
Runtime Verification
of Correct-by-Construction Driving

Maneuvers

Alexander Kittelmann1,2(B), Tobias Runge1,2, Tabea Bordis1,2,
and Ina Schaefer1,2

1 TU Braunschweig, Brunswick, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{alexander.kittelmann,tobias.runge,tabea.bordis,
ina.schaefer}@kit.edu

Abstract. Cyber-physical systems play an increasingly vital role in our
everyday lives by leveraging technology to mitigate human error. These
systems are inherently safety-critical, which requires the highest stan-
dards in quality assurance. Therefore, designing safe behaviors for these
systems in a manageable fashion and maximizing trust early on by for-
mally verifying them against a formal specification mandates a software
engineering process that prioritizes appropriate abstractions in the early
design phase. However, even if models are formally verified at design
time, their appropriateness in the real world stills needs to be validated at
runtime, as specifications are usually incomplete. In this work, we intro-
duce a methodology for refining verified cyber-physical systems modeled
by hybrid mode automata to executable source code amenable for run-
time verification. In particular, we employ ArchiCorC, which lifts the
correctness-by-construction paradigm for programs to component-based
architectures, and comes with facilities for code generation. Subsequent
simulations of the executable and verified maneuvers allow to validate
their initial requirements in a diverse set of scenarios.

Keywords: Correctness-by-construction · Cyber-physical systems ·
Runtime verification

1 Introduction

Cyber-physical systems are ubiquitous in many products that we use in our daily
lives, including avionic systems [45], automobiles [15], robotics [30], and even
medical equipment [25]. To reduce development complexity, their safety-critical
nature mandates sophisticated elicitation of requirements and formal reason-
ing techniques (e.g., formal verification) during the design stage. Model-based
development is such an approach in modern software engineering, which allows to
express cyber-physical systems in a way that makes their analysis, visualization,
and simulation tractable. The goal is to start with an abstract behavioral model
of a system that is already amenable to various analyses (e.g., scalable formal

verification) to identify conceptual design flaws as early as possible. Moreover,
the typical model-based design process spans multiple layers. That is, a refining
process is applied to add more details to the current model and to perform more
complex analyses. Eventually, the model is refined to executable source code.

A challenge is that the initial set of requirements used for successfully verify-
ing an abstract model’s behavior can often not guarantee that the system behaves
completely safe after deployment. That is, elicitated requirements are typically
incomplete for real-world execution of cyber-physical systems. Therefore, it is
of paramount importance to validate the executable model under real-world
conditions. To be cost-effective, the validation process aims at inspecting com-
pleteness of requirements by simulating the modeled behavior using one of many
data-driven validation techniques (i.e., run-time verification) [33]. Model parts
that violate any safety concerns can then be localized and improved, resulting
in an iterative development process. Examples of such simulation and analysis
tools include Matlab/Simulink [3], Ptolemy II [41], and AADLSim [8]. Most
of these simulation frameworks focus on rich specification languages, problems
orthogonal to functional safety (e.g., uncertainty or performance), and are tied
to specific modeling languages.

An important challenge is the gap between design model and the actual
implementation that is simulated. Most of the aforementioned approaches
already work with detailed enough design models amenable to simulation (e.g.,
Matlab/Simulink [3]). However, this puts a lot of burden onto the early
development of such systems due to high complexity in the modeling phase.
Moreover, formal verification (e.g., establishment of correctness proofs) becomes
intractable for these models. In contrast, maximizing abstraction of the initial
design model is necessary to make formal verification scalable. However, this
requires to add details to the implementation model before simulation, which
increases the chances to introduce new defects and invalidates verification and
simulation results.

In this work, we address this challenge by presenting an abstract formalism to
specify and verify behavior of cyber-physical systems, and then derive correct-
by-construction implementations including facilities for monitoring for virtual
simulation and run-time verification. In Fig. 1, we give a high-level overview of
the key ingredients of our proposed verification and validation pipeline, which
depicts an iterative and incremental development process consisting of four con-
secutive steps.

First, we propose to model and specify the intended behavior of cyber-
physical systems with so-called hybrid mode automata. To verify these models
and to generate correctness proofs, we translate them to differential dynamic
logic (dL) [40] and employ the interactive theorem prover KeYmaera X [34].
Second, the modeled hybrid mode automata are then translated to a component-
based architecture. In particular, we exploit ArchiCorC [22], which builds on
top of CorC [44] (a tool suite for correct-by-construction programs) and enables
a developer to establish a component-based correct-by-construction architecture.
Third, the architecture is automatically translated to source code in a general-
purpose programming language (e.g., Java or C++). Although the code genera-

Valid HMA

Prove
maneuver safety

Code generation
& compilation

Code Generator
e.g., Java, C++,…

KEYMAERA X

Maneuver safe Architecture correct

CORC, KEY, Z3

Iterative development / Report

Derive / implement
component architecture

ARCHICORC

1 2 3

4 Validation

Interfacing
with

Runtime

Model Code
+ Monitor

Virtual Simulation
e.g., AirSim, ROS, numerical

Fig. 1. Schematic overview of steps in the proposed verification and validation pipeline.

tion itself is unverified per se, each part of this process is verifiable when following
best practices. That is, behaviors of components ideally follow the correctness-
by-construction approach and checking validity of connections between compo-
nents (horizontally and vertically) reduces to satisfiability checks based on their
interface specifications. Moreover, the implementation also comes with facilities
for monitoring, which are automatically generated from the formal specification.

Finally, the derived executable is verified on a set of scenarios (i.e., run-time
verification by simulation). For the visual simulation environments, we integrate
AirSim [47] by Microsoft, which is used for ground and air vehicles, and the
robot operating system (ROS) together with Gazebo, which is a mature frame-
work and visualization environment for robotic systems. Validation is supported
by the automated monitoring of safety conditions. Monitoring functions are auto-
matically generated from the hybrid mode automata as part of the third step.
This allows to classify monitor violations as passable (i.e., violation does not have
an impact on safety), severe (i.e., violation does have a high chance of impacting
safety), or even fatal (e.g., vehicle collided with an object).

In summary, we make the following contributions.

– Technique: We propose a verification and validation pipeline for behaviors
of cyber-physical systems that starts with an abstract model amenable to
formal verification, and allows to derive a correct-by-construction and fully-
functional implementation amenable to run-time verification.

