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Abstract

Uncertainties ranging from sensor noise to unobservable intentions of other
traffic participants accumulate in the data processing pipeline in autonomous
driving, resulting in incomplete or even misinterpreted environment represen-
tations. This frequently leads motion planning algorithms to plan motions of
conservative driving style.

This dissertation develops two motion planners that compensate the deficiencies
from preceding modules by exploiting reaction capabilities of a vehicle. It first
presents a thorough analysis on the source and classification of uncertainties,
and highlights the properties of an ideal motion planner. It subsequently
delves into methods for modeling uncertainties and quantifying information.
These are used to define a mathematical model that renders driving objectives
together with constraints which ensure safety. The resulting planning problem
is solved in real-time, in two distinct ways: first, with nonlinear optimization,
and secondly, by framing it as a partially observable Markov decision process
(POMDP) and approximating the solution with sampling. The planner utilizing
nonlinear optimization considers multiple maneuvers jointly and yields a motion
profile that is shaped by their individual probability. It maintains safety by
ensuring the feasibility of a chance-constrained fallback option. In this way, the
formulation inherently postpones maneuver decisions to a later time, whenever
the current uncertainty is too high. On the other hand, planningwith the POMDP
framework focuses on improving sampling efficiency in Monte Carlo planning.
First, it defines information rewards that guide samples to more rewarding
actions. It employs a general heuristic to help sampling for the reward-shaped
problem. Secondly, it exploits the continuity in the reward structure for action
selection and achieves significant performance improvements especially for
a higher number of actions. Evaluations show that planning with nonlinear
optimization demonstrates great success both in driving experiments and in
simulation studies, whereas planning with the POMDP framework is particularly
well-suited for modeling complex interactions.
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Kurzfassung

Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöver-
intentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der
Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer un-
vollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen
Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf.

Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der
vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit
des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige
Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die
Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie
sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedin-
gungen, welche die Sicherheit gewährleisten. Das resultierende Planungsprob-
lem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit
nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer
Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stich-
proben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer
betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrschein-
lichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicher-
heit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption
gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die
Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens
werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen
führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stich-
proben für das reward-shaped Problem durch die Verwendung einer allgemeinen
Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für
die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserun-
gen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in
Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen
erreicht werden.
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1 Introduction

Intelligent vehicle research has made tremendous progress within the last three
decades [Ben+14]. By reducing the impact of human errors which count for 90%
of the major rationale of roadway accidents [BDJ01, p. 245], driver assistance
systems have considerably increased traffic safety and driving comfort (see
Figure 1.1). The success of driver assistance systems in mitigating the severity
of roadway accidents has shifted the research focus from driver assistance
applications to realizing autonomous driving, where further improvements in
driving safety and overall traffic flow efficiency is possible [De +14].

1994 1999 2004 2009 2014 2019

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Figure 1.1: Fatality rates per 100 million kilometers traveled between 1994 and 2019 from the
NHTSA Fatality Analysis Reporting System Encyclopedia [FAR21]. At the end of the
1990s, driver assistance systems are introduced and shortly after became mandatory.
The next big leap in fatality rate mitigation can be expected with the further widespread
introduction of autonomous vehicles active on the road.

Realizing autonomous driving is challenging, and cannot be achieved in
a single step. For this reason, autonomous driving systems are classified
by the realized level of automation. Figure 1.2 shows the widely accepted
taxonomy made by the Society of Automotive Engineers (SAE) [SAE21].
Whereas driver support can be achieved with single sensors and automation
subsystems, complexity increases substantially for automated driving, and
holistic information processing that considers all environment information with
their respective uncertainties becomes indispensable [Taş+16].
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Figure 1.2: The taxonomy made by the SAE to classify automation levels of an autonomous vehicle
[SAE21]. After the red dashed line complexity increases considerably.

In a layer-function-based classification, information processing of an au-
tonomous vehicle can be divided into three layers and several modules, as
depicted in Figure 1.3. The Sensor layer is the lowest layer of the architec-
ture where the system retrieves information on its environment with various
sensing modalities. The Data Fusion layer has access to the whole sensor
data stream and aims to combine strengths of different types of sensors. Its
output is an environment model that typically contains probabilistic features
such as existence probability and state variance of objects, estimated driving
corridor, and also the ego motion derived from subsequent measurements. The
Understanding and Planning layer comprises Scene Understanding, Situation
Prediction, Behavioral Planning and Motion Planning modules. During holis-
tic processing, these modules sequentially enrich the environment model by
additional interpretations and conclusions. The output of this layer is a motion
profile transmitted to the vehicle controllers [Taş+16; Taş+17].

Research efforts to realize autonomous driving mostly take place in the latter
two layers [Yur+20]. Despite diverse and advanced sensor setups, perception
and fusion algorithms lack robust and reliable operation, especially in adverse
weather and light conditions. Scene understanding algorithms can partly
recognize the relation between objects, whereas prediction algorithms can
provide a reliable prediction only for a short time horizon. Finally, planner
algorithms can only operate with a defensive behavior under such an uncertainty,
hence cannot exploit possible interactions between traffic participants.
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Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
Sensor Layer

Data Fusion Layer

Environment Model

Scene
Understanding

Situation
Prediction

Behavioral
Planning

Motion
Planning

Understanding and Planning Layer

Figure 1.3: Illustration of an autonomous vehicle system architecture [Taş+17].

1.1 Motivation and Objectives

Ranging from sensor to planning layer, the uncertainties in the environment
model accumulate. Despite the progress in research, environment perception
will never yield perfect results in all possible outdoor conditions, nor will
understanding and prediction modules ever reveal relations between objects and
driving intentions completely. Even in the case of intervehicular communication,
where vehicles broadcast their state and driving intentions, disputes will
potentially occur. It is the duty of the planning module to plan safe yet
comfortable motion under these uncertainties.

A planner to observe uncertainties in the environment requires quantification
and classification of these. For this, the definition of a coherent environment
model that serves as an input to the planner is necessary. This model should
contain information on the confidence of measurements, current and future
free space by yielding available route and driving options, traffic regulations,
as well as visible and occluded areas. The task of the planner is then to plan
comfortable proactive motion plans by considering the probabilistic information
in the environment model. By exploiting available motion margins, it must react
appropriately against unexpected or rule-violating behaviors of other traffic
participants by computing a fallback motion. Furthermore, it must be able to
execute action that maximizes its understanding of the environment.

3



1 Introduction

The objective of this thesis is to develop a novelmotion planner that accomplishes
the driving task even in the case of impaired perception and partial observability.
Therefore, this work first aims to define an environment model from the planning
perspective, together with the uncertainties it contains. Secondly, it presents
the features of the optimal motion and methods to quantify risk to remain
collision-free even in the worst-case evolution of the current traffic situation.
Subsequently, it models and solves the resulting problem using two distinct
approaches: direct methods and sampling-based methods. Finally, it evaluates
the strengths and weaknesses of both approaches and concludes by highlighting
achieved objectives and provides future research directions.

1.2 Contributions

The contributions of this thesis are as follows:

• Information gathering in motion planning for autonomous vehicles.
This work shows that a motion planner can gather information either
passively, by postponing maneuver decisions to a later time, or actively,
by executing dedicated actions that maximize the vehicle’s information
on the environment.

• Maneuver neutral motion planning with numerical optimization. Conven-
tional planners impose the homotopy class of the motion to be selected
beforehand. In cases where maneuver intentions of another vehicle are
unclear, or the scene model contains phantom objects, this can lead to
defensive behavior. This work considers available maneuvers by integrat-
ing their parameters into a nonlinear optimization problem and planning
a motion that jointly reflects the probabilities of those maneuvers. The
planner inherently blends discrete maneuver decisions with continuous
optimization variables, and in this way, postpones a maneuver decision
whenever the current uncertainty is too high.

• A numerical optimization based proactive planner with safety constraints.
While existing planning approaches that attempt to guarantee safety
make restrictive assumptions about maneuver intentions and sensor error
characteristics, this planner propagates these uncertainties to its fallback
motion plan. By utilizing chance constraints directly for the fallback

4



1.3 Outline of This Work

motion, it remains collision-free in the worst-case evolution of a scene
without acting overly conservative.

• Planning with sequential decision making. Formulating the aforemen-
tioned planning problem as a decision process allows great flexibility in
modeling over numerical optimization based methods. This comes at
the cost of higher computational complexity. This work utilizes a Monte
Carlo method with importance sampling to solve the problem efficiently.

• A POMDP solver that can solve problems with arbitrary belief-dependent
rewards. Thiswork presents a novel POMDP solver that simulates particle-
based belief trajectories in Monte Carlo tree search (MCTS). This allows
augmenting the objective with expected information gain, which is partic-
ularly suitable for solving large problems, where information gathering
is an essential part of the optimal policy. The solver employs a general
heuristic to tackle sampling requirements of the reward-shaped problem.

• Exploiting continuity in rewards for improved sampling efficiency. Vanilla
MCTS methods do not make any assumption on the reward profile of
the underlying problem. In contrast, this work shows that in motion
planning for autonomous driving, similar actions yield similar rewards.
By making a Lipschitz continuity assumption on the outcomes of actions,
the MCTS is guided to more promising actions, eventually improving
the sampling efficiency for planning with a high number of actions.

• Proven real-time application. Presented algorithms demonstrate high
efficiency and reliability on continuous vehicle tests in cooperative
platooning, lane change, and intersection crossing scenarios as well as in
close-to-application simulations with real data.

1.3 Outline of This Work

Motion planning operates on outputs on current vehicle environment. Chapter 2
starts with defining the environment model and introducing the fundamentals
of motion planning. It presents properties of planning algorithms and certain
requirements planners should ideally satisfy. Before reviewing existing motion
planning approaches that tackle uncertainties, it elaborates on the types of
uncertainties.

5



1 Introduction

Modeling uncertainties and quantification of information are vital for motion
planning under uncertainty. Chapter 3 offers a crash-course on both parametric
and nonparametric approaches for these. The approaches serve as the foundation
for the planning algorithms presented in the following chapters.

Chapter 4 dives into the mathematical formulation for motion planning under
uncertainty. It describes vehicle models and proposes approaches to apply
driving objectives to a planning algorithm. It then introduces methods to
maintain safety and discusses how safe proactive motion can be planned.

The next two sections present methods to solve the planning problem in real-
time. Chapter 5 frames motion planning as a numerical optimization problem.
It presents an approach and a tool to solve the problem efficiently. Once
the required algorithms are introduced, it recapitulates the objective function
and constraints that resemble the aforementioned driving objectives. The
formulation here utilizes parametric methods for uncertainty modeling.

Another approach for motion planning under uncertainty is to frame it as a se-
quential decision-making problem. While partially observable Markov decision
processes (POMDPs) allowgreat flexibility inmodeling, large POMDPs can only
be solved with sampling-based approximations in real-time. Chapter 6 starts
with presenting decision processes, and subsequently introduces sampling-based
POMDP solver algorithms. These solvers employ nonparametric uncertainty
models, which qualify very well. This chapter further proposes an algorithm
that exploits the problem structure in motion planning and considerably speeds
up the runtimes. The chapter concludes with presenting the models on which
the POMDP solver operates.

Chapter 7 demonstrates results for both numerical optimization and POMDP
framework formulation. For numerical optimization based planning, it shows
results from real test drives ranging from fully observable environments, such
as cooperative lane change or intersection crossing, to scenarios where other
vehicles might not comply with the traffic rules. Further analysis on imperfect
perception and prediction are evaluated with simulation experiments with real
data. Planning with the POMDP framework that covers intersection crossing
and active information gathering is also evaluated with simulation studies. Once
the results are presented, both planning approaches are compared and discussed.

Finally, Chapter 8 highlights the main contributions of this work and presents
an outlook for future research.
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2 Fundamentals of Planning under
Uncertainty for Autonomous
Vehicles

Autonomous vehicles must operate under uncertain knowledge of their environ-
ment. There are various ways to model this uncertainty and to solve the resulting
problem. This chapter first describes existing definitions on environment model
and subsequently presents a coherent representation that allows for the consider-
ation of uncertainties. It subsequently presents fundamentals and characteristic
properties of motion planning algorithms, before analyzing uncertainties present
in an environment model. The chapter concludes by reviewing existing solution
approaches that tackle the planning under uncertainty problem.

2.1 Environment Modeling for Probabilistic
Planning

Environment modeling incorporates substantiating the terms world, environ-
ment, state, and situation. This work closely follows the verbal definitions
proposed by [Ulb+15] and links them with their respecting mathematical pro-
posals defined by [AB+20], but by following the Partially Observable Stochastic
Game formulation [Kuh53]. After clarifying these definitions, the processing
of the environment model is introduced.

2.1.1 World, Environment, Scene and Situation

For any time C ∈ N an autonomous vehicle operates in a portion of world
W ⊆ W∀ that contains a set of agents V = {o0, . . . , o:W }, with :W ∈ N0.
An agent o8 ∈ V can be a member of any class, such as pedestrian, cyclist,

7



2 Fundamentals of Planning under Uncertainty for Autonomous Vehicles

car etc., and has a physical state x (C)
8

and an internal state 6 (C)
8
. The physical

state typically consists of Cartesian coordinates, heading, and speed, i.e.
x (C)
8
= [G (C)

8
, H
(C)
8
, k
(C)
8
, E
(C)
8
]T ∈ R4. The first three components are sometimes

referred to as 2D-pose. The internal state of an agent can be modeled as
6 (C)
8
= [A (C)

8
, \
(C)
8
]T, where A (C)

8
is its route and \ (C)

8
is its maneuver intention.

While physical state can simply be referred to as state in planning context,
prediction algorithms usually refer to physical state and internal state together
as state s (C)

8
= [x (C)

8
, 6 (C)

8
]T.

Sensors of an automated vehicle perceive physical states of the agents in its
surroundings. These measurements are filtered and tracked in fusion layer prior
to the creation of an environment model. Tracking allows matching objects
along time, yielding o (C−g:C)

8
, where g ≤ C, g ∈ N is the tracked past history time

steps. Fused sensor measurements, i.e. observations, of an agent at time C can
be denoted with o (C)

8
∈ R4. The uncertainty in the observations are frequently

approximated by a Gaussian distribution. While x of an agent can typically
be observed by another agent with some measurement noise, 6 is hidden.
Therefore, the environment of such a modeling is called partially observable.

An environment E8 for the portion of worldW at time C from the viewpoint
of agent 8 can be represented as E8 (W, C) B (s, Ψ, Ω,VE), where s is its
own state, Ψ ⊂ R2 is its visible area bounded by a polygon, Ω is the map
and map-related information of W including contextual information such
as states of traffic lights, and VE = {o8}:E8=1 a set of observed agents, with
:E ≤ :W , :E ∈ N. An observed agent o8 at time C can be represented by
another agent as [o (C)

8
, 6̂ (C)

8
]T. The state of the ego vehicle together with the

states of observed agents is occasionally represented as s (C) . Because the true
state can only be estimated, it can be represented as a probability distribution
over state space. Such a representation is called belief b (C) .

There are various definitions for the terms scene and situation. This work
follows the definition of Ulbrich et al., who provide a thorough and systematic
analysis. According to them, scene is a snapshot of the environment that
enriches it with map-related information, self-representations such as skills,
and field-of-view together with the relationship of objects [Ulb+15]. Therefore,
a scene model S8 from the viewpoint of agent 8 can be expressed as a tuple
S8 (W, C) B (E8 , A8 , l(Ψ8), l(V8)). l(·) is a function that entails map related
operations and adds attributes obtained from traffic regulations.

8



2.1 Environment Modeling for Probabilistic Planning

Where a scene associates the pose of the objects relative to a map and describes
the relationship between them, a situation represents the future evolution of the
scene for time horizon of Ch with selected and augmented information based on
transient and permanent goals [Ulb+15]. Therefore, the dynamic properties of
objects are more prominent. Following the previously introduced notation, we
denote the situation from the perspective of an observer 8 as P8 B i(S8), where
prediction i is a function i : o (C−g:C)

8
↦→ x (C:C+Ch)

8
and i : R4×(g+1) → R4×(Ch+1) .

2.1.2 Map-guided Scene Understanding

Maps are essential in motion planning. Independent of whether they are read
statically from a database, or are created dynamically during a drive, they store
information on route options, lane topology, traffic rules, and potential conflict
areas. These are necessary for relating perceived information and understanding
the scene, which eventually eases the prediction of scene evolution [Pet+13].

Maps consist of individual elements. Lanes, for example, consist of atomic
sections on which neither traffic rules nor the topology changes. Such sections
are called lanelets [BZS14]. A sequence of individual lanelets along a route are
called a lanelet sequence [Pog+18]. Separate lanelet sequences can cross and
merge with other lanelets in traffic scenes such as intersections, roundabouts,
and acceleration lanes. The relation between individual lanelets and traffic
rules are typically handled by graphs [PJ20].

The Frenet-Serret frame defines coordinates along a given line by (B, 3), where
B is the longitudinal and 3 is the lateral component. Coordinates in Cartesian
frame can be transformed to the Frenet frame with

(B, 3) = "FC (G, H), (2.1)

and back with
(G, H) = "CF (B, 3). (2.2)

It should be noted that this transformation is not bijective [Taş14].

When poses of vehicles are mapped to lanelet centerlines, their coordinates
in the Frenet frame can be aligned using the same reference. This is done by
calculating the relative distances to the intersection point of the routes along
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2 Fundamentals of Planning under Uncertainty for Autonomous Vehicles

the Frenet frame. Availability of such relative positions together with traffic
rules allows analyzing route and driving intentions of other vehicles. If an
approaching vehicle has alternative routes that cross the route of the ego vehicle,
and it is unclear which one it will follow, the route with the closest intersection
point is taken as the reference. Since unreferenced coordinates in the Frenet
frame are not considered useful for this work, these transformations are assumed
to be aligned.

The calculation of intersection points and relative coordinates can in some
circumstances be inaccurate and therefore misleading. In merge scenes, where
merging lanelet geometries have small curvatures, the intersection point is
typically far ahead of the point where lanelet conflict begins. In such cases, if
vehicle intentions and safety criteria are applied with respect to the intersection
point, inaccurate results are obtained (see Figure 2.1). A solution for this
problem is to use the first lanelet in the sequence that has a conflict with the
other sequence, and subsequently to calculate intersection points of their right
vs. left borderline combinations. The resulting point provides precise results
for relative distance calculations.

(a)
(b) (c)

(d)
(e)

(a) Lanelet (a) conflicts with (d) and (c). Lanelet (b)
conflicts with (d) and (c). Both sequences (ab)

and (cd) merge at (e).

(a)(b)(c)(d)

(e)(f)(g)

(b) Conflicts of lanelet with many lanelets, while the
first conflicting lanelet (a) is the one to be used

for intersection analysis.

Figure 2.1: The lanelets of a lanelet map used in practice. Multiple conflicting lanelets that in reality
resemble a single merging lanelet sequence. Blue line is the centerline of the reference
lanelet sequence. Querying the first intersecting lanelet along the oncoming red line
returns inaccurate results. Higher accuracy is obtained by calculating intersection along
lanelet boundaries and projecting the intersection point on the respective centerline.

A further source of inaccuracy can lie in the calculation of distances to the
intersection points. The Euclidean distance between the current position of
the vehicles and the intersection point can be used for this task. Even though
this is a straightforward and fast approach in intersections such as roundabouts
and U-turns, or in cases where the vehicle maneuvers in the close vicinity of
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2.1 Environment Modeling for Probabilistic Planning

the ego vehicle, it will cause significant errors. For this reason, distances are
calculated in Frenet frame.

An exemplary traffic scene is depicted in Figure 2.2. The beginning of the
route centerline of the ego vehicle is set as the initial point in Frenet frame,
i.e. (B, 3) = (0, 0). The green vehicle may turn right or left. This will lead
to intersection points of ∗ and ★, where the former is closer. The position of
the green vehicle is calculated as Bgreen = Bcurr + B1 − B2. It is clear that the
green vehicle’s route will either cross or merge with the ego-route, however,
it is unclear for the red vehicle. Still, as it may cross the lanelets of the blue
vehicle, it has to be considered. The distance interval it crosses the ego-route
corresponds to the arc distance between ¯ and ¯. The relative longitudinal
coordinates on Frenet frame are depicted on a vertical line to the right of the
figure. The beginning of intersections are marked with a dot, having the color
of the respective vehicle and continuing as a line until the point where the
interaction ends. Whereas the interval is bounded for the red vehicle, it is
unbounded for the green vehicle, as it may remain on the ego-route.

B

B1

B2

Bcurr

Figure 2.2: A scene with relative distances to the ego vehicle, which is depicted in blue. Positions
of the vehicles projected onto the Frenet-coordinate frame are depicted on the right.
The green vehicle may remain on the route of the ego vehicle, whereas the red vehicle
will cross only for some distance interval.

Traffic rules together with relative coordinates allow for refining the environment
model by filtering out trivial agents that do not have any influence on the decision
and the motion of the ego vehicles. Agents that are relevant for the ego vehicle
are called as scene objects and are denoted with VS , where VS ⊆ VE . In
Figure 2.2, the red, green, and black vehicles are scene objects, though the
beige vehicle is not.
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2 Fundamentals of Planning under Uncertainty for Autonomous Vehicles

Apart from agent-related analysis, a scene model contains traffic signs and
self-skills including its visible field, as introduced before. Traffic signs, except
driving corridor markings, are effective from a particular longitudinal position
onwards, and can therefore be fairly mapped to arc length coordinates, eventually
easing analysis on interactions and traffic rule compliance. The region outside
the visible field is unknown for the autonomous vehicle, and it may contain other
agents. As in the case of tracked vehicles, mapping borders of the visible field
over the drivable area to corridor centerlines allows reasoning-out maneuver
intentions of eventual objects in coherence with the traffic rules.

2.1.3 Situation Prediction

Situation prediction aims to estimate the future motion of the traffic participants.
While estimating this, it shall reflect the increasing uncertainty in the predicted
time horizon Ch in a multi-modal fashion, while considering the physical bounds
and traffic regulations. The situational awareness encoded into the scene model
by identifying relations and interactions among traffic participants and traffic
rules serves as a basis for this.

Predicting motion of participants involves predicting their maneuvers, which
typically encompasses two interrelated classification problems: route pre-
diction and maneuver intention prediction. The route an agent chooses
depends on the map topology and the accompanying traffic rules. For a
given route, an agent 8 may choose among the discrete intention classes
\
(C)
8
∈ {traverse, yield, lane-change, stop}. Whereas the intention yield is with

respect to agent 9 , i.e. \ (C)(8 | 9) , the others are not relative to any agent.

Prediction at junctions is a challenging task having an underlying multi-agent
prediction problem. The motion of every agent is connected, since every single
alternative maneuver affects other participants. Furthermore, the number of
maneuver alternatives, i.e. homotopy classes, grows exponentially with the
number of participants and number of route options [Taş14; Ben+15; PKI15;
AD17; PLG21]. In cases where multiple maneuver alternatives are possible,
accurately predicting homotopy classes is more important than predicting
motion profile in that homotopy class. This is an arduous task, especially for
agents like cyclists and motorbikes.
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2.2 Behavior and Motion Planning

The complexity in predicting other traffic participantsmotion and the opportunity
to divide this into subproblems have led to the utilization of a variety of methods.
An overview on prediction algorithms is provided in [LVL14]. This work
classifies algorithms based on the semantics used and serves as an intuitive
introduction to the topic. A recent paper surveys a broad spectrum of the
works on driver behavior models and organizes them based on the underlying
algorithm, chosen models, and solved tasks [BDK20]. Some of the most recent
prediction algorithms such as the DESIRE Network [Lee+17], the Multipath
[Cha+19], the TPNet [Fan+20], and the CoverNet [Pha+20] take top view image
data as an input and predict the future motion with a CNN.

A motion planner should ideally be able to predict the evolution of the current
scenario based upon its chosen actions. For this, it requires a transition model
of its environment. Although there are established methods to predict the future
of a situation, many cannot be utilized for such a purpose. One such method is
to employ a motion planner for each of the agents in the environment. However,
querying motion planners can be computationally expensive, especially if
alternative maneuver options must be evaluated. Furthermore, it must identify
the objectives of such a motion planner with obtained measurements, further
increasing its complexity. A common way to have a simple estimate is to utilize
the Intelligent Driver Model (IDM) [THH00], which mimics human driving
behavior for follow and free driving scenarios, see Appendix A.2.1. Another
alternative would be to use the Foresighted Driver Model [EDK15].

2.2 Behavior and Motion Planning

The operation of a planner aswell as the evaluation of planners require presenting
several definitions and approximations. Once the fundamentals are introduced,
several essential properties a planner algorithm may have are presented. These
fundamentals and properties serve as a foundation in the rest of this work.

2.2.1 Fundamentals

An autonomous vehicle, once it has perceived and interpreted its environment,
must navigate through it to reach its goal while maximizing its preferences and
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2 Fundamentals of Planning under Uncertainty for Autonomous Vehicles

anticipating moving agents and traffic rules. This objective can be expressed as
finding an optimal action sequence that minimizes a cost functional subject to
constraints

minimize
a

� (a) = + (x(Cf)) +
∫ Cf

C0

! (x(C), a(C)) dC (2.3a)

subject to g (x(C), a(C)) = 0, ∀C ∈ [C0, Cf] (2.3b)
h (x(C), a(C)) ≤ 0, ∀C ∈ [C0, Cf] (2.3c)

where a(C) ∈ R=a is the control input trajectory, x(C) ∈ R=x is the state
trajectory, g is the equality and h is the inequality constraints. The cost
functional in Equation (2.4a) is given in Bolza-Form and therefore consists of a
terminal cost + and a running cost !. The running costs sum up in the time
interval for which the planning is done, i.e. [C0, Cf].

In driving, the arrival time Cf is usually not known beforehand. Applications
that treat the arrival time as an additional optimization parameter require
an additional boundary condition called the transversality condition. While
driving in traffic, the arrival time is free and the time interval becomes [C0,∞).
According to Barbălat’s Lemma, as the integral in the Lagrangian term must
be finite, limC→∞ x(C) = xgoal holds. This asymptotic stability allows reducing
the cost functional to its Lagrangian term. Furthermore, except for parking
applications, a goal state xgoal is not defined at all, and therefore the problem in
Equation (2.3) is not bound to final conditions.

In practice, the planning problem is solved for a finite time horizon Ch < ∞. By
using Bellman’s principle of optimality, it can be shown that the asymptotic
stability holds for sufficiently big horizons Ch ∈ [ΔC,∞). Constraints on the
problem, which reflect vehicle dynamics or external factors, do not allow
following an analytical solution but require a numerical one. This can be
done with colocation methods, by approximating the control and the state
trajectory along Ch by a number of sampling points, or colocation points,
{C8 = C0 + 8Cs, 0 ≤ 8 < =}, where Cs is the sampling interval and = is the number
of sampling points. Whereas control inputs are set piecewise constant at every
colocation point, variables that depend on the control input are integrated using
Euler or Runge-Kutta methods, see Appendix A.2.2.
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2.2 Behavior and Motion Planning

The resulting discretized planning problem has the form

minimize
a

� (a) =
=−1∑
8=0

! (x8 , a8) (2.4a)

subject to g (x8 , a8) = 0, 8 = 0, . . . , = − 1 (2.4b)
h (x8 , a8) ≤ 0, 8 = 0, . . . , = − 1 (2.4c)

facilitating the use of various optimization algorithms. Independent of the cost
function, constraints, and the chosen optimization algorithm, the minimizer is
called the optimal control input a∗ and the corresponding state trajectory is
simply called as the optimal trajectory, or the optimal motion x∗

a∗ = arg min
a
� (a) (2.5a)

x∗ =� (x0, a
∗). (2.5b)

Changing environment as well as limited sensor information require planning in
continuous-fashion on the basis of new information. Because of accumulating
uncertainty along time, and limited computational capacity, motion is calculated
repeatedly for a limited time horizon. The resulting problem is often still too
complex to solve in high frequency in order to meet the requirements of stability.
Therefore, the planning problem of autonomous driving is often subdivided into
three submodules: behavior planning, motion planning, and motion control.
High level decisions including maneuver decisions are made by the behavior
planning or decision-makingmodule, whereas the calculation of a collision-free
trajectory for a maneuver decision is done by the motion planning or trajectory
planning module. The tracking of planned control inputs can be done by a
low-level controller, which operates in very high frequencies. Such a controller
module is called motion control. Although the separation of modules seems
reasonable at first, it is an inferior approach to a planning that handles the duties
of all three submodules, as exploiting the full maneuver potential is not possible
due to the simplifications made while assigning tasks to submodules.

