multiplication with the Fourier weight of A).

!
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We remark that unlike the estimates of Lemmas 3.4 and 3.5 the above estimate
does not explicitly involve the viscosity and has been obtained in the inviscid case.
This lemma hence imposes the strongest restrictions on the profile U (and hence
equivalently on µ). As discussed following the statement of Theorem 1.1 we do not
expect the smallness condition to be optimal, but rather a non-resonance/spectral
condition as in [WZZ18]. However, the present stronger assumption allows for an
approach in terms of a Lyapunov functional.

4. Localization and Non-local Interactions

In this section we consider the linearized equations (9) in vorticity formulation

∂tω + U(y)∂xω − U ′′v2 = div(µ∇ω) − div(µ∇v1) − µ′′∂xv2,

v = ∇⊥∆−1ω.

Unlike in Section 3 we here allow for µ (and hence also U ′) to vary by many orders
of magnitude.

Our main result of this section, Proposition 4.1 then establishes the stability and
damping results of Theorem 1.1 in L2, for which a special case had been treated in
Proposition 3.1.

Proposition 4.1. Let µ, U satisfy the assumptions of Theorem 1.1. Then there
exists a time-dependent family of operators A(t) such that for any initial data ω0 ∈
L2 the solution W (t) with that initial data satisfies

c‖W (t)‖L2 ≤ ‖A(t)W (t)‖L2 ≤ ‖W (t)‖L2 .

Furthermore, it holds that

d

dt
‖AW ‖2

L2 ≤ −0.001
(

‖(µ(U ′)2)1/6W ‖2
L2 + ‖

√
µU ′(∂z − t∂x)W ‖2

L2 + ‖
√

U ′v‖2
L2

)
.

We recall that as part of the assumptions of Theorem 1.1 we require that (7)
holds:

‖
µ′

µ
‖W 1,∞ < 0.1.

This quantifies the requirement that µ may only change gradually (but since R is
unbounded it may change by many orders of magnitude over all). This constraint
on the relative rate of change then further implies that when restricted to any
interval I of suitable size, it holds that

maxI µ

minI µ
≤ 100.

Thus, if we extend the restrictions µ|I , U |I by constants to functions µI , UI on all
of R, then these extensions satisfy the assumptions of Section 3. Thus we may
“locally” reduce to that model setting. However, these restrictions and extensions
have to be related to the actual whole space problem (9) (see Lemma 4.4) and have
to be combined to control growth of the whole space problem (see Lemmas 4.5, 4.6
and 4.7).

Our main challenges in the following are to formalize this intuition and to control
non-local errors. More precisely, since the velocity is non-local and so are several
commutator terms, it is not possible to just restrict W and reduce estimates to the
ones of Section 3. Instead we will show that in the sum over all localized estimates
still holds.
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4.1. Partitions and Non-local Interaction. The following lemma establishes
the existence of a partition of R such that on each interval of the partition µ (and
hence U ′) is comparable to a constant. Furthermore, the sizes of these intervals is
bounded below and hence cut-off functions and partitions of unity corresponding
to this partition have controlled W k,∞ norms. Using these partitons we may also
construct extensions of the restrictions of µ, U which satisfy the assumptions of the
model setting studied in Section 3.

Lemma 4.2 (Partitions). Let N ∈ N and µ ∈ CN+2 be as in Theorem 1.1. Then
there exits a partition (Ij)j∈Z of R into intervals such that

sup3Ij
µ

inf3Ij µ
≤ 50(25)

for all j, where 3Ij denotes the rescaled intervals with the same center. Furthermore,
the length of each interval Ij is bounded below by 1.

Associated with this partition there exists a family of non-negative functions χj ∈
C∞

c with supp(χ2
j ) ⊂ 3Ij such that χ2

j is a partition of unity.

For each j there exist µj , Uj ∈ CN+2(R) such that

µj = µ, Uj = U in Ij ,

µjUj ≡ const. in R

and so that µj and ∂yUj are constant outside 3Ij and

maxR µj

minR µj
≤ 100.