– Tool support: We implemented our technique as part of the tool chain
Skeditor by leveraging ArchiCorC, a model-based framework for devel-
oping correct-by-construction component-based architectures. As simulation
environment, we integrated AirSim [47] by Microsoft.

– Evaluation: We performed an empirical study on five case studies in the con-
text of automated driving, which differ in complexity and safety requirements.
In our study, we verified at run-time that none of the case studies violated
their safety requirements, which affirms that deriving fully-functional behav-
iors from highly-abstract verified models is feasible.

2 Workflow by Example

In this section, we aim at exemplifying our proposed workflow on an automatic
distance control for road vehicles.

To formally reason about cyber-physical systems, they are often mathemat-
ically modeled by hybrid systems [1,7,16], which mix discrete and continuous
behavior in a single formalism and abstract away from unnecessary details. Mod-
eling approaches include hybrid automata [2] and hybrid programs [40].

(Cruise)
ẋ = v

|x − xl| = D
|x − xl| = D

(Accel)
ẋ = v
v̇ = a

|x − xl| ≥ D

(Brake)
ẋ = v

v̇ = −b, v ≥ 0
|x − xl| ≤ D

|x − xl| > D

|x − xl| = D

|x − xl| < D

|x − xl| > D

|x − xl| = D

|x − xl| < D

Fig. 2. Simplified hybrid system of a vehicle with automatic distance control.

In Fig. 2, we give an example of a simplified hybrid automaton representing
the aforementioned automatic distance control with three possible states, namely
Cruise, Accel, and Brake. Variables x and xl define the current position on a
straight line of both the host vehicle and the leading vehicle, and constant D
represents the ideal distance between them. Moreover, variables v, a, and b define
the current velocity, acceleration, and braking force, respectively. The goal of the
distance control is to ensure that the distance between both vehicles remains
approximately equal to D. The vehicle is in cruise mode when the distance to
the leading vehicle is equal to distance D, which also means that acceleration
a is set to zero (i.e., resulting in constant speed). In each control cycle, the
current state evolves by applying the respective differential equations and is
then evaluated, such that the automaton may transition into a different state.
That is, if the leading vehicle increases or decreases the distance, the automaton
switches to either state Accel or state Brake. The condition v ≥ 0 in state Brake
ensures that velocity v will not be allowed to become negative.

Step 1: Hybrid Mode Automaton. For modeling the behavior of cyber-
physical systems, we propose hybrid mode automata, which is a customized
combination of hybrid automata [16] and mode automata [28,29]. Hybrid mode
automata consist of a number of discrete modes with guarded transitions between
them. Although their expressiveness is equal to the expressiveness of hybrid
automata, a key difference is that a discrete and simple program is projected

onto each mode, which is executed each time a mode is entered. This reduces
the number of transitions by allowing more than a single computation step per
mode. Furthermore, each mode is allowed to have exactly one system of ordinary
differential equations that represents how variables change over time. In Listing
1, we present an excerpt of a possible variation of the distance control as a hybrid
mode automaton in our own domain-specific language [20].

1 automaton Distance init Cruise

2 input variables: mode Accel:
3 x, xl, D : R controller:
4 output variables: if(D<100.0) {a := C} else
5 a : R {a := *; assume a ≤ A};
6 dynamics:
7 assumption: {x’=v, v’=a & v >= 0}
8 |x − xl| ≥ D transitions:
9 guarantee: to Cruise when |x − xl| = D;

10 |x − xl| ≥ D to Brake when |x − xl| < D;
11 mode Cruise: . . .

Listing 1. Excerpt of a hybrid mode automaton for the distance control.

Besides transitions, each mode is comprised of a controller and
dynamics part. The controller part lets a user define how variables may
change (without elapsed time after entering the mode), while the dynamics part
specifies the physical evolution of variables over time. Here, mode Accel assigns
acceleration variable a the constant C if the distance to the leading vehicle is
less than 100m, and otherwise may assume any value for a that is less then the
(constant) maximum acceleration A. Additionally, we allow to specify assump-
tions and guarantees of the complete automaton using first-order logical formu-
las (with real-valued arithmetic). Assumptions state the initial condition before
executing the automaton, while guarantees state safety invariants that are not
allowed to be violated during any time of the execution. Execution of such
automata can be formally verified against the pair of assumptions and guaran-
tees using a deductive calculus.

Step 2 and 3: Correct-by-Construction Architecture and Code Gener-
ation. After a maneuver represented by the hybrid mode automaton is modeled
and verified, we use it to generate a component-based architecture amenable to
runtime execution (e.g., for the purpose of simulation). As mentioned before,
nondeterminstic assignments must be concretized manually during the imple-
mentation phase, which could potentially violate the safety guarantees. To pro-
pose a guideline for developers to implement nondeterminstic assignments in a
correct-by-construction fashion, we employ the tool suite ArchiCorC [22]. At
its core ArchiCorC [22] is a architecture modeling framework build on top
of CorC [44]. CorC enables users to start with a specification (i.e., precondi-
tion and postcondition) and to develop correct-by-construction algorithms in an
imperative language applying only sound refinement rules.

A hybrid mode automaton is translated to ArchiCorC’s own domain-
specific language consisting of required and provided interface definitions, as
well as a textual representation for the atomic component that links provided
methods to real implementations. In particular, a component resulting from a
hybrid mode automaton provides an interface that includes (1) a control method
representing a single execution of the automaton (i.e., mode switch and exe-
cution of the discrete program), (2) methods for nondeterminstic assignments
that must be implemented by hand (ideally using CorC), and (3) a method for
monitoring the current state. The following interfaces in ArchiCorC’s interface
language exemplify this translation for the automatic headway control.

archicorc_interface IHeadwayReq {
// Parameters
double D;
// Input variables
double x, xl;

}

archicorc_interface IHeadwayProv {
// Output variables
double a;
// State ID
int state_id;

//@ requires |x − xl| ≥ D;
//@ ensures |x − xl| ≥ D;
void ctrlStep(void);

// Resolve nondet. assignment
//@ requires |x − xl| > D ∧ D ≥ 100;
//@ ensures |x − xl| > D ∧ D ≥ 100 ∧ a ≤ A;
double a1();

// Monitoring
bool monitorSatisfied(State prior);

}

As illustrated above, key element of the provided interface is the ctrlStep
method that advances the state each cycle. Automated code generated for the
ctrlStep methods resembles the structure of the corresponding hybrid mode
automaton. We translate the corresponding hybrid mode automaton to a logi-
cal formula, which is then used as postcondition, while using the hybrid mode
automaton’s assumption and environmental conditions as precondition. Finally,
we add a method to the component for monitoring whether any control actions
violate the original (and verified) controller model. Input argument State is a
simple structure used as shorthand for the collection of input and output vari-
ables. We discuss the generation of monitor code in the next section in more
detail.