A further measure to cope with the aforementioned complexities in real-time is
to divide the motion planning problem into path-planning and velocity planning
problems. In contrast to motion, a path defines the course of poses without
specifying their time and therefore, it does not entail any information on velocity.
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With path-velocity decomposition, first a path is found and afterwards a velocity
profile is sought for that path [KZ86]. This allows for low-frequency path
planning and higher frequency velocity planning against dynamic factors. Even
though this decomposition considerably reduces complexity, by holding the
path fixed for some interval, it restricts lateral capabilities.

In motion planning, path-time diagrams are frequently used for analyzing
maneuvers and interactions. The center of the driving corridor is taken as
the reference path, and the relative intersection point of each agent is mapped
as such (see Figure 2.2). Because of the dimensionality reduction, it does
not capture information on lateral terms. There are two alternative forms of
representing the path-time diagram. In early motion planning works, where a
robot has to traverse some area without time constraints, the path is laid on the
x-axis and the optimal time is inspected. In real-time applications where the
dynamicity of the agent is in the foreground, such as autonomous driving, the
x-axis is taken as time and the progress along it is mapped onto the y-axis.

2.2.2 Properties of Planning Algorithms

Motion planning algorithms are classified according to several properties.

Online/Offline – If an algorithm can find a solution in runtime, it is said to
be online. Only online algorithms can handle changes in the environment and
inaccuracies in the execution of the planned path [RN16, p. 421].

Completeness – If an algorithm can find a solution whenever a solution exists,
or indicates inexistence of a solution otherwise, the algorithm is called complete.
With increasing search space dimension, this requirement is weakened by its
convenient subforms: resolution completeness and probabilistic completeness.
They indicate that the algorithmwill be able to find a solution if the discretization
is fine enough, and the probability of finding the solution goes to one as the
number of iterations go to infinity, respectively [LaV06, p. 185].

Anytime – If an algorithm can yield a feasible output immediately after its
execution and gradually improves this with the number of iterations executed,
the algorithm is said to be anytime capable. Therefore, such algorithms have a
reasonable output quality at any interruption [RN16, p. 1063].
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2.2 Behavior and Motion Planning

Global/Local – The environment can create multiple distinct maneuver options
each having an optimum. Whereas many optima are in their local neighborhood,
only one of them is the global one. Depending on if the planner can find the
global one, or will find a local one, it is classified either as global or local
algorithm [Cor+09, p. 424; Ben+15].

An autonomous vehicle motion planning algorithm must be online, probabilistic
complete, and ideally, anytime capable and global.

2.2.3 Objectives of Planners

The most important properties a motion planning algorithm can have are
already presented. Apart from these algorithmic properties, there are task-based
objectives a motion planner shall satisfy. These objectives can be categorized
as 1) utility, 2) comfort, 3) risk, 4) interaction, 5) information gathering.

Utility concerns task execution and completion in the sense of reaching the
destination in a collision-free way. It includes aspects like holding vehicle
constraints and ensuring fail-safe planning. While utility is the primary target
to achieve, maintaining a comfortable ride is the secondary target. It is strongly
related with proper risk handling and interaction capabilities of the planner.
Risk encompasses aspects like limited quality in sensor measurements, visible
field, or intentions of perceived traffic participants. Evaluation of the current risk
results in risk-sensitive behavior. Interactive capabilities are highly dependent
on uncertainties, but in fact, they represent a different characteristic. They
enable the planner to follow social norms by demonstrating courtesy to other
participants or planning transparent motion. Besides these commonly accepted
requirements, a motion planner should perform active information gathering
actions to maximize its knowledge about the environment, without entering
risky situations. Slight lateral offsetting for visibility maximization and targeted
steering and acceleration actions to reveal the potentially ambiguous intention
of vehicles that the ego vehicle interacts with fall in the category of active
information gathering, see Figure 2.3. If a motion planner postpones some of
its decisions by leveraging the fact that more information will be available in
the future, then it is said to perform passive information gathering.

The explanation on requirements implies that all categories are connected to
each other and uncertainties play a vital role in satisfying these requirements.
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2 Fundamentals of Planning under Uncertainty for Autonomous Vehicles

(a) Slight lateral offsetting for visibility
maximization.

(b) Acceleration and steering actions to reveal the
intention of others.

Figure 2.3: Scenarios that benefit from active information gathering.

2.3 Uncertainties a Planner Must Tackle

Optimal planning in fully observable environments is a solved problem [Gon+15;
Pad+16]. The challenge that remains is maintaining the robust and reliable
operation of the vehicle in all possible environment conditions. Proper un-
certainty modeling and handling facilitates robust operation, and increases
reliability indirectly.

Classification of Uncertainties

Sources of uncertainties are briefly explained in Section 2.1. They typically
result from incomplete information which is either completely missing, such
as obscurity of the future, or contain random information, such as noisy
measurements. Apart from these statistical uncertainties, they can have an
underlying systematic structure, such as the correlation between individual state
variables or multi-modalities.

These uncertainties result in three categories with which a planner has to deal
with. The uncertainty in physical state covers the uncertainty in position and
velocity values of the agents. The uncertainty in prediction encompasses the
uncertainties in route alternatives, intentions, and their motion profiles. It must
be underlined that the uncertainty in route and maneuver intention pose the
most important source of uncertainty for motion planing, as a wrong estimation
can trigger maneuver decisions that potentially end up with crashes. The
uncertainty in existence reflects the uncertainty of an object to exist, either
inside or beyond the visible area. Existence of objects inside the field-of-view
is concerned with the topic of phantom detections. Whereas the information in
the regions beyond the field-of-view is missing, it can partly be clarified with
the information available [TS20].
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2.4 Planning Approaches that Consider
Uncertainty

Motion planning for autonomous vehicles is a broadly studied topic. An
overview on notable works are presented in surveys [Gon+15; Pad+16]. The
vast majority of approaches focus either on path planning, or motion planning
in fully observable environments. However, the real challenge lies in planning
safe, interactive motion despite imperfect perception and incomplete knowledge.
Several distinguishing works that propose planning algorithms in such settings
are presented next. They are classified by their underlying technique.

2.4.1 Sampling-Based Planners

Early examples of motion planners utilize either randomized sample-based
or lattice-based search algorithms. Succeeding works enhance these with
probability constraints. Luders et al. introduce chance constraints to the rapidly-
exploring random tree (RRT) algorithm [LKH10]. A succeeding work extends
it with motion patterns learned from Gaussian processes and applies it for
driving tasks [Aou+13]. Besides introducing chance constraints into RRT,
swapping state with belief in RRT* algorithm is proven to be effective for
motion planning in tight environments [Ban+18]. Lattice search, which selects
state lattice samples from a precomputed graph of feasible maneuvers, is also
extended to consider probability constraints. A recent work creates quintic
Bézier curves on an occupancy grid world and considers the uncertainties in
localization [Art+20].

2.4.2 Numerical Optimization Based Planners

Numerical optimization has always been a favorable technique for motion
planning. Safety in the presence of uncertainties is either ensured by robust or
by stochastic control techniques. Robust techniques result in overly conservative
motion plans and are therefore not preferred. The majority of works that follow
stochastic techniques model uncertainties with Gaussian distribution, and
employ chance constraints to maintain safety. In this way, a closed-form
solution for a given confidence level is obtained.
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Feedback control based chance-constrained convex programs are introduced in
[VT11; VT13; LKK15]. Integration of chance constraints in model predictive
control for motion planning is presented in [Car+14]. Additional to chance
constraints, Gaussian processes are proven to be effective tomodel nonlinearities
and to add them as a residual noise [HKZ19]. Independent of whether a planning
algorithm considers uncertainties or not, a common need is the presence of a
reference contour that can guide the planner. Applications of model predictive
contouring control (MPCC) for autonomous vehicle motion planning arises as a
convenient solution [Sch+17; Lin18]. The MPCC formulation has shown to be
advantageous for non-Gaussian chance-constrained planning as well [WJW20].

Although chance constraints limit risk, they do not ensure safety. A common
way is to predict all future states of traffic participants and verify the presence
of a collision-free fallback maneuver. Pek et al. co-planned fallback maneuvers
while simultaneously planning the desired one. However, the future state
prediction does not involve limited visibility or uncertain localization of the ego
vehicle [PA20]. A later work extended this approach with chance constraints
[Brü+21]. Taş et al. introduced co-planning of fallback maneuvers under
limited visibility and in the presence of noncompliant traffic participants in an
earlier work. The fallback maneuver is restricted to emergency braking and is
introduced to the numerical optimization based motion planner in the form of
chance constraints [TS18]. Alsterda et al. co-planned fallback plans by using a
separate cost function for the fallback, and tackled uncertainties in road surface
friction [ABG19].

The effect of limited visibility and algorithms that aim to maximize visibility
while following ordinary driving goals is occasionally studied. An optimization-
based motion planner that maximizes the visible field of the vehicle is presented
in [And+19a]. Similar to visibility, another important source of uncertainty
results from driving intentions. Sadigh et al. modeled other traffic participants
as underactuated systems and presented a gradient-based approach that can
actively gather information on their internal states and eventually manipulate
them [Sad+16].

Optimization-based approaches are frequently used when planning in a central-
ized fashion [Qia+16]. As autonomous driving will not benefit from centralized
planning in the near to mid-future, it is out of scope of this work.
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2.4.3 Planning with the POMDP Framework

Formulating motion planning as a POMDP has significant advantages over
numerical optimization based approaches: they can operate with distributions
of arbitrary forms, they are not trapped in local minima, and they can perform
active information gathering. Previously mentioned optimization-based work
that actively gathers information explicitly states that a POMDP formulation
is superior to their approach [Sad+16]. Motion planning with the POMDP
framework is becoming increasingly popular with the advent of online POMDP
solvers and deep learning based predictors.

Solving POMDPs becomes computationally tractable only under certain as-
sumptions. Many works discretize the state, action, and observation spaces
to tackle this. Early works use POMDPs only for behavior planning, which
typically includes several states and few actions [UM13]. Others require
pre-training at every new scene encountered and are therefore not scalable
[BGD14]. Sampling-based POMDP solvers enable planning algorithms to oper-
ate in previously unseen environments in an online fashion [LKK16; Hub+18].
Nevertheless, the number of available actions remains as rudimentary decisions,
such as change lane, accelerate, or decelerate. Planning with the POMDP
formulation also allows tackling limited visibility [Bou+18; Hub+19].

Recent works focus on improving the tree structure of sampling-based POMDPs
and thereby increase the efficiency and scalability. Several online algorithms
perform better than regular solvers in settings among which driving fits into
[SK18]. Some works utilize these algorithms in further driving scenarios
and demonstrate success [SK20; Bey+21]. Others focus on tailoring search
for the traffic scenario. Naumann exploited action independence under clear
precedence [Nau21]. Wray et al. addressed scalability challenges of planning
with the POMDP framework in real-world applications and defined arbitration
points for targeted action selection. They demonstrated scalability of their
approach with driving experiments under limited visibility [Wra+21].

Another recent work uses iterative linear-quadratic Gaussian control in Gaussian
belief space to solve a game-theoretic continuous POMDP [Sch+21]. Compared
to sampling-based POMDP algorithms, which have exponential complexity
in the planning horizon, it has a linear complexity. It can solve a quadratic
game with runtimes comparable to model predictive control (MPC) planners.
However, it converges to the locally optimal solution in belief space.
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2.4.4 Machine Learned Planners

The breakthrough in neural networks has revolutionized the way intelligent
systems operate. Autonomous driving has benefited from the representational
power of deep neural networks ranging from perception to prediction. The
presence of simulation environments and an ever-growing amount of sensor
data have recently enabled the deployment of reinforcement learning or deep
learning based planning algorithms.

There are various ways to benefit from learning in planning. Some planners use
POMDP solvers [Som+13; Luo+19] and utilize deep reinforcement learning
[Mir+16] to learn the future returns of actions and show promising results
[PK19]. The problem of learning only expected values, which can strongly
impair the planner performance and endanger safety, has been successfully
solved by applying distributional reinforcement learning [Kam+21].

Other works motivate from end-to-end learning and aim to output control
commands. One early work utilizes recurrent neural networks and feeds this
with a mid-level representation to output the most likely motion [BKO19].
Another one creates a set of motion plans, and utilizes the learned framework
and then chooses among these [Zen+19; CSU21]. Creating multi-modal and
interactive motion plans has also recently become possible [Sal+20; Iva+20].
A notable drawback of these deep learning based neural planners is both the
amount of examples they require, and missing guarantees on safety. Even
though these approaches are quite formative in their direct application to motion
planning, they can be combined with classical approaches serving them as a
safety net.

22



3 Modeling Uncertain Information

Planning under uncertainty requires modeling uncertain information as random
variables, i.e. the value of which cannot be predicted with certainty because
its possible outcome depends on a random phenomenon. Even though the
value of a random variable is not known a priori, the probability of a value it
may take can be modeled and estimated. A function that assigns a probability
for each random outcome is called the probability distribution of a variable.
States and measurements are typically modeled as probability distributions over
continuous spaces.

There are two major approaches for uncertainty modeling: parametric and
nonparametric approaches. This chapter first presents both approaches and then
continues with introducing the notion of information.

3.1 Parametric Approaches

Parametric approaches express probability distributions with a constant number
of parameters. This allows closed form solutions, which are favorable in many
applications.

3.1.1 Gaussian Distribution

The most common distribution in continuous spaces is the Gaussian or normal
distribution [Lyo14]. Following the central limit theorem, under certain mild as-
sumptions, the normalized sum of independent random variables approximately
follows the Gaussian distribution as the number of variables tends to infinity.
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3 Modeling Uncertain Information

Measurements of multiple random variables can be modeled with multivariate
Gaussian distribution. For a 3-dimensional random variable x, the probability
density function (PDF) is

%(x | -,�) = 1
(2c)3/2

· 1
|� |1/2

exp
(
−1

2
(x − -)T�−1 (x − -)

)
(3.1)

where - ∈ R3 is the mean vector and � ∈ R3×3 is a positive definite covariance
matrix. Gaussian distributions have the nice property that an addition, subtrac-
tion, or multiplication of two Gaussian distributions result in a new Gaussian
distribution, if normalized appropriately.

A special case of theGaussian distribution is the univariateGaussian distribution
(UVG), where the random variable has a size of one. The density of a
univariate Gaussian distribution is obtained by scaling it to the standard
Gaussian distribution (0, 1) and calculating the PDF q(G) or cumulative
density function (CDF) Φ(G) of the standard Gaussian distribution. There
are computationally efficient numerical approximations for these expressions
[Pre+92, p. 213]. Therefore, it is desirable tomodel uncertainties with univariate
Gaussian distributions in real-time applications.

Position or velocity measurements are, however, two-dimensional, resulting in
a bivariate Gaussian distribution. If x and y denote the axes of the Cartesian
frame, the mean vector and the covariance matrix are defined as

- =

[
`x
`y

]
, � =

[
f2

x dfxfy
dfxfy f2

y

]
(3.2)

where d is the correlation coefficient between x and y components, and fx > 0
and fy > 0 are standard deviations in the axes of the coordinate frame.

In many cases, the standard deviation for a specific direction is of interest. For
measurement x modeled with (-,�), a linear transformation of a rotation X
and translation t results in

x) ∼(X- + t, X�XT), (3.3)

which is a new multivariate Gaussian distribution. A clear result of the equation
above is that the covariance matrix is invariant to translation. This is an intuitive
result, as the covariance matrix defines the correlation between axis directions.
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3.1 Parametric Approaches

Measurements x̂ are frequently modeled as their expected value x = E [x̂] with
an additive white noise Z ∼(0,�), i.e. x̂ = x + Z . The expected value can be
used to define the center of the rotation, in which the transformation defined in
Equation (3.3) reduces to an additive translation of the mean value.

A covariance matrix � ∈ R3×3 can be projected onto a single direction by
defining a vector u ∈ R3 of unit length. The projection results in a UVG with

f2
u = _u (�) = u�uT. (3.4)

This allows decoding the variance in a specific direction, see Figure 3.1.
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Figure 3.1: Eigenvectors and various projections of a bivariate Gaussian distribution


( [ 3
2
]
,
[ 0.61 0.12

0.12 0.19
] )
. The projections onto x and y axes are shown in red and purple,

whereas the projection on lines of 45° angles are shown in light blue. Despite the
translation, the shape of the distribution remains the same. In the right subfigure, the
individual densities are depicted in their respecting color. The black density in the back
corresponds to the biggest variance.

A covariance matrix can be rotated such that d becomes zero, the covariance
matrix becomes diagonal, and hence, the spread is maximized in one direction.
The vectors that point to the principal directions of the matrix together with
their magnitude can be calculated with principal component analysis. This can
be used to define an upper bound of the variance for every possible rotation.

Gaussian distributions assign a nonzero probability value to every value in
the interval (−∞,∞), i.e. they have infinite support. In many cases, including
sensor measurements, both a lower and an upper bound can be specified. The
truncated Gaussian distribution allows for bounding the support of the Gaussian
distribution, while preserving its desirable general features [Bur14]. Density
calculation of a truncated univariate Gaussian is provided in Appendix A.1.1

25



3 Modeling Uncertain Information

3.1.2 Mixture Distributions

Random variables in some cases can only be poorly represented unimodal. For
instance, the distribution of the longitudinal position of a vehicle is typically
characterized by amulti-modal distribution, the number of modalities depending
on the number of its maneuver alternatives. Such a distribution can be modeled
as a linear combination of basic distributions, as a mixture distribution.

In cases where the underlying components are Gaussian, the density is given by

%(G | `1, f1, F1, . . . , `=, f=, F=) =
=∑
8=1

F8(G | `8 , f8) (3.5)

where F8 are mixing coefficients such that
∑=
8=1 F8 = 1 and F8 ≥ 0. Figure 3.2

depicts a mixture distribution with Gaussian components.
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(a) A mixture of (0, 4) and (12, 8) with
weights F1 = 0.4 and F2 = 0.6, respectively.
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(b) An approximation of the mixture distribution
with a single (7.20, 5.05) .

Figure 3.2: A Gaussian mixture distribution that consists of two Gaussian distributions. An
approximation with a single UVG yields poor results.

Mixture distributions enable representing complex densities with basic com-
ponents. However, if the observations do not have the form of a unimodal
distribution, the inference of the mixture distribution becomes a challenging
task. One way is to formulate it as a joint probability distribution of observed
and latent variables, and match them with likelihood maximization algorithms
[Bis06, p. 430]. However, these methods are based on local optimization
algorithms, and therefore, are prone to errors in case of singularities and
local minima.
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3.2 Nonparametric Methods

3.2 Nonparametric Methods

An exact inference for most of the probabilistic models in real-world applications
is computationally intractable. A remedy is to use a finite number of random
samples to find an approximate result. Algorithms of this kind are known as
Monte Carlo methods.

Monte Carlo methods are utilized either for generating random samples from a
given probability distribution, or estimating the expected value of a function
given a probability distribution with randomly created samples [RC04, p. 79].
Because they operate with samples and do not make any assumption on the form
of the distribution, they are nonparametric and have a very high representation
power. An important property of Monte Carlo estimation is that the obtained
accuracy depends only on the variance of the probability distribution and not on
its dimensionality. Therefore, it is possible to reliably estimate the distribution
with only a small number of independent samples [Mac03, p. 358]. However,
obtaining independent samples is not easy. For this reason, increasing the
number of samples typically results in better accuracy [Bis06, p. 524]. But, this
comes at the cost of increased computational complexity.

3.2.1 Sampling Algorithms

There are many distributions from which direct sampling is not possible.
However, if the functional form of their density is known, sampling can be done
by utilizing distributions, which are more easily sampled. Let %(G) be such
a complex target distribution. If the functional form of its density is known,
such that

%(G) = %̃(G)/I (3.6)

where I is the normalizing constant, sampling can be done by using a proposal
distribution &(G) which is more easily sampled (see Figure 3.3a).

Rejection Sampling

The idea in rejection sampling, also known as accept-reject sampling, is to
generate a sample point >8 ∼ &(G) and then to perform uniform sampling
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3 Modeling Uncertain Information

D8 ∼ � ( [0, 2&(>8)]) for that point, independently. If D8 ≤ %̃(>8), the sample
point is accepted, otherwise it is rejected. The constant 2 is a scaling factor that
ensures 2&(>8) ≥ %̃(>8) for all values of G (see Figures 3.3b and 3.3c).

The acceptance probability of samples is %̃(G)/2&(G). Therefore, rejection
sampling works best, if &(G) is a good approximation to %(G). With increasing
dimension, 2 grows exponentially. For this reason, rejection sampling counts
as an inefficient algorithm for sampling in bigger dimensions than one or two
[Bis06, p. 532].

−20 0 20 40

0

2

4

6
·10−2

D
en
si
ty

(a) & (G) ∼ (` = 7.20, f = 5.05) does not
envelope sufficiently.
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(b) &̃ (G) ∝ & (G) , 25 samples randomly drawn
from 2& (G) , where 2 = 2.15.

−20 0 20 40

−10

0

10
·10−2

D
en
si
ty

(c) 56% of the samples are rejected.
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(d) All samples are retained and weighted.

Figure 3.3: Comparison between rejection sampling and importance sampling.

Importance Sampling

In applications where the goal is the evaluation of expected values, rejection
sampling suffers from a major problem. In high dimensional problems,
particularly in cases where the density is confined in small regions, only a
tiny amount of particles is retained. Instead of comparing the samples against
a criterion and in case rejecting them, they can be evaluated with respect to
their importance.
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Importance sampling calculates the importance of samples from >8 ∼ &(G) by

F̃8 =
%(>8)
&(>8)

. (3.7)

After the importance of all samples have been calculated, the particle weights
are normalized F8 = F̃8/

∑=
9=1 F̃ 9 , where = is the number of samples (see

Figure 3.3d). The expected value of a function � (G) with respect to %(G) can
be calculated from the particle set {(>8 , F8)}=8=1 as

E [�] =
∫

� (G)%(G) dG '
=∑
8=1

F8� (>8). (3.8)

With =→∞ this approximation converges to the real expectation [CD02].

Likewise in rejection sampling, importance sampling depends on how well
&(G) matches %(G). But retaining them allows for efficient recycling, especially
while processing sequential data [Mac03, p. 103]. Increasing dimensions pose a
problem on importance sampling, by causing some weights to dominate others
and reducing the number of effective samples. But, the so-called degeneracy
problem can be alleviated with decent resampling procedures in sequential
processing [Aru+02].

3.2.2 Kernel Density Estimation

Sampling algorithms represent continuous probability distributions with dis-
crete, and a finite number of samples. In many applications, it is not sufficient
to represent densities with particles. A continuous representation of the density
is often required. Kernel density estimation (KDE) is an efficient approach for
extracting density from a set of samples.

KDE performs regression of samples to so-called kernel functions  and
weights the samples according to their distance from the kernel center. For
weighted samples {(o8 , F8)}=8=1 in 3-dimensional space, the density is given by

�̂ (x) =
=∑
8=1

F8 N (x − o8) (3.9)

29



3 Modeling Uncertain Information

where  � is the scaled kernel

 N (x) = |N |−1/2  
(
N−1/2x

)
(3.10)

and N ∈ R(3×3) is the symmetric, positive definite smoothing matrix or window
width matrix [Sil86, p. 76; Gra18, p. 35]. A kernel function must have its
maximum at 0, be symmetric around this value, and must integrate to one. There
are many functions that satisfy these properties. However, compared with its
parametric form, the width of the kernel has a bigger impact on the fit. Whereas
wide kernels cause underfitting by introducing excessive smoothing, narrow
kernels make them too responsive to the individual points and cause overfitting.

A common choice for the kernel function is the zero-mean Gaussian distribution

 (x) = 1
(2c)3/2

exp
(
−1

2
xTx

)
. (3.11)

For windowing N, a diagonal matrix is chosen to control smoothing in every
dimension independently. The optimal smoothing factor for Gaussian kernels,
or the bandwidth, is provided by Silverman’s rule of thumb

√
N88 =

(
4

3 + 2

) 1
3+4
f̂8=
− 1

3+4 , 8 = 1, . . . , 3, (3.12)

where f̂8 is the estimated standard deviation in the 8th dimension. In the
univariate cases this reduces to fopt ≈ 1.06f̂=−1/5 [Sil86, p. 87]. Even though
Silverman’s rule of thumb is popular for choosing bandwidths, it performs
suboptimally if the underlying density is not Gaussian [Sil86, p. 45].

3.3 Quantifying Information

Any random variable that can take multiple, distinct values can be characterized
by the piece of information it carries. In any specific realization, increasing
number of possible outcomes reduces the information content of the realization.
Likewise, in case of random variables, the realization of a random variable
given a probability reflects the information content of that realization. Hence,
the value of information can be seen as “the amount of uncertainty that would
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3.3 Quantifying Information

be removed upon the realization of a random variable”. This suggests that the
value of information is inversely proportional to the present uncertainty.

3.3.1 Variance of Estimates

The direct relation between the amount of information and uncertainty can raise
the idea to use arguments used in parametric representations of probability
distributions for information quantification. In case the uncertainty estimation
is unbiased and is modeled as a Gaussian distribution, functions mapping
covariance matrices into scalars can be used for quantifying information. They
either calculate the norm, or the trace, or the area of the corresponding ellipsoid
of the covariance matrix [BV04, p. 387]. Even though these are computationally
cheap and allow to quantify the amount of information [Mih+02], they can only
be used for uncertainty models of unimodal Gaussian densities.

3.3.2 Entropy

Hartley points out that the logarithm is the best measure to calculate the amount
of information a realization carries [Har28]. Building upon his work, Shannon
defines the properties an information measure should carry and defines the
notion of entropy � of a discrete random variable as

� (G) = E [− log %(G)] = −
∑
G

%(G) log %(G) (3.13)

which satisfies all those properties [Sha48].

Entropy calculation adopts the convention 0 log(0) = 0, and hence � (G) = 0 if
%(G = 8) = 0 for all 8 ∈ N \ {:} and %(G = :) = 1. This is highly intuitive, as
adding outcomes of variables with zero probability, or deterministic variables
in general, does not carry any information and shall not change the entropy.

Several further measures are discussed in Appendix A.1.2. In tasks where
gathering information and reducing the uncertainty are aimed, the choice of the
information measure is not decisive. Therefore, entropy serves as a simple yet
reliable information measure.
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4 Optimal Proactive Planning

The planning module has to tackle the uncertainties that accumulate up to
motion planning. The planner must process these uncertainties, and accordingly
plan proactive motion profiles while simultaneously attempting to maximize its
driving goals. This chapter starts with presenting a mathematical formulation of
driving goals and vehicle models. It subsequently argues how to maintain safety
in planning by utilizing the aforementioned uncertainty models. It derives the
required conditions to ensure safety which will be integrated into the solver
algorithms in the following chapters.

4.1 Optimal Motion Planning

The settings a vehicle has to operate in, as well as approaches for modeling
uncertainties are presented in the previous chapters. Accordingly, the objective
of planning that is already defined in Section 2.2 is now presented in detail.

4.1.1 Planning in Receding Horizon

Available computational resources and changing environment conditions require
iterative planning in a receding horizon fashion for a finite time. The motions
of the agents in the environment are predicted for the predefined time horizon
and the control inputs that optimize the state and control requirements of the
ego vehicle are calculated repeatedly using a model.

