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ABSTRACT
Plagiarism is a widespread problem in computer science education.
Manual inspection is impractical for large courses, and the risk
of detection is thus low. Many plagiarism detectors are available
for programming assignments. However, very few approaches are
available for modeling assignments. To remedy this, we introduce
token-based plagiarism detection for metamodels. To this end, we
extend the widely-used software plagiarism detector JPlag. We
evaluate our approach with real-world modeling assignments and
generated plagiarisms based on obfuscation attack classes. The
results show that our approach outperforms the state-of-the-art.
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1 INTRODUCTION
Plagiarism is widespread in computer science education [3, 6, 11].
Despite the threat of penalties, some students still try to cheat.
This problem especially persists in computer science, as digital
submissions can be copied with minimal effort. Students creatively
obfuscate their plagiarism, e.g., by renaming, reordering, or restruc-
turing [9, 12]. This is prevalent for mandatory assignments, e.g.,
in beginners’ courses. As computer science classes are often large,
manual inspection is impractical [4, 7]. Large classes lower the
individual risk of detection [23]. To this end, automated plagiarism
detection can be employed [13, 14]. A plagiarism detector aims to
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identify pairs of similar sections in two programs. From all match-
ing sections, the detector calculates a similarity score. Confirming
candidates as actual plagiarism is then always up to the instructors.
Most plagiarism detectors, however, are optimized for plagiarism in
code submissions. The state-of-the-art approaches are token-based
and extract and compare the structure of the code [12]. Token-based
plagiarism detection combines tokenization, normalization, and a
comparison algorithm based on hashing (e.g., winnowing [15]) or
string tiling (e.g., GST-RKRM [22]). Plagiarisms are found by ex-
tracting tokens from the programs’ syntax tree, where the similarity
of two programs is determined by matching their token sequences.
Only a subset of the tree nodes is extracted as tokens, which acts as
an abstraction from the code. Therefore, detectors like JPlag [14],
MOSS [1, 15], or Sherlock [8] are resilient against typical obfusca-
tion techniques, like renaming or reordering [14].

However, assignments in computer science often also include
modeling tasks [5], e.g., creating a suitable metamodel for a given
domain. While model comparison and clone detection approaches
exist, they are not directly applicable to metamodel plagiarism
detection. Clone detection [16] deals with finding identical code
fragments in a program. While it is closely related to plagiarism
detection, they are different problems as plagiarism detectors must
face the threat of obfuscation attacks. For clone detection, the size
of the modification to the clone should be reflected in the simi-
larity measures. In contrast, for plagiarism detection, it is even
valid that some changes will not reduce the similarity at all to
achieve resilience against obfuscation attacks. Furthermore, false
positives are exceptionally problematic for plagiarism detection
and should be avoided at all costs. While we thus relate to meta-
model clone detection [17, 20], like the approach by Babur et al. [2],
these approaches are not sufficient for plagiarism detection as they
are prone to typical obfuscation attacks. Additionally, we relate to
Model Differencing [19], as it also calculates the similarity between
models. However, it is again susceptible to obfuscation attacks.

This paper presents an approach for applying token-based plagia-
rism detection to metamodels. We extend the state-of-the-art [21]
plagiarism detector JPlag [14]. Thus, we inherit benefits like scala-
bility, usability, or resilience against common obfuscation attacks
and a graphical interface. We employ a real-world modeling as-
signment as our case study to evaluate our approach. Next, we
generate plagiarisms by applying multiple classes of obfuscation
attacks [9, 12], like element insertion or element swapping. We
compare the accuracy of our plagiarism detector with the state-of-
the-art approach by Martínez et al. [10], which is based on Locality
Sensitive Hashing (LSH). The results show significantly better pla-
giarism detection capabilities than the LSH-based approach in most
scenarios due to a higher resilience to obfuscation attacks. Our
approach highly reduces the effort of manual inspection, enabling
plagiarism detection of modeling tasks even for large classes.
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Figure 1: The type hierarchy of the Ecore meta-metamodel,
showingwhich information is extracted by the two strategies.