Step 4: Simulation and Monitoring. Finally, the generated implementa-
tion is executed in a simulation environment to validate whether the verified
maneuver is appropriate in practice. To rule our any defects besides an insuffi-
cient specification, it is important to ensure that the executable implementation
adheres to the same correctness guarantees as the modeled and verified con-
troller. For this, we apply runtime monitoring that reports on violations during
runtime with respect to the modeled controller. On a higher level, execution of
the hybrid mode automaton is split into executing the modes and transitioning
between them. In general, this results in disjunctions of modes including infor-

mation about when a mode can be executed (i.e., using the guards of incoming
transitions per mode). Our automatic headway controller results in the disjunc-
tion(

(|x − xl| > D ∧ Accel) ∨ (|x − xl| = D ∧ Cruise) ∨ (|x − xl| < D ∧ Brake)
)
.

3 Modeling and Verifying Maneuvers with Hybrid Mode
Automata

In this section, we formalize hybrid mode automata, which are used for modeling,
specifying, and verifying behaviors of cyber-physical systems. In Sect. 3.1, we
present syntax and semantics of hybrid mode automata. In Sect. 3.2, we present
how to translate hybrid mode automata to differential dynamic logic for proving
their correctness against a specification.

3.1 Formalization of Hybrid Mode Automata

As presented in the previous section, we propose to model the behavior of cyber-
physical systems by means of hybrid mode automata. We first give a definition of
the syntax of hybrid mode automata and explain specific parts of it afterwards.

Definition 1 (Syntax of Hybrid Mode Automata (HMA)). A hybrid
mode automaton A is a tuple 〈Q, q0, V in, V out,Trans,Dyn,Ctrl〉 where:

– Q is a finite set of modes,
– q0 ∈ Q is the initial mode,
– V in and V out are sets of input and output variables in R, respectively. We

require that V in ∩ V out = ∅,
– Trans ⊆ Q×G(V)×Q is the set of transitions, which are labeled by a first-order

logical formula G over the input and output variables. We use the notation
q

g→ q′ for (q, g, q′) ∈ Trans,
– Dyn : Q → ODE maps a mode to a (possibly empty) system of ordinary

differential equations,
– Ctrl : Q → HMALdisc maps a mode to the discrete control part.

The two elements of hybrid mode automata that need further explanation are
the maps Dyn and Ctrl. As described in Sect. 2, each mode is associated with a set
of ordinary differential equations and a sequence of discrete computation steps
(e.g., assigning a value to a specific variable). Semantically, the discrete com-
putations are executed sequentially and instantaneously (i.e., without elapsed
time) after a mode is entered. Afterwards, the differential system runs for indef-
inite amount of time and lets specific variables evolve accordingly. In particular,
to model discrete computations and ODEs, we adopt a simplified version of the
syntax and semantics of hybrid programs provided by Platzer [40].1

1 Further information on the syntax and semantics of hybrid programs beyond our
application in this work can be found in A. Platzer’s textbook Logical Foundations
of Cyber-Physical Systems [40].

We denote by ODE the set of differential systems, where an element ode ∈
ODE has the following syntax:

ode ≡ x′
1 = f1(x1), . . . , x′

n = fn(xn)&H. (1)

Here, x1, . . . , xn are variables that change over time by equations f1, . . . , fn,
and H is an evolution constraint in first-order logic that restricts the maximum
evolution of these variables. For example, the ODE

[
v′ = −2&v ≥ 0

]
decrements

variable v by 2 over an arbitrary amount of time but only as long as v remains
non-negative.

The language we use for implementing discrete computations in modes will
be denoted HMAL (for Hybrid Mode Automata Language) and is a subset of
hybrid programs (excluding nondeterministic repetitions and nondeterministic
choice). We provide the following syntax for HMAL.

Definition 2 (Syntax of HMAL). The syntax of language HMAL is defined by
the following grammar, where S1 and S2 are programs of HMAL, x, x1, . . . , xn

are real-valued variables, θ is a term, P,Q, and H are first-order logical formulas
in real arithmetic, and x′ = f(x) is a system of ODEs:

S1, S2 ::= S1;S2 |x := θ |havoc x1, . . . , xn | assume H | skip
| if(H){S1}else{S2} | assert H

Language HMAL consists of seven constructs. Sequential composition first runs
the program defined by S1 and then the program defined by S2. Discrete assign-
ment assigns a value of term Θ to variable x. Nondeterministic assignment rep-
resented by the keyword havoc (·) assigns arbitrary real numbers to variables
x1, . . . , xn. These assignments must be concretized when deriving an executable
implementation. assume H is used to check that a particular formula holds at the
respective position. skip is shorthand for assume true. The selection statement
if(H) {S1} else {S2} runs program S1 if condition H holds, and runs program S2

otherwise. Finally, an assertion is similar to an assumption, where the checkable
condition H valuates to either true or false depending on the current state. A
violation of H will not just abort the current run, but the program will transition
to a designated error state, which itself does not have outgoing transitions. This
way, we mark violations of H explicitly as erroneous behavior.

After presenting the syntax of both HMAL and ODEs, we present their seman-
tics next. Execution semantics of HMAL and ODEs are each based on the tran-
sitioning between states. In particular, Let R represent the set of real numbers
and let V denote the set of real-valued variables. A state is a function σ from V
to R, i.e., σ : V → R.