Proof of Lemma 4.2. We recall that by assumption on µ the relative rate of change
µ′

µ is bounded. Hence, given any two points y1, y2 we observe that

µ(y2)

µ(y1)
= exp(ln(µ(y2)) − ln(µ(y1))) = exp

(
ˆ y2

y1

µ′

µ
dy

)

is bounded in terms of |y2 − y1|, also when exchanging y1 and y2.
In order to construct the intervals Ij we thus pick an initial point y1 = 0 and

then choose y2 > 0 (or y2 < 0) maximally such that (25) holds with Ij = (y1, y2).
By the above calculation the size of Ij is bounded below. Therefore, iterating this
procedure with y1 chosen as a boundary point of a previously generated interval,
we obtain the desired partition (Ij)j of R with the size of each Ij bounded below.

We remark that in this greedy procedure it is possible that for up to two choices
of j the interval Ij is unbounded (in which case the above procedure only generates
finitely many j). In this case we may instead impose that y2 should be maximized
under the additional constraint that |y2 − y1| ≤ 1000.

It is a classical result that given such a partition of intervals there exists a
partition of unity for which the square root of each function is still smooth and such
that bounds on Ck norms are uniform in j (since the size of each Ij is bounded
below).

Furthermore, given this partition unity we construct an extension of µ by

µj = µ(y1)
∑

l<j

χ2
l + µχ2

j + µ(y2)
∑

l>j

χ2
l .
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The associated shear profile Uj is then constructed by integrating

∂yUj :=
C

µj

with C and the the constant of integration chosen such that Uj(y1) = U(y1) and
∂yUj(y1) = ∂yU(y1). This then directly implies the desired bounds, where we used
that the derivatives of the partition of unity are bounded and hence the estimate
(25) only possibly deteriorates by a small factor under this extension. !

Given these partitions we may naturally define operators acting on χjW by using
the results of Section 3.

Definition 4.3 (Localized Fourier weights). Let χ2
j be the partition of unity of

Lemma 4.2 and let µj , Uj be the collection of viscosities and shear associated with
these partitions.

We then define Aj to be the operator as given in Definition 3.2 for µ, U replaced
by µj , Uj. Furthermore, we define

Wj := χjW

and the energy functional

E(t) =
∑

j

〈AjWj , AjWj〉.

We remark that here for each interval Ij we consider the L2 inner product on
L2(dzj). However, since χj is compactly supported in 3Ij we observe that

〈AjWj , Ajχj∂tW 〉L2(dzj) = 〈A2
j Wj ,χj∂tW 〉 ≤ ‖A2

jWj‖L2(dzj)‖χj∂tW ‖L2(dz),

where in the last step we used that z and zj agree on this support. In view of this
compatbility with L2(dz) we may hence transparently switch between the spaces
L2(dzj), j ∈ Z in several estimates and thus suppress this formal j dependence in
our notation.

Since χ2
j is a partition of unity, the norms of W and the sum of the norms of Wj

are comparable.

Lemma 4.4 (Norm estimates). Let χj and Wj be as in Definition 4.3 and suppose
that χj ∈ C0

b .
Then there exist constants 0 < c1 < c2 < ∞ such that the L2 norms satisfy

c1‖W ‖2 ≤
∑

j

‖Wj‖2 ≤ c2‖W ‖2.

Let next N ∈ N and suppose that χj ∈ CN
b . Then there exist constants d0, . . . , dN

with dN = 1 and c1, c2 such that

c1‖W ‖2
HN ≤

N∑

l=0

∑

j

∑

|α|=l

dl‖∂αWj‖2 ≤ c2‖W ‖2
HN .

Proof of Lemma 4.4. Since χ2
j is a partition of unity, this estimate is actually triv-

ially true with c1 = c2 = 1 and equality.
Moreover, if ‖AjW ‖ ≈ ‖W ‖ with constants uniform in j, this also implies that

∑

j

‖AjWj‖2 ≈
∑

j

‖Wj‖2 = ‖W ‖2.
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Here and in the following the notation a ≈ b states that there exist constants
0 < c1 < c2 < ∞ such that c1a ≤ b ≤ c2a.

