KIT | KIT-Bibliothek | Impressum | Datenschutz

Graph neural networks for materials science and chemistry

Reiser, Patrick 1,2; Neubert, Marlen 1; Eberhard, André 1; Torresi, Luca 1; Zhou, Chen 1; Shao, Chen 1; Metni, Houssam 1; van Hoesel, Clint; Schopmans, Henrik 1,2; Sommer, Timo 1; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning plays an increasingly important role in many areas of chemistry and materials science, being used to predict materials properties, accelerate simulations, design new structures, and predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growing classes of machine learning models. They are of particular relevance for chemistry and materials science, as they directly work on a graph or structural representation of molecules and materials and therefore have full access to all relevant information required to characterize materials. In this Review, we provide an overview of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures, followed by a discussion of a wide range of recent applications of GNNs in chemistry and materials science, and concluding with a road-map for the further development and application of GNNs.


Verlagsausgabe §
DOI: 10.5445/IR/1000153591
Veröffentlicht am 04.01.2023
Originalveröffentlichung
DOI: 10.1038/s43246-022-00315-6
Scopus
Zitationen: 232
Dimensions
Zitationen: 287
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2662-4443
KITopen-ID: 1000153591
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Communications Materials
Verlag Springer Nature
Band 3
Heft 1
Seiten Art.Nr. 93
Vorab online veröffentlicht am 26.11.2022
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page