Definition 3 (Semantics of HMAL and ODEs). Let V be a finite set of real-
valued variables and let Σ be the set of all possible states. The semantics of a
program S ∈ HMAL leads to the following denotational definition of the transition
relation �S�HMAL, �S�ODE ⊆ Σ×Σ, where σ, σ′ ∈ Σ represent the initial and final
state, respectively, and σerror is the error state:

– �S ; S′�HMAL = {(σ, σ′) | (σ, σim) ∈ �S�HMAL, (σim, σ′) ∈ �S′�HMAL} with inter-
mediate state σim,

– (σ, σ′) ∈ �x := Θ�HMAL iff σ′(x) = eval(Θ, σ) and ∀y ∈ V with x �= y it
follows that σ(x) = σ′(y),

– (σ, σ′) ∈ �havoc x1, . . . , xn�HMAL iff ∀x ∈ {x1, . . . , xn}, ∀y ∈ V with x �= y it
follows that σ(y) = σ′(y),

– (σ, σ′) ∈ �assume H�HMAL iff σ = σ′ and the assignment of variables in state
σ satisfies formula H (i.e., σ |= H),

– (σ, σ′) ∈ �if(H){S1}else{S2}�HMAL iff (σ, σ′) ∈ �assume H;S1�HMAL ∪
�assume ¬H;S2�HMAL,

–
[
(σ, σerror) ∈ �assert H�HMAL iff (σ, σ) ∈ �assume ¬H�HMAL

]
and

[
(σ, σ′) ∈

�assert H�HMAL iff (σ, σ′) ∈ �assume H�HMAL

]
,

– For ODEs: (σ, σ′) ∈ �x′ = f(x)&H�ODE iff γ : [0, r] → Σ is a solution of the
ODE x′ = f(x) with γ(0) = σ, γ(r) = σ′, and each state in between γ(0) and
γ(r) satisfies formula H with respect to differential equation x′ = f(x) (i.e.,
γ |= x′ = f(x)&H).

Both constructs, language HMAL and the definition of ODEs, are inspired by
the syntax and semantics of hybrid programs [37–40]. The language of hybrid
programs itself is only a simple nondeterministic programming language with
support for differential equations. The reason to closely follow hybrid programs
is twofold. First, hybrid programs provide a very simple programming model,
which is expressively sufficient for us to describe the intended controller logic
at this design stage. However, hybrid programs additionally provide means for
nondeterministic repetition and nondeterministic choice, which we eliminated.
The reason for the former is that a mode only performs one execution per time
step before it transitions, which makes repetition unnecessary. The reason for the
latter is that nondeterministic choice needs to be resolved when deriving a con-
crete implementation. We restrict language HMAL to nondeterministic assign-
ment only, which is simpler to resolve. The second reason is that we aim at
leveraging dL [37–40] for verifying hybrid mode automata. As dL is defined
over hybrid programs, it is natural to only make some necessary modifications.
Finally, we can give a definition of the execution semantics of hybrid mode
automata.

Definition 4 (Execution Semantics of Hybrid Mode Automata). Let
σin
i and σout

i denote valuations of variables in V . A valid run of a hybrid mode
automaton A = 〈Q, q0, V in, V out,Trans,Dyn,Ctrl〉 is a sequence of mode switches
l0, . . . , lk ∈ Q of the form runA = 〈σin

0 , l0, σ
out
0 〉, . . . , 〈σin

n , ln, σout
n 〉 such that

– σin
i and σout

i are input and output valuations of variables in V in mode li,
– for all k = 0, . . . n,

(σin
k , σout

k) ∈ {(σin, σout) | (σin, σim) ∈ �Ctrl(lk)�HMAL, (σim, σout) ∈ �Dyn(lk)�ODE},

– the initial execution is performed after taking the first transition from initial
mode q0, such that 〈q0, G, l0〉 ∈ Trans and σin

0 |= G,
– for each i = 0, . . . , n − 1, 〈σin

i , li, σ
out
i 〉 is followed by 〈σin

i+1, li+1, σ
out
i+1〉 if and

only if there exists a transition (li, G, li+1) ∈ Trans and σin
i+1 |= G.

Execution of a hybrid mode automaton begins with taking a transition from
the initial mode, and afterwards sequentially running the currently active mode’s
discrete program and ODEs. We assume that guards of outgoing transitions of
a mode do not overlap. If no applicable outgoing transition exists, we assume
a self-transition. Assuming a logical clock, this ensures that each cycle the dis-
crete program of the currently active mode is executed, and that the dynamical
systems evolves over time. That is, the execution semantics of a hybrid mode
automaton resembles a trace semantics.

3.2 Verification Based on Differential Dynamic Logic

Differential dynamic logic (dL) [37–40] is a first-order modal logic for specify-
ing and proving safety properties of hybrid programs. That is, formulas in dL
that do not contain modalities are classical first-order logical formulas with real
arithmetic. Additionally, the modal operators [α] and 〈α〉 for a hybrid program
α express special reachability properties. Essentially, dL formula [α]φ is true iff
φ is true for all reachable states of α (i.e., upon complete execution of α), and
dL formula 〈α〉φ is true iff φ is true in some reachable state of α.

As language HMAL is defined with the semantics of hybrid programs in mind,
we prove the correctness of hybrid mode automata for a given specification by
translating them to dL. For this, we define the translation function transHMA
that relates hybrid mode automata and hybrid programs. As depicted in Listing
1, a user defines valid assumptions Φ (i.e., precondition) and guarantees Ψ (i.e.,
postcondition) of the respective behavior in first-order logic with real-valued
arithmetic. Assumptions must hold prior to executing the hybrid mode automa-
ton, whereas guarantees are invariants that must hold at every real point in time
during the continuous dynamics. The safety requirement in dL is then expressed
as

Φ → [transHMA]Ψ (2)

For example, the automatic distance control assumes initially that the difference
in positions of host and leading vehicle is greater than the minimal allowed
distance. Only then can it guarantee that the difference in positions will remain
greater throughout the execution.

To prove the validity of dL formulas deductively, a sound set of axioms and
proof rules (i.e., a deductive calculus) is required. The KeYmaera X theorem
prover [13] implements such a calculus for dL and is built on top of a small
trusted kernel written in Scala to also increase trust in the tool support itself. In
Fig. 3, we give a schematic overview of the modeling and verification procedure.
For brevity, we omit the definition of transHMA that translates hybrid mode

Correctness
Proofs

Hybrid Mode Automata

Realization with

KEYMAERA X
Proof Obligations

Modeling of CPSs Verification

Fig. 3. Schematic overview of the verification process.

automata to dL, as it is only of technical nature and can be found in previous
work [20]. After we proved validity of a hybrid mode automaton with respect
to the pair of assumptions and guarantees, the next goal is to derive a correct-
by-construction implementation amenable to runtime verification. This way, we
may rule out the introduction of new implementation defects and can focus on
validating completeness of the specified safety guarantees.

4 Runtime Verification of HMA Models

In this section, how monitor conditions of the controller model are generated to
validate whether the implementation behaves as intended.