For N > 1 we argue by induction. More precisely, for any given multi-index α
we may expand

∂αχjW = χj∂
αW +

∑

β+γ=α

(∂βχj)∂γW.

By the same argument as in the L2 case it holds that
∑

j

‖χj∂
αW ‖2

L2 = ‖∂αW ‖2
L2.

For all other terms we note that

|∂βχj | ≤ ‖χj‖
C|β|

b
1supp(χj)

and that the supports of the functions χj at most cover R twice. Hence, we may
control

∑

β+γ=α

‖(∂βχj)∂γW ‖2
L2 ≤

∑

m<N

‖W ‖2
Hm‖χj‖2

CN−m
b

,

which can be controlled in terms of

N−1∑

l=0

∑

j

∑

|α|=l

dl‖∂αWj‖2

by the induction assumption.
We further remark that these comparisons remain true if Wj is replaced by

AjWj . !

Given this definition of an energy, we next need to verify that it indeed is a
Lyapunov functional and thus study

d

dt
E =

∑

j

〈ȦjWj , AjWj〉 +
∑

j

〈AjWj , Ajχj∂tW 〉

=
∑

j

〈ȦjWj , AjWj〉 +
∑

j,j′

〈AjWj , Ajχj(divt(µ∇tχj′Wj′ ))〉

−
∑

j

〈AjWj , Ajχj(divt(µ
′∇tv1) − µ′′∂xv2)〉

+
∑

j

〈AjWj , AjχjU ′′v2〉.

Compared to the results of Section 3 we here encounter several additional challenges:

• The Biot-Savart law is non-local. Therefore χjv depends on all (Wj′ )j′ not
just Wj . We thus need to compare various localizations of the Biot-Savart
law, while at the same time also localizing in frequency.

• The evolution of Wj hence also depends on all (Wj′ )j′ .
• In the dissipation term we have a double sum with respect to j and j′.

Here we observe that for |j − j′| ≥ 2 the support of χj and χj′ are disjoint
and hence we only need to consider j′ ∈ {j − 1, j, j + 1} (only neighbors
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instead of full non-local interaction as for the velocity). However, the cou-
pling introduced by this interaction implies that we cannot hope to control
〈AjWj , AjW 〉 in terms of itself, but rather have to control sums over all j.

The following lemma generalizes Lemma 3.4 to the present setting.

Lemma 4.5 (Localized dissipation estimates). Let W ∈ S, then it holds that

0.01
∑

j

〈ȦjWj , AjWj〉 +
∑

j

〈AjWj , Ajχj(divt(µ∇tW ))〉

≤ −0.01
∑

j

‖
√

µU ′(∂z − t∂x)AjWj‖2 + ‖(µ(U ′)2)1/6AjWj‖2.
(26)

Proof of Lemma 4.5. We note that in (26) the dissipation involves W and not just
Wj and we thus have to control the interaction with other intervals. However, by
construction only neighboring functions χj ,χj′ with j′ ∈ {j − 1, h, j + 1} have
intersections of their support.

We thus expand

χj(divt(µ∇tW )) = divt(µ∇tWj) + [divt µ∇t,χj]
∑

j′∈{j−1,j,j+1}

Wj .

Here the “diagonal term”

〈AjWj , Aj divt(µ∇tWj)〉

can be controlled by using Lemma 3.4 of Section 3.
For the other terms we note that

[divt µ∇t,χj ]

is a first order differential operator. In the good region it can thus easily be con-
trolled by the dissipation by the same argument as in the proof of Lemma 3.4.

In the bad region we have to require that derivatives of χj are not too large.
As discussed in Lemma 4.2 this control of the derivatives is a consequence of our
assumption that µ only varies gradually and that hence the sizes of the intervals Ij

is bounded below by a (large) constant. This then implies that we can use Young’s
inequality to absorb these terms into the dissipation.