The time-discretized planning problem is already presented in Equation (2.4).
A planning horizon Ch with a sampling interval of Cs can be approximated with
= colocation points with Ch = = × Cs. However, the number of free trajectory
support points [x8 , a8] is not equal to =, as during computation Cc a number of
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4 Optimal Proactive Planning

control inputs =pin must be kept fixed for temporal stability. The time duration
they are pinned Cpin must satisfy

Cc ≤ Cpin, (4.1)

which results in
=pin = dCpin/Cse . (4.2)

The time calculations introduced so far are intuitive and simple. However, they
do not incorporate delays in perception, and assume that an environment model
is present at planning time C0. In reality, the environment information has a
delay of Cp. For this reason, the time at which planning is performed C0 is set to
a time in the past C0 = Cnow − Cp, and therefore,

Cc + Cp ≤ Cpin (4.3)

must hold. For brevity, the following definitions assume the presence of an
up-to-date environment model at C0 and set C0 = 0. Furthermore, it must be
underlined that the execution of a planned motion is typically subject to time
delays, and in some cases it might not be sufficient to cover these delays in
feedback fashion. If the delays are not negligible and have a systematic behavior,
either the vehicle model must include a model of the time-delay, or alternatively,
the planned trajectory support points can be shifted in time and the control
reference can be applied earlier.

A planner computes a motion profile for the time interval (C0, Ch], while it
can optimize only the time interval (Cpin, Ch]. The interval (Cpin, 2Cpin] is set
fixed in the next replanning step, whereas the rest will be recomputed in the
subsequent planning instances. Since the actions planned for this time interval
are irreversible, following the safety definition of Petti et al., the vehicle must
ensure that any state in this time interval is not an inevitable collision state, i.e.
does not lead to a collision at a time after this interval [PF05; TS18].

Figure 4.1 depicts an online algorithm performing planning in a receding
horizon. The execution of the motion planned in Figure 4.1a results in the
profile depicted in Figure 4.1b. Due to some modeling errors, the vehicle is
at another state than expected. The control profile C ∈ (Cpin, 2Cpin] of the first
planning instance is still kept fixed for temporal consistency.
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(a) Planning performed at C0 = 0.0. Acceleration at C ∈ [C0 , Cpin ] is pinned, and C ∈ (Cpin , 2Cpin ] is will be kept
fixed during the next replanning.
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(b) Replanning performed at C0 = 1.5. The gray line depicts the state profile under the previous control profile,
whereas the black one depicts the driven motion. The offset between them depicts the modeling errors.

Figure 4.1: Planning in receding horizon. The time of planning is denoted with a red vertical line.
Planned control inputs, i.e. acceleration, is depicted in blue and the resulting state, i.e.
position, is depicted in green. Due to modeling errors, the control inputs planned at the
top figure did not bring the vehicle into the desired state. The planner alters the motion
profile C ∈ (Cpin, Ch ] to correct this error.

The discretized motion profile, the parameter vector p ∈ R(=+1)×(=x + =a) , of the
motion planning problem subject to these time interval definitions correspond
to

p = [ x0, a0︸︷︷︸
measurement

, x1, a1, . . . , xpin, apin︸                     ︷︷                     ︸
pinned

, xpin+1, apin+1, . . . , x2pin, a2pin︸                                ︷︷                                ︸
executed next

,

x2pin+1, a2pin+1, . . . , x=, a=︸                             ︷︷                             ︸
will be replanned

]T. (4.4)

35



4 Optimal Proactive Planning

Pinning of the terms in p can be done both by treating the pinned as non-
variables, in case the chosen solver allows this, or by entering these terms
as variables and applying additional equality constraints to fix their values.
Another approach is to trim the trajectory and keep the values from index
(pin) on. This approach is not preferred in work as including the “pinned”
terms inside p eases both understanding the “executed next” terms and an
inspection of eventual non-uniform time delays in environment perception Cp.
Furthermore, it presents the general form, and thereby is valid for planners that
rely on differential flat vehicle models.

4.1.2 Vehicle Models

Motion planning must observe the dynamics of the vehicle. Any trajectory
support point must satisfy

¤x = g(x, a)

where g is a nonlinear equation reflecting the motion of the vehicle. Vehicles
are subject to nonholonomic constraints, indicating that certain values of state
variables depend on their time derivatives as the underlying constraints limiting
the state variables cannot be fully integrated. This results in complex vehicle
equations, eventually having a significant impact on the planner performance.

There is a wide range of models available, starting from very rough estimates
for behavior planning tasks to very precise models used for driving at the limits
of handling [GGG20].

Point Mass Model

The simplest approach to model the motion of the vehicle is to assume it in the
form of a point mass. This model neglects yaw dynamics, and the states are
obtained by two integrators. The states and controls are defined as

x = [G, H, Ex, Ey]T (4.5a)

a = [0x, 0y]T. (4.5b)
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4.1 Optimal Motion Planning

The dynamics of the vehicle are modeled with the friction circle√
02

x + 02
y ≤ Wg , (4.6)

where W is the friction coefficient and g is the gravitational acceleration.

The point mass model is linear and can be calculated easily. However, the
heading angle, which is indispensable for collision avoidance, can only be
estimated from successive states. Furthermore, it neglects yaw dynamics and is
therefore bound to big errors even at moderate speeds.

Kinematic Bicycle Model

Yaw dynamics can be integrated into the calculations by utilizing the kinematic
bicycle model. The model is kinematic, as it does not consider tire forces and
ignores the longitudinal and lateral slip for both tires. The vehicle motion is
described only by geometric equations, see Figure 4.2.
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Figure 4.2: Geometry behind the kinematic bicycle model.

The states and controls are defined as

x = [G, H, k, E]T (4.7a)

a = [X, 0]T. (4.7b)
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Motion equations can be given as
¤G
¤H
¤k
¤E

 =

E cos(k + V)
E sin(k + V)

E
;w

tan(X) cos(V)
0

 , (4.8a)

with side-slip angle

V = arctan
(
;r

;w
tan(X)

)
, (4.8b)

which is a function of the steering angle X, as the dynamics of the tires are
ignored [Raj11, p. 24]. The dynamic limits of the vehicle are represented by
two constraints on acceleration in longitudinal and lateral directions

0−lon ≤ 0 ≤ 0
+
lon, (4.9a)

0−lat ≤ 0lat ≤ 0
+
lat, (4.9b)

where the lateral acceleration is obtained as

0lat =

(
E2

;w

)
tan(X) cos(V). (4.10)

At speeds lower than 30 km/h the side-slip angle V is negligible, and the vehicle
model becomes linear. Particularly, the vehicle model becomes differentially
flat, allowing all states and variables to be expressed with time derivatives of
flat outputs

G, H, k, E, X, 0 ←→ G, H, ¤G, ¤H, ¥G, ¥H. (4.11)

This eases the application of constraints regarding the vehicle model consid-
erably, [Fli+95; Cho+05, p. 448; Zie+14b; Taş+18]. The differentially flat
kinematic bicycle model is sometimes referred to as the continuous-steering
car [LaV06, p. 614].

The kinematic bicycle model can yield instantaneous changes of steering angle.
To ensure continuous changes, either the rate of change can be constrained and
penalized, or a low-pass behavior can be applied.
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4.1 Optimal Motion Planning

4.1.3 Optimality Criteria and Cost Functional

The primary objective of a motion planner is to plan a comfortable and safe
ride that leads to the desired end state in a reasonable amount of time. Whereas
safety is an aspect that needs to be satisfied at all times, comfort and travel-time
are contradicting objectives that need to be balanced. These objectives can
be defined as value and range cost terms of the states and control variables
building up the running costs ! in Equation (2.4). Value cost for a variable G
can be defined as

�val (G) = Fval, G ‖G∗ − G‖2, (4.12)

where G∗ is the desired value, and F ( ·) is the corresponding weighting factor.
Likewise, in cases where there is not a single value of an optimum, a range cost
constituting a tolerance band from a lower bound G− until an upper bound G+
can be defined

�ran (G) =


Fran, G ‖G − G+‖2 G+ < G,

0 G− ≤ G ≤ G+,
Fran, G ‖G− − G‖2 G < G−.

(4.13)

The range cost definition includes conditional statements. The utilization
of such statements is not straightforward in parametric approaches. If such
conditional statements can be utilized, an asymmetric cost around an optimal
value G∗ can be defined. This is especially useful, when, for example, travel
speed is considered. Speeds higher than the allowed maximum speed are rarely
acceptable, and hence, can be punished with quadratic loss. Traveling at slower
speeds is often an ordinary behavior, such as in dense traffic, and therefore
can be penalized with a tolerant loss, such as Cauchy loss, see Figure 4.3.
Equation (4.14) presents such an asymmetric loss

�asym (G) =

Fasym,G ‖G − G∗‖2 G ≥ G∗,

Fasym,G log
(
1 + ‖G − G∗‖2

)
G < G∗.

(4.14)

While using a tolerant loss function in cost, it is important to observe that the
gradient does not diminish in the operating value interval unintentionally.
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Figure 4.3: A general and adaptive loss function d(G, U, 2) [Bar19], see Appendix A.2.3. U = 0
corresponds to Cauchy loss and U = 2 corresponds to quadratic loss. Both are
symmetric in the vicinity of G = 0.

The running costs of the planning problem can be defined as

! (x0, a) = �total = �driving + �comfort (4.15)

with
�driving (x) = �asym (xE ) (4.16)

and

�comfort (x, a) = �val (a0) + �val (alat) + �val ( j)
+ �ran (a0) + �ran (alat) + �ran ( j), (4.17)

where xE represents the speed values in the state vector, a0 represents the
longitudinal acceleration values in the control vector, alat represents the lateral
accelerations calculated using Equation (4.10), and j is the jerk values calculated
from longitudinal acceleration values by using finite differences. The lateral
acceleration is penalized separately from the longitudinal component to control
the lateral maneuvering behavior of the vehicle. The use of jerk terms serves
for further smoothing of the control inputs and is optional. The optimal values
of all the comfort terms are zero, whereas for the driving goal, the desired speed
Edes can be taken as 90% of the speed limit. The individual weighting factors of
the cost terms can be tuned manually or learned from driving data. The range
terms in the second row mimic naturalistic driving style.
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4.1 Optimal Motion Planning

Homotopy-Class-Free Planning

A comfortable, optimal motion can easily be planned with the equations above
in free driving. However, in the presence of other agents, optimal planning
becomes a challenging task. In an intersection scenario, where the ego vehicle
has the right-of-way, the maneuver intention of the oncoming vehicle still might
be unclear: it could perform an aggressive maneuver to cross the intersection
first, eventually letting its behavior be classified as noncompliant (see Figure 4.4).
Conventional planning approaches use themost likelymaneuver of the oncoming
vehicle and plan an appropriate safe motion profile [Taş14; Ben+15; PLG21].
However, due to current uncertainty, the most likely maneuver cannot always
be identified with high confidence. In circumstances, the ego vehicle might
even identify the true maneuver as slightly more unlikely, and in turn execute a
suboptimal behavior.

Time (s)

Pa
th

(m
)

Plan A

Pa
th

(m
)

Time (s)

Plan B

Figure 4.4: An intersection scenario where the ego vehicle (blue) has the right-of-way. It is unclear
if the orange vehicle will yield to it. The ego vehicle has two maneuver alternatives
depending on the intention of the orange one: Plan A and Plan B. The blue areas
illustrate the unreachable regions by the ego vehicle. The orange areas correspond
to the predicted position of the orange vehicle, which is modeled with a truncated
univariate Gaussian distribution. The red line indicates the point at which the driving
corridors intersect. The motion plans for each case are depicted in green and red.
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4 Optimal Proactive Planning

Amotion planner should ideally consider the confidence in maneuver prediction
while planning a motion profile. For this, the parameter vector of the planning
problem is extended to consider both maneuver options simultaneously. Next,
because the parameter values are defined by the cost function and applied
constraints, cost terms of individual maneuvers are weighted with their proba-
bilities. The resulting motion profile is homotopy-class-free and its maneuver
is neutral [THS18].

The parameter vector p of such a motion is

p = [
measurement︷︸︸︷
x0, a0 ,

pinned︷                     ︸︸                     ︷
x1, a1, . . . , xpin, apin,

shared & executed next︷                                ︸︸                                ︷
xpin+1, apin+1, . . . , x2pin, a2pin︸                                ︷︷                                ︸

C

,

x2pin+1, a2pin+1, . . . , x=, a=︸                             ︷︷                             ︸
CA

, x=+1, a=+1, . . . x2=−2pin, a2=−2pin︸                                    ︷︷                                    ︸
CB

]T.

(4.18)

Figure 4.5 illustrates a comparison between a homotopy-class-bound and a
homotopy-class-free motion profiles. The underbraces in Equation (4.18)
denote to which maneuver segments in Figure 4.5 the parameter vector elements
correspond. Given p, parameter vectors of maneuvers A and B with neutral
component C can be defined as

p★A =
[
p0:pin, ppin+1:2pin, p2pin+1:=

]T
, (4.19a)

p★B =
[
p0:pin, ppin+1:2pin, p=+1:2=−2pin

]T
. (4.19b)

The cost of the neutral plan is

�★total = FA �total
(
p★A

)
+ FB �total

(
p★B

)
, (4.20)

where
F< = �F (?<) (4.21)

is the weighting factor, which is a function of the probability of the specific
maneuver ?<. It should be underlined that both parameter vectors p★A and p★B
are subject to the same constraints as p of a conventional approach defined in
Equation (4.4).
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0 Cpin 2Cpin Ch

A

B
C

B

(a) Conventional planners decide on the maneuver
option, selecting either A or B.

0 Cpin 2Cpin Ch

CA

CB
C

C

B

(b) Homotopy-class-free planning can plan a
neutral maneuver C.

Figure 4.5: Motion profile comparison of homotopy-class-bound and homotopy-class-free planning
on path-time diagram. sB,8 ≤ sC,8 ≤ sA,8 , ∀8 ∈ {=pin + 1, . . . , 2=pin }.

Homotopy-class-free planning creates motion plans that do not necessarily
trigger harsh braking. The plans have low transparency and in this way,
the ego vehicle’s reckoning with an unfavorable maneuver of the oncoming
vehicle cannot be easily revealed. While such scenarios would result in
immediate defensive behaviors in conventional planners, the defensiveness and
the maneuver transitions of homotopy-class-free planning is controlled with
the function �F .

The presented planning scheme requires (=−2=pin) × (=x +=a) more parameters
per extra maneuver considered. However, the number of alternative maneuver
options can be reduced, and usually two competing options remain. In cases
where there is a single maneuver available, such as in straight driving, the
weight factor of the parameters reserved for the second maneuver is set to zero
and its constraints are set to non-binding values.

Executing neutral plans may result in unsafe situations. Ensuring safe, neutral
plans will be presented in the next chapter, after tackling safety in the next
sections.

Uncertainties in Motion Profiles

Apart from the uncertainty in maneuver intentions of other participants, con-
sideration of uncertainties in their motion profiles with additional cost terms
gives the planner an estimate on their current and future distribution, eventually
improving comfort. Its formulation will be covered in the next chapter.
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4 Optimal Proactive Planning

Changes in Driving Objectives and Constraints

In some cases, driving objectives and bounds of the constraints acting on the
motion planner change upon newly arrived information. This causes jerky
motions despite the comfort terms defined in Equation (4.17). In case the
changes are not safety-critical, countermeasures can be taken. A remedy is
to dynamically adapt the weighting factors and rebalance the importance of
comfort terms. This can require excessive parameter tuning, unless they are
learned from driving data. A more practical approach is to gradually activate
a cost term reflecting the constraint into the optimization problem or change
the desired value. Driving experiments show that even a linear activation or
deactivation of constraints results in very smooth maneuvers [Taş+18].

4.2 Definitions of Terms Related with Safety

Robustness, reliability, criticality, risk, and safety are related terms for safety
analysis. Although being closely related, they have different foci and clarifying
these is essential for understanding the contributions of this work.

Robustness is the ability to adapt and operate properly under a variety of
conditions, including invalid inputs or adverse environment conditions [Taş+16].
Whereas reliability is the ability of a system to function for a specific period of
time under the predefined operating conditions [VAK10, p. 220]. Therefore,
reliability is concerned with endurance of systems and is out of scope of
this work.

Other frequently confused terms are criticality and risk. Criticality is a degree
of the impact a case or a fault has on the operation of the system [Ger91, p. 55].
In contrary, risk is not directly focused on the integrity of the system. It reflects
the possibility that an undesired situation occurs after choosing actions under
uncertainty [ISO09].

A motion with zero risk is classified as safe. However, the presence of other
traffic participants hinder achieving zero risk. This is where robustness comes
into play. A robust planning algorithm can handle critical scenarios without
causing increased risk. Hence, modeling and quantification of uncertainties are
central in evaluating risk, safety, and robustness.
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4.3 Methods to Maintain Safety

The uncertainty of the environment information and planning homotopy-
class-free maneuvers require delicate safety-handling. There are various
approaches to maintain safety under uncertainty, each having their own strengths
and weaknesses.

4.3.1 Time-To-X Metrics

A widely accepted metric for quantifying current risk and evaluating safety
are the time-to-x (TTX) metrics, where “x” is a chosen event. The event
can be a collision (TTC), the last possible reaction (TTR), braking (TTB), an
intersection beginning (TTI) etc. A detailed overview on time metrics are
presented in [HSK06]. Since TTX metrics are independent of relative distance
and speed, early traffic flow and road safety studies utilized them [MB01].
Many pre-crash and collision avoidance systems [ZAG06; Hil07] and later
situation prediction modules, such as in Hidden Markov models [SWA16], used
them for an analysis in time domain. Recent studies on deep reinforcement
learning exploit their invariance of distance and speed, and employed them in
their frameworks [Kur+21].

TTX metrics generally suffer from two major problems for autonomous driving
applications. First, they are calculated only in one dimension; i.e. the longitudi-
nal direction. Even though there are works that overcome this deficiency by
generalizing them into the Cartesian space [War+14], these generalizations have
not found a widespread application. The second one is, even though sensor data
is modeled probabilistically, these metrics are deterministic in their raw-form
and therefore not robust to uncertain information. Berthelot et al. use Monte
Carlo methods to model TTC as a probability distribution [Ber+11; Ber+12].
More recent works by Stellet et al. focus on deriving closed-form expressions
of the probability distributions and utilize them in emergency braking systems
[Ste+15; Ste+16]. Despite these extensions, these metrics lack incorporating
interactions of other traffic participants and do not cover maneuver capabilities
of the vehicles. Therefore, they stick to the current measurements and can
coarsely cover the future development.
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4.3.2 Collision Detection in Workspace

A common approach to maintain safety is to ensure that the agent’s workspace
W, i.e. the space in which the agent is located, does not overlap with that of
dynamic or static obstacles. Many planning algorithms, independent of if they
are sampling-based or not, rely on these types of safety checks. They employ a
set of geometric primitives to approximate the shape of the vehicle or obstacles
and perform collision checks over the planning horizon.

The most rudimentary approach is to model objects with polygons. However,
this approach introduces 3W additional constraints per polygon-vertex, where
3W = 2 in the two-dimensional Cartesian space. Unfortunately, polygon-
based constraints introduce non-differentiable points, which precludes their
utilization in gradient-based methods [Sch+14]. A more efficient approach is
to decompose the obstacle shapes into circles and to check candidate motions
against collisions [ZS10]. Such circle primitives can also be integrated into
optimization-basedmethods, by analytically deriving continuous circle-to-circle
or circle-to-polygon distances [Zie+14a].

An elegant approach for performing collision checks under uncertainty is to
use elliptic primitives. Since uncertainties are frequently modeled as bivariate
Gaussian distributions and the covariance matrix of it is an ellipse in general,
these checks can be directly linked with confidence levels. The intersection of
ellipses can be used for obtaining the risk of a collision [IPM13]. However, the
resulting calculation is not suitable for planning with gradient-based approaches.
An alternative is to approximate one of the areas described with an ellipse by
circles with equal radii. For a circle located at (G>, H>) with radius A to be
outside a region described by an ellipse centered at (G, H) with a semi-major
axis and semi-minor axis length of fx and fy, it must satisfy√(

G> − G
fx + X

)2
+

(
H> − H
fy + X

)2
> 1, (4.22)

where X is an offset that ensures the enlarged ellipse encapsulates the Minkowski
sum of the circle and the ellipse. X is chosen slightly larger than the radius of
the circle, i.e. X = A + n [Bri+19].
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Apart from these geometric primitives, a further option is to consider the objects
in workspace-time-space. The volume swept by the trajectory is put into a
tree-tree query for collision checks. The approach serves as a fast collision
checker for sampling-based methods and scales well with increasing number of
obstacles [SSF15].

4.3.3 Chance Constraints

In case the objects in a workspace are represented with probability distributions,
previously introduced deterministic safety checks are not sufficient. If x is a
vector of variables, ' is a vector of random variables, and h is a set of functions,
chance constraints can be defined as

Pr (h(x, ') ≤ 0) ≥ 1 − U (4.23)

with U being the prescribed risk level [CC63]. Constraints of this form
are intractable for arbitrary probability distributions, unless a sampling-based
approach is used. Even in cases where h is affine in x and ' , the feasible solution
set can still be non-convex [SN99]. Several approaches deal with the non-
convexity. One approach is to use a convex bounding function [NS07; VT13],
such as rectangles [DKH15] or spherical sectors [HD15]. Another approach
is to model the uncertainties with known distributions and to reformulate the
probabilistic constraints into deterministic, convex ones [CE06; BLW06].

If the chance constraint is defined by = line segments and the random variables
' are Gaussian distributed, the variables with additive Gaussian noise x̂ = x + '
can be translated with t and projected to the normal vector u such that they are
perpendicular to the constraint. The chance constraint can then be defined as

Pr(ux̂ − t ≤ 0) ≥ 1 − U. (4.24)

This constraint can be expressed as conjunction of the constraints∧
8=0,..., =−1

Pr(u8 x̂8 − t8 ≤ 0) ≥ 1 − U,
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which in turn can be expressed for individual univariate Gaussian distributions
by using Equation (3.4) as

u8x8 +
√
u8�8u8T · q−1 (1 − U) ≤ t8 (4.25)

where q−1 is
q−1 (W) =

√
2erf−1 (2W − 1). (4.26)

This results in a convex constraint for W ≥ 0.5. An alternative is to use ellipsoidal
relaxation on joint chance constraints [Van04, p. 44]. This corresponds to
taking the quantile function of j2-distribution as q−1. However, as proven with
the comparison made by Vitus et al., this method can lead to highly conservative
results [VT11].

There are many applications of this approach in motion planning for autonomous
driving [LKH10; VT11; Car+14; LKK15]. In case the mean and the variance
of the distribution is not known, they can be estimated from sampled data and
subsequently chance constraints can be satisfied [CC06; LK21].

Analogous to constraining the (1 − U)-quantile and limiting the Value-at-Risk
(VaR), the expected risk in this quantile can be constrained as well. This
is called Conditional Value-at-Risk (CVaR), Expected Shortfall, or Tail VaR
[Art+99]. CVaR, which can be interpreted as “how bad is bad”, has better
properties than VaR, such as being convex when optimized over U [RU+00].
It has gained attention in risk-sensitive optimal policies [CG14]. A recent
work compares the risk metrics and argued on the axioms they must satisfy in
robotics applications [MP17].

In some works, the joint cumulative distribution of two multivariate Gaussian
distributions, i.e. the PDF of position or pose of two vehicles, is directly
calculated. The work presented in [Cam+14] relies on the online computation
of two bivariate Gaussian distributions defined in [Dre78]. Even though the
paper states that the computation is fast, it does not mention the total runtime of
the proposed risk assessment algorithm. The work [HBC14] follows a similar
approach for calculating pose overlaps, but employs Monte Carlo sampling to
obtain the probability of a collision.
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4.3.4 Responsibility Sensitive Safety

The approaches presented so far serve as tools to calculate the risk level of a
traffic situation and to evaluate safety. Driving in traffic requires multi-agent
interaction. There are rules that impose proper actions and behavior the drivers
must follow. Responsibility-Sensitive-Safety (RSS) provides a comprehensive
analysis of risky situations in driving and formalizes an interpretation of the
rules accompanied by mathematical models. It assures safety if the dynamics
of all vehicles do not exceed a given set of parameterized limits [SSS17].

RSS is proposed as a separate, interpretable model that acts supplementary
to the motion planner. Thus, it provides high flexibility for the choice of the
planner. Since it is designed for safety assurance, a planner should ideally never
require the RSS-module to intervene and make a correction to assure safety.

In practice, RSS suffers from two major problems. First, it requires around
40 parameters which include non-scalar values, hence making the analysis
particularly complicated. A recent work studies the expectations for certain
driving scenarios these parameters are required to meet [Nau+21]. Nevertheless,
generalization remains an open-topic for further research. A second problem
is again related to measurement uncertainties. Safe distances and braking
maneuvers utilized in RSS do not incorporate the uncertainty involved in the
environment model. It should be underlined that RSS is able to provide safety
guarantees only for an appropriate choice of parameters, which is quite difficult
in practice.

4.3.5 Verification Approaches

Formal verification techniques count as the most complete safety assurance
methods. These approaches construct a mathematical model of the system. By
utilizing formal logic and probabilistic model checking, they can exhaustively
examine if the safety conditions are fulfilled and eventually ensure that a system
is safe. A major problem with these approaches is that they scale poorly to
systems with large and complex state spaces [Lee+20]. Therefore, it is not
feasible to express the complex environment while driving.

A convenient way to perform formal verification is to employ set-based
over-approximations for the reachability of the agents in the environment.
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Althoff et al. showed suitability of the approach for utilization in hybrid sys-
tems, such as in driving, where the agents are subject to both discrete decisions
and continuous driving dynamics [ASB07a; ASB07b]. Starting from an initial
but deterministic state, the approach calculates the set of states the system can
reach for all possible inputs for a certain prediction horizon. Safety is afterwards
checked against overlaps with reachable sets of distinct traffic participants.

(a) Acceleration-based occupancy.
Calculated with limits of

acceleration values obtained
from circle-of-forces.

(b) Lane-following occupancy.
Obtained by using road network

and the longitudinal
reachability limited by speed

regulations.

(c) Result of occupancy calculation.
Obtained from the intersection
of three distinct occupancy

calculations.

Figure 4.6: Occupancy calculated for the red vehicle traveling at 7.5 m/s on a roundabout. The
safe-distance occupancy of cars on adjacent lanes is not included [AM16]. The results
can be used as truncation bounds of the truncated univariate Gaussian distribution to
represent the predicted position of the red vehicle [THS18].

Amajor disadvantage with reachable set-based verification is the quick growing
of over-approximations over time, resulting in large areas of unsafe regions. This
eventually leads to overly conservative motion profiles. Magdici et al. proposed
to ensure the existence of a fallback maneuver until the next planning instance
with reachable sets, and called this approach as fail-safe motion planning. In
case the existence of a safe motion cannot be ensured in the next planning
instance, then the previously calculated safe one is selected. In their work, they
decoupled planning of optimal motion from fallback plans [MA16].

Integration of fallback maneuver calculation into optimal planning was first
proposed and applied by Taş et al. In their work, they argued on safe motion
planning and inevitable collision states (ICS) of Petti et al. (see Section 4.1.1),
tackled time-delays, and ensured the existence of a fallback maneuver by
employing constraints in the time interval C ∈ [C0, 2Cpin) while optimizing the
motion profile. By treating position and speed measurements with additive
Gaussian noise, they have defined a chance constraint on the full-braking
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distance into the nonlinear optimization problem and accounted for the present
uncertainty. As a result of limited visibility and time-delays, to prevent a
potential increase in damage, the fallback maneuver is restrained to braking
only [TS18]. Shortly after, Pek et al. followed the same approach independently
by arguing on ICS and proposing to integrate fallback maneuver calculation as a
constraint into optimization-based planning. Different from the aforementioned
approach, by adopting a formulation that decouples longitudinal and lateral
planning, they could consider swerve maneuvers as fallback [PA18]. However,
unlike the aforementioned work, they did not argue on limited visibility, time-
delays, and uncertainties. In subsequent publications they conducted driving
experiments, and proved the efficiency and generality of their approach.