4.1 Generating Monitor Conditions for Runtime Verification

In the previous sections, we described how to derive an implementation from an
HMA model. Although models and abstraction are necessary to reduce com-
plexity (e.g., for asserting correctness), any model has the tendency to deviate
from the real world. It is therefore important to monitor at runtime that the
properties proven with respect to the model are also ensured during execution.
For instance, if at some point compliance of model and implementation cannot
be guaranteed anymore, it is important to initiate fallback options that may still
hinder catastrophic behavior (e.g., emergency braking).

To be able to assess whether our controller behaves as intended, we addition-
ally generate executable monitor code for the controller in a dedicated method
with signature bool monitorSatisfied(State prior). Eventually, the monitor
code can be used throughout runtime to report condition violations of the con-
troller (i.e., deviations of controller model and implementation) that would oth-
erwise be unnoticed. In particular, the generated code compares the current
state of the controller with the previous state, which we explicitly provide as
argument (the current state is obtained from the atomic component itself). If

transmon(Ctrl(q =̇)) transmon(S) ∧ V = V post withCtrl(q) ≡ S

transmon(S1;S1 =̇) transmon(S1) ∧ transmon(S1)

transmon(x := θ =̇) xpost = θ

transmon(havoc x1, . . . , xn =̇) true

transmon(assume H =̇) H[x xpost]

transmon(assert H =̇) H[x xpost]

transmon(skipH =̇) true

transmon(if(H){S1}else{S2} =̇)
(
H[x xpost] ∧ transmon(S1)

)

H[x xpost] transmon(S2)

Fig. 4. Translation of a mode to a logical formula for the monitoring condition.

the current state is not a valid poststate of the given prestate according to our
modeled controller, the monitor is not satisfied. This is guaranteed by using
ModelPlex [32] in our process that, given a dL model, generates monitor code
for the controller model automatically.

In particular, the monitor conditions we generate are formulas that relate
the current and next state with respect to the HMA model. That is, a monitor
condition mon(vcurr, vpost) compares the previous state comprised of variables
vcurr with the next state comprised of variables vpost, and valuates to false when-
ever the program statements of the HMA model lead to a different model state
than observed in the current state at runtime. In Fig. 4, we depict the rules
for translating the program statements of a mode of a hybrid mode automaton
to the logical counterpart for the monitoring condition. That is, if a particular
mode is executed on the implementation level, the monitor condition for the
respective controller program of the HMA model is based on this translation
scheme. Importantly, variables that do not change by the modeled controller
must evaluate to the same value in the current and next state. We represent this
by the set of unmodified variables V in the beginning of the translation, which
we explicitly add to the monitor condition.

4.2 Simulation

Simulation is an integral part of our verification and validation pipeline.
There exist numerous simulation environments to choose from, which all come
with advantages and drawbacks. Most popular in the research community,
Gazebo [23] is a simulation platform that offers a modular design that
allows developers to integrate different physics engines and to create complex
robotic systems with arbitrary sensor models and simple 3D worlds. Further-
more, Gazebo maintains a close relationship with the robot operating system

(ROS) [24,42], one of the most prominent open-source frameworks for personal
and industrial robotic systems. Therefore, Gazebo is typically used for simulat-
ing systems based on ROS modules. Although Gazebo comes with numerous
features to increase realism in simulations, its rendering engine cannot compete
with engines such as the Unreal engine or Unity, which makes it difficult to create
visually-rich environments close to real-world scenarios.

To focus on visually-rich environments, AirSim [47] is a recent platform
based on the Unreal engine that focuses primarily on automotive vehicles and
flying drones. Most appealing, AirSim comes with pre-existing physical models
of automotive vehicles and numerous 3D worlds (e.g., urban neighborhood or
city), which saves development time and reduces the risk of introducing insuf-
ficient physical behavior. Especially, using independently-developed models and
simulation environments is necessary in our evaluation to not invalidate empiri-
cal results.

In our validation and verification pipeline, we currently integrate both simu-
lation platforms mentioned before. We primarily use Gazebo/ROS for robotic
systems, and AirSim for automotive vehicles, such as applied in our evaluation
for various driving maneuvers. Moreover, the modularity of our tool suite allows
to extend the current set of simulation environments and to add new ones in a
plug-and-play fashion.

5 Evaluation

The above sections raised two important research questions that we try to inves-
tigate by an empirical experiment and a qualitative assessment:

RQ-1: To what degree do safety guarantees that are verified at design time hold
at execution level?

RQ-2: What are lessons learned drawn from our experiences following the pro-
posed verification and validation pipeline?

With RQ-1, we investigate the feasibility of our verification and validation
pipeline. In particular, we evaluate whether safety guarantees can be transferred
from the verification model to the execution model following the guidelines of
ArchiCorC and inspecting the generated monitor objects. Finally, with RQ-2,
we discuss our experiences with the proposed verification and validation process.

We characterize our non-trivial case study of a road vehicle and the evaluated
subject maneuvers in Sect. 5.1. In Sect. 5.2, we present results and discuss the
research questions.

5.1 Case Studies and Setup

We aim at evaluating our pipeline in the context of automated driving maneu-
vers. In particular, we employ AirSim [47] as simulation environment to validate

to what extent correctness guarantees of verified HMA models can be trans-
ferred to implementation level. For automatic driving, the final goal is indeed to
develop such HMA models for each maneuver from a catalog of basic driving
maneuvers that can be safely applied in road traffic. The purpose of this evalu-
ation, however, is a proof of concept of our verification and validation pipeline.

In total, we created five maneuvers including validation scenarios in AirSim
to demonstrate the applicability of our verification and validation pipeline. All
studied maneuvers are modeled as hybrid mode automata, verified, and even-
tually implemented in C++ supported by ArchiCorC. As ArchiCorC is
limited with respect to floating-point reasoning, parts of the implementation
remain unverified. However, such parts are already in a form that allows to ver-
ify them when reasoning with floating-point arithmetic becomes available. A
short description of the maneuvers and their safety requirements is given in the
following.

Explore World (Vehicle version). The goal of this maneuver is to randomly
explore an area without colliding with any object. Due to the vehicle’s kine-
matics, the turning circle must be considered explicitly. Safety goals are (1)
respecting a maximum velocity (v ≤ vmax), and (2) avoiding collision.

Safe Halt. The goal of this maneuver is to drive forward in a straight line and
come to a halt if needed (i.e., either in front of an obstacle or a particular
point) without collision or overstepping. Safety goals are again (1) respecting
a maximum velocity (v ≤ vmax), and (2) avoid collision.