2 TOKENIZATION OF METAMODELS
Similar to code, metamodels can describe a program’s structure
and behavior. This similarity between metamodels and code can be
exploited to enable token-based plagiarism for modeling artifacts.
To this end, we extend the software plagiarism detector JPlag [14].
We chose JPlag, as it is open-source1, can be easily extended, of-
fers good scalability, and is widely used. JPlag supports multiple
programming languages by providing different language modules.
Each language module needs to fulfill two responsibilities: First, it
parses the code and transfers it into a tree structure, e.g., a parse tree
or an abstract syntax tree. Second, the language model extracts a
sequence of tokens from the nodes of the tree structure. Each token
only contains the structural information of its corresponding node
type. For example, a variable declaration token does not preserve
the identifying name or the declared type.

To leverage JPlag for metamodels, we design a language module
for metamodels. This language model extracts a token sequence
based on the corresponding meta-metamodel. This extraction step
requires less abstraction than a language module for code because
metamodels are already implementation-independent conceptual
models. Consequently, the first responsibility of parsing the meta-
model into a tree structure is trivial, as metamodels already provide
a tree structure. The metamodel tree can be traversed from its root
via its containment references. The second responsibility is extract-
ing the token sequence from the metamodel elements. The tokens
need to describe the essence of the metamodel but need to filter
out details like element names and types. Thus, we define a token
set and corresponding extraction rules based on the metaclasses of
the meta-metamodel. The token set and the extraction rules spec-
ify which and how model elements are extracted as tokens. The
extracted token sequence is then passed to the JPlag comparison
algorithm. We present two token selection strategies: First, a naive
strategy based on a dynamically created token set. Second, a special-
ized strategy based on a handcrafted token set. Both strategies were
implemented for EMF [18] metamodels and thus based on the Ecore
metaclasses. However, both strategies can be easily implemented
for different modeling frameworks.

1https://www.github.com/jplag

2.1 Dynamic Token Selection
For the dynamic token selection, we define the set of possible to-
kens based on the concrete metaclasses of the meta-metamodel. To
extract the tokens, we traverse the metamodel and extract tokens
containing only the metaclass of the element as information. Prop-
erties like the element name are not transferred. This approach
thus extracts tokens for packages, classifiers, attributes, references,
etcetera. Figure 1 visualizes the inheritance tree of the Ecore meta-
metamodel. The information extracted by the dynamic token se-
lection is shown in blue and green. As the Ecore meta-metamodel
is self-describing and self-instantiating, the dynamic token selec-
tion can be applied, in addition to metamodels, to their instances.
Since we focus on metamodels, we did not investigate this in detail.
However, the dynamic token selection comes with two downsides.
As a first problem, it also extracts tokens with very little meaning.
We observed EGenericType to be especially problematic, as EMF
automatically creates an EGenericType for every ETypedElement
in a metamodel. As a second problem, some vital information is
not transferred into tokens. EMF distinguishes concrete classes,
abstract classes, and interfaces via two flags stored as attributes
in the metaclass EClass. Thus, the dynamic token selection only
extracts class tokens and cannot make a more precise distinction.
Analogously, containment references are not distinguished from
regular references, and identifier attributes are not distinguished
from regular attributes.

2.2 Handcrafted Token Selection
The handcrafted token selection builds upon the previous strategy.
It also uses metaclasses to extract tokens. However, it employs a
fixed set of tokens. Compared to the dynamic strategy, there are
three key differences in the token set: 1. Stricter Token Selection. The
concrete metaclasses EFactory, EGenericType, and EObject are
not extracted as tokens. They provide superfluous information as
they are rarely explicitly modeled by a student. Thus, they need-
lessly increase the attack surface by allowing changes to the token
sequence that do not alter the semantics of the metamodel. 2. Token
Distinction via Attributes. Some concrete metaclasses are further
distinguished to extract more fine-grained information. An EClass
can be a class, abstract class, or interface. Containment references
have a different token type compared to non-containment ones.
Analogously, identifier attributes differ from normal attributes. This
distinction broadens the token set and thus reduces false positives,
as the discerned model elements semantically serve very different
purposes. 3. Extraction from Meta-References. Some tokens are ex-
tracted for important meta-references in the Ecore meta-metamodel.
Each superclass reference of an EClass is extracted as super type
token, a return type reference of each non-void EOperation is ex-
tracted as return type token. Again, these additional tokens reduce
false positives. Moreover, they allow detecting additional similari-
ties, like the number of declared super types. As depicted in Figure 1,
fewer concrete metaclasses are used for tokens. However, additional
information is used to distinguish more token types. In contrast to
the dynamic token selection, this handcrafted strategy is tailored
explicitly towards metamodels and thus not applicable to their in-
stances. However, while it tends to extract fewer tokens than the
dynamic strategy for the same input, it can differentiate between
more token types through its refined and extended token set.