Fallback maneuvers without reachable set prediction can be categorized under
scenario stochastic MPC, as done by Alsterda et al. in their Contingency MPC
framework. The framework focuses on autonomous vehicle control on slippery
roads and plans with a fallback for decreased road surface friction [ABG19].

Safety verification is becoming increasingly popular in autonomous driving.
Besides motion prediction and planning, it has found application in threat
assessment [AFS12; SKA18], and in arbitrators for decision making [Orz+21].

4.3.6 Falsification Approaches

Falsification approaches address the main deficit of verification approaches:
they scale large and complex state spaces at the expense of completeness.
By searching for examples that violate safety conditions, these approaches
are not bound to specifications set in verification approaches and can reveal
implementation mistakes. Therefore, they cannot ensure the absence of failures.

Recent works employ motion planning approaches for a targeted search from
an initial state towards failure states. An application for hybrid systems is
proposed by utilizing an RRT algorithm [Dre+15]. A subsequent work uses
this approach in adaptive cruise control systems [Kos+19]. A more recent
work, Adaptive Stress Testing argues on the poor applicability of RRTs for
falsification in large state spaces with hidden states and unknown disturbance,
and proposes to find the most likely path to a failure event [Lee+20]. Although
falsification approaches are promising, they can only be used for offline testing
and validation, and not as a safety module in motion planning.
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4.3.7 Others

Some other methods in literature cannot be classified under the aforementioned
approaches. Albeit they aim tomaintain safety, they can only provide an estimate
of risky situations, or serve as a heuristic to reduce the risk. Nevertheless, it is
important to briefly present some of these.

Eidehall et al. highlight that TTX-metrics are limited to deterministic values and
do not incorporate stochastic future evolution of their values. Therefore, they
employ Monte Carlo sampling onto the vehicle models and estimate different
threat metrics [EP08]. An original idea that inspects the freedom or margin
of control is presented in [CPI14]. The approach inspects the control freedom
among homotopic maneuver options and evaluates which one allows the largest
amount of freedom.

An approach to mitigate risk while driving is to define a function obtained
by extracting a risk value from a combination of threat metrics from driven
trajectories [DE14]. By using such a risk map, a vehicle can follow a behavior
that optimizes its driving goals while minimizing the risk. This approach can,
however, lead to unnatural actions while trying to minimize the risk, if not
engineered appropriately. The authors state that faster intersection crossing can
be a risk minimizing behavior in circumstances. This statement implies that
their approach fails to decently handle the uncertainties and yield a human-like
behavior. The same applies to a dozen of works that penalize the time spent at
intersections and similar crash-likely areas. Furthermore, it is hard to identify
such areas precisely (see Figure 2.1).

Othermap-based risk analyses aim to reason about presence of traffic participants
in occluded areas. The first work that focuses on this task utilizes particle-based
reasoning for occlusions [YVJ19]. They propagate particles along a driving
direction from visible areas to occluded areas over time and reason out potential
participants. A later work by Wang et al. inspects safety by using reachable
sets for uncertainty propagation [WBS21]. Nevertheless, these works basically
join disconnected visible areas. This operation is only advantageous when
the visible range is big and the occlusions are relatively small. Eventually,
these are rather occupancy prediction methods than an original method to
maintain safety.
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There are works that suggest dealing with safety from a system-wide perspec-
tive. Whereas early works merely monitor the continuous operation and the
progress of the system components, and initiate a reset or hard stop upon any
anomaly [BFD08; Kam+08; Kim+12], later works additionally evaluate the
discrepancies among the information in system components [MM15]. All of
these works show promising results in application by initiating recoveries or
safe-stops. A later work of Taş et al. presents the RobustSENSE-architecture,
which monitors individual components such as sensors, fusion, or scene under-
standing algorithms with performance measures. The performance measures
are evaluated component-wise, module-wise, and system-wide, eventually
degrading the system and thereby indirectly increasing robustness of algorithms
and maintaining safety. The proposed performance assessment system shows
successful results in test drives, in which phantom objects are synthetically
injected into the perception pipeline. The system can infer the anomaly and
the central Bayesian network can reason out the detection of a phantom object
[Taş+17]. Even though system-wide assessment like presented above increase
robustness considerably, they cannot provide any guarantee on safety.

4.4 Co-planning of Probabilistic Proactive
Z-Plans

The recapitulation provided in the previous section highlights two major
takeaways for maintaining safety in receding horizon planning: 1) consideration
of uncertainties requires utilization of chance constraints 2) guaranteeing safety
while not being overly conservative requires employing verification approaches
that are based on inevitable collision states (ICS). The first work that addresses
the need to combine them is presented by Taş et al., in which these conditions
are integrated into the motion planner in the form of constraints. In this way, a
probabilistic and proactive fallback motion is co-planned [TS18].

Co-planning of such a fallback plan is not straightforward. This section first
presents alternative fallback plans and then reveals why a certain type of fallback
plan should be preferred over its alternative. Subsequently, uncertainties in the
execution of the fallback plan are analyzed and modeled. Since the uncertainties
present in the environment model have a direct impact on safety, constraints
that must be satisfied while using the fallback plan are presented next.
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4.4.1 Alternative Fallback Plans and Present Uncertainties

Alternative fallback plans can be divided into two classes: full-braking maneu-
vers and swerve maneuvers. As studied by Schmidt, full-braking at speeds lower
than roughly 40 km/h is more advantageous, whereas swerving at higher speeds,
which may involve combined steering and braking, becomes more desirable
for collision avoidance with a single object [Sch14, p. 24]. However, there are
two problems with swerving for collision avoidance under uncertainty. Firstly,
for Gaussian error propagation and uncertainty modeling, vehicle models are
frequently linearized. This can lead to big modeling errors if maneuvers at
handling limits are executed. Secondly and more importantly, the visible field
might not be sufficient to cover the required area for the execution of swerve
maneuvers. Therefore, this work chooses full-braking as fallback and calls such
a maneuver as Z-plan, implying the last option the vehicle can execute.

Modeling Braking Distance as a Univariate Gaussian Distribution

In case speed E and the maximal deceleration 0− values are deterministic, the
braking distance Bbrake can be calculated as

Bbrake = �brake (E, 0−) =
E2

20−
. (4.27)

As introduced in Section 3.1.1, speed E as well as position x values are
bound to uncertainties, which are typically modeled as univariate and bivariate
Gaussian distributions, respectively. Therefore, this equation is not sufficient
for calculating the braking distance under uncertainty.

Speed measurements can be modeled with an additive white Gaussian noise

Ê = E + ZE where ZE ∼
(
0, f2

E

)
. (4.28)

The square operation on Equation (4.27) on additive Gaussian noise results
in an additive Gamma distribution, which does not have a quantile function
that can be solved in closed-form or be approximated in real-time. The error
on a function can be calculated by linearizing it using first-order Taylor series
expansion

� (x) ≈ �
(
x (0)

)
+ ∇�

��
x (0)

(
x − x (0)

)
. (4.29)
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As �
(
x (0)

)
is a constant, it does not contribute to the error. Assuming the

variables in the vector x are stochastically independent, the function’s variance
is approximated as

f2
� ≈

(
m�

mx0

)2
f2
x0
+ . . . +

(
m�

mx=−1

)2
f2
x=−1

. (4.30)

If the formulation above is applied on Equation (4.27)

f2
brake ≈

(
m�brake

mE

)2
f2
E +

(
m�brake

m0−

)2
f2
0−

≈
(
E

0−

)2
f2
E +

(
− E2

2(0−)2

)2

f2
0− . (4.31)

Braking distance can now be modeled as an expected value in braking distance
with an additive white Gaussian noise Zbrake

B̂brake = Bbrake + Zbrake where Zbrake ∼(0, f2
brake). (4.32)

The exact value of 0− depends on both the friction coefficient between the road
and the tire, and the current lateral acceleration. Therefore, even when the
vehicle is following its own route and not performing any swerve maneuver, the
maximum braking deceleration might vary. It is a design and experimentation
choice, whether to select a conservative deterministic value for 0−, or to estimate
it, and eventually model it with additional Gaussian noise.

Modeling Stop Position as a Univariate Gaussian Distribution

The position of any agent can be modeled as a bivariate variable in Cartesian x
and y coordinates with white Gaussian noise

x̂ = x + Zx where Zx ∼
(
0,�x

)
. (4.33)

The braking distance is previously modeled as univariate along the center of
the driving corridor. Because position is modeled as a bivariate variable with
additive Gaussian noise, it must be projected onto the driving corridor to obtain
the uncertainty in stop position.

55



4 Optimal Proactive Planning

The projection of the expected value onto the centerline can be done by
calculating the shortest normal distance to the center of the driving corridor,
which is modeled as a polyline (see Section 2.1.2). The variance along B
can be approximated as f2

B = _lon (�x), as presented in Equation (3.4). The
longitudinal position B̂ is expressed as

B̂ = B + ZB where ZB ∼
(
0, f2

B

)
. (4.34)

Once the longitudinal position is calculated, the stop position B̂stop is obtained
by adding Equation (4.32) and Equation (4.34)

B̂stop = B̂ + B̂brake
= B + ZB + Bbrake + Zbrake (4.35)

The expected value of the stop position by using Equation (4.27) becomes

Bstop = B +
E2

20−
, (4.36)

Assuming that braking distance and current longitudinal position are not
correlated, the variance in the stop position is calculated using Equation (4.30)
as

f2
stop = f

2
B + f2

brake. (4.37)

This yields

B̂stop = �stop (x, E, 0−) = Bstop + Zstop where Zstop ∼
(
0, f2

stop
)
. (4.38)

4.4.2 Proactive Planning for Ordinary Driving

The previous subsection elaborates on emergency braking as a Z-plan under
uncertainty. Because the longitudinal stop position can be modeled with a
univariate Gaussian error around the linearized current state, it can be used to
define a chance constraint (see Section 4.3.3) in real-time applications.

In ordinary driving scenarios, no interaction with other traffic participants is
required, see Figure 4.7. Depending on the existence of other agents in the
driving corridor, there are two different forms of the chance constraint.
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[B̂ (C0) , Ê (C0) ]T

B̂brake (C)

B̂stop (C) Bmin

Bvis

Figure 4.7: An ordinary driving scenario with limited visible area. The uncertainty in the braking
distance of the blue vehicle is modeled as a Gaussian distribution.

Limited Visibility

In cases where there is not any agent within the visible field along the driving
corridor, the chance constraint on safety is written only for the visibility
condition, by using Equation (4.38) in Equation (4.23)

Pr
(
�stop (x, E, 0−) − Bvis − Bmin ≤ 0

)
≥ 1 − U, (4.39)

or simply
Pr

(
B̂stop − Bvis − Bmin ≤ 0

)
≥ 1 − U, (4.40)

where Bvis and Bmin correspond to visible free distance and standstill distance,
respectively.

In receding horizon planning, for a motion plan to be considered as safe, it
must ensure the existence of the Z-plan in the time-interval C ∈ [C0, 2Cpin), until
the next replanning is completed, as shown in Section 4.1.1 and Section 4.3.5.
By using time discretization, the constraint presented above can be applied as
conjunction of constraints at each sampling instance 8∧

8=0,..., 2=pin

Pr
(
B̂stop,8 − Bvis + Bmin ≤ 0

)
≥ 1 − U. (4.41)

These nonlinear constraints can be integrated into the motion planner by using
a computationally efficient approximation of quantile function of the univariate
Gaussian distribution.
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Agents with Uncertain Physical States

Position and velocity measurements of agents inside the visible field are
represented with additive Gaussian noise. Projecting these values onto the
centerline enables calculating the distribution of their braking distances and
stop positions, as done for the ego vehicle. Considering the situation depicted
in Figure 4.7, the longitudinal position and speed of the vehicle : driving
closest in front can be modeled as B̂: = B: + ZB,: where ZB,: ∼(0, f2

B,:
), and

Ê: = E: + ZE,: where ZE,: ∼ (0, f2
E,:
). The worst case in such a scenario

is when the vehicle : applies full-braking immediately after the environment
information is processed. Therefore, the difference in the stop positions ΔBstop
of both vehicles become crucial. However, as stop positions are modeled with
additive noise, ΔBstop is bound to noise as well. Therefore,

ΔBstop = �stop (x, E, 0−) − �stop,:
(
x: , E: , 0

−
:

)
. (4.42)

Because the additive noise in stop positions is Gaussian

ΔBstop ≈ B̂Δstop = BΔstop + ZΔstop, (4.43)

where
BΔstop = Bstop − Bstop,: (4.44)

and
ZΔstop ∼

(
0, f2

Δstop
)
, (4.45)

such that
f2
Δstop = f

2
stop + f2

stop,: . (4.46)

The chance constraint can now be expressed as

Pr
(
ΔB̂stop + Bmin ≤ 0

)
≥ 1 − U. (4.47)

Because of the safety condition, this constraint is applied as a conjunction of
chance constraints ∧

8=0,..., 2=pin

Pr
(
B̂Δstop,8 + Bmin ≤ 0

)
≥ 1 − U. (4.48)
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4.4.3 Proactive Interaction with Other Participants

The fact that prediction modules can never identify the maneuver intentions
with certainty makes proactive planning indispensable while in interaction with
other participants. Such scenarios occur at intersections and while overtaking.
Even though the structure of these seem to be entirely different at first, they are
described by the same formulations, but with different parameters. This work
picks intersection scenarios for analyzing proactive planning.

Intersections pose two distinct classes of problems for a vehicle that is approach-
ing to an intersection:

1. the ego vehicle has to yield to oncoming vehicles, but it has a limited
visible field

2. the ego vehicle has the right-of-way, but the oncoming vehicle might not
comply with the traffic rules and not yield

Motion planning for both of these classes heavily depends on the visible range
and the acceptable braking distance on the merging routes given this range.

MP B̂brake (C0)

B̂stop (C0)
[
B̂ (C0)
Ê (C0)

]

[
B̂ (C0)
Ê (C0)

]

B r
eq B v

is

Figure 4.8: An intersection under limited visibility. For illustration purposes, the point where the
routes cross, MP – merge point, is shown in the center of both corridors. See Figure 2.2
for a more realistic corridor and MP example.
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Intersection Crossing with Limited Visibility

Intersections can pose a difficult problem on the planner if visibility is hindered
by the buildings or obstacles around. Cases where the ego vehicle has to yield
to other vehicles is a rather simple problem: the ego vehicle must only ensure it
can stop before the intersection, while its visible distance along the intersecting
route (Bvis) is shorter than the distance required for an oncoming vehicle to pass
(Breq). This condition can be introduced as a constraint into the motion planner.

A visualization of such a braking constraint in path–time–speed diagram is
depicted in Figure 4.9. The full-braking motion must remain below the red-
depicted surface, surface-of-no-return, to be considered as safe. The planner
can recover motion profiles that exceed the surface after 2Cpin, the blue-depicted
surface, as that part of the motion profile will be recalculated in the next planning
time. Points on the red surface correspond to point-of-no-return, a term which is
used in other works, such as in [Gin+08; Cam+14], that tackle safety for a single
motion profile. It should be underlined that a motion exceeding this surface can
still end up with a collision-free state, as this depends on the presence as well
as the motion of other traffic participants.

E0

0

Bvis

2Cpin
E

C

B

0

Bvis

E02Cpin

E

C

B

Figure 4.9: Safety inspected in speed–time–path (E − C − B) space. Any motion below the red-
depicted surface-of-no-return can come to a full stop before Bvis. The red line is the
full-braking motion from the highest safe initial speed. The black line represents an
unsafe motion as it leaves the red surface at the green point, at the point-of-no-return.

Considering the situation depicted in Figure 4.8, because of the full stop position
constraint for Bvis < Breq, the ego vehicle will decelerate until Bvis ≥ Breq. If Bvis
is still not sufficient at the beginning of the intersection zone for any reason,
depending on the scenario, the ego vehicle can creep into the intersection to
avoid any deadlock. However, creeping behavior can be undesired.
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4.4 Co-planning of Probabilistic Proactive Z-Plans

In order to avoid such an overly conservative creeping behavior, planning at
intersections can be modeled such that the ego vehicle enforces a comfortable
braking deceleration to the oncoming vehicle, even though the latter has the
right-of-way. The reaction of an oncoming vehicle to the ego vehicle can be
modeled with a comfortable deceleration 0−cft. A pessimistic prediction of the
ego vehicle’s motion from the perspective of an oncoming vehicle is that the
ego vehicle drives with constant speed to the intersection, ignoring the traffic
rules. Given a fixed value of 0−cft and Eego, the time required for the oncoming
vehicle traveling at speed E: to decelerate to the speed of the ego vehicle is

Cdec =
E: − Eego
|0−cft |

. (4.49)

The distance required for ego vehicle to see inside this route can be obtained as

Breq = E: Cdec +
1
2
0−cft C

2
dec + E

(C0)
ego Chw, (4.50)

where Chw is the minimum time headway, which is set to 2.0 seconds by traffic
rules. By applying the value of Chw and Equation (4.49),

Breq = (req (E (C0)ego , E: , 0
−
cft) = E:

(
E: − E (C0)ego

|0−cft |

)
+ 1

2
0−cft

(
E: − E (C0)ego

|0−cft |

)2

+ 2E (C0)ego .

(4.51)
If there are no vehicles within the visible field, the maximum allowed speed for
that route E+ can be taken for E: .

While Bvis < (req (E (C0)ego , E
+, 0−cft), the ego vehicle must hold the constraint

Pr
(
B̂stop − BMP + Bmin ≤ 0

)
≥ 1 − U. (4.52)

Because of the safety condition in receding horizon planning, this constraint
must be satisfied for the first 2=pin indices of the motion∧

8=0,..., 2=pin

Pr
(
B̂stop,8 − BMP + Bmin ≤ 0

)
≥ 1 − U. (4.53)
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Once (req (E (C0)ego , E
+, 0−cft) < Bvis, the ego vehicle passes the intersection according

to the traffic rules, i.e. perform a full stop, if there is a stop sign.

The reaction enforced by the ego vehicle onto the oncoming vehicle does not
necessarily have to be as big as 0−cft. It attains smaller values, if Breq < Bvis. This
motivates the notion of politeness [, which can be defined by using insights
from MOBIL [KTH07], an interaction-aware extension of IDM, as

[ = �[ (0) =
0−cft − 0:
0−cft

. (4.54)

Intersection Crossing with Noncompliant Traffic Participants

In intersection scenarios, even if the ego vehicle has the right-of-way, it should
not enter into an unsignalized intersection recklessly, assuming other vehicles
are compliant. Albeit the ego vehicle may have zero responsibility in the
accident, it would still damage the brittle reputation of autonomous driving.
For this reason, planning algorithms should ideally tackle traffic rule-violating
behaviors of other participants.

Integrating such a feature can easily be done by utilizing the formulations pre-
sented above. At an intersection, if a detected vehicle cannot brake comfortably
to decelerate to the speed of the ego vehicle and hold the required minimum
time headway, it is considered as noncompliant. This is checked by using
Equation (4.51)

B: + (req (E (C0)ego , E
(C0)
:
, 0−cft)

?
≤ BMP. (4.55)

At an intersection, while Bvis < (req (E (C0)ego , E
+, 0−), the ego vehicle continues driv-

ing to the intersection while holding the constraint defined in Equation (4.53).
After (req (E (C0)ego , E

+, 0−) < Bvis, it checks if there are any vehicles approaching,
and if none, it deactivates the constraint mentioned above. If the oncoming
vehicle is noncompliant, the ego vehicle initiates a give-way maneuver. Other-
wise, if the difference in the sides of Equation (4.51) increase over subsequent
times, the vehicle is considered as compliant and the constraint is deactivated.
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5 Planning with Numerical
Optimization

The ideal definition of the objective function, the chance constraints, as well as
the structure of the parameter vector establish a complex problem, for which
finding the optimal solution is difficult. Moreover, online planning imposes real-
time requirements, which pose an additional challenge. Nonlinear optimization
arises as a prevalent tool to meet these requirements.

This chapter starts with nonlinear optimization methods. Since the solution and
modularity in gradient-based optimization depend on differentiation, methods
for calculating derivatives are inspected next. This chapter finally presents a
novel nonlinear optimization based motion planner that employs the previously
defined objective function and safety concepts.

5.1 Nonlinear Optimization

An optimization problem can be defined as

minimize
x

� (x) (5.1a)

subject to g (x) = 0 (5.1b)
h (x) ≤ 0, (5.1c)

where x ∈ R= are the optimization parameters, � : R= → R is the objective
function, g : R= → R< are the equality constraints, and h : R= → R? are the
inequality constraints. In nonlinear problems, at least either of the constraint
functions or the objective function is nonlinear.
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5 Planning with Numerical Optimization

5.2 Local Descent

Nonlinear optimization algorithms benefit from continuous differentiability of
the objective and constraint functions, facilitating the search for an infimum.
Depending on the degree of continuous differentiability, they take a step toward
to the minimum from a feasible initial guess, by using a first- or second-order
Taylor approximation on the local cost.

Quadratic approximation of a function � (x) around x (8) is

� (x) ≈ � (x (8) ) + ∇� (x (8) )T (x − x (8) ) + 1
2
(x − x (8) )T∇2� (x (8) ) (x − x (8) ).

(5.2)
For a descent direction d (8) from x (8) this Taylor approximation becomes

� (x (8) + d (8) ) ≈ � (x (8) ) + ∇� (x (8) )Td (8) + 1
2
d (8)

T∇2� (x (8) )d (8) . (5.3)

The Newton’s method obtains the descent direction by setting the derivative of
this Taylor approximation to zero

d (8) = −
[
∇2� (x (8) )

]−1∇� (x (8) ). (5.4)

Hence, an optimum x∗ must have ∇� (x∗) = 0 and a positive semi-definite
∇2� (x∗). The first condition is known as the first-order necessary condition,
and the both conditions together are known as the second order necessary
conditions. If ∇2� (x∗) is positive definite instead, then x∗ is a strict local
optimum of �. This is then known as the second-order sufficient conditions.

The quadratic approximation around a point can be insufficient, and therefore,
optimization algorithms operate with iterative steps. There are two strategies
for moving from x (8) to x (8+1) and they both follow the same fundamental
principle of decreasing the function value at each iteration.

Line search strategy selects a step factor U in the descent direction

x (8+1) = x (8) + U (8) d (8) . (5.5)

The computational complexity of calculating the exact value of U is high. A
more efficient approach is to approximate it, and use the saved computational
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capacity for performing more iterations. A sufficient reduction in the function
value is guaranteed by Armijo and curvature conditions, known collectively as
Wolfe conditions [NW06, p. 33; KW19, p. 60].

Trust-region strategy constructs a quadratic model about � in the local region
of x (8) . Depending on the reliability of the local model, they increase the
radius of the trust region and then select the direction that reduces the function
value at most. Its operation is in reverse order if compared with line search
strategies. Findings in this work confirm that both strategies exhibit comparable
performance [GNS09, p. 394].

5.3 Constrained Optimization

The constraints defined in Equation (5.1) is incorporated into the solutionmethod
by converting the constrained optimization problem into an unconstrained one.
There are two ways to accomplish this.

5.3.1 Penalty Methods

The simplest way to consider constraints is to add them with a weighting term
into the objective function whenever they are violated

minimize
x

� (x) + �penalty (g (x) , h (x)). (5.6)

�penalty is a penalty or loss function that inspects the violation and reflects it
with an additional scaled cost with a penalty factor -. Loss functions available
in machine learning domain, such as soft L1-loss, Huber loss, Cauchy loss,
arctan loss, quadratic loss, or even sigmoid functions can be used as a penalty.
It is an internal task of the optimization algorithm to adapt the penalty factor to
prevent constraint violations. It starts with a small factor value and increases
in subsequent iterations to ensure feasibility. These methods suffer from a
major problem: depending on the penalty function, there is no guarantee on
feasibility of the solution. Especially during the initial iterations, the solution
can violate the constraints or have poor accuracy. Furthermore, as the penalty
factor increases, the gradients can behold sharp discontinuities.
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Barrier Methods

Feasibility can be ensured by choosing a penalty function, the value of which
increases to infinity as the optimization parameters approach the constraints.
Such a function acts as a barrier and when started from feasible parameter
values, an interior point, thesemethods ensure feasibility. Logarithmic functions
are commonly used for this

minimize
x

� (x) − -T log(−h(x)). (5.7)

5.3.2 Lagrange Multipliers and Duality

A local minimum of a function � (x) subject to an equality constraint � (x) = 0
must have aligned gradient vectors1. The method of Lagrange multipliers
relates this condition to a Lagrange multiplier Z ∈ R, which compensates the
scales of the gradients

∇� (x) − Z∇� (x) = 0. (5.8)

Joseph-Louis Lagrange noticed that the left-hand sides of this function and the
equality constraint correspond to the partial derivative of the function

Λ(x, Z) = � (x) − Z� (x), (5.9)

which was later named after him as the Lagrangian. Solving ∇Λ(x, Z) = 0
returns stationary points, which can be a minimum or a saddle point.

In contrast to equality constraints, inequality constraints do not bind the solution,
i.e. they are not active, for all values. In such cases, the Lagrange multiplier of
an inequality constraint b is set to zero. In other cases, the minimum of � (x)
constrained by only a single inequality constraint is

minimize
x

maximize
b ≥0

Λ(x, b). (5.10)

This reformulation is known as the primal problem.

1 An illustration can be found in [NW06, p. 308; Zie17, p. 54; KW19, p.172].
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These formulations can be generalized to the problem defined in Equation (5.1).
The Lagrangian becomes

Λ(x, ' , /) = � (x) − 'Tg(x) − /Th(x) (5.11)

where ' ∈ R<, and / ∈ R? are Lagrange multipliers for equality constraints
and inequality constraints. The stationary points of the corresponding primal
problem can be found by the Karush–Kuhn–Tucker (KKT) conditions

∇� (x∗) − 'T∇g(x∗) − /T∇h(x∗) = 0 (5.12)
g (x∗) = 0 (5.13a)
h (x∗) ≤ 0 (5.13b)

/ ≥ 0 (5.14)

/Th (x∗) = 0 (5.15)

which imply stationarity, feasibility (Equations (5.13a) and (5.13b)), dual
feasibility, and complementary slackness, respectively.

The primal problem becomes

minimize
x

maximize
' , /≥0

Λ(x, ' , /) (5.16)

and its dual form reverses the order of extremum operations

maximize
' , /≥0

minimize
x

Λ(x, ' , /). (5.17)

The dual problem is concave and solving it is often easier than the primal one.
Under some conditions, the difference between primal and dual solution is
zero, which is called strong duality and otherwise, the dual problem defines a
lower bound, which is called weak duality. One condition that ensures strong
duality requires the existence of an interior point that is feasible [BV04, p. 225],
whereas another condition requires the gradients of the active constraints to be
linearly independent [NW06, p. 320].
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5.4 Solvers for Constrained Nonlinear Problems

There are two methods for solving constrained nonlinear optimization problems
with feasibility guarantees: active-set methods and interior-point methods.

5.4.1 Active-Set Methods

Active set methods rely on identifying the subset of inequality constraints
that are binding the solution for a given iteration. These constraints, which
necessarily are linearly independent due to strong duality, are used to construct
a subproblem, whereas the non-binding ones are discarded.