Lane Keeping Assistance. This maneuver captures the lateral aspects of
following a lane without deviating too far from the lane’s center point. For
this, the vehicle must drive on a lane with perceivable solid lane markings.
Safety goal is to respect a maximum lane deviation (y ≤ ymax).

Adaptive Cruise Control (Unoptimized and Optimized). This maneu-
ver captures the longitudinal aspects of following a car while keeping a safe
distance. We further split the adaptive cruise control maneuver into two
versions, an optimized version and an unoptimized version. The optimized
version resembles a more sophisticated controller on the modeled level with-
out nondeterministic assignments, whereas the unoptimized version is simpler
and delegates concretization of the acceleration part to the implementation
level. Safety goal is to avoid collision with the leading vehicle.

As our evaluation aims at investigating whether our concept is feasible, we
only built simple scenarios to test each driving maneuver in isolation. For the
Explore World maneuver, we created a closed world with numerous static obsta-
cles. For the Safe Halt maneuver, we used the same world, but placed the vehicle
in front of an obstacle in a straight line. For the lane keeping assistance, we mod-
eled a street and encoded the ground truth of the lane markings to eliminate
sensor uncertainty. For the adaptive cruise control, we added a second leading
vehicle in front of our vehicle that drives in a straight line.

Table 1. Simulation results.

Maneuver Safety goal Fail statistics

Non.-Det. Passable Severe Failure rate (∅) Sim. time

Explore world v ≤ vmax; no collision Yes 100% 0% 1.07% 5m

Safe halt v ≤ vmax; no collision no 100% 0% 3.03% ca. 6–12 s.

LKA Lane deviation (y ≤ ymax) Yes 100% 0% 1.63% 30 s

ACC (Unoptimized) No collision Yes 100% 0% 2.72% 30 s

ACC (Optimized) No collision No 100% 0% 2.36% 30 s

5.2 Results and Insights

In the following, we share results obtained with our case studies. In particular,
we are interested in usefulness and feasibility of our proposed approach. First,
we investigate whether safety guarantees from verified HMA models can be
transferred to the implementation level. Second, we discuss our experiences.
The concrete models are contained as examples in the tool suite Skeditor [21],
which integrates this work as part of its maneuver-centric development approach
for cyber-physical systems.2

RQ-1: Validation and Safety Violations

In the following, we investigate the feasibility of our approach by simulating sim-
ulating each case study in AirSim and validating their correctness by employing
the generated monitors. As mentioned before, each maneuver (i.e., HMA model)
was successfully verified, which leads to the question whether correctness guaran-
tees transfer to the implementation level. In Table 1, we summarize results from
the performed experiments. In particular, for the fail statistics, we report three
values. First, column passable reports on the percentage of monitor violations
that we consider as acceptable. These stem from violations of nondeterministic
assignments or other issues in the initial state, but do not violate the safety
invariants. Second, column severe reports on the percentage of violations of the
safety invariants. Finally, failure rate is the time spent in monitor-violating states
with respect to the simulation time.

We observe that none of the five maneuvers violated any of the safety invari-
ants during their simulation, which is why all reported violations are considered
as passable. Furthermore, the failure rates are all low. However, we identified
that oftentimes the initial state (i.e., a halted state with zero velocity for all
five case studies) violates the monitor condition for the control part, while dur-
ing movement the failure rate converges towards zero. Other times, the failure
rate increases for a short amount of time. We assume that the conversion of
arithmetic reals to floating-point precision results in sporadic problems.

2 https://github.com/AlexanderKnueppel/Skeditor.

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
Time in seconds

R
el

at
iv

e
po

si
tio

n
in

 m
et

er
s

Legend
Follower

Leader

(a) Relative Positions

0

5

10

0.0 2.5 5.0 7.5 10.0
Time in seconds

Ve
lo

ci
ty

 in
 m

/s

Legend
Follower

Leader

(b) Velocities

−5.0

−2.5

0.0

2.5

0.0 2.5 5.0 7.5 10.0
Time in seconds

Ac
ce

le
ra

tio
n

in
 m

/s
²

Legend
Follower

Leader

(c) Accelerations

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
Time in seconds

Fa
ilu

re
 ra

te
 in

 %

(d) Failure Rate

Fig. 5. Measurements for the Adaptive Cruise Control case study with the leading
vehicle keeping a velocity between 8 and 12 m/s.

RQ-2: Experiences

In the following, we discuss experiences following the proposed development
and simulation process using the Optimized Adaptive Cruise Control and Safe
Halt case studies as two representative examples. In Fig. 5, we depict the posi-
tion, velocity, acceleration, and failure rate over time of the Optimized Adaptive
Cruise Control case study. The leading vehicle alternates between accelerating
and braking as shown by the acceleration (lower left), and aims at keeping the
velocity between 8m/s and 12m/s (upper right). The position (upper left) of
the ego car shows that it tightly follows the leading car, but always keeps a
minimal distance that is considered safe. The failure rate (lower right) shows the
aforementioned issue, where the initial state violates the monitor condition due
to imprecision, but afterwards the monitor condition is not violated anymore.

In contrast to the optimized version, the unoptimized version is simpler and
provides nondeterminstic assignments for braking and acceleration. Moreover,
the implementation switches accelerations only between the maximum braking
force B and maximum acceleration force A. Although safety invariants still held
at execution, we considered this behavior to be less convenient for human drivers.

0

10

20

30

40

0 2 4 6
Time in seconds

R
el

at
iv

e
po

si
tio

n
in

 m
et

er
s

Legend
Obstacle

Vehicle

(a) Relative Position

0.0

2.5

5.0

7.5

10.0

0 2 4 6
Time in seconds

Ve
lo

ci
ty

 in
 m

/s

Legend
Max velocity

Vehicle

(b) Velocity

−5.0

−2.5

0.0

2.5

0 2 4 6
Time in seconds

Ac
ce

le
ra

tio
n

in
 m

/s
²

(c) Acceleration

0

25

50

75

100

0 2 4 6
Time in seconds

Fa
ilu

re
 ra

te
 in

 %

(d) Failure Rate

Fig. 6. Measurements for the Safe Halt case study with a maximum velocity of 10 m/s.

We realized that optimizing this behavior is best addressed in the modeling
phase, as we decided to add additional modes for more fine-grained control.