This smallness is a consequence of our assumptions on µ, which imply that that
each χj is supported on intervals of size at least L and hence an n-th order derivative
is controlled in terms of L−n, which is much smaller than 1. !

Lemma 4.6 (Non-local velocity estimates). Let t ≥ 0, let A, C and m be given by
Definition 3.2 and let W ∈ HN be a given function. Then it holds that

∑

j

0.2〈AjWj , ȦjWj〉 −
∑

j

〈AjWj , Ajχj(U ′′v2)〉

≤ 0.1ν1/3
∑

j

‖AjWj‖2 + 0.1
∑

j

‖
√

µ∇tAjWj‖2

Proof of Lemma 4.6. We again observe that here the right-hand-side depends on
all of W . However, unlike in Lemma 4.5 here χjv2 depends on Wj′ for all j′ and
not just j′ ∈ {j − 1, j, j + 1}.

Instead of estimating in terms of j′ as in Lemma 4.5, we generalize the elliptic
estimates of [CZZ19] to the present setting.
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More precisely, let φj be the stream function generated by Wj :

∆jφj = Wj = χjW,

and let φ denote the stream function generated by W :

∆φ = W =
∑

j

χjWj .

Then by testing the above equations with −φj and −φ, respectively, we observe
that

‖∇jφj‖2 ≤ ‖∇jφj‖‖∇(χjφ)‖

and

‖∇φ‖2 ≤
∑

j

‖∇(χjφ)‖‖∇jφj‖.

Using the fact that derivatives of χj are bounded, it thus follows that

‖∇φ‖2 ≈
∑

j

‖∇jφj‖2.

Thus errors in velocity can be controlled in terms of sums of ∇jφj (see also Lemma
4.4). Moreover, the above argument extends to considering weighted spaces.

In order to conclude, we note that by the definition of Uj , µj and Wj each such
contribution can be controlled in terms of the decay of the multiplier Aj and the
dissipation. Hence the velocity errors can be absorbed. !

Lemma 4.7 (Viscosity errors). Let t ≥ 0, let A, C and m be given by Definition 3.2
and let W ∈ HN be a given function. Then it holds that

0.2
∑

j

〈AjWj , ȦjWj〉 −
∑

j

〈AjWj , Ajχj(divt(µ
′∇t)v1 + µ′′∂xv2)〉

≤ 0.1ν1/3
∑

j

‖AjWj‖2 + 0.1
∑

j

‖√
µ∇tAjWj‖2

Proof of Lemma 4.7. In order to prove these estimates we employ a combination
of the methods used in the proofs of Lemmas 3.5, 4.5 and 4.6.

More precisely, we first use the structure of the Biot-Savart law to express

(divt(µ
′∇t)v1 + µ′′∂xv2)

in terms of W and lower order terms. For the terms involving W we can then argue
analogously as in Lemma 3.5, using the decoupling of χj and χj′ if j and j′ are far
apart as in Lemma 4.5.

Finally, for the remaining terms involving the velocity, we argue as in Lemma
4.6 and thus reduce to estimating ∇jφj in place of v. Summing over the “diagonal”
estimates as established in Lemma 3.5 then yields the result. !

Having establised these estimates, we are now ready to prove Proposition 4.1 and
thus also prove part of Theorem 1.1. An extension of these results to higher Sobolev
norms HN is given in Section 5, which then completes the proof of Theorem 1.1.
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Proof of Proposition 4.1. Let ω0 ∈ L2(dz) be a given initial datum, let µ, U satsify
the asssumptions of Theorem 1.1 and let W denote the solution of (17)

∂tW − U ′′V2 = divt(µ∇tW ) − divt(µ
′∇tv1) − µ′′∂xv2.

with this initial data, where

v1 =
−U ′(∂z − t∂x)

∂2
x + (U ′(∂z − t∂x))2

W,(27)

v2 =
∂x

∂2
x + (U ′(∂z − t∂x))2

W.(28)

Then by Lemma 4.2 there exists a parition of R into intervals Ij and an associated
partition of unity χ2

j . We then define Aj and

Wj := χjW

as in Definition 4.3 and study the evolution of the energy

E(t) :=
∑

j

〈AjWj , AjWj〉.