The sequential quadratic programming (SQP) iteratively approximates the
nonlinear optimization problem in Equation (5.1) by subproblems. At each
iterate (x (8) , ' (8) ) it applies Newton’s method to the KKT conditions and solves
the resulting Taylor approximation of the change in the Lagrangian function
with linearized constraints for the search direction d

minimize
d

1
2
dT∇2

x,xΛ(x (8) , ' (8) , / (8) )d + ∇x� (x (8) )
T
d (5.18a)

subject to ∇xg(x (8) )Td + g(x (8) ) = 0 (5.18b)

∇xh(x (8) )Td + h(x (8) ) ≤ 0. (5.18c)

By using the solution d, it defines the new iterate until convergence. If the initial
guess is close enough to the minimum, and the guess on the active constraints
do not change over sequential iterations, the SQP methods act like a Newton
method and show quadratic convergence [NW06, p.533].

SQP methods became the standard method for nonlinear optimization in early
1980s. Motion planning has already benefited from its strength. Ziegler used
an SQP solver [GI83] for motion planning for the Bertha-Benz Memorial Route
[Zie+14a]. Taş used another SQP solver [Kra88; Joh14] for planning multiple
maneuvers for the same problem setting [Taş14].
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5.4.2 Interior-Point Methods

Interior point methods (IPM) are the newest class of nonlinear optimization
methods and are the strongest competitor to SQP methods [Wri05]. These
methods replace inequality constraints with equality constraint by introducing
slack variables l ∈ R<, l ≥ 0 and utilize a logarithmic barrier term. The
resulting optimization problem has the form

minimize
x, l

� (x) − -T log l (5.19a)

subject to g (x) = 0 (5.19b)
h (x) − l = 0. (5.19c)

Because of the barrier term, an optimal solution is obtained as -→ 0, which is
always a feasible, interior point. Therefore, during optimization, the value of
- is continuously decreased until KKT conditions for an equality constrained
problem are met. Most of the IPMs follow the continuation (or homotopy)
approach and solve the primal-dual problem [NW06, p. 570].

The terms IPMs and barrier methods are frequently used interchangeably. The
difference lies in the slack variables IPMs utilize. Whereas barrier methods
require starting from an interior point, slack variables allow IPMs to start from
any point, including infeasible ones.

In large problems IPMs are generally faster than SQP methods. However, slack
variables introduced with constraints increase the computational cost, making
them perform worse than SQP methods in problems with a high number of
constraints. Since they do not apply Taylor’s approximation on KKT conditions
like SQP methods, IPMs converge to a solution with higher accuracy.

The IPM solver Ipopt is known as the most powerful and robust nonlinear
optimization algorithm available [WB06]. It is a primal-dual algorithm and
features a “filter” line search method, a second-order correction method for
the step factor selection, and inertia correction capabilities which enable its
robust reputation. Its filter line search tackles the optimization problem as a
bi-objective optimization problem of reducing the objective value and satisfying
the constraints. Whenever it cannot find a feasible line search step factor, it
enters into restoration mode and minimizes the constraint violation. With its
non-commercial license it has made IPMs widespread.
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5.5 Calculating Derivatives

Newton’smethod requires computation of gradient andHessians at each iteration.
There are four alternative ways to compute these: 1) manually deriving analytic
expressions, 2) numerical differentiation with finite differences, 3) symbolic
differentiation in computer math engine, 4) automatic differentiation, see
Table 5.1.

Derivative Method Accuracy Speed Setup Time Error Safe

Analytical Derivatives +++ ++ - -
Numeric Differentiation - - +++ +++
Symbolic Differentiation +++ + + ++
Automatic Differentiation +++ + ++ ++
Hybrid Auto. Differentiation +++ +++ ++ ++

Table 5.1: Comparison of various differentiation methods based on [Gif+18; Neu+16]. Appropriate
handling of analytical derivative expressions can yield results as fast as hybrid automatic
differentiation.

Analytical derivatives are time-consuming and error-prone. Finite differences
arise as an easy way to automate this process. They evaluate the function
at points in the vicinity of point-of-interest. However, they yield inaccurate
results due to floating point precision errors and are also pretty slow. Symbolic
math engines, by calculating the derivatives as expressions, are not bound to
accuracy problems. Even though literature on automatic differentiation claims
that they suffer from expression swell, modern computer software can simplify
the resulting derivative expressions considerably. Nevertheless, they suffer
from two major problems that limit its applicability for research purposes.
First, derivative expressions are often required to be manually brought into
the system, as the current computer software that benefits from symbolic
math engine cannot be automatically embedded into compiled source code.
Although this does not appear as a problem at first glance, for a continuously
changing software of new variables, parameter lengths, and function definitions,
it becomes increasingly harder to maintain. The second problem is concerning
its flexibility. Similarly for analytic derivatives, conditional statements that
depend on the specific numerical values require elaborate handling.
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Automatic differentiation follows a different strategy for calculating derivatives.
It focuses on numerical evaluation of derivatives rather than their symbolic
forms. Central to automatic differentiation is the chain-rule. The chain-rule
enables decomposing the derivative of the given expression into derivatives of
its elementary components. Hence, a given expression is first decomposed into
elementary operations and elementary functions, and their partial derivatives
are kept in memory. The trace of such elementary operations is represented
by an expression graph. For a given numerical value, the derivative of each
elementary block is calculated and propagated to the next block.

There are two modes of automatic differentiation, depending on the direction
derivatives are propagated: forward mode and reverse mode. In forward mode,
chain-rule to each elementary block in forward direction are applied. This
requires one forward pass with function value and derivative calculation for
every input direction. In reverse mode, on the other hand, derivatives are
calculated from output to input, requiring backwards propagation with the
number of output parameters. However, in order to record the dependencies in
the expression graph, a forward pass with the function value prior to backwards
pass is required. This increases the computational overhead. For a function
5 : R= → R<, reverse mode automatic differentiation performs faster when
= � <. This comes with the cost of increased memory requirements [Bay+18].

Forward mode automatic differentiation can be implemented by using dual
numbers. Dual numbers have the form a+ ¤an , where a, ¤a ∈ R and n is an abstract
quantity such that n2 = 0 and n ≠ 0. Evaluating the dual number on an expression
yields an expression of the form 5 (a + ¤an) = 5 (a) + 5 ′(a) ¤an , from which the
derivative of an input is obtained by setting n = 1. The straightforward way of
implementing reverse mode automatic differentiation is operator overloading,
which essentially overloads existing elementary functions and operators, as
done in forward mode by using dual numbers. The other way is source-code
transformation, but it is becoming increasingly less popular [Bay+18].

Automatic differentiation is an error-safe technique allowing a great flexibility.
It provides derivatives at machine precision and have a small factor of compu-
tational overhead. Available software libraries deploy complex techniques to
improve robustness against corner-cases and performance, such as retaping,
checkpointing, and region-based memory management [Mar19].
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In the programming language C++, the most powerful automatic differentiation
library is CppAD [Bel21]. Although the performance of a library strongly
depends on the problem at hand, it shows the best performance in several
benchmarks. It employs sparse-matrix methods to reduce the storage and
computational costs. Another library in C++ that features sparse-matrix
methods is CasADi [And+19b]. Even though the benchmarks suggest it has
inferior performance, motion planning experiments conducted in this work
show comparable performance with CppAD. The main deficit of CasADi is that
it cannot directly be integrated into existing software and requires a complete
rewrite. In the beginning of this section, practical limitations of using symbolic
derivatives was highlighted. The library CppADCodeGen, which is built on
top of CppAD, performs “hybrid automatic differentiation” [Joã09]. It uses
operator-overloading and produces optimized source-code. The source code can
be statically compiled and linked dynamically, or used in just-in-time fashion.
In this way, it yields the highest performance and is especially useful for motion
planning for rigid body dynamics [Gif+18; Neu+16].

5.6 Motion Planning as an Optimization Problem

The uncertainties a motion planner must tackle, the mathematical formulation
of driving goals and vehicle models, methods to maintain safety, and numerical
optimization based solver algorithms are already presented. This section
combines these models and methods, and presents a novel motion planner.

5.6.1 Decision-Theoretic MPC

Planning in receding horizon can be done efficiently by treating it as a numerical
optimization problem and solving it repeatedly as the environment changes with
time. Planning method of this type is called model predictive control (MPC).

Homotopy-class-free planning, introduced in Section 4.1, postpones the decision
at the time of planning and performs passive information gathering. Herewith,
it suffers from a major problem: postponing decisions may end with more
but conflicting information and can cause ambiguity, eventually resulting in
unsafe motion.

72



5.6 Motion Planning as an Optimization Problem

On the other side, proactive Z-plans, as introduced in Section 4.4, lead to defen-
sive and transparent maneuver plans, which are prone to exploitation by other
vehicles. A remedy is to set the planning algorithm to postpone its full-braking
Z-plan until the very last moment. However, this may result in uncomfortable
motion. Moreover, the criteria on rule-violation in Equation (4.55) is based
on deterministic thresholds, delivering a binary result on the rule-compliance
of the other vehicle. A smooth transition utilizing continuous probabilistic
measure should be preferred for comfort reasons.

The strengths of one approach cover the weaknesses of the other, highlighting
the benefits of the hybrid method decision-theoretic MPC. It allows integrating
various rule-compliance detectionmethods directly into the planning, and allows
smooth transitions between maneuvers. As the motion of the first and the second
maneuver options have fallbacks, any motion that lies between these maneuvers
will have a feasible fallback motion. For this reason, decision-theoretic MPC is
capable of planning proactive, optimal motion while not behaving overcautious.

Phantom Object Treatment

The benefit of using decision-theoretic MPC is easily illustrated in case of dubi-
ous object detections. Despite utilizing multiple sensors with distinct modalities
and temporal filtering [DSW15; Ric+19], the environment information can
still contain ambiguity. This leaves two options: 1) suppressing the existence
probability to zero 2) completing the existence probability to one, resulting in a
false-positive (phantom) detection.

Suppressing the existence can potentially cause an accident, as in the case of
Uber’s accident on March 18, 20182. Therefore, false positive object detections
are more preferred over suppressing, in order to avoid any severe consequences.
However, transmitting this to the motion planner will cause braking in the
absence of an object in reality. Decision-theoretic MPC can gently tackle
such cases.

2 The accident is known as the “death of Elaine Herzberg”, and became the first pedestrian killed
by an autonomous car. She was pushing a bicycle across a road in Arizona, US, when the system
of the car failed to recognize her.
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Figure 5.1: A situation where the existence of the red vehicle is unclear. The left-hand side shows
the corresponding path–time diagram. Conventional motion planners choose between
maneuvers A and B. With decision-theoretic MPC, a neutral maneuver C, the profile of
which depends on the existence probability of the red vehicle, is planned. The hatched
time interval on the path-time diagram will be driven next.

An exemplary scenario where the ego vehicle has a potential phantom detection
is illustrated in Figure 5.1. The ego vehicle will either suppress the existence
probability of the red vehicle and plan maneuver A, or will treat it as a real object
and plan maneuver B, both while holding the fallback maneuver Z, as presented
in Section 4.4.2. A more optimal approach is to plan a maneuver-neutral
motion by weighting the maneuvers A and B with detector probabilities and the
existence probability of the red vehicle, as presented in [TS20]. This formulation
allows the planner to react to the phantom object smoothly, while ensuring
fallback braking maneuver Z against the worst-case evolution of the scenario.
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5.6.2 Model Predictive Contouring Control

The longitudinal position B along a route is essential in analyzing starting
point of traffic rules effectiveness and play a vital role in calculating time-
to-intersection, as clarified in the preceding chapters. Therefore, the motion
planner must repeatedly calculate its progress along its route centerline. This
is not only computationally unfavorable, but can further lead to convergence
and stability problems, especially in problems with conflicting objectives. The
model predictive contouring control (MPCC), which includes progress in its
state variables, can be used as an effective solution for this.

MPCC is originally defined as a path following control algorithm for machine
tools [LMG10], and after demonstrated success in autonomous racing [LDM15],
it has gained popularity for motion planning applications. Several later works
enhanced this approach for planning under uncertainty [Sch+17], or utilized
Gaussian process regression to learn model uncertainties [HKZ19].

MPCC essentially defines cost terms and constraints to minimize lateral and lon-
gitudinal tracking errors. During initialization, it first defines the reference Carte-
sian coordinates and the corresponding yaw angle

(
Gref (B8), Href (B8), kref (B8)

)
for a desired longitudinal position, or progress, B8 . It subsequently calculates
the longitudinal and the lateral error in a coordinate frame that is aligned with
the tangent at the reference coordinates

4lon = −(Gref − G) sin(kref) + (Href − H) cos(kref) (5.20a)

4lat = (Gref − G) cos(kref) + (Href − H) sin(kref), (5.20b)

as depicted in Figure 5.2. In addition to these error terms, it defines error on
the projected speed on the reference contour ¤B. For this purpose, it extends
the state vector s and control vector a with progress and projected speed as
smpcc = [s, B]T and ampcc = [a, ¤B]T, respectively. Using the notation presented
in Equation (4.12) the contouring objective is

�mpcc (x, a) = �val (4lon) + �val (4lat) + �val ( ¤B) (5.21)

and the constraints on these individual error terms are defined by defining and
upper and lower bounds.
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5.6.3 Decision-Theoretic MPCC

The presented decision-theoretic MPC framework performs multiple operations
with respect to a centerline. The MPCC framework contains the progress
variable in its state definition and therefore eases the optimization problem by
providing convergence and stability advantages. Therefore, this work applies
the path formulation of MPCC on decision-theoretic MPC. The objectives and
constraints are now outlined and applied on the MPCC formulation.

B8

x

y

4lat
4lon

[G8 , H8 , k8 ]T

Figure 5.2: Illustration of the MPCC formulation together with uncertainty projection.

The parameter vector of the homotopy-class-free motion planning problem with
two distinct maneuver options is

p = [ ppinned, pC, pCA, pCB]T, (5.22)

the same as Equation (4.18). The individual maneuvers, A and B, are used
together to calculate the total cost. The parameters that constitute these
maneuvers are

p★A =
[
ppinned, pC, pCA

]T
, (5.23a)

p★B =
[
ppinned, pC, pCB

]T
, (5.23b)

respectively.

The presented planning approach relies on ICS and applies safety constraints
only for the immediate horizon that will be set fixed in the next replanning.
The safety constraints consist of circle-to-ellipse workspace constraints and
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constraints on braking distance. As described in Section 4.3.2, the ego vehicle
is approximated with three circles, whereas the agents are modeled with ellipses.
The braking constraints are for ensuring the validity of fallback maneuvers and
thereby the inexistence of inevitable collision states.

The contour defined in the MPCC formulation serves as an ideal reference to
project uncertainties and calculate stop positions, as required by the approach
presented in Section 4.4.1. In order to consider uncertainties of longer planning
horizons, collision soft-constraints are applied on the entire horizon. The
collision risk is calculated by projecting the position of the other agent, which
is modeled as x̂> = x> + '0 where '> ∼(0,�>), onto the reference contour.
The mean values of the projection B> and 3> are obtained by using Equation (2.1)
and the variances by using Equation (3.4). The collision risk is obtained as

�collision (x) = Fcoll

((
1 + erf

(
(B − B>)√
2_lon (�>)

)) (
1 + erf

(
(3 − 3>)√
2_lat (�>)

)))
.

(5.24)
In this way, collision risk is modeled by using univariate distributions. Even
though safety in the immediate horizon is ensured by hard-constraints, such
additional cost terms yield better convergence properties. The constraints
applied on the motion planning are summarized on Table 5.2.

Constraint Equation ppinned pshared pmaneuver,1 pmaneuver,2

Kinematic veh. model (4.8) X X X X
Lon. acceleration (4.9b) X X X X
Lat. acceleration (4.9a) X X X X
Lon. contouring error (5.20a) X X X X
Lat. contouring error (5.20b) X X X X
Circle-ellipse constr. (4.22) X X
Braking chance constr. (4.47) or (4.52) X X
Collision soft-constr. (5.24) X X X X

Table 5.2: Active constraints on the parameters of the decision-theoretic MPCC.

The cost of an individual maneuver option is calculated as

�total (x, a) = �driving + �comfort + �mpcc + �collision, (5.25)
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where the projected speed summand in �mpcc is calculated with the asym-
metric loss �asym ( ¤B) defined in Equation (4.14) instead of �val ( ¤B), as done
in Equation (4.16).

The cost of a planned motion is

�★total = FA �total
(
p★A

)
+ FB �total

(
p★B

)
, (5.26)

where the weight factors FA and FB are linearly dependent to the respective
maneuver probability.

The presented planning scheme assumes for the ego vehicle a constant uncer-
tainty along the planning horizon. Even though this is in contrast to stochastic
MPC frameworks [Wei09], this is a reasonable assumption. The operating
conditions and uncertainties remain unchanged for most of the time, and even
if confidence deteriorates, the vehicle is able to execute a fallback maneuver.

The motion planner, due to the structure of the parameter vector and respective
constraints, does not have band-diagonal gradient or Hessian matrices. There-
fore, this planning scheme especially benefits from sparse-matrix methods. The
motion planner further utilizes the smooth objective change feature described
in Section 4.1.3. While replanning, the initialization is obtained by filling the
missing data at the end of the previous solution with extrapolation.
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Decision Making

Motion planning is essentially a decision making under uncertainty problem
and can be framed as a partially observable Markov decision process (POMDP).
Although POMDPs allow great flexibility in modeling, finding exact solutions
of them is generally computationally intractable. In real-time applications, it is
common to approximate the solution with sampling-based approaches.

This chapter starts with introducing sequential decision making and the fun-
damentals of decision processes. It subsequently presents a sampling-based
tree-search approach to tackle decision problems. This tree-search approach
utilizes multi-armed bandits for action selection, which are suboptimal for mo-
tion planning. Hence, alternative multi-armed bandit algorithms are proposed
next. This chapter then continues with presenting an algorithm that employs
the aforementioned tree-search to solve a POMDP problem. However, this
very established algorithm proves to be inefficient for continuous action and
observation spaces. It further cannot consider belief-dependent information
rewards. Thus, a new algorithm to overcome these deficits is introduced.
The chapter finally presents the modeling to frame the motion planning for
autonomous driving task as a POMDP.

6.1 Sequential Decision Making

Decision processes model an agent’s decisions for changes in its environment
with the goal of optimizing its utility D. Whereas in model predictive control
the objective is typically to minimize the costs over the horizon, in sequential
decision making rewards A over a sequence of actions are maximized. In
the sense of their objective, they can be treated as identical. The strength of
sequential decisionmaking and its main difference with model predictive control
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comes from the flexibility of the models that can be integrated. While numerical
optimization based planning requires objective and constraint functions to be
smooth and differentiable, it allows for complex, arbitrary models. Further, in
contrast to numerical optimization based methods, utility maximization can be
done over nested models without any additional effort.

6.1.1 Markov Decision Processes

Decision making in stochastic environments with fully observable states can
be framed as a Markov decision process (MDP) under the assumption that
state transitions areMarkovian, i.e. the next state depends only on the current
state and action, and not on their priors. An MDP is characterized by the tuple
(S,A, ), ', W), where S is the state space, A is the action space, ) (s′ | s, a) is
the transition model which defines the distribution of the successor state s′ after
taking an action a from state s, '(s, a) is the reward model that represents
the reward A obtained while executing an action a from state s, and W ∈ [0, 1)
is the discount factor for future rewards ensuring a finite cumulative reward,
as long as the rewards are finite. In general, higher discounts lead to shorter
planning horizons resulting in myopic behavior. The probabilistic graphical
model of an MDP is given in Figure 6.1a.

The action selected at time C is determined by the policy c. Because of the
Markov assumption, the policy of an MDP is a function of the current state

a = c (C) (s). (6.1)

In infinite horizon MDPs, in which the transitions and rewards are stationary,
policies can be modeled stationary as well [Koc15, p. 79].

Executing the policy c in state s returns an expected cumulative reward under
the policy c. This is called the state-value function or value function and for
infinite horizon problems it is defined as

*
c (s) B E

[ ∞∑
C=0

WC'

(
s (C) , a = c(s (C) )

) ���� s (0) = s

]
(6.2)

= ' (s, c(s)) + W
∑
s′
) (s′ | s, c(s))* c (s′) . (6.3)
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In state s the expected cumulative reward after taking an action a and following
the policy c afterwards is called action-value function or Q-value function and
for infinite horizons problems it is defined as

& c (s, a) B E
[
' (s, a) +

∞∑
C=1

WC'

(
s (C) , a (C) = c(s (C) )

)]
(6.4)

= '(s, a) + W
∑
s′
) (s′ | s, a)* c (s′). (6.5)

Different policies can be compared by their expected utility. A rational agent
will always choose the optimal policy

c∗ = arg max
c
*
c (s) (6.6)

yielding the highest expected utility. One way to obtain the optimal policy is to
use the value iteration algorithm, which recursively applies the Bellman update

*:+1 (s) B max
a

(
'(s, a) + W

∑
s′
) (s′ | s, a)*: (s′)

)
, (6.7)

to improve the value function. The Bellman update can be operationalized
in form of � : R |s | ↦→ R |s | . It can be shown that such an operator is a W-
contraction for 0 ≤ W < 1 with respect to ℓ∞-norm, guaranteeing that successive
operations of � will converge to a unique point, which is the optimal utility*∗
for Equation (6.7). Once*∗ is known, c∗ can be extracted by using

c∗ (s) = arg max
a

(
'(s, a) + W

∑
s′
) (s′ | s, a)*∗ (s′)

)
. (6.8)

The existence of*∗ for a policy c implies the existence of &∗. Therefore,

*
∗ (s) = max

a
&∗ (s, a). (6.9)

and
c∗ (s) = arg max

a
&∗ (s, a). (6.10)

In this way, exact solutions of decision problems in finite spaces can be found.
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6.1.2 Partially Observable Markov Decision Processes

In many sequential decision-making problems the system state is not observable
to the agent. Such decision problems can be framed as a POMDP, which is
essentially an MDP with a model of possible observations, see Figure 6.1b.
Therefore, a POMDP extends an MDP with an observation space O and an
observation model / (o (C) | s (C) , a (C−1) ) that gives the probability of observing
o after executing the action a and arriving at state s. Like transition models
and rewards in MDPs, observation models are modeled as time-invariant.

A POMDP infers the current state from the history of observations and actions
h (C) =

(
o (0:C) , a (0:C−1) ) . Therefore, the decisions of a POMDP do not depend

only on the current observation, but on the whole history. However, the full
history trace of observations and actions can become very long, eventually
making its maintenance impractical. Instead, the history can be summarized by
belief b over the state space S [Åst65; PGT06]. Starting from an initial belief
b (0) , the belief of being in state s is obtained by the posterior distribution

b(s) = %(s | h, b (0) ). (6.11)

Because of the equivalence of belief and history, a policy in a POMDP maps
current belief to an action

a = c(b). (6.12)

A POMDP can be viewed as an MDP that operates on belief-states, the so-called
belief MDP, see Figure 6.1c. For this, belief dependent reward and transition
models are required. Such reward function can be defined as

d(b, a) =
∑
s

'(s, a)b(s) (6.13)

which essentially is the expected cumulative reward for all possible belief-states.
The state transition of a belief-state MDP %(b′ | b, a) can be approximated by
taking advantage of the problem structure, as will be shown in the next section.
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The value function and the action-value functions for the belief MDP become

*
c (b) B E

[ ∞∑
C=0

WC d

(
b (C) , a (C) = c(b (C) )

) ���� b (0) = b

]
(6.14)

and

& c (b, a) B E
[
d (b, a) +

∞∑
C=1

WC d

(
b (C) , a (C) = c(b (C) )

)]
(6.15)

= d (b, a) + W
∑
b′
% (b′ | b, a)* c (b′) (6.16)

respectively. It can be shown that c∗ (b) for this belief MDP is also the optimal
policy of the underlying POMDP [RN16, p. 672].

Reformulating a POMDP as a belief MDP does not necessarily simplify the
problem. Since a belief is a probability distribution, even if the state space is
finite containing |S| states, the corresponding belief is defined over ( |S| − 1)-
dimensional continuous belief space B. This phenomenon is called the curse
of dimensionality. A further problem is the curse of history that describes
the exponential growth in the number of distinct possible action-observation
histories along the planning horizon. Additional complexity arises from the
calculation of belief dependent Equation (6.14) and Equation (6.15). Therefore,
compared to an MDP with finite number of states, a POMDP resembles a much
harder problem to solve [PT87].
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(a) MDP diagram.
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(b) POMDP diagram.
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(c) Belief MDP diagram.

Figure 6.1: Comparison of probabilistic graphical models of an MDP, a POMDP, and a belief MDP.
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6.2 Sequential State Estimation

A belief MDP must perform belief updates upon new actions and observations.
Given observation and transition models, the next belief can be calculated for
discrete state, observation and action spaces as

b′(s′) = %(s′ | b, a, o) = %(s (C+1) | b (C) , a (C) , o (C+1) )

=
%(o | s′, b, a)%(s′ | b, a)

%(o | b, a)

=
%(o | s′, b, a)∑s %(s′ | s, b, a)%(s | b, a)

%(o | b, a)

=
%(o | s′, a)∑s %(s′ | s, a)%(s)

%(o | b, a)
= [ / (o | s′, a)

∑
s

) (s′ | s, a)b(s), (6.17)

where the normalization factor [ is

[−1 = %(o | b, a)

=
∑
s′
%(o | s′, b, a)%(s′ | b, a)

=
∑
s′
/ (o | s′, a)

∑
s

) (s′ | s, a)b(s). (6.18)

Equation (6.17) corresponds to the general Bayes filter algorithm for finite state
spaces. Due to multiplication and sum, the equation can only be calculated
under strong assumptions on the shape of underlying distributions. Chapter 3
has demonstrated the advantages of using non-parametric approaches for
uncertainty modeling.

The elements of the problem structure used during belief update in a belief
MDP is illustrated in light gray in Figure 6.1c.
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6.2.1 Particle Filter

Particle filters (PF) approximate the belief with a set of weighted state samples
{(s8 , F8)}=8=1 [Aru+02; DGA00]. The particle approximation of the current
belief given the information prior to this time is

b(s) = %(s | h, b (0) ) ≈ b̂(s) =
=∑
8=1

F8X(s − s8). (6.19)

The predicted density of the state after taking the action a can be obtained by
using the transition model

%(s′ | b, a) ≈
=∑
8=1

F8) (s′ | s8 , a). (6.20)

The predicted density can be approximated by a set of particles s′
8
sampled

from the density ) (s′ | s8 , a)

%(s′ | b, a) ≈
=∑
8=1

F8X(s′ − s′8). (6.21)

After receiving an observation o, the approximated density can be updated with
the new measurement

%(s′ | b, a, o) ≈ [
=∑
8=1

F8/ (o | s′, a)) (s′ | s8 , a), (6.22)

where [ is the normalization factor. This posterior distribution weights F8
with the observation likelihood F̃′

8
= F8/ (o | s′8 , a), and afterwards normalizes

them F′
8
= F̃′

8
/∑= F̃

′
= to account for the normalization factor [, which was

also presented in Equation (6.17)). The particle approximation of the posterior
density becomes

b′(s′) = %(s′ | b, a, o) ≈ b̂
′(s′) =

=∑
8=1

F′8X(s′ − s′8). (6.23)
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In this way, the importance sampling method presented in Section 3.2.1 is
applied to sequential state estimation problem.

This sampling procedure often suffers from the particle degeneracy problem,
which describes the case where only a small portion of the weights have a
non-negligible weight, as introduced in Section 3.2.1. A common solution is
to track the effective sample size, which is a function of the variance of the
weights and the number of particles, and resample new particles with reset
particle weights. In some cases, resampling can result in repeated selection
of a few particles, i.e. particle deprivation or particle impoverishment. This
can be avoided by adding noise to the particle set to reduce such an overfitting
[TBF05, p. 113]. The resulting algorithm is called the generic PF or sequential
importance resampling (SIR) PF and is outlined in Algorithm 6.1.