https://www.github.com/jplag
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Table 1: Obfuscation attacks to plagiarize metamodels. Each
operation is executed ten times for each marked type.
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Level [9] Type [2]

Insert ✓ ✓ ✓ ✓ ✓ ✓ L2.5, L3, L4 B, C
Delete ✓ ✓ ✓ ✓ - B
Move ✓ ✓ ✓ L2.5, L3 B, C
Swap ✓ ✓ ✓ L2.5, L3 B, C
Rename ✓ ✓ ✓ ✓ L2, L2.5 C

2.3 Minimum Match Length
JPlag allows adjusting the detection process via multiple parame-
ters. Most notably, the minimum match length (MML) specifies the
minimum length for two code sections to be treated as a match.
Thus, the MML controls the sensitivity of the comparison. Lowering
the MML increases the sensitivity for plagiarism but also increases
the number of false positives. Based on our initial experiments, we
chose the default MML values 10 for the dynamic strategy and 6
for the handcrafted one. The dynamic strategy has a higher default
value, as it generally produces around 1.5 times as many tokens for
the same model. For different datasets based on different modeling
tasks, the ideal MML might vary and can thus be adjusted.

3 CASE-STUDY BASED EVALUATION
We evaluate our approach based on 18 metamodels from real-world
assignments. We systematically generated 80 plagiarisms based on
the metamodels by applying obfuscation attacks. With this data, we
compare our approach with both token selection strategies against
the LSH-based plagiarism detector of Martínez et al. [10].

3.1 Evaluation Design
Our data set contains metamodels frommodeling assignments from
a master’s level elective practical course on model-driven software
development. The assignment tasks the students with creating a
metamodel for designing component-based system architectures,
which allows the creation of models like UML component diagrams
but also involves the aspect of software-to-hardware allocation. Stu-
dents solved the same modeling assignment in small groups, 18 of
whom consented to us using their metamodels. These 18 metamod-
els are, to the best of our knowledge, free of plagiarism. On average,
the metamodels contain five packages, 39 classifiers, 45 references,
ten attributes, and one operation. We generate plagiarized meta-
models by copying original metamodels and applying obfuscation
attacks from existing classifications [2, 9]. We randomly chose four
original metamodels and applied the same 20 attacks for each to
create a total of 80 plagiarized metamodels.

Our attack set is based on existing works regarding obfuscation
attack [2, 9, 20]: We omit trivial attacks (Type-A [2], L0/L1 [9])
like verbatim copying, as these do not change the token sequence.
Additionally, we omit attacks against which our approach and the
LSH-based approach are inherently resilient. This includes attacks
like changing an attribute’s type or a reference’s multiplicity and
trivial name changes, e.g., typos. In line with [2], we also omit some
more complex attacks, namely Type-D semantic clones. Table 1
shows the complete attack set we use for our evaluation. We exe-
cuted these modifications on different element types, e.g., classes,

attributes, and references. For each attack, we executed the modi-
fication on ten random model elements of the same type. For the
insertion of references and supertypes, we referenced random ex-
isting classes. For renames, we generated realistic names based on
the existing names in the metamodel, which are indistinguishable
at first glance. As the metamodels contain few to no operations, we
only conducted the insertion of operations since the other attacks
would have had little to no effect on the metamodels. We also did
not conduct deletion of packages, as this completely breaks the
metamodels and is thus no viable attack. For JPlag, we use the
respective default MML for each strategy. For fairness, we did not
conduct any parameter tuning with the evaluation data set. For the
LSH-based approach [10] we used the parameters they provided in
their implementation. In particular, 𝑏 = 5 and 𝑟 = 30.