Inserting the evolution equation (17) we then have to estimate

d

dt
E(t) = 2

∑

j

〈ȦjWj , AjWj〉

+ 2
∑

j

〈AjWj , Ajχj(divt(µ∇tW )〉

− 2
∑

j

〈AjWj ,χj divt(µ
′∇tv1)〉

− 2
∑

j

〈AjWj , Ajχjµ′′∂xv2〉.

Combining the estimates of each summand, derived in Lemmas 4.4 to 4.7 we deduce
that

d

dt
E(t) ≤ −0.01

∑

j

(
ν1/3

j ‖Wj‖2 + ‖√
µjU ′

j(∂zj − t∂x)Wj‖2 + uj‖(∂x, uj(∂zj − t∂x))ψAj ‖2
)

.

Finally, we recall that µj , U ′
j, zj agree with µ, U ′, z on each interval Ij and that by

Lemma 4.4 the energy E(t) is comparable to ‖W (t)‖2
L2(dz). This hence concludes

the proof of Proposition 4.1 where the symmetric operator A is defined such that

‖A(t)W (t)‖2 := E(t).

!

5. Stability in HN

As the last step of our proof of Theorem 1.1, in this section we extend the stability
and damping estimates in L2 established in Section 4.1 to estimates in HN . Here
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we follow an inductive approach introduced in [Zil21] in the inviscid setting. We
consider the linearized equations (17)

∂tW = U ′′v2 + divt(µ∇tW ) − divt(µ
′∇tv1) − µ′′∂xv2 =: LW,

v1 =
−U ′(∂z − t∂x)

∂2
x + (U ′(∂z − t∂x))2

W,

v2 =
∂x

∂2
x + (U ′(∂z − t∂x))2

W,

where we introduced the time-dependent linear operator L for brevity of notation.
We remark that derivatives with respect to x can be identified with multiplication
by ik, since the linearized equations decouple with respect to k. Hence higher
derivatives in x can be estimated using the L2 energy. In the following we hence
only consider derivatives with respect to z. Applying N derivatives to (17) we
obtain that

∂t∂
N
z W = L∂N

z W + [L, ∂N
z ]W.(29)

In the following lemma we then that the commutator term can be considered an
error term involving fewer than N derivatives, while L∂N

z W can be treated in the
same way as in the L2 estimate. In this sense the L2 estimate forms the core of our
argument.

Proposition 5.1. Let µ, U satisfy the assumptions of Theorem 1.1. In particular,
let N ∈ N and suppose that ∂z ln(µ) ∈ W N+1,∞. Let A be as in Proposition 4.1,
then there exist constants c0, c1, . . . , cN > 0 depending only on the W k,∞ norms of
∂z ln(µ) such that

EN (t) =
∑

l≤N

cl〈A∂l
zW, A∂l

zW 〉

is a Lyapunov functional and satisfies

d

dt
E(t) ≤ −0.01(‖

√
µ(∂z − t∂x)∂N

z W ‖2
L2 + ‖(µ(U ′)2)

1
6 ∂N

z W ‖2
L2).

We remark that here we only require that the W N+1,∞ norm is finite. Only the
W 1,∞ needs to be small in order to establish the L2 stability estimate.

Proof of Prosposition 5.1. The case N = 0 has been established in Proposition 4.1
with c0 = 1. We hence aim to proceed by induction. Hence, suppose that the
estimates have been established for the case N − 1 and consider

EN (t) = cN 〈A∂N
z W, A∂N

z W 〉 + EN−1(t) + EN−2(t) + · · · + E0(t)

with cN to be determined later.
Then by the induction assumption it holds that

d

dt
El(t) ≤ −0.01(‖

√
µ(∂z − t∂x)∂l

zW ‖2
L2 + ‖(µ(U ′)2)