Algorithm 6.1: Sequential Importance Resampling Particle Filter
Data: b̂ = {s8 , F8 }=8=1, a, o

Result: b̂′ = {s′
8
, F′

8
}=
8=1

1 b′ ← ∅
2 for 8 = 1, . . . , = do
3 s′

8
∼ ) (s′ | s8 , a) ⊲ sample from predicted density

4 F̃′
8
= F8/ (o | s′8 , a) ⊲ measurement update

5 end
6 F′

8
= F̃′

8
/∑= F̃

′
= ⊲ normalize all weights

7 if resampling necessary then
8 Resample({s′

8
, F′

8
}=
8=1) ⊲ substitute particles & reset weights

9 end
10 if noise necessary then
11 Noise({s′

8
, F′

8
}=
8=1) ⊲ replace some particles by random particles

12 end
13 b′ ← {s′

8
, F′

8
}

6.2.2 Unweighted Particle Filter

The generic PF requires querying transition probability and observation likeli-
hood at specific points. In large problems the transition and observation can be
modeled with generative models G. These operate in a black box fashion and
do not provide the density of transition and observation models, as required in
the generic particle filter. The unweighted PF estimates belief by performing
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rejection sampling and therefore requires only samples from these black box
models. Its operation is described in Algorithm 6.2. Like generic PF, it benefits
from resampling and noising strategies [SV10].

Algorithm 6.2: Particle Filter with Rejection
1 b′ ← ∅
2 for 8 = 1, . . . , |b | do
3 s ← Random(b) ⊲ pick random state
4 repeat
5 (s′, o′) ∼ G(s, a) ⊲ sample with generative model
6 until o′ = o ⊲ sample matches actual observation
7 b′ ← b′ + s′
8 end

6.3 Solving Markov Decision Processes with
State Uncertainty in Real-Time

Solving a POMDP requires optimizing over a sequence of actions and obser-
vations to consider a very large number of possible outcomes. This comes at
the cost of high computational complexity, as clarified in Section 6.1.2. The
value iteration algorithm for POMDPs computes the value over the complete
belief space, independent of how likely a belief-state is reached. Some solvers
exploit the fact that the optimal value function for a finite horizon POMDP is
piecewise linear and convex, and approximate it with vectors [SS73]. Other
solvers define bounds on value function [Hau97], evaluate the value function at
certain points [PGT03], or employ heuristics to choose the beliefs to update
[SS04]. In large problems all of these approaches are ineffective and result in
suboptimal policies. An efficient approach is to compute policy for the current
belief, and upon any change in the belief, to replan it.
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6.3.1 Monte Carlo Tree Search

Monte Carlo tree search (MCTS), used for solving MDPs, incrementally builds
a search tree of states s representing nodes, and actions a representing edges
until an end criterion is met [Bro+12]. Every node contains a &-value &(s, a)
that is estimated by the mean return of all successor states s′ in which action
a was selected, and a visitation count # (s, a) for each action, and an overall
count # (s) = ∑

a (s, a).

The MCTS algorithm proceeds in four steps. In simulation phase it starts
from the initial node and selects actions according to the tree policy. The
simulation procedure continues until it reaches a node that is not in the tree
yet. The tree is expanded by that node and a rollout is performed to estimate
the value of that node. The policy used in the rollout allows for incorporating
domain-knowledge into MCTS and thereby can result in faster convergence.
In the final step, backup, the parent nodes are updated from bottom-up with
the gathered information. Recursive application of these four steps of MCTS
improves &-value estimates iteratively, and as soon as the end criterion is met,
the action yielding the highest &-value is selected. Sequential decision-making
problems can in this way be solved in anytime-fashion.

In MCTS every action corresponds to a reward distribution that is unknown
while selecting actions. The vanilla MCTS algorithm samples actions from
uniform distribution resulting in flat Monte Carlo trees. Such a sampling is
highly suboptimal and results in slow convergence. A much more efficient
way is to utilize information from previous simulations. But in this case, the
action that is believed to be optimal might be overestimated due to its relative
high number of samples. Choosing suboptimal actions can potentially reveal
higher rewards. This resembles the exploration vs. exploitation dilemma. To
tackle this, Kocsis et al. formulated action selection at nodes as a multi-armed
bandit (MAB) problem and employed the Upper Confidence Bound (UCB)
MAB algorithm to refine action selection. They renamed their algorithm as
Upper Confidence Bound Applied to Trees (UCT) [KS06]. In this way, search
for the optimal action is guided to regions where higher rewards are likely.
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6.3.2 Multi-Armed Bandits

Bandit problems are a class of a sequential decision problem, where the
algorithm picks one arm a from some set of arms |A| = : in every round
C ∈ {1, . . . , )} with the goal of maximizing the rewards it collects over ) rounds
[Sli19]. The reward of each arm is a distribution that is initially unknown
to the algorithm. These reward distributions are modeled independent and
identically distributed, and stationary. Since the distributions are unknown,
a maximization of reward requires trading-off between the exploration of
unknown arms and exploitation of good arms. There are manyMAB algorithms
to tackle this problem.

Arms of MABs correspond to actions, and rewards to &-values in deci-
sion processes. In MCTS, a new bandit round is executed upon visiting a
state, therefore C = # (s). Likewise, # (s, a) denotes the number of time an
arm is played. The following subsections present bandit equations for the
MCTS-context.

Upper Confidence Bound

The most widely used MAB in decision making is the Upper Confidence Bound
(UCB) algorithm [ACF02]. The algorithm calculates the reward of an arm by
augmenting its average reward by an exploration bonus that is highest for rarely
tried actions

&⊕UCB (s, a) = &(s, a) + 2

√
2 log # (s)
# (s, a) . (6.24)

The first term is the current Q-value for an arm a and therefore, resembles
exploitation. The second term is related to the upper confidence interval of the
average reward serves for exploration. The parameter 2 ∈ R+ in the second
term is the exploration constant that trades-off exploitation and exploration.
The operation of UCB MAB is presented in Algorithm 6.3.

The UCB algorithm owes its widespread application to the thorough theoretical
analysis on its regret, i.e. the cumulative difference between optimal and actual
reward. The expected regret of UCB is logarithmic in the number of bandit
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Algorithm 6.3: Upper Confidence Bound (UCB)
1 function UCB(s):
2 if # (s) ≤ : then
3 return Random( {a : # (s, a) = 0}) ⊲ try all arms at least once
4 else
5 return arg max

a∈A
&⊕UCB (s, a) ⊲ choose the most promising arm

6 end

rounds. UCB can be seen as a subclass of KL-UCB algorithm, KL short for
Kullback-Leibler, that is adapted for Gaussian distributed rewards [GC11].

Upper Confidence Bound with Variances

The UCB algorithm assumes the variance of the rewards of arms as equal and
pre-definable, which might be invalid in real applications. Replacing f2 (a)
with empirical variance f̂2

#
(a) of the different arms in the KL-UCB algorithm

leads to poor results. The UCB-V algorithm properly utilizes empirical variance
during UCB action selection [AMS07]. The arm to be selected is given as

&⊕UCBV (s, a) = &(s, a) +

√
2f̂2

#
(a) log # (s)
# (s, a) + 32 log # (s)

# (s, a) . (6.25)

With growing # (s, a), the influence of the exploration constant, mod-
eled with the third term, diminishes and the estimated variances are more
strongly considered.

Pareto Optimal Sampling for Lipschitz Bandits

The UCB bandit algorithm does not define any relation between the rewards of
the arms. Therefore, the reward of an arm is independent of the reward of another.
This is in contrast to continuous dynamical systems, where similar actions return
similar outcomes. The &-value function may, however, have discontinuities
depending on the selected reward function. In motion planning, collisions, for
example, cause jumps for some action values. However, as presented before,
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motion planning is bound to uncertainties. Despite discontinuous reward
definition, present uncertainties result in more scattered&-value profiles around
the discontinuity, as inspected in Chapter 7. This scatter allows for Lipschitz
continuity assumption on the &-value profile. If a bandit algorithm exploits
the Lipschitz continuity, much faster convergence to the optimal solution
can be obtained.

The Pareto Optimal Sampling for Lipschitz Bandits (POSLB) algorithm assumes
that the expected rewards is a Lipschitz continuous function over the discrete
bandit arms. By utilizing Lipschitz continuity, it derives a regret lower bound
for Lipschitz continuous rewards. This allows to guide the bandit to more
rewarding arms and to improve sampling efficiency [Mag18, p. 21].

The expected reward function follows

|&(s, a) −&(s, a′) | ≤ ℒ |a − a′ |

for all pairs of arms (a, a′) and a Lipschitz constant ℒ that is known in
beforehand. POSLB in its original work is derived for arbitrary reward
distributions. Like UCB, rewards can be modeled with Gaussian distri-
butions of equal variance. Algorithm 6.4 presents POSLB for Gaussian
distributed rewards.

In the first : rounds POSLB chooses all arms once. After all arms have
been chosen once, it determines the leader arm for that round according to
Equation (6.24). Subsequently, it looks into different arms and picks the arm
for which the difference between the actual estimated reward &(s, a′) and
the expected reward _# (a, a′) weighted by their visit count is the smallest.
The vector _# can be interpreted as the most confusing reward vector that
would make a suboptimal arm the optimal one [Mag18, p. 17]. Therefore, it
explores suboptimal arms based on howwell they satisfy the Lipschitz constraint.
The POSLB algorithm integrates Lipschitz continuity assumption with the
parameter ℒ and in lieu of an increased computational complexity of $ ( |A|2)
compared to UCB.
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Algorithm 6.4: POSLB for Gaussian distributed rewards
1 function _# (a, a′):
2 return max

(
&⊕UCB

(
s, a∗

#

)
−ℒ |a − a′ |, & (s, a′)

)
3 function �# (a, a

∗
#
):

4 if a ≠ a∗
#

then

5 return
∑

a′∈A # (s, a′)
(
& (s, a′) − _# (a, a′)

)2
(2f2) (−1)

6 else

7 return # (s, a)
(
& (s, a) −&⊕UCB

(
s, a∗

#

) )2
(2f2) (−1)

8 end

9 function POSLB(s):
10 if # (s) ≤ : then
11 return Random( {a : # (s, a) = 0}) ⊲ try all arms at least once
12 else
13 a∗

#
← arg max

a∈A
&⊕UCB (s, a) ⊲ choose the leader

14 return arg max
a∈A

(
log # (s) − �# (a, a∗# ))

)
⊲ explore suboptimal arm

15 end

Pareto Optimal Sampling for Lipschitz Bandits with Variances

POSLB does not employ estimated variances in action selection. The same
approach while deriving UCB-V from KL-UCB can be followed to integrate
estimated variances. Equating KL-UCB and UCB-V and solving for the
variance parameter leads to

f2
# (a) = f2 =

# (s, a)
2 log # (s)

©«
√

2f̂2
#
(a) log # (s)
# (s, a) + 32 log # (s)

# (s, a)
ª®¬

2

.

This can be integrated into to the POSLB algorithm and the resulting bandit
is called the POSLB-V algorithm [THL21]. In contrast to UCB, UCB-V, and
POSLB, the POSLB-V does not have any regret guarantees and serves as a
naïve way to integrate estimated variances.
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6.3.3 Partially Observable Monte Carlo Planning

The MCTS algorithm can only solve problems with fully observable states. To
account for partial observability, the search tree can be branched in both actions
and observations, i.e. history. The resulting structure consists of belief nodes
instead of state nodes, and therefore is called a belief tree. Because a belief
node branches in actions and observations, it has a two-layered inner structure:
action node and observation node. The inner structure consists of a value at
the top of the node and &-values for every action. The &-values are connected
to the next child belief nodes with observations.

The Partially Observable Monte Carlo Planning (POMCP) algorithm constructs
a search tree of actions and observations [SV10]. It samples state particles
from the current belief and estimates the value of belief nodes in the tree with
Monte Carlo simulation. Silver et al. show that this approach converges to the
optimal value function [SV10].

Simulating states instead of history brings the utmost advantage of breaking the
curse of dimensionality and of history. In this way, POMCP can operate with a
generative model G that serves as the transition model ) , the observation model
/ , and the reward model ', with which it samples successor states, observations,
and rewards. Hence, it does not require explicit probability distributions for )
and / . This allows the POMCP to solve large problems, i.e. 1056 states and 4
actions and 1024 observations, efficiently [SV10].

The operation of POMCP follows the four steps of MCTS and is listed in
Algorithm 6.5. The algorithm starts with initiating an empty history h and
iteratively calls the simulate function after sampling a state s from the current
belief 1. In simulate function the particle propagates through the belief tree.
Every belief node stores its value + (h) and its visit count # (h) as well as
the &-values of its actions a together with the count of how often individual
actions are selected # (h, a). If a value node is not visited yet, it is initialized
by assigning #init and +init on Line 27 and Line 28, respectively. Visit counts
and &-values for every available action are initialized likewise. Subsequently,
the value of the node is estimated by calling the rollout function before the
simulation terminates. If the value node has already been visited before, the
algorithm selects an action a by utilizing a multi-armed bandit. This is denoted
with the bandit function in Line 34. In the next line, the algorithm employs a
black box generative model G(s, a) to sample the next state s′, the observation
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o, and the reward A. This step corresponds to sampling s′ ∼ ) (s, a) and
calculating A ← '(s, a), and then sampling o ∼ / (s′). If the new state s′

is the terminal state, i.e. the goal state or a collision state, the current reward
is assigned as &-value estimate &̂ and the simulation terminates. Otherwise,
the new action and observation are added to history and simulate is called
recursively. After simulation has terminated, the backup step of MCTS is
performed. The values and &-values of all nodes starting from leaf nodes and
continuing to the root of the tree are updated. This backpropagation is done by
adding the discounted value of the child node to the immediate reward, as shown
in Line 41. The resulting &-value estimate &̂ is then averaged with the prior
&-values to calculate the current value & inside the function updateQ. This
function uses incremental statistics to incorporate the difference of a current
&-value estimate from the average, Δ. Updating with incremental statistics
allows for memory-friendly averaging. Finally, the function rollout can be
seen as a counterpart of simulation utilizing a lightweight and optimistic
action selection strategy to serve as value heuristics. In contrast to simulation,
it does not seed any new nodes. The rollout terminates after a tree depth of
3max is reached. Once the solve procedure ends, the agent picks the action
with the highest &-value at the root, receives a real observation and updates its
belief with an unweighted particle filter. The new belief serves as the new root
of the tree and the rest of the tree is pruned.

In backpropagation, as the number of visits of an action node increases, the
accuracy of the &-value estimate increases as well. Therefore, more recent
value estimates should be considered with increasing weight, compared with
earlier simulations. The learning rate U(=) ∈ [0, 1] which has the generalized
form U(=) = 1/=l allows to control this. The original POMCP chooses the
learning rate exponent l as 1, and therefore weights all estimates equally. A
study shows that the optimal learning rate is achieved for l ≈ 0.77 [EM03].
This can be integrated into the POMCP algorithm by revising Line 22 as
&(h, a) ← &(h, a) + U(=)Δ.

Some bandits proposed in the Section 6.3.2 employ estimated variances.
Maintenance of estimated variance estimates can be performed in an incremental
fashion as well [Fin09]. For this the updateQ function must be extended by
an additional line f2 (h, a) ←

(
1 − U(=)

) (
f2 (h, a) + U(=)Δ2) , where U is the

aforementioned learning rate.
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Algorithm 6.5: POMCP

1 function solve(b):
2 h ← ∅
3 repeat
4 s ∼ b
5 simulate(h, s, 3max)

6 until timeout
7 a∗ ← arg max

a∈A
& (h, a)

8 return a∗

9 function rollout(h, s, 3):
10 a ← crollout (h);
11 (s′, o, A ) ∼ G(s, a)
12 if s′ is terminal or 3 = 0 then
13 return A
14 else
15 h′ ← h ∪ {a, o }
16 return A + W ·

rollout(h′, s′, 3 − 1)

17 function updateQ(h, a, &̂):
18 # (h) ← # (h) + 1
19 # (h, a) ← # (h, a) + 1
20 =← # (h, a)
21 Δ← &̂ −& (h, a)
22 & (h, a) ← & (h, a) + Δ/=

23 function updateV(h):
24 + (h) ← max& (h, a)

25 function simulate(h, s, 3):
26 if h ∉ Tree then
27 # (h) ← #init
28 + (h) ← +init
29 for a ∈ A do
30 # (h, a) ← #init
31 & (h, a) ← &init

32 &̂ ← rollout(s, 3)
33 else
34 a ← bandit(h, A)
35 (s′, o, A ) ∼ G(s, a)
36 if s′ is terminal then
37 &̂ ← A

38 else
39 h′ ← h ∪ {a, o }
40 simulate(h′, s′, 3 − 1)
41 &̂ ← A + W · childV(h, a)

42 updateQ(h, a, &̂)
43 updateV(h)

6.3.4 POMDP Algorithms with Continuous Spaces

The POMCP algorithm can solve problems with discrete actions, observations,
and states. In robotic applications, the agent’s actions can reasonably be
discretized, whereas discrete states or observations pose stronger restrictions,
as these are continuous by nature. Since the probability of sampling the same
real number from a continuous distribution is zero, POMCP cannot operate
with continuous states and observations. Therefore, their discretization is
indispensable.

A naïve approach to tackle this problem is to use clustering. A more efficient
approach is to use progressive widening (PW) [Cou+11]. PW limits the number
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of child nodes of a node in the # th visit to :#U, where : > 0 and U ∈ (0, 1)
are hyperparameters. This approach has originally been applied to the action
spaces and was found to be highly effective. The pseudocode of the algorithm
with an incorporated bandit is presented in Algorithm 6.6. � (·) denotes the
children of a node, and the hyperparameters of PW are augmented with the
subscript a to indicate that they are the parameters of action variables.

Algorithm 6.6: Action Progressive Widening (PW)

1 function actionProgWiden(h):
2 if |� (h) | ≤ :a# (h)Ua then
3 a ← nextAction(h) ⊲ generate new action
4 � (h) ← � (h) ∪ {a} ⊲ expand action nodes
5 return bandit(h, � (h)) ⊲ pick action from the available set

Sunberg et al. proposed to employ PW for solving POMDPs on continuous
spaces and presented two algorithms [SK18]. In one of their algorithms, they
employ action PW and observation PW on POMCP and call the resulting
algorithm POMCPOW. POMCPOW samples single particles and uses weighted
particle collections to approximate the belief at every node. In every simulate
call, it adds a new particle weighted with its observation probability to the node.
In recursive simulate calls, the sampled new state particles from the parent
belief enrich the particle approximation, resulting in a more refined belief
as the number of weighted particles increases. However, since only a single
new particle is added to the node, the change in the belief between successive
calls is typically not significant. The second algorithm samples < weighted
state particles in the tree instead of single particles. In this way it simulates
whole beliefs in the tree and performs weighted particle filter updates together
with simulated observations to approximate the belief at successor nodes. The
algorithm is called Particle Filter Tree Double PW (PFT-DPW).

The algorithms are fundamentally different from each other, as the POMCPOW
simulates state trajectories and the PFT-DPW simulates approximated belief
trajectories. Simulating belief trajectories allows defining rewards that are a
function of the belief. Furthermore, whereas POMCPOW simulates a particle
until a new observation causes a new child node to be added into the tree,
PFT-DPW adds a new node for every simulated particle set. Nodes preceding
the new node are not enriched with new particle set, and they reuse the previous
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particles to perform the particle filter update. As a new node is added for every
< particle, the tree of PFT-DPW is roughly<-times shallower than POMCPOW,
causing a shorter-sighted planning for fixed computation time.

POMCPOW and PFT-DPW require a function to query the likelihood of given
observations. The requirement on such an explicit model restricts the use
of generative models, which counts as one of the novel features of POMCP.
However, in robotic applications it is possible to derive an approximate model
that works reasonably well. Therefore, these algorithms remain effective in
practice [SK18].

6.3.5 Active Information Gathering with Reward Shaping

Many problems, such as motion planning, benefit from executing actions
to disambiguate the current situation, as making optimal decisions heavily
depends on the information available, see Section 2.2.3. POMDPs, by implicitly
gathering information, arise as an effective approach for these problems.
However, especially in large problems or in problems with sparse rewards, a
sampling-based POMDP solver may require to explore many suboptimal actions
until finding the promising ones. One way to accelerate this is to explicitly
guide the planner to large future rewards. This can be done by augmenting the
original reward with a term that reflects the expected information gain.

Augmenting the reward function with an additional term can result in a different
policy than intended. Policy invariant reward shaping can be realized by
Potential-Based Reward Shaping [NHR99; Eck+16]. This method shapes the
reward by augmenting it with the potential difference in successive beliefs to
guide the agent for long term rewards. A priori information about the problem
at hand can be encoded by a proper choice of the potential function.

Reward shaping is often criticized in the machine learning community due
to its modification based on domain-specific knowledge. However, collecting
information and thus reducing uncertainty is domain independent, and is often
a part of the optimal policy. It is straightforward to quantify information by
entropy, as introduced in Section 3.3. The negative of entropy fulfills the
requirements of a potential in reward shaping and is therefore a general heuristic
for information gathering tasks [Eck+16].
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The information gain over successive time steps can be quantified by discounted
information gain IW = � (b) − W� (b′). Hence, the shaped reward function
over successive beliefs can be given as

d(b, a, b′) =
∑
s

'(s, a)b(s) + FIIW (b, b′) (6.26)

where FI serves as a weighting factor to trade off mean state-based rewards
against information gathering. A problem with such a reward formulation
corresponds to a dPOMDP [Ara+10].

6.3.6 Information Particle Filter Tree

dPOMDPs are characterized by their belief-based rewards. Since the reward
calculation depends on belief, these problems cannot be solved straightforwardly.
Available algorithms require discrete spaces with piecewise linear and convex
reward functions and run offline [Ara+10]. Fischer and Taş adapt the PFT-DPW
algorithm and develop a novel online solver called Information Particle Filter
Tree (IPFT), that can efficiently deal with arbitrary belief-based rewards [FT20].

Like PFT, IPFT approximates the belief by a weighted particle set b ≈ b̂< =
{s8 , F8}<8=1 of fixed sized < and simulates belief trajectories in the search tree.
Apart from this similarity, it differs from PFT in several ways. First, it integrates
information measures in the reward calculation and hence guides the search to
more informative beliefs. While entropy evaluation can be done easily at discrete
points s8 , a continuous belief estimation is required to operate on continuous
spaces. Kernel density estimation (KDE), as presented in Section 3.2.2, arises
as a solution for this. Given KDE-based belief approximation b̂KDE, differential
entropy can be estimated as

� (b) ≈ �̂ ( b̂KDE) = −
<∑
8=1

F8 log b̂KDE (s8). (6.27)

It should be underlined that in higher dimensions a KDE-based entropy estima-
tion may require many particles and the estimation can become computationally
expensive, as its complexity is $ (<23), where 3 is the dimension of the
continuous state space [FT20].
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A second difference of IPFT to PFT is in its operation. IPFT operates more
like POMCPOW than PFT-DPW. Whereas PFT-DPW stores sampled particles
in the nodes and reuses them when the node is revisited, IPFT samples new
particles in every visit. This ensures a valid Monte Carlo estimation and leads
to better representation of the belief. The belief update requires sampling an
observation from the existing observation child, as reusing a single sampled
observation repeatedly would result in an invalid approximation of the belief.
Compared with POMCPOW, IPFT suffers from a shallow structure resulting
from sampling particle sets instead of single particles, alike PFT. The tree depth
must cautiously be observed in applications.

The operation of the IPFT is given in Algorithm 6.7. The outer structure is
omitted as it is identical to that of POMCP, which is presented in Algorithm 6.5.
The only change in the outer structure is a single line in the solve procedure:
it samples a small particle set of < particles from the bigger particle set
representing the current belief b̂< ∼ b and passes this to the simulation
function. In simulation, it first checks if the maximum depth is reached,
and – if not – proceeds with action selection according to actionProgWiden,
as already shown in Algorithm 6.6. Afterwards, it samples a new state s from
the particle approximation of the belief b. By using the transition model it
samples the successor state s′ ∼ ) (· | s, a) for the chosen action and then
samples the corresponding observation o ∼ / (· | s′, a). A proper belief update,
and hence information gathering, can only be integrated into the solver by means
of repeatedly sampled new observation, as indicated in the preceding paragraph.
The algorithm proceeds with calculating the posterior belief using a particle
filter update in Line 7. Subsequently, it calculates the belief-dependent reward
and updates the history with the new action and the sampled observation. Next,
it checks the observation widening criteria in Line 10, similar to POMCPOW. It
either adds the sampled observation as a child node to the tree and increments
the observation counter " in case of discretized observations before calling the
rollout function, or it picks a child observation from the previously sampled
observations with the probability to the counter " to traverse the tree. In
case of a continuous observation space, observations are picked with uniform
distribution. The search continues in the next tree depth by calling the function
simulate. Once the simulation terminates, the node statistics are updated
with the backpropagated new information. The operation of IPFT is illustrated
in Figure 6.2.
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Algorithm 6.7: Information Particle Filter Tree

1 function simulate(h, b, 3):
2 if 3 = 0 then
3 & = 0
4 else
5 a ← actionProgWiden(h)
6 o ← sample s from b, generate o from (s, a)
7 b′ ← GPF(<) (b, a, o) ⊲ belief update
8 A ← d(b, a, b′)
9 h′ ← h ∪ {a, o }
10 if |� (h, a) | ≤ :o# (h, a)Uo then
11 � (h, a) ← � (h, a) ∪ {o } ⊲ observ. widening
12 " (h, a, o) ← " (h, a, o) + 1
13 &̂ ← A + W · rollout(h′, b′, 3 − 1)
14 else
15 o★ ← o★ ∈ � (h, a) w.p. " (h,a,o★)∑

o† " (h,a,o
† ) ⊲ pick child observ.

16 &̂ ← A + W · simulate(h′, b′, 3 − 1)

17 updateQ(h, a, &̂)
18 updateV(h)

IPFT can work with generative models to sample states and observations, and
therefore, does not require specifying transition and observation models for
sampling. However, for importance calculation in weighted particle filtering
it requires an explicit model of the observation likelihood. For = runs with
particle set of size <, it has a computational complexity of $ (=3<) where 3 is
the depth of the tree.
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Figure 6.2: Operation steps of IPFT. In the solve() procedure the algorithm iteratively samples a weighted particle set b̂< and calls the
simulate() procedure until timeout. Subsequently, it executes the steps numbered from 2) to 5), where the latter is optional and by
trimming the search tree from the red wavy line, it prevents building a search tree from scratch.
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6.4 Motion Planning with the POMDP
Framework

Preceding sections introduced models required by a POMDP, and presented
online solution algorithms for solving POMDPs. This section presents how
motion planning can be framed as a POMDP. The elements of the tuple
(S,A,O, ), /, ', W), which characterizes the POMDP, as well as the initializa-
tion of belief are defined below.

6.4.1 State, Action and Observation Spaces

The environment in which an autonomous vehicle operates is presented in
Section 2.1. As a simplifying assumption, agents V in the environment are
restricted to the members of classes that traverse the road network, i.e. vehicles.
Therefore, route intentions of the vehicles can be matched with their available
routes in the road network.

State Space

Matching route intentions with the road network allows defining position of
the vehicles along the lane-referenced Frenet-coordinate frame F , as done
by [Hub+18]. However, for traversing medium to long distances, this is
not a feasible approach. POMDPs perform belief updates which require the
desired value of its variables to be preserved. As a vehicle drives, the lane
sections – or lanelets – to which the vehicle is matched, change, as presented
in Figure 2.1. For this reason, if coordinates are given in the Frenet frame,
either the current longitudinal position of a vehicle must comprise all the
driven lanelets or the reference point of all samples must be realigned. This
is undoubtedly an infeasible approach. A more convenient way is to use the
Cartesian coordinate system.