3.2 Evaluation Results and Discussion
Figure 2 shows the results for the different attack groups from
Table 1. We compare JPlag with the dynamic token selection (JPlag-
D) and the handcrafted token selection (JPlag-H ), as well as the
LSH-based approach [10] (LSH ). We show the similarity distribution
for plagiarism and unrelated original tuples for each approach. The
similarity should be high for the plagiarism tuples and low for the
original tuples. The larger this difference, the higher the accuracy
of the plagiarism detection. If these tuple types overlap, identifying
all plagiarism tuples is not possible.

For the insertion attacks (2a), JPlag performs well. LSH performs
well, except for attribute and operation insertions. For these attacks,
the accuracy is low enough that identifying plagiarism becomes
less exact. For the deletion attacks (2b), both JPlag and LSH struggle
with class deletion attacks. However, JPlag-H shows the highest
accuracy. Both perform well for the deletion of references and the
removal of supertypes. However, for the deletion of attributes, LSH
shows low accuracy and a slight overlap between both tuple groups.
Both JPlag and LSH perform very well for moving and swapping
attacks (2c). JPlag is more sensitive against swapping and moving
classes than LSH but still achieves sufficiently high accuracy. For the
renaming attacks (2d), renaming packages and references does nei-
ther affect JPlag nor LSH. However, when renaming classifiers and
attributes, LSH has low accuracy. Especially for renamed classifiers,
plagiarisms cannot clearly be distinguished from non-plagiarisms.
In total, LSH shows a significant drop in accuracy for particular
attacks. The reduced accuracy is noteworthy as each attack only
executes ten modifications, which is easy to do for a student. JPlag
performs very well for renaming, as it is resilient against such at-
tacks by design. While LSH performs better than JPlag for some
attacks, JPlag still achieves reasonably high accuracy in these cases.
For attacks against packages, LSH always produces 100% similarity,
as it only compares classes and their contents and is thus inher-
ently unable to detect changes to other elements. Both selection
strategies for JPlag have high accuracy, but JPlag-D determines
a higher similarity for the original tuples, making the plagiarism
identification less exact.

We now discuss threats to validity and limitations. Regarding
internal validity, real plagiarized metamodels were unavailable, so
we created the plagiarized metamodels ourselves. To counteract
subconscious bias, we designed a fully-automated generation pro-
cess that randomly chooses metamodels and applies obfuscation
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Figure 2: Evaluation results for JPlag with the dynamic token selection (JPlag-D), JPlag with the handcrafted token selection
(JPlag-H), and the LSH-based approach by Martínez et al. [10] (LSH).

attacks from existing work [2, 9]. For external validity, we only
apply one attack type at a time to investigate the effects of each
type in isolation. However, simple obfuscation attacks are typical
for students [12]. To maximize construct validity, we performed
obfuscation attacks frequently encountered in reality [9, 12] on
metamodels from real-world modeling assignments. However, the
reliability is limited due to the sensitive nature of our data set, which
cannot be published. Nevertheless, our methodology’s description
allows re-applying it to other datasets. Regarding limitations, our
approach produces less conclusive results for very small models.
However, this is an inherent problem of plagiarism detectors as
the space of possible solutions collapses with decreasing model
sizes. Our approach currently only supports metamodels, but the
dynamic token selection could also be applied to their instances.

4 CONCLUSION
In this paper, we introduce token-based plagiarism detection for
metamodels. We extend JPlag [14] to enable the tokenization and
plagiarism detection of EMF metamodels. Our approach is resilient
to typical obfuscation attacks such as renaming and retyping. We
evaluate our approach with real-world assignments and plagiarism
based on obfuscation attacks from literature [2, 9]. The results not
only show the feasibility of our approach but also that it performs
significantly better than the state-of-the-art [10]. In the future,
we want to extend our approach for instances of metamodels, and
evaluate it with other data sets, e.g., by Martínez et al. [10].

ACKNOWLEDGMENTS
This publication is partially based on the research project SofD-
Car (19S21002), which is funded by the German Federal Ministry
for Economic Affairs and Climate Action. This work was also sup-
ported by funding from the topic Engineering Secure Systems of the
Helmholtz Association (HGF) and by KASTEL Security Research
Labs (46.23.03).