In this specific case, we considered that resolving nondeterministic choice
at implementation level to realize the same optimization would be significantly
more difficult for two reasons. First, modes and their implementation in HMAL
provide a local view on the parameters involved (e.g., velocity), whereas the
implementation is much more detailed and scattered. The unoptimized version
sets the acceleration to a fixed constant. The optimized version, however, views
the acceleration as a function depending on variables and parameters, such as
velocity, distance to leading vehicle, and worst-case execution time. Considering
optimality of such functions increases effort during the implementation phase.
Second, verifying correctness of such optimization is also more promising in the
modeling phase, as numerical optimization is best addressed with differential
dynamic logic.

The second example illustrating the safe halt case study is shown in Fig. 6.
The vehicle must keep a maximum velocity of 10m/s and starts 40m in front of
an obstacle. Similar to the unoptimized adaptive cruise control case study, the
vehicle only switches accelerations between the maximum braking force B and

maximum acceleration force A (upper left). The failure rate (lower right) shows
an increase in monitor violations after four seconds. Although we did not exactly
locate the cause for this issue, as both safety guarantees were not violated, we
assume that sensor uncertainties may play a role.

While failure rates should not be dismissed, the above experiments increase
our confidence in the proposed link from verified HMA models to actual imple-
mentations. All evaluated maneuvers transferred their safety guarantees to the
simulation. Although the first two case studies required more implementation
effort (e.g., due to interfacing with AirSim and processing sensor data), the
automatic code generation and reuse of existing implementations allowed us to
implement the final three case studies considerably faster. Moreover, three of
the five maneuvers used non-deterministic assignments in their hybrid mode
automata, which had to be resolved manually by us following the correctness-
by-construction approach. This ensured that no new defects were introduced and
that violations of monitor conditions can, in principle, always be traced back to
an incomplete specification. We therefore believe that our verification and vali-
dation pipeline is particularly valuable for virtual prototyping of maneuvers and
experimenting with their set of requirements.

6 Related Work

To enable the correctness-by-construction approach in our tool chain, we inte-
grated CorC [44] into ArchiCorC. The reason for this decision are manifold.
First, the feature set and future plans of CorC are sufficient for the purpose of
ArchiCorC. In particular, both tools target object-oriented languages and the
small kernel of CorC’s theoretical foundation increases trust in its correctness.
Second, CorC and ArchiCorC are based on the same technology stack, namely
the Eclipse Modeling Framework. This leads to easier maintenance of the bridge
between both tool suits and provides better user experience, as ArchiCorC
artifacts and CorC programs can all be part of the same module. Third, CorC
is well-maintained and actively developed, whereas most other frameworks in
the field of stepwise program construction are not maintained anymore and also
never reached a level of maturity, which we would consider sufficient enough for
proper integration into ArchiCorC.

In spite of its young age, CorC was already extended in several direc-
tions. First, Runge et al. [43] extended CorC with a notion of information flow
control-by-construction. Instead of checking confidentiality of data post-hoc by
static information-flow analyses, information flow control-by-construction defines
refinement rules for constructing secure programs. Second, Bordis et al. [6] intro-
duced VarCorC, which is an offspring of CorC that focuses on correctness-by-
construction for software product lines, instead of only considering monolithic
programs. Finally, ArchiCorC, as presented in this chapter, lifts CorC to
an architectural level by bundling correct-by-construction implementations in
software components and providing means for code generation.

In the literature, many languages, techniques, frameworks, and tools exist
to formally and semi-formally address the diverse set of challenges of industrial

cyber-physical systems development. These challenges include large system sizes,
heterogeneity of connected modules, stakeholders from a multitude of disciplines,
requirements elicitation, and also software evolution and maintenance them-
selves. Popular modeling languages include AADL [10,26,31,48,49], Model-
ica [9,14], Alloy [17,19], UML [4,11,18,27], and its variants SysML [12,35,36]
and MARTE [5,46]. While all these languages greatly contributed to the
research of system’s design and analysis, their purpose is (1) to provide rich
modeling facilities for almost all parts of a cyber-physical system, and (2) to
eventually use these models as basis for real production code. Both goals make
these languages inherently complex. For instance, AADL is used to model both
hardware and software architectures of real-time embedded systems in great
detail. In contrast, we aim to thrive for simplicity and focus on the functional
modeling of maneuvers only to scale and leverage formal verification.

7 Conclusion

We presented a verification and validation pipeline for cyber-physical systems,
where we explained how verified abstract maneuvers represented by hybrid mode
automata can be refined in a correct-by-construction fashion to a component-
based architecture amenable to simulation and runtime verification. In partic-
ular, we employed ArchiCorC, which (1) allows to manually resolve nonde-
terministic assignments relying on the correctness-by-construction approach for
programs and (2) automatically generates code in a general-purpose program-
ming language that can be considered correct-by-construction as well. To validate
the executable maneuver at run-time, we added functionality for automatically
generating monitor conditions based on the corresponding hybrid mode automa-
ton. As the verified model is highly abstract, monitoring ensures that the safety
obligations can be checked during runtime in case of hardware issues or environ-
mental uncertainties.

We simulated the derived controller implementations in AirSim to inspect
the appropriateness of the abstract model of a maneuver. The pursued and
accomplished goal is that the link from a formal HMA model to execution
is achievable in practice for non-trivial maneuvers. We have evaluated that all
five case studies indeed transferred their correctness guarantees to the execution
stage.

References

1. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International
Conference on Embedded Software and Systems, pp. 273–278 (2011)

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

3. Angermann, A., Beuschel, M., Rau, M., Wohlfarth, U.: Matlab-simulink-stateflow.
De Gruyter Oldenbourg (2020)

4. Bernardi, S., Gentile, U., Marrone, S., Merseguer, J., Nardone, R.: Security mod-
elling and formal verification of survivability properties: application to cyber-
physical systems. J. Syst. Softw. 171, 110746 (2021)

5. Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time
embedded systems. In: Proceedings of the International Workshop on Software and
Performance (WOSP), pp. 115–124 (2007)

6. Bordis, T., Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Variational correctness-
by-construction. In: Cordy, M., Acher, M., Beuche, D., Saake, G. (eds.) Proceedings
of the International Working Conference on Variability Modelling of Software-
Intensive Systems (VAMOS), pp. 7:1–7:9. ACM (2020). https://doi.org/10.1145/
3377024.3377038

7. Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine,
W.S. (eds.) Handbook of Networked and Embedded Control Systems. Control
Engineering, pp. 91–116. Birkhäuser, Boston (2005). https://doi.org/10.1007/0-
8176-4404-0_5