The state of the ego vehicle is defined by its Cartesian coordinates and speed

so0 = [G0, H0, E0]T. (6.28)
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Whereas the route and maneuver intentions of the ego vehicle are known and
do not change over time, they are unknown for other vehicles. These variables
are together introduced as the internal state 6 in Section 2.1.1. The modeling
in this work reduces available route intentions to the first set of options ahead.
It does not consider the effect of different maneuver intentions for a given route.
However, these can be integrated into the state representation by coupling them
with acceleration and the route intention, as done in the situation prediction work
in [Sch21]. Alternatively, they can be indirectly resembled with a desired travel
speed in sampling [Bha+21]. Thus, the state of the vehicle : is represented as

so:
= [G: , H: , E: , A: ]T. (6.29)

The state of the POMDP s ∈ S contains the states of all vehicles in the scene

s =
[
so0 , so1 , . . . , so:

]T
. (6.30)

This combined state definition is chosen to cover the interactions between the
ego vehicle and other vehicles.

The state representation models route intentions as a stationary variable. As a
result, the available route options must remain unchanged for a belief update.
However, routes are defined by lanelets and with the movement of the vehicle
new lanelets can appear as entirely new route options. Matching them with the
previous ones is done by using Gale–Shapley algorithm [GS62]. If any change
is detected, all route samples A: are resampled.

Action Space

The road network further enables a simplification that reduces the computational
complexity. Instead of planning motion in a driving corridor, velocity along a
predefined and optionally optimized path can be planned. This can be seen as
a type of path-velocity decomposition (see Page 16), reducing the number of
control inputs a to acceleration only, resulting in a one-dimensional problem.

IPFT is capable of selecting actions from a continuous domain. Nevertheless,
the action space A can be discretized into = values by creating an equidistant
spaced action set |A| = = in the comfortable acceleration range 0−cft ≤ 0 ≤ 0

+
cft.
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Observation Space

Observations of states o ∈ O are defined similarly to states themselves

o =
[
oo0 , oo1 , . . . , oo:

]T
, (6.31)

where oo:
is the observation of the : th vehicle. As the state of the ego vehicle

oo0 is fully observable, components of its observation matches the true state

oo0 = [G0, H0, E0]T. (6.32)

In contrast, the route intention of other vehicles cannot be observed. Instead,
their yaw angles k can be perceived. Therefore, their observation is defined as

oo:
= [G: , H: , E: , k: ]T. (6.33)

6.4.2 Transition Model

Probabilistic state transitions of vehicles can be modeled efficiently along the
route they are traversing. This is done by mapping the vehicle positions to the
Frenet frame F by using the transformations introduced in Section 2.1.2

(B, 3) = "FC (G, H), (6.34)

and subsequently modeling the state transition by the point mass model

)F (B, E, 0) =
(
1 Cs
0 1

) (
B

E

)
+

(
Cs

2/2
Cs

)
0. (6.35)

The next state along the route is obtained as

(B′, E′) = )F (B, E, 0) , (6.36)

which can be transformed back to the Cartesian frame C by using the posterior
lateral offset 3 ′ along the route

s′ =
[
"CF (B′, 3 ′), E′

]T
= [G ′, H′, E′]T. (6.37)
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6.4 Motion Planning with the POMDP Framework

The posterior lateral offset 3 ′ can be modeled either coarsely as linearly
decreasing from 3 to zero with time, or precisely with pure pursuit control. The
Equations (6.34) to (6.36) are together referred as )F

o
.

Transition Model of the Ego Vehicle

The deterministic transition presented above can be extended to a probabilistic
one by first using the deterministic transition to Frenet coordinates

(B′, 3 ′, E′, 0) = )F
o
(G, H, E, 0) (6.38)

and sampling both the longitudinal position in Frenet coordinates and the speed
from a Gaussian distribution, i.e. B̃′ ∼ (B′, fB) and Ẽ′ ∼ (E′, fE ). The
variance term fB is obtained by projecting the position uncertainty stored in the
environment model onto the reference path by using Equation (3.4). Sampled
longitudinal position value B̃′ is transformed to the Cartesian frame C by using
3 ′ and the next state of the ego vehicle is obtained

s′o0
=

[
"CF ( B̃′, 3 ′), E′

]T
= [G̃ ′, H̃′, Ẽ′]T. (6.39)

Transition Model of Other Vehicles

The action obtained from the policy serves as a direct input to the transition
model of the ego vehicle. However, the actions of the ego vehicle indirectly
affect the actions of other vehicles. Other vehicles generate an action from
their own policy and perform their state transition with this action. Because
transition models are called in MCTS with every particle, a complex policy
that considers interactions among all vehicles is computationally not affordable.
Therefore, interactions of other vehicles are limited to their reaction to the ego
vehicle. A simple yet efficient way for such a behavior modeling is to utilize
the IDM, introduced in Section 2.1.3.

The reaction of vehicle : can be modeled with

0o:
= 0IDM +(0, fIDM). (6.40)
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Subsequently, the new state in the Frenet frame

(B′, 3 ′, E′, 0o:
) = )F

o
(G, H, E, 0o:

) (6.41)

can be transformed back to the Cartesian frame and augmented with the
previously sampled route A

s′o:
=

[
"CF (B′, 3 ′), E′, A

]T
= [G ′, H′, E′, A]T. (6.42)

6.4.3 Observation Model

The IPFT requires an observation model to sample observations from states
o ∼ / (· | s), and to evaluate the likelihood of observations given states / (o | s).
Even though the general definition of an observation model depends on the
previous action, cf . Equation (6.17), it can be modeled independently of it, as
the current state already incorporates the effect of that previous action.

Sampling Observations

Observations comprise the state of all vehicles in the scene model including
the state of the ego vehicle. These observations can be sampled either from a
black-box generative model or from an explicit model.

The observation of the ego vehicle can be modeled by sampling it from

oo0 ∼ / (· | so0 ) =(ōo0 ,Σo0 ) (6.43)

where ōo0 ∈ R3 is the mean value and Σo0 ∈ R3×3 is the diagonal covari-
ance matrix with elements fG,o0 , fH,o0 , and fE,o0 of the trivariate Gaussian
distribution. Its parameters are obtained from fused perception information.

Observation of an “other” vehicle : is modeled alike

oo:
∼ / (· | so:

) =(ōo:
,Σo:

), (6.44)

but it contains an additional term fk,o:
for the yaw angle k̂. Therefore,

ōo:
∈ R4 and Σo:

∈ R4×4.
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The estimated yaw angle k̂ of o: is calculated for sampled Cartesian positions
of the observation

k̂o:
= kinterp (oG,o:

, oH,o:
). (6.45)

The function kinterp is defined along the centerline of a chosen route and returns
interpolated yaw angles along the centerline, see Figure 6.3. It calculates an
interpolation factor by transforming a given Cartesian position to its Hesse-
Normal form and comparing the longitudinal position of the nearest point on
the line segment to the length of the line segment. This factor is used for linear
interpolation with the normal vectors of subsequent line segments. The baseline
of this approach is known as Phong Shading in computer vision [Pho75] which
has later been applied to motion planning as pseudodistances [Zie17, p. 30].
This work extends it to yaw angles.
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Figure 6.3: Interpolated distances and gradients calculated for the blue polyline.

Observation Likelihood

The likelihood of an observation, required by the weighted particle filter, can
be defined as the product of observation likelihood of all vehicles in the scene

/ (o | s) =
:S∏
:=0

%(oo:
| so:
). (6.46)

This implies independence assumption between the noise in the observation of
any vehicle which is common practice [TBF05, p. 152].
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Modeling vehicles driving along a certain route eases calculation of observation
likelihood of vehicle positions. By transforming Cartesian positions to the
Frenet frame, route referenced positions are evaluated. The longitudinal
component oB in Frenet coordinates serves as a simple model for observation
likelihood of position, and the lateral component o3 as a convenient feature to
inspect deviations from the given route.

The unknown route of other vehicles leads to different observation likelihood
formulations for the ego vehicle and other vehicles. The observation likelihood
of the ego vehicle is defined as the product of observation likelihoods of
longitudinal position and speed, which are modeled with Gaussian distribution

%(oo0 | so0 ) = %(oB,o0 | sB,o0 )%(oE,o0 | sE,o0 ) (6.47)

=(oB,o0 | sB,o0 , f
PF
B,o0
)(oE,o0 | sE,o0 , f

PF
E,o0
). (6.48)

Observation likelihood of other vehicles is defined with an additional likelihood
term of so:

being on route A given the observation

%(oo:
| so:
) = %(oB,o:

| sB,o:
)%(oE,o:

| sE,o:
)%(oA ,o:

| sA ,o:
). (6.49)

Whereas the first two are calculated similarly to the ego vehicle, the last one is
calculated from three features: 1) lateral offset to the centerline of the route, o3
2) yaw angle difference between the observed yaw angle and the estimated yaw
angle for that position, Δko:

= ok,o:
− k̂o:

3) speed on that route, oE

%(oA ,o:
| sA ,o:

) = %(o3,o:
| sA ,o:

)%(Δko:
| sA ,o:

)%(oE,o:
| sA ,o:

)
(6.50)

∝(o3,o:
| 0, fPF

3 )(Δko:
| 0, fPF

Δk)(oE,o:
| EA , fPF

EA
).

(6.51)

The standard deviations used for likelihood calculation (fPF
( ·) ) are chosen slightly

larger than the typical values observed in the scene model. Therefore, they are
larger than the values used for sampling observations. Increasing these standard
deviations mitigate potential particle deprivation problems.

It should be underlined that the likelihood equations above are not normalized.
However, as particle weights are normalized in the subsequent steps during
particle filtering, this would be superfluous.
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6.4 Motion Planning with the POMDP Framework

6.4.4 Reward Model

The reward model has goal-driven and information-gathering reward terms

d(b, a, b′) = '(s, a) + FIIW (b, b′). (6.52)

All rewards are modeled as negative.

Goal-Driven Rewards

The goal-driven rewards correspond to the driving goals presented in Chapter 4.
They account for deviations from the desired speed, acceleration in longitudinal
as well as lateral direction, and collisions

'(s, a) = 'E (s) + '0,lon (a) + '0,lat (a) + 'coll (s, a).

The first term is defined similar to the driving objective in Equation (4.16) and
the next two are defined similar to the first two terms of Equation (4.17). The
last term 'coll takes collisions of the ego vehicle into account

'coll (s, a) =
{

0 no collision
Fcoll ego vehicle collides.

(6.53)

The weighting factor for collision Fcoll is chosen by magnitudes larger than
other terms. The collision checks during state transitions are done by using the
criterion from [Eri04, p. 223].

Information-Gathering Rewards

Every variable in the state representation of other vehiclesmight have an effect on
the reward obtained upon selection of an action. Gathering information on them
is therefore beneficial for the solver. However, the information-based reward
calculation becomes computationally expensive with increasing dimension. An
algorithm should therefore inspect only the most decisive variables.

Maneuvers intentions comprise the most important source of uncertainty, as
discussed in Section 2.3. POMDP modeling in this work considers only route
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intentions, as mentioned before. Therefore, the information reward is defined
as the scaled information gain in the route intention probability of the vehicles
in the current scene

IW (b, b′) =
:S∑
:=1

(
� (bA ,o:

) − � (b′A ,o:
)
)
. (6.54)

As route intentions are discrete variables, no kernel density estimation is
required. This is an advantage over choosing variables for information-based
rewards, such as positions, which can take continuous values.

6.4.5 Rollout Policy and Belief Initialization

The POMDP solvers that depend on MCTS execute rollouts, whenever a new
node is generated, see Section 6.3.1. In motion planning, constant velocity
motion serves as a lightweight yet accurate rollout policy crollout.

State particles are initialized similar to observation sampling introduced in
Section 6.4.3. The only difference is, instead of sampling observation from
posterior states, states are sampled from observations.

The state of the ego vehicle contains observable parameters and can therefore be
sampled directly from observation, whereas the state of other vehicles contains
the hidden variable route intention. This variable is sampled from a discrete
probability distribution

%(Ao:
= Ao: ,8 | o3 ,Δk) =

%(o3 | sA ,8)%(Δk | sA ,8)∑ |R |
9=1 %(o3 | sA , 9 )%(Δk | sA , 9 )

, (6.55)

where %(o3 | sA ,8) and %(Δk | sA ,8) are similar to Equation (6.51).
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7 Evaluation

The planning under uncertainty problem for autonomous vehicles is modeled
and solved with two distinct methods. The contributions for both methods are
evaluated either by driving experiments or simulations, depending on how well
they demonstrate their efficacy.

This chapter evaluates the proposed contributions of the individual methods,
in the order presented in the preceding sections. It starts with the numerical
optimization based planning and presents results for uncertainty-free case first.
Then it proceeds with analyzing the effect of uncertainties. Subsequently,
it delves into the planning with the POMDP framework. It evaluates the
framework in intersection crossing scenarios and shows that such scenarios
benefit from active information gathering. Afterwards, it demonstrates the effect
of employing model-based bandit algorithms in the chosen class of POMDP
solvers. The chapter finally compares both planning approaches and discusses
their strengths and weaknesses.

7.1 Planning with Numerical Optimization

The decision-theoretic MPC features comfort and safety in the presence of
incomplete environment information. To demonstrate the advantage of the
proposed methods, they are inspected independently.

The planning algorithm is implemented with two different optimizationmethods:
penalty methods and interior-point methods. The planner that utilizes a penalty
method is implemented by using the nonlinear least-squares optimization library
Ceres [AM+15]. The library internally involves a forward mode automatic
differentiation module called Jet and a sparse Cholesky factorization for solving
the linearized problem. A planning problem of 200 parameters is solved under
50 ms by a 2.6GHz Intel Xeon E5-2640v3 processor launched in 2014.
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Constrained optimization algorithms based on penalty methods do not guarantee
feasibility on their solution, as argued in Section 5.3. This creates a big problem
especially in cases where the feasible solution is confined in a relatively narrow
space. Changing the penalty function with a logarithmic barrier is not straight
forward and requires an elaborate step factor selection algorithm. For this
purpose, the decision-theoretic MPCC algorithm is implemented by using
interior-point solver library Ipopt and the derivatives are calculated with the
CppAD library. As introduced in Chapter 5, Ipopt is renowned as themost robust
and powerful nonlinear solver available with a non-commercial license, and
CppAD is the automatic differentiation library that shows the best performance.
Using the linear solver MUMPS [Ame+19], the decision-theoretic MPCC with
all the constraints defined in Section 5.6.3 is solved under 200 ms by a 3.80GHz
Intel Core i7-10700K processor launched in 2020.

Driving experiments are performed either on the autonomous vehicle Bertha
[Taş+18], or on CoCar [Koh+13]. Simulation experiments are performed
on the simulation environment P3IV [Taş21] by using the drone dataset
InteractionDataset [Zha+19] for scenario definitions. Both experiments are run
on ROS [Hel+16] and utilize Lanelet2 map format [Pog+18; PJ20].

7.1.1 Planning in Fully Observable Environments

Themost fundamental requirement for a planner is the ability to plan comfortable
and safe motion, without considering any uncertainties. The scenarios and logs
of the cooperative autonomous driving contest the Grand Cooperative Driving
Challenge (GCDC) 2016 [Eng+16] served as a perfect setting to demonstrate
the capabilities of the motion planner quantitatively.

The challenge composed of two scenarios, cooperative intersection crossing and
cooperative lane change, and defined rules and goals to make the competition
safe and evaluable. The participant agents were cars and trucks only and the
scoring was merely determined by the longitudinal performance. In this sense,
by defining custom goals that included error-tolerant zones, the GCDC had
a synthetic nature. Nevertheless, this international event provided a setting,
where experienced teams in autonomous driving demonstrated their algorithms.

The use of automatic differentiation allowed changing the cost function and
constraint definitions on-the-fly. On the system-side, ROS allowed changing
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7.1 Planning with Numerical Optimization

parameter values in runtime. These instruments enabled flexibility in adapting
the motion planner for the needs of the competition.

The motion planner was tuned to achieve the highest score, and planned only
for the longitudinal motion. In this way, the number of elements in the state
vector, as well as the number of applied constraints were reduced, and the
computational resources were canalized to reach higher replanning frequencies
with harder convergence conditions. The customized planner used the penalty
function implementation and had a runtime of 15 ms on average.

In the first scenario, namely the cooperative intersection, the goal is that
all vehicles leave the intersection in the shortest time without violating the
defined minimum safety distance and the maximum speed while yielding to
the organizer vehicle ID 3. After the start signal, all vehicles must enter the
intersection zone exactly after 20 s and traverse it ideally with 30 km/h.

Figure 7.1 shows the speed profiles and the travelled distance of an arbitrary heat
in the intersection scenario. The speed profile of Bertha has a small overshoot.
Firstly, this is due to the slightly penalized tolerance band that is covered by the
range cost terms defined in Equation (4.13), and secondly, to the unmodeled
dynamics of the vehicle. Despite the speed profile of the station ID 3 having
small jitters, Bertha drives quite smoothly. All vehicles hold the safety distance
for all times they are inside the intersection zone. The video record of this heat
is presented in frames of 0.25 s intervals in Figure 7.2.
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Figure 7.1: Logs from a cooperative intersection heat. The vertical lines indicate the times at which
Bertha (ID 130) entered the intersection zone, was at its center, and left it.
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Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 6 Frame 7 Frame 8

Frame 9 Frame 10 Frame 11

Frame 12 Frame 13 Frame 14

Frame 16 Frame 18 Frame 20

Figure 7.2: Cooperative intersection crossing.1 Frames are incremented every 0.25 s. Later frames,
in which the vehicle ID 150 is visible, are omitted.

1 Video available online at https://youtu.be/41lCu6IvBB4
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7.1.2 Changes in Driving Goals and Constraints

In the intersection crossing scenario, the driving goals and intentions of the
vehicles do not change. Therefore, the constraints applied on the planner
are stationary. While driving, constraints and objectives change continuously
depending on the environment and the maneuver intentions of other agents. An
instantaneous constraint activation can result in poor performance for planning
in receding horizon. A linear constraint activation scheme that activates the
constraints gradually is proposed in Section 4.1.3 to address this issue.

The cooperative lane change scenario in GCDC 2016 provides a very good
benchmark setting to evaluate the efficacy of such a constraint activation scheme.
The scenario resembles the case where the left lane of a two lane highway
is blocked by a (virtual) construction zone. Two platoons driving on right
and left lanes have to merge before the construction zone. The maneuver
intentions are transmitted over V2V-communication and therefore do not entail
any uncertainty. The scoring is determined by how smooth and fast two platoons
merge without violating the safety distance.

The vehicles in this scenario start either on the left or the right lane. Two
platoons first come side by side, then they pair, and perform lane changes. For
a lane change, the merging vehicle signals “merge request” and thereupon, the
vehicle on the right side opens a gap and signals “safe to merge”, once the
required gap is created. Afterwards, the lane change takes place.

Figure 7.3 depicts the relative distance of Bertha based on V2V-communication
logs in an arbitrary lane change scenario. Before the “merge request” at 226.7 s,
Bertha follows the vehicle with the station ID 120, while driving slightly behind
ID 130, the vehicle in the left lane. After the “merge request”, it gradually
switches its objective to follow the vehicle with the ID 140, resulting in a gentle
opening of the desired gap defined by the competition rules. The relative
distances depicted in the figure display a smooth transition.

The results presented in the figures represent only a few heats of the challenge.
In the GCDC 2016, Bertha scored the best in motion planning performance
and the second-best in cumulative evaluation, which includes aspects like
human-machine interface. This great result in planning performance lies,
among others, in the flexibility gained with the use of automatic differentiation
and flexible parameter tuning with ROS.
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(a) A frame taken after the “safe to merge” signal. ID 140 is changing its lane.
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(b) Relative distance of Bertha against other vehicles. All lines have the same width.

Figure 7.3: Logs from an arbitrary cooperative lane change heat. Bertha is the 4th car driving on
the right lane. ID 120 is its leader and ID 140 is the car that is changing its lane.

7.1.3 Noncompliant Traffic Participants

The evaluation presented up to this point used transmitted positions and
intentions of vehicles. In driving, maneuver intentions of participants are not
observable and in some cases, exhibit noncompliant behaviors. Section 4.4
proposed an approach that yields proactive motion plans for such cases. The
applicability of this approach can be demonstrated both in simulation and with
driving experiments, whereas the latter requires consideration of aspects like
time delays and has a higher credibility. Therefore, this work presents results
obtained from the latter.

The driving experiments are conducted at a T-intersection, where the ego
vehicle has the right-of-way and an oncoming vehicle must give way to the ego
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vehicle. Figure 7.4 shows one of the driving experiments. The ego vehicle is
the gray vehicle driving autonomously along a priority road. The oncoming
black vehicle approaches the intersection at a speed that suggests it will not give
way to the ego vehicle, but applies braking at the very last moment. The black
vehicle is intentionally driven manually to replicate different driving styles and
demonstrate the robustness of the algorithm. To exclude the effect of the limited
sensor range and therewith occlusions, the black vehicle transmits its position
and speed via V2V-communication.

The frames obtained from a video of a test run is shown in Figure 7.4. The
planned motion of the ego vehicle is shown in Figure 7.5. The ego vehicle
approaches the intersection at its desired speed. It recognizes that the oncoming
vehicle will not be able to brake comfortably to give way to it, and therefore, it
does not release its stop constraint defined in Equation (4.53). Frames 3 to 11
in Figure 7.5 depict the full stop motion. The active stop line constraint causes
a slight reduction of speed as the vehicle approaches the intersection. Once
it is clear that the oncoming vehicle will give way to the ego vehicle with a
comfortable braking deceleration, the constraint is released. Subsequently, the
ego vehicle continues to drive along the priority road at its desired speed.

Although results from only a single run are presented in this work, the re-
producibility and robustness are shown in repeated runs performed at the
RobustSENSE project final event, and are demonstrated to the experts of
the field.

7.1.4 Imperfect Perception

The proactive safety conditions introduced in Chapter 4 allow safe intersection
crossing under limited visibility. Although such problems are easier to handle
when compared with the presence of noncompliant traffic participants, the
evaluations demonstrate interesting properties.

Figure 7.6a shows a scenario, where the ego vehicle depicted in blue drives in
urban areas. The vehicle has a limited sensor range and the buildings around
hinder its visible field. It approaches an intersection, where it has to yield to
any vehicle from the intersecting route. Because of the limited sensor range
and occlusions caused by the buildings, it is unaware of the intersection ahead.
The deviations of speed from the desired speed, as well as the acceleration and
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Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

Frame 10 Frame 11 Frame 12

Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18

Figure 7.4: Safe intersection crossing in the presence of noncompliant participants. The autonomous
vehicle (gray) has the right way. The speed of the oncoming black vehicle suggests that
it will not yield to gray vehicle. Frames are incremented every 0.25 s.
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Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

Frame 10 Frame 11 Frame 12

Figure 7.5: Planned motion of the intersection crossing scenario.2 Frames are incremented every
0.25 s, but their numbers are not synchronized with the frame number of the camera
images in the previous figure.

2 Video available online at https://youtu.be/lOpE5uldJiI
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jerk values are penalized with quadratic loss terms (see Equation (4.12)). Until
recognizing the intersection zone, its speed is constrained to keep its standstill
distance shorter than its visible distance along the driving corridor.
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Figure 7.6: Effect of limited visibility simulated on an uncontrolled intersection.

Figure 7.6b displays motion profiles for various sensor ranges on a path-speed
diagram. The center of the intersection is set as zero in path coordinates. All
profiles in the diagram have the same length as they are of the same duration.
The profiles indicate that long sensor ranges enable the vehicle to recognize
the intersection early and allow a comfortable reduction in speed. For shorter
sensor ranges, the vehicle detects the intersecting route later and closer to the
intersection, causing a harsh deceleration.

Once the vehicle has enough visible distance along the intersecting route, it
starts accelerating. However, due to the limited visible field, it cannot reach its
desired speed for all inspected sensor ranges. After reaching a peak speed at
roughly 20 meter, the vehicle starts decelerating again, because of buildings
and road curvature. This indicates that sensor ranges longer than 50 meter are
not necessarily advantageous in urban scenarios.

It must be underlined that the replanning time Cc plays an important role in
reaching the desired speed: long replanning times impede reaching desired
travel speeds when considering visible field.
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7.1.5 Postponing Decisions While Ensuring Safety

The decision-theoretic MPCC is evaluated in simulation, first for the phantom
object scenario, described in Section 5.6.3, and then for the intersection crossing
scenarios provided by the drone dataset.

In the phantom object scenario, the ego vehicle detects 15.0 m ahead a vehicle
with 50 % existence probability, driving at 2.0 m/s. This scenario is evaluated
for two distinct settings. In the first setting, the phantom detection disappears
after 0.3 s, where its existence remains unclear in the second setting.

Figure 7.7 compares the effect of using decision-theoretic MPCC with a
conventional MPCC framework for both settings. The speed profile displays
the smooth yet safe reaction obtained by using decision-theoretic MPCC.
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Figure 7.7: Speed profile comparison of a conventional MPCC ( ) with a decision-theoretic
MPCC ( ) in a phantom object detection scenario. Whereas the conventional
MPCC reacts more directly to the phantom detection, the decision-theoretic one finds a
balance between criticality and comfort.

Planning homotopy-class-free motion and postponing decisions is especially
useful in intersection crossing scenarios. Figure 7.8 presents a planning instance
at a roundabout scenario, where the ego vehicle considersmaneuver probabilities
of other vehicles, that are obtained from a particle filter based prediction module.
The figure consists of three subplots depicting 1) the predicted and planned
positions of the vehicles, 2) vehicle positions and uncertainties at the time of
planning, and 3) the profile of the planned motion. The results show quite
smooth motion profiles.
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Figure 7.8: Smooth planning with decision-theoretic MPCC. The ego vehicle is depicted in black.
Vehicles in the environment model VE , i.e. inside the visible field, in gray, are
represented with their position uncertainty and a semi-transparent rectangle centered at
their mean position. The rectangles are opaque for vehicles in the scene model VS .

7.2 Planning with the POMDP Framework

The evaluation of planning with the POMDP framework is divided into two
parts. The first part, consisting of two sections, utilizes the IPFT solver and
aims planning in intersection scenarios in real-time. It evaluates results for the
state-based reward definition, and then for the belief-based reward definition
with the purpose of active information gathering. To do this, an open-sourced
implementation in the programming language C++ of the solver algorithm
is tested with the P3IV simulation framework. The second part utilizes the
POMCP algorithm implemented in Python and inspects the convergence of
bandit algorithms in different settings.

7.2.1 Intersection Crossing in Real-World Scenarios

For autonomous driving, a planning horizon Ch of at least 5 s is required. In
order to achieve real-time capability for this planning horizon, the POMDP
model is configured for a time discretization Cs of 0.5 s. The computation time
of the solver is set to 1 s, but the optimum action over solver time is monitored
for evaluation. P3IV allows for asynchronous simulation, enabling simulation
update rates higher than computation times. Therefore, the time discretization
of the simulation environment is set to 0.1 s. The solver creates a new search
tree at every planning instance and does not reuse the previously created one.
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7.2 Planning with the POMDP Framework

For evaluating the solution, two distinct plots are implemented. The first one
is divided into three subplots depicting the current scenario and belief, see
Figure 7.9. The left-hand side depicts the true position and speed of the vehicles.
It additionally shows the corridor options of an oncoming vehicle. The subplot
in the center depicts belief states and the centerlines of the driving corridors.
Additionally, it displays some random particles from the search tree at various
planning times, which correspond to different tree levels, on the map. These
particles are either simulated observations of the other vehicle and are denoted
with , or motion states of the ego vehicle. The motion states are denoted
either with indicating they end in a collision, or with . The subplot on the
right-hand side shows the route probabilities of the vehicles over time.
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Figure 7.9: Baseline roundabout scenario obtained from InteractionDataset.