1
6 ∂l

zW ‖2
L2)(30)

for all 0 ≤ l ≤ N − 1 In particular, all derivatives of W up to order N − 1 can be
controlled by the induction assumption. We thus turn to the control of the “leading
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order” term involving ∂N
z W . Here, by the L2 estimates of Proposition 4.1 it holds

that

d

dt
cN 〈A∂N

z W, A∂N
z W 〉 = 2cN〈Ȧ∂N

z W, A∂N
z W 〉 + 2cn〈A∂N

z W, AL∂N
z W 〉

+ 2cN 〈A∂N
z W, A[L, ∂N

z ]W 〉

≤ −0.01cN(‖
√

µ(∂z − t∂x)∂N−1
z W ‖2

L2 + ‖(µ(U ′)2)
1
6 ∂N−1

z W ‖2
L2)

+ 2cN 〈A∂N
z W, A[L, ∂N

z ]W 〉.

(31)

Combining the estimates (31) and (30) it thus suffices to show that for a suitable
choice of cN we may absorb the commutation error

2cN〈A∂N
z W, A[L, ∂N

z ]W 〉.

into the decay

−0.01cN(‖
√

µ(∂z − t∂x)∂N−1
z W ‖2

L2 + ‖(µ(U ′)2)
1
6 ∂N−1

z W ‖2
L2)

−0.01
∑

l<N

(‖√
µ(∂z − t∂x)∂l

zW ‖2
L2 + ‖(µ(U ′)2)

1
6 ∂l

zW ‖2
L2)

Let us first discuss the main dissipation term of L. Here we may iteratively expand

[divt(µ∇t), ∂
N
z ]W = [divt(µ∇t), ∂z]∂N−1

z W

+ [divt(µ∇t), ∂
N−1
z ]∂1

z W + [[divt(µ∇t), ∂
N−1
z ], ∂z]W

=
∑

l<N

El∂
l
zW,

where the operators El are second order elliptic operators whose coefficient functions
may be explicitly computed in terms of derivatives of U ′ and µ up to order N − l.
In order to estimate

〈A∂N
z W, A[divt(µ∇t), ∂

N
z ]W 〉 =

∑

l<N

〈A∂N
z , AEl∂

l
zW 〉

we may thus argue as in the proof of Lemma 4.5 and control

cN

∑

l<N

〈A∂N
z , AEl∂

l
zW 〉 ≤ cN ‖

√
µ∇tA∂

N
z W ‖L2

∑

l

dl‖
√

µ∇t∂
k
z lW ‖L2.(32)

Similarly we may iterative expand the equation satisfied by derivatives of the
stream function

∆t∂
N
z φ = ∂N

z W + [∆t, ∂
N
z ]φ

and thus obtain that

∂N
z φ = ∆−1

t ∂N
z W + ∆−1

t

∑

l<N

Ẽl∆
−1
t ∂l

zW,

where the second order operators Ẽl may again be explicitly computed. Thus, we
may argue as in the proofs of Lemmas 4.6 and 4.7 and again use Hölder’s and
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Young’s inequality to control

〈A∂N
z W, A[divt(µ

′∇t)U
′(∂z − t∂x)∆−1

t − µ′′∂x∆−1
t + U ′′∂x∆−1

t , ∂N
z ]W 〉

≤ (‖
√

µ(∂z − t∂x)∂N
z W ‖L2 + ‖(µ(U ′)2)

1
6 ∂N

z W ‖L2)
∑

l

(‖√
µ(∂z − t∂x)∂l

zW ‖L2 + ‖(µ(U ′)2)
1
6 ∂l

zW ‖L2).

(33)

We may thus conclude our estimate by using Young’s inequality. More precisely,
we first apply Young’s inequality to the estimates (32) and (33) so that the contri-
butions due to ∂N

z W can be bounded by

0.00001cN(‖
√

µ(∂z − t∂x)∂N
z W ‖2

L2 + ‖(µ(U ′)2)
1
6 ∂N

z W ‖2
L2)

and can thus be absorbed into the decay in estimate (31). Then, choosing cN suffi-
ciently small the remaining terms obtained in the application of Young’s inequality
can be absorbed into the decay by (30). This concludes the proof. !
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