8. Buzdalov, D., Khoroshilov, A.: A discrete-event simulator for early validation of
avionics systems. In: Proceedings of the Workshop on Architecture Centric Virtual
Integration (ACVIP), p. 28 (2014)

9. Elmqvist, H., Mattsson, S.E., Otter, M.: Object-oriented and hybrid modeling in
modelica. J. Eur. des systèmes automatisés 35(4), 395–404 (2001)

10. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

11. France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Comput. Stand. Interfaces 19(7), 325–334 (1998)

12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: the Systems
Modeling Language. Morgan Kaufmann, San Francisco (2014)

13. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

14. Gómez, F.J., Aguilera, M.A., Olsen, S.H., Vanfretti, L.: Software requirements
for interoperable and standard-based power system modeling tools. Simul. Model.
Pract. Theory 103, 102095 (2020)

15. Goswami, D., et al.: Challenges in automotive cyber-physical systems design, pp.
346–354 (2012). https://doi.org/10.1109/SAMOS.2012.6404199

16. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-3-642-
59615-5_13

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

18. Jue, W., Song, Y., Wu, X., Dai, W.: A semi-formal requirement modeling pat-
tern for designing industrial cyber-physical systems. In: Proceedings of the Annual
Conference of the IEEE Industrial Electronics Society (IES), vol. 1, pp. 2883–2888.
IEEE (2019)

19. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of a
water treatment system. In: Proceedings of the International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 22–28. IEEE (2016)

20. Kittelmann, A.: Maneuver-centric formal engineering approach for cyber-physical
systemsA. Ph.D. thesis, Braunschweig, Technische Universität Carolo-Wilhelmina
zu Braunschweig (2022). https://doi.org/10.24355/dbbs.084-202204121019-0

21. Knüppel, A., Jatzkowski, I., Nolte, M., Thüm, T., Runge, T., Schaefer, I.: Skill-
based verification of cyber-physical systems. In: FASE 2020. LNCS, vol. 12076, pp.
203–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_10

22. Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187–207. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_10

23. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proceedings of the International Conference on Intelli-
gent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

24. Koubaa, A.: Robot Operating System (ROS). The Complete Reference (Volume 1)
SCI, vol. 625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9

25. Lee, I., et al.: Challenges and research directions in medical cyber-physical systems.
Proc. IEEE 100(1), 75–90 (2012). https://doi.org/10.1109/JPROC.2011.2165270

26. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: Tabor: a graphical model-based app-
roach for anomaly detection in industrial control systems. In: Proceedings of the
Asia Conference on Computer and Communications Security (ASIACCS), pp. 525–
536 (2018)

27. Mancini, T., et al.: Parallel statistical model checking for safety verification in
smart grids. In: Proceedings of the International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), pp.
1–6. IEEE (2018)

28. Maraninchi, F., Rémond, Y.: Mode-automata: about modes and states for reactive
systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0053571

29. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Sci. Comput. Program. 46(3), 219–254
(2003)

30. Michniewicz, J., Reinhart, G.: Cyber-physical robotics - automated analysis, pro-
gramming and configuration of robot cells based on cyber-physical-systems. Proc.
Technol. 15, 566–575 (2014). https://doi.org/10.1016/j.protcy.2014.09.017

31. Misson, H.A., Gonçalves, F.S., Becker, L.B.: Applying integrated formal methods
on cps design. In: Proceedings of the Brazilian Symposium on Computing Systems
Engineering (SBESC), pp. 1–8. IEEE (2019)

32. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1), 33–74 (2016)

33. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W.: Towards cps verifica-
tion engineering. In: Proceedings of the International Conference on Information
Integration and Web-Based Applications & Services, pp. 367–371. iiWAS 2020,
Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3428757.3429146

34. Müller, A., Mitsch, S., Schwinger, W., Platzer, A.: A component-based hybrid
systems verification and implementation tool in Keymaera x (tool demonstration).
In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS,
vol. 11615, pp. 91–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23703-5_5

35. Neghina, M., Zamfirescu, C.-B., Pierce, K.: Early-stage analysis of cyber-physical
production systems through collaborative modelling. Softw. Syst. Model. 19(3),
581–600 (2019). https://doi.org/10.1007/s10270-019-00753-w

36. Pagliari, L., Mirandola, R., Trubiani, C.: Engineering cyber-physical systems
through performance-based modelling and analysis: a case study experience report.
J. Softw. Evol. Process 32(1), e2179 (2020)

37. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

38. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14509-4

39. Platzer, A.: Logics of dynamical systems. In: Proceedings of the International Sym-
posium on Logic in Computer Science (LICS), pp. 13–24. IEEE Computer Society
(2012). https://doi.org/10.1109/LICS.2012.13

40. Platzer, A.: Logical Foundations of Cyber-physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

41. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II, vol.
1. Ptolemy.org Berkeley (2014)

42. Quigley, M., et al.: Ros: an open-source robot operating system. In: Procedings of
the Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

43. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow
control-by-construction for security-by-design, pp. 44–54. ACM (2020). https://
doi.org/10.1145/3372020.3391565

44. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

45. Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: Foundations
for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013).
https://doi.org/10.1109/JPROC.2012.2235131

46. Seceleanu, C., et al.: Analyzing a wind turbine system: From simulation to formal
verification. Sci. Comput. Program. 133, 216–242 (2017)

47. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and
Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-67361-5_40

48. Zhang, L.: Specifying and modeling automotive cyber physical systems. In: Pro-
ceedings of the International Conference on Computational Science and Engineer-
ing (CSE), pp. 603–610. IEEE (2013)

49. Zhang, L.: Modeling large scale complex cyber physical control systems based
on system of systems engineering approach. In: Proceedings of the International
Conference on Automation and Computing (ICAC), pp. 55–60. IEEE (2014)

	Runtime Verification of Correct-by-Construction Driving Maneuvers
	1 Introduction
	2 Workflow by Example
	3 Modeling and Verifying Maneuvers with Hybrid Mode Automata
	3.1 Formalization of Hybrid Mode Automata
	3.2 Verification Based on Differential Dynamic Logic

	4 Runtime Verification of HMA Models
	4.1 Generating Monitor Conditions for Runtime Verification
	4.2 Simulation

	5 Evaluation
	5.1 Case Studies and Setup
	5.2 Results and Insights

	6 Related Work
	7 Conclusion
	References