The second plot inspects the search tree and it is divided into three subplots as
well, see Figure 7.10. The left-hand side shows the&-values of different actions
over solver time. The subplot in the center integrates chosen accelerations in the
search tree and plots the resulting speed profiles over time. The line opacity of
the profiles denotes the frequency of individual actions. Integrated actions that
lead to collision are depicted in red, whereas collision-free actions are denoted
in green. The dashed red line depicts the desired speed and the continuous
blue line depicts the optimal action sequence. The right-hand side shows the
&-value estimates, which incorporate the cost associated with the collision
probability, on a time-speed diagram. The values are obtained by averaging
all actions in the search tree that yield the corresponding speed value. It must
be underlined that this figure is bound to approximation errors, as the order
of actions have an influence on the corresponding &-values. Nevertheless, it
provides an interpretable representation. Similar to the plot in the center, the
continuous blue line depicts the optimal action sequence.
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7 Evaluation

The evaluation is performed in a scenario, where there is a vehicle : driving
inside the roundabout, to which the ego vehicle has to yield, if the vehicle
does not take the exit. The scenario is shown in Figure 7.9. The motion of
the vehicle : is read from the dataset. Therefore, its actions are independent
of the actions of the ego vehicle. The parameters of the scenario are provided
in Appendix A.4. The scenario is intentionally selected such that the route
classification yields wrong results until the intersection. Even though the
planner can successfully identify the route intention in most of the cases, this
scenario serves as a stress test.

The &-value profile and hence the optimal action sequence of the planner
strongly depend on the parameters of the model. Figure 7.10 shows the results
for Edes, ego = 4.0 m/s and Edes, : = 10.0 m/s, immediately after the oncoming
vehicle is detected. The planner chooses to yield to the oncoming vehicle.
However, for Edes, ego = 6.55 m/s and Edes, : = 5.0 m/s, the selected action
sequence is considerably different, as shown in Figure 7.11. The planner
intrinsically prefers a maneuver of another homotopy class: the ego vehicle
enters the roundabout before the other vehicle. This is a remarkable result,
highlighting that planning with the POMDP formulation internally selects the
optimal homotopy class, unlike conventional planners.
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Figure 7.10: Search tree for Edes, ego = 4.0 m/s and Edes, : = 10.0 m/s.

Figures 7.12 and 7.13 show the evolution of the scenario after 1.3 s. Since
the motion of the vehicle : is independent of the actions of the ego vehicle,
its position and route probabilities are exactly the same for both parameter
configurations. In contrary, the position and the planned motion of the ego
vehicle are significantly different. For parameter values where the desired speed
of the ego vehicle is lower than the other vehicle, the ego vehicle continues
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Figure 7.11: Search tree for Edes, ego = 6.55 m/s and Edes, : = 5.0 m/s.

to decelerate and starts accelerating once the other vehicle has passed (see
Figure 7.12b). For parameter values of the other homotopy class, it continues
to accelerate to avoid any collision (see Figure 7.13). Results after 1.1 s and
2.1 s are presented in Figures A.2 to A.4 in Appendix.
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(a) Planned motion.
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Figure 7.12: Evolution of the scenario after 1.3 s, for Edes, ego = 4.0 m/s and Edes, : = 10.0 m/s.
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Figure 7.13: Evolution of the scenario after 1.3 s, for Edes, ego = 6.55 m/s and Edes, : = 5.0 m/s.

The results indicate that the optimal action sequence depends strongly on the
models and its parameters. Different desired speed configurations result in
motion profiles of different homotopy classes. Their correct estimation is
essential in obtaining comfortable motion. In the evaluations above, Edes of
the vehicles are not conflicting: if one is set high, the other one is set low. If
conflicting values are chosen, the vehicle executes a harsh braking, as expected.
Results for such parameter values are provided in Figure A.5 in Appendix.

Besides desired speed, uncertainties play an important role on the chosen actions.
Increasing uncertainties lead to broader areas of low &-values, resulting in a
defensive driving style.

Solver parameters have a strong influence on the solution. The hyperparameter
analysis in the IPFT paper shows that the optimal particle set size for the
benchmark problem is < = 20, whereas the difference after < = 4 is rather in-
significant. Motion planning for autonomous driving is much more complicated
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7.2 Planning with the POMDP Framework

than the benchmark problem, and therefore choosing < = 20 for the selected
computation time Cc = 1.0 enables a planning horizon Ch = 3.0 on average. This
value is insufficient for planning. Therefore, the evaluations above are done for
< = 10, which yields Ch = 4.0 on average.

The UCB exploration constant 2 is another decisive parameter value. Its value
is half of the biggest weight in reward terms, as practiced commonly. Increasing
it leads to excessive exploration: actions in the areas that lead to collision are
exhaustively explored. On the contrary, choosing a small value results in a
greedy policy approximation. Once it has found a collision free action sequence,
it barely explores other actions, resulting in a narrow but deep search tree.

Another important solver parameter is the observation progressive widening
(PW) factor :o . Whereas actions are selected from a discrete set, observations
are continuous, and therefore, PW might be beneficial for building deep search
trees. Experiments show that observation PW is strongly correlated with
exploration constant 2. Enabling it causes the search tree to try actions for a
broader range of observations, resulting in shallow search trees. Although the
effect can partly be compensated with low 2 values, it usually yields inferior
results [Bec21]. For this reason, observation branching is disabled.

All tree search plots show that the immediate optimal action usually does not
change after a solver time of Cc = 200 ms in most cases, as the search tree does
not encounter anything unexpected as it deepens.

7.2.2 Intersection Crossing with Active Information
Gathering

The preceding intersection crossing evaluations are done for state-based rewards
only. Section 6.4.4 presented belief-based information gathering rewards on
the route intention of another vehicle. By incorporating such rewards, the
IPFT algorithm can execute actions that reveal route intentions. It does this by
optimizing for reactions through the behavior model of other vehicle defined
in the POMDP formulation. Therefore, in order to evaluate if the reaction of
the other vehicle matches the expectations, it requires a clear feedback on the
actions it executes.
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7 Evaluation

The POMDP model between the action of the ego vehicle and the reaction of
the other vehicle : on the same route has a loosely-coupled feedback, which is
particularly difficult for the solver to operate on. The execution of the action
chosen by the policy of the ego vehicle is a noise-bound process. The reaction
of the vehicle : is modeled by using IDM, where modeling errors are covered
by an additive Gaussian noise fIDM, see Section 6.4.2. Subsequently, the
ego vehicle’s observation of this new state is subject to noise as well. These
accumulating uncertainties result in a loosely-coupled reaction model. In
contrast to standardized benchmark problems, where the agent has a direct
feedback, this loosely-coupled problem formulation is much harder to tackle.

The effect of active information gathering is evaluated at a T-intersection
scenario depicted in Figure 7.14. The oncoming vehicle, depicted in red, has
two route options: driving straight and yielding to the ego vehicle, or turning
right. It is programmed so that it drives at a constant speed and takes the exit
on the right. The task of the ego vehicle is to execute actions that maximize its
knowledge about the route intention of the vehicle. The scenario and solver
parameters are presented in Appendix A.4.
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Figure 7.14: The T-intersection scenario used in active information gathering evaluations.

The efficacy of the approach is first evaluated with a modified behavior model
and then with the original POMDP formulation presented in Section 6.4.2.
In order to make the route intention identification independent of geometric
features, and to demonstrate the applicability of the approach for maneuver
intention identification, the probability calculation defined in Equation (6.51) is
reduced to its third component first, i.e. speed only.
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7.2 Planning with the POMDP Framework

Action Reinforced Behavior Model

Establishing a more direct feedback is beneficial for performing information
gathering. Instead of reducing modeling uncertainties in a naïve way, which
can cause particle deprivation and overfitting, the transition model of the other
vehicle can be revised. If they are travelling on the same route, the reaction of
the other vehicle can be reinforced by the actions of the ego vehicle such that

0IDM =

{
1.50IDM (0IDM < 0 ∧ 0ego < 0) ∨ (0IDM > 0 ∧ 0ego ≥ 0),
0.50IDM (0IDM < 0 ∧ 0ego ≥ 0) ∨ (0IDM > 0 ∧ 0ego < 0).

(7.1)
The resulting 0IDM is passed to Equation (6.40). Despite uncertainty, the
reaction of the other vehicle can be easily revealed. It must be highlighted that
this model is designed for initial evaluations, as accelerations are unobservable
in reality.

Figure 7.15 compares the effect of active information gathering on the search
tree of the reinforced formulation presented above. All solver parameters are
left unchanged. In active information gathering, the solver executes a targeted
and consecutive deceleration and acceleration. Strikingly, this action is found
quite rewarding, such that it tries other actions only once. The solver builds
a narrow-structured tree during the initial stages. In comparison, the setting
without information gathering builds a broader tree and the ego vehicle prefers
to accelerate in order to enter the intersection before the oncoming vehicle.

The &-value contours for both cases are substantially different due to informa-
tion rewards. However, both cases have the same optimal policy by the virtue of
potential-based reward shaping. It must be underlined that the&-value visualiza-
tion in the active information gathering setting has more approximation errors,
as different action sequences can create entirely different information rewards.

Figure 7.16 depicts the speed and route probabilities over time. Performing
active information gathering is especially beneficial in the very first moments
after detection. With increasing time, the POMDP can inherently infer the route
intention of the other vehicle from speed likelihoods. The speed profiles do not
indicate a significant difference for this simulation run.
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Figure 7.15: POMDP search tree with and without active information gathering. The &-values
of the search tree with active information gathering include belief-based information
rewards. Therefore, its &-value profile is substantially different.

Non-Reinforced Behavior Model

The results for action reinforced behavior model suggest that planning with the
original POMDP formulation might benefit from active information gathering.
Since the framework approximates the optimal policy for the POMDP with
sampling, the results are analyzed for 100 runs for a comprehensive evaluation.

Figure 7.17 compares the effect of using and not using active information
gathering in the T-intersection scenario. Although the difference between them
is not as obvious as in the reinforced case, the benefits are still visible. The route
probabilities increase slightly later, as the observations are less-directly linked
with actions of the ego vehicle. The search tree analysis, unlike the reinforced
case, is indistinguishable from the state-based reward case. Therefore, the
search tree plots are not presented. The speed plot reveals a remarkable result:
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Figure 7.16: Evolution of the predicted route probability and the speed profile over time for the
reinforced motion model. The blue line ( ) represents the results for the case
with active information gathering, and the green line ( ) is for the case without
information rewards. The dotted line ( ) in the route probability shows the
probability of driving straight. The red dashed line ( ) in the speed profile shows
the desired travel speed.

the state-based reward formulation accelerates to speeds higher than the desired
speed. Because of the asymmetric reward function on speed, speeds lower than
the desired speed are penalized with a tolerant loss, whereas higher speeds
are penalized with a quadratic one. This suggests that the action sequence in
state-based formulation has a lower utility than for active information gathering.
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Figure 7.17: Evolution of the predicted route probability and the speed profile over time for the
original POMDP model obtained from 100 simulation runs.
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Planning with the POMDP framework strongly depends on the chosen models
and their parameters. The evaluations presented above are performed for
fIDM = 0.1. The benefits of active information gathering disappear when this
value is increased to fIDM = 1.5. Nevertheless, the evaluation shows that, under
a reasonable uncertainty, information gathering improves the utility in problems
where the optimal policy is substantially affected by the present uncertainties.

A remarkable result from the active information gathering experiments is that
the solver is able to reach a planning horizon Ch = 5.0 constantly. Compared
with the previous experiments, the increase in the horizon is due to disabling
geometry-based features in route prediction. This indicates that matching
Cartesian coordinates to the Frenet frame with the interpolated distance and
yaw angle scheme presented in Section 6.4.3 accounts for a computational
overhead of 20 %.

The results of using geometric features for route prediction with active informa-
tion gathering is presented in Figure A.6 in Appendix. The figures show that
geometric features dominate the route probability results as the vehicle comes
closer to the intersection.

Active information gathering relies on estimating probability distributions with
particles, where larger particle sets enable better estimates. Experiments have
shown that larger particle sets result in steeper increase in route probabilities.
However, the planning horizon becomes shorter in return. Furthermore, with
increasing particle set sizes, the vehicle executes repeated deceleration and
acceleration sequences. This is an intuitive result, as achieving a higher
confidence becomes harder with growing particle set sizes. Reducing the
information gathering weight alleviates such repeated actions, yet the route
probability increases quite late.

The results for particle set sizes< = 4without geometric features are presented in
Figure A.7 in Appendix. The results are comparable with< = 10. Furthermore,
with < = 4, a planning horizon longer than Ch = 5.0 is obtained. However, in
the presence of multiple other vehicles, this size is insufficient. Qualitative
experiments show that a particle set size < ' 10 is a suitable choice.
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7.2 Planning with the POMDP Framework

7.2.3 Exploiting Lipschitz Continuity of Rewards

Section 6.3.2 derived two multi-armed bandits (MABs) for Lipschitz continuous
rewards by proposing to utilize them in sampling-based POMDPs to improve
their converge. However, it is yet unclear if the motion planning problem
formulation in Section 6.4 has a Lipschitz continuous reward profile.

Lipschitz continuous transition model and reward model yield a Lipschitz
continuous reward [AML18]. The reward definition for motion planning
includes a binary collision term, rendering the reward function discontinuous.
In contrast, state transitions and observations are subject to uncertainties, which
in turn can alleviate such discontinuities.

This work empirically evaluates the continuity of reward functions. In the
following, the continuity of the&-value function is analyzed first, then the effect
of utilizing a Lipschitz MAB is benchmarked. To demonstrate the generality
of the results, the POMCP algorithm defined in Section 6.3.3 is utilized as
the solver.

(a) Straight driving. (b) Traversing curves. (c) Imminent collision. (d) Intersection crossing.

Figure 7.18: Traffic scenes used for development and in the evaluations.

The evaluations are performed on the traffic scenes depicted in Figure 7.18.
The first two scenes do not behold any discontinuities and are used for initial
testing, see Figures 7.18a and 7.18b. The next scene requires interaction with
the oncoming participants, see Figure 7.18c. The last one further requires iden-
tification whether the other participant is on the collision path, see Figure 7.18d.
The latter two scenes are used to define three scenarios: a collision scenario
SColl that is subject to imminent collision, and two intersection scenarios SI-Lo
and SI-Hi, which pose low and high probabilities of collision, respectively. The
parameter of the scenarios and the values affecting the results are provided
in Appendix A.4.
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Continuity of Q-Value Function

The continuity evaluation is done by inspecting the &-value in the root node
of the belief tree for equidistant actions and running simulations for every
action value. For an accurate result, the action space is finely discretized with
Δ0 = 0.05 m/s2, and for every action value, a simulation run with 106 particles
is executed. The succeeding action values after the first action value are selected
from 5 equidistant actions with the UCB bandit.

To highlight the discontinuity in the reward function, SI-Hi is analyzed first.
Figure 7.19a illustrates the &-value function without considering the noise
in transition and observation models. The rewards of the collision term are
depicted with markers. The overlying markers correspond to the&-values
of all the rewards. It can clearly be seen that 0 ∈ (−2,−0.2] results in collision.
Figure 7.19b displays the reward function for the same scenario, but this time
while considering the aforementioned noise. The results are presented for both
coarse and fine approximations, denoted with and respectively. The
coarse uses 104 particles, whereas the fine one is obtained by sampling 107

particles and doubled resolution of the observation discretization. Additionally,
the bandit of the fine approximation selects from 17 actions. Even though
such large number of samples and high resolutions are not realistic, this fine
approximation represents the edge case. Compared with coarse approximation,
the reduction in the variance is evident. But in return, the discontinuity in the
&-values starts to appear, eventually requiring a larger Lipschitz constant ℒ.
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Figure 7.19: &-value profiles of SColl.
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The &-value profiles of the intersection scenarios are presented in Figure 7.20.
The first subfigure presents the results for SI-Lo and SI-Hi for the same number
of particles. They have the same shape, whereas SI-Hi has lower &-values
and higher variance compared to SI-Lo. This is an expected result due to
the higher collision probability of SI-Hi. The higher variance in case of an
imminent collision results from the optimistic nature of the UCB bandit. The
second subfigure presents &-value SI-Lo and Gaussian process regression on
the individual &-values for a lower quantity of samples. The variance is higher
and &-values are less than for 104 particles.
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Figure 7.20: &-value profiles of SI-Lo and SI-Hi.

Efficiency of Lipschitz Multi-Armed Bandits

The uncertainties in the transition and observation models alleviate the discon-
tinuities in the &-value function and allow for Lipschitz continuity assumption.
In the following, the MABs presented in Section 6.3.2 are benchmarked.

A common metric to benchmark convergence is to inspect the mean absolute
error (MAE) between the best value obtained and the true value. For sampling-
based POMDPs, the MAE between the current highest &-value (&∗=) and the
optimal &-value (&∗) over the number of sampling episodes = can be taken
as the performance measure. &∗ can be calculated by sampling 107 particles
while employing the UCB bandit. Since the resulting &-value profile has
stochastic nature, the noise can be eliminated by performing Gaussian process
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regression, as depicted in Figure 7.20b. The maximum of the underlying
function corresponds to &∗.

To account for random events, the MAE is calculated for < simulation runs

MAE= =
1
<

<∑
8=1
|&∗8,= −&∗ |

where < = 100 and = = 2 · 104 episodes.

Lipschitz bandits require the Lipschitz constantℒ to be set beforehand. An over-
or underestimation of its value results in suboptimal performance, nevertheless
its optimal value is scenario-specific and is not known in advance. The optimal
Lipschitz constants for the scenarios are given in Appendix A.4. For benchmarks
ℒ = 2000 is selected empirically.

The convergence results for different numbers of actions in SColl is given in
Figure 7.21. For low numbers of available actions, the difference in convergence
is insignificant. With increasing numbers of actions, POSLB and POSLB-V
show increasingly superior performance. In general, the bandit variants that
consider empirical variances perform comparably. The convergence of POSLB
is subject to jitter and has a greater variance compared to other bandits. This is
an expected result of the Lipschitz continuity assumption. Nevertheless, for
increasing numbers of actions, Lipschitz bandits demonstrate better convergence
than their UCB counterparts.

Figure 7.22 presents the results for 9 and 33 actions in SI-Lo and SI-Hi scenarios.
Even though the convergence behavior of the bandits is quite similar to those of
SColl in general, the POSLB bandit displays striking results in Figure 7.22d.
It has a very large variance and the difference between its MAE with UCB is
smaller than other cases. This is caused by misleading rollouts that point to a
different region of the action space to be optimal. The Lipschitz assumption
causes the bandit to select actions in that region. This effect diminishes with
increasing tree depths. Since POSLB-V incorporates estimated variance in
action selection and selects an action with higher variance more often, it
compensates the drawbacks of misleading rollouts. A further remarkable result
is observed, when the convergence results of SI-Lo and SI-Hi are compared
against each other. At first, the Lipschitz assumption seems to be more effective
for SI-Hi. However, this is due to the selected value of the Lipschitz constant.
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7.2 Planning with the POMDP Framework
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Figure 7.21: Mean absolute error in SColl for different numbers of actions.

ℒ = 2000 underestimates the Lipschitz continuity of SI-Hi more than it does
for SI-Lo, see Table A.6 in Appendix.

The results for 5 actions are omitted, as the difference in the convergence
properties of the bandits are insignificant. The results for 17 actions are between
9 and 33 action cases. They are provided in Figure A.8 in Appendix.

In a sampling-based POMDP, the quality of the solution strongly depends on
the depth of the search tree. The Lipschitz bandits must enable the building
of deeper trees to provide better convergence. Figure 7.23 compares the tree
depths for UCB and POSLB bandits on SColl for 9 actions. The bar widths
represent the number of nodes created at each depth level, whereas the color
represents the number of particle visits. UCB has a greater branching factor,
resulting in shallower trees compared with POSLB, as expected. The results
for other scenarios and action combinations are alike.
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Figure 7.22: Mean absolute error in SI-Hi and SI-Lo for different number of actions.
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The evaluations are done for a constant number of episodes. The Lipschitz
bandit algorithms are more complex when compared with UCB, resulting in
an increased computational complexity. The experiments show that, even in
the computationally most demanding case of 33 actions, the increase remains
below 10% in the worst case and is 5% on average. These values are obtained
as an average of all scenarios.

7.3 A Comparison of the Proposed Planning
Frameworks and Discussions

Planning by utilizing numerical optimization and sampling-based POMDP
frameworks operate fundamentally different from each other. Therefore, a
direct, quantitative comparison is not reasonable. Nevertheless, analysis and
remarks that reveal design choices as well as highlight their advantages and
disadvantages are presented next. These serve as a basis for comparing both
planning frameworks.

Planning with Numerical Optimization

The main difficulty while developing planning algorithms that utilize numerical
optimization lies in problem modeling and initialization. Problems that are
solved with Newton’s method must be twice continuously differentiable, and
initialized in the vicinity of the local minimum that is sought for. This is a
stringent requirement, limiting its flexible use when compared with algorithms
that employ nonparametric approaches.

Finding an appropriate initialization is not a trivial problem in motion planning.
In every planning instance new objects may appear, invalidating the previous
solution obtained from a receding horizon planning. There are two alternative
ways to cope with this problem by modeling. The first option is to initialize the
problem with full-braking motion. However, such a cold start makes planning
in receding horizon computationally more expensive. Additionally, in case
of the MPCC formulation, as the vehicles’ contouring errors are defined with
respect to an initial progress profile, it is inapplicable. The second option is to
use a simple driving model, such as IDM. IDM satisfies the goal of achieving
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naturalistic driving objectives and provides a feasible initialization to the solver.
The experiments conducted show that for basic planning formulations, the
planner does not find any optimization potential after several iterations, and
terminates. Even though an initialization with IDM seems favorable, it considers
reactive capabilities only in the longitudinal direction. Therefore, utilizing a
solver that can operate with an infeasible initialization is highly advantageous.

In autonomous driving, the drivable area that is free of static obstacles is
frequently represented with polygons. Such polygon boundaries serve as a
linear constraint to optimization-based planning algorithms and for this reason,
they do not pose considerable complexity to the planner algorithm. However,
there may be other agents in the environment that are moving inside this area.
Conventional MPC approaches treat these objects as obstacles with a known
motion profile, and shrink the driving corridor according to their predicted
motion. Although this results in good convergence and fast solver times, it
prevents probabilistic processing of the environment by the motion planner,
hindering its interaction capabilities.

These stringent requirements on the model allow for fast runtimes in return.
Newton’s method can find the solution in fewer iterations in such problems.
However, this comes at the cost of computing the Hessian in every iteration,
which can be expensive to calculate. Therefore, instead of calculating the exact
value of the Hessian, it can be approximated with Quasi-Newton Methods. A
qualitative comparison of both approaches on motion planning problems show
a slightly better result in favor of the exact Hessian methods.

Nonlinear optimization algorithms utilize linear solvers internally. The nonlinear
solver utilized in the decision-theoretic MPCC internally utilizes the MUMPS
solver, as mentioned in Section 7.1. Several benchmarks suggest that other
linear solvers such as MA27, MA57 [HSL13] show better performance for the
problem size of the planning problem. However, these solvers did not perform
considerably better for motion planning applications.

Further runtime evaluations for optimization-based planning have shown that
typically only 10 %–15 % of the solution time is spent on calculating derivatives.
Another analysis reveals that the difference in runtimes of using Runge-Kutta
method and Euler’s method for colocation are insignificant. In another bench-
mark, comparing the runtimes of kinematic vehicle models and linearized
kinematic models has shown that the linearized model does not produce any
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runtime improvement while using a nonlinear solver. Contrary to the expec-
tations, such a linearization introduces the risk of worsening the convergence
for cases where the optimal solution is away from the initialization, i.e. point
of linearization. The use of a low power CPU, specifically the 1.80Ghz Intel
Core i7-8550U from 2017, results in solver times being roughly doubled. Even
though the current runtimes may be regarded as high, with hardware-focused
library compilation and code optimization, faster runtimes can be achieved.

Planning with the POMDP Framework

Planning with the POMDP formulation has several advantages over MPC-based
approaches. First, sampling-based solvers are anytime capable. Although
a good belief initialization can improve the quality of the solution, it is not
essential in guaranteeing convergence, unlike optimization-based approaches.

Sampling-based POMDPs are rich in their representational power and allow
flexible modeling. They incorporate prediction in planning and can accurately
predict the reaction of other agents against each other during planning. Even
though the uncertainties are modeled such that the resulting belief space is
Gaussian, they can be utilized in arbitrary representations. Sampling-based
POMDPs can additionally leverage heuristics from deep neural networks,
making them fast and accurate. They can be mixed and extended with other
approaches and have therefore an enormous improvement potential.

Compared with optimization-based approaches, they are more generalizable
and maintain their robustness in a variety of driving scenarios, as they do not
require continuous differentiability and allow higher flexibility in modeling.
Due to the nature of sampling, even in the case of implementation errors, they
can operate with higher reliability and are less error-prone.

The advantages of utilizing the POMDP framework comes at the cost of
high computational complexity. Even their sampling-based solvers have high
runtimes. There are two alternative ways to improve their speed. The first option
is to parallelize the MCTS. A recent work follows this option and demonstrates
promising results in continuous domains [KHZ20]. The other option is to
utilize MABs that exploit the continuity of the reward function, as done in
this work.
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For exploiting the continuity of the reward function, the POSLB bandit is
utilized in this work. There are other MABs that assume Lipschitz continuous
returns among the bandit arms [KSU08; Bub+08; MM10; BSY11; Sli19, p. 39].
However, these bandits choose a new arm from continuous action space in every
round and never sample an action twice. Therefore, these bandits cannot be
utilized for building a belief tree.

Learning rate and the backup operator play an important role in the speed of
POMDP solvers. Although many solvers utilize a learning rate U = 1, a rate
depending on the current number of the sampling episode is chosen in this
work, as indicated in Section 6.3.3. This choice results in faster convergence,
as proposed by [EM03]. Another modification on POMCP is the backup
operator. Although robust backup has theoretical guarantees, the maximum
backup is more intuitive and shows better convergence properties. These results
are also confirmed by another recent publication that employs POMDPs for
planning [Bey+21].

The evaluations and remarks on the strengths and weaknesses of both proposed
approaches are briefly summarized in Table 7.1.

Method Speed Flexibility Extendability Robustness Error-Safe

Decision-theoretic MPCC +++ + - ++ -
Sampling-based POMDP + +++ +++ ++ ++

Table 7.1: Comparison of the two planning methods proposed.
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8 Conclusion & Future Directions

Accumulating uncertainties due to imperfect perception and partial observability
frequently result in defensive motion plans in autonomous driving. Planning
safe, but not overcautious motion is a topic of active research, which has been
addressed in many works. This work develops two novel motion planners that
can compensate the deficiencies of perception and prediction, while remaining
safe even in the worst-case evolution of a driving scenario. Furthermore,
the second planner executes dedicated actions that maximize the vehicle’s
knowledge about its environment.

This work first analyzed the source and the implications of uncertainties in
autonomous driving. In order to tackle partial observability, it delved into
their mathematical modeling and the notion of information. Subsequently, it
discussed the properties of an optimal motion for driving while interacting
with other agents and reviewed approaches that attempt to ensure safety. While
many works addressed different aspects of criticality assessment and safe
planning, this work studied safety in receding horizon planning. Based on
inevitable collision states, it developed a proactive, chance-constrained safe
motion planning approach that creates a direct link between decision making
and motion planning.

The introduced motion planning method, i.e. the decision-theoretic MPCC,
is capable of meeting all the aforementioned requirements except for active
information gathering. For planning motion that maximizes the agent’s knowl-
edge about the environment, the POMDP framework was inspected next. The
POMDP framework optimizes over a large sequence of actions and observations
at the cost of high computational complexity. Therefore, this work focused on
solvers that approximate the solution by sampling. After reviewing state-of-the-
art solver algorithms, a new POMDP solver was presented and used to solve
motion planning problems in the POMDP formulation.
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Planning with the POMDP formulation, due to the resulting computational
complexity, was limited to planning with a few actions. For this reason, previous
works presented them as behavior planning methods. Insights from model
predictive control motivated studying the reward structure of the model used
for planning with the POMDP formulation, which in turn revealed its Lipschitz
continuity. Multi-armed bandits that exploit this continuity in sampling were
proposed to improve their runtimes.

The model predictive control based motion planner was implemented by
utilizing open-source non-commercial numerical