REFERENCES
[1] Alex Aiken. 2022. MOSS Software Plagiarism DetectorWebsite. Stanford University.

http://theory.stanford.edu/~aiken/moss/ Accesed: 2022-07-20.
[2] Önder Babur et al. 2019. Metamodel clone detection with SAMOS. COLA 51

(2019), 57–74.
[3] Jess Bidgood and Jeremy B. Merrill. 2017. As computer coding classes swell, so

does cheating. The New York Times (2017). https://www.nytimes.com/2017/05/
29/us/computer-science-cheating.html Accessed: 2022-07-21.

[4] Tracy Camp et al. 2017. Generation CS: The Growth of Computer Science. ACM
Inroads 8, 2 (2017), 44–50.

[5] Federico Ciccozzi et al. 2018. How Do We Teach Modelling and Model-Driven
Engineering? A Survey. In MODELS-C. ACM, 122–129.

[6] Georgina Cosma and Mike Joy. 2008. Towards a Definition of Source-Code
Plagiarism. IEEE Transactions on Education 51, 2 (2008), 195–200.

[7] Breanna Devore-McDonald and Emery D. Berger. 2020. Mossad: Defeating
Software Plagiarism Detection. PACMPL 4 (2020), 1–28.

[8] Mike Joy and Micheal Luck. 1999. Plagiarism in programming assignments. IEEE
Transactions on Education 42, 2 (1999), 129–133.

[9] Oscar Karnalim. 2016. Detecting source code plagiarism on introductory pro-
gramming course assignments using a bytecode approach. In ICTS. IEEE, 63–68.

[10] SalvadorMartínez et al. 2020. Efficient plagiarism detection for softwaremodeling
assignments. Computer Science Education 30, 2 (jan 2020), 187–215.

[11] William Murray. 2010. Cheating in Computer Science. Ubiquity 2010 (2010).
[12] Matija Novak et al. 2019. Source-Code Similarity Detection and Detection Tools

Used in Academia: A Systematic Review. TOCE 19, 3 (2019), 1–37.
[13] K. J. Ottenstein. 1976. An Algorithmic Approach to the Detection and Prevention

of Plagiarism. SIGCSE Bulletin 8, 4 (1976), 30–41.
[14] Lutz Prechelt et al. 2002. Finding plagiarisms among a set of programs with JPlag.

Journal of Universal Computer Science 8, 11 (2002).
[15] Saul Schleimer et al. 2003. Winnowing: Local Algorithms for Document Finger-

printing. In SIGMOD. ACM, 76–85.
[16] G. Shobha et al. 2021. Code Clone Detection—A Systematic Review. In IEMIS.

Springer Nature Singapore, 645–655.
[17] G Shobha et al. 2021. Comparison between Code Clone Detection and Model

Clone Detection. In ICRITO. IEEE, 1–5.
[18] David Steinberg et al. 2009. EMF: Eclipse Modeling Framework 2.0 (2nd ed.).

Addison-Wesley Professional.
[19] Matthew Stephan and James R. Cordy. 2013. A Survey of Model Comparison

Approaches and Applications. InMODELSWARD. INSTICC, SciTePress, 265–277.
[20] Harald Störrle. 2015. Effective and Efficient Model Clone Detection. Springer,

440–457.
[21] Debora Weber-Wulff et al. 2012. Collusion detection system test report 2012.

Hochschule für Technik und Wirtchaft, Berlin, Tech. Rep (2012). Technical Report.
[22] Michael Wise. 1993. String Similarity via Greedy String Tiling and Running

Karp-Rabin Matching. Basser Departement of Computer Science Report (01 1993).
[23] Lisa Yan et al. 2018. TMOSS: Using Intermediate AssignmentWork to Understand

Excessive Collaboration in Large Classes. In SIGCSE. ACM, 110–115.

http://theory.stanford.edu/~aiken/moss/
https://www.nytimes.com/2017/05/29/us/computer-science-cheating.html
https://www.nytimes.com/2017/05/29/us/computer-science-cheating.html

	Abstract
	1 Introduction
	2 Tokenization of Metamodels
	2.1 Dynamic Token Selection
	2.2 Handcrafted Token Selection
	2.3 Minimum Match Length

	3 Case-study based Evaluation
	3.1 Evaluation Design
	3.2 Evaluation Results and Discussion

	4 Conclusion
	Acknowledgments
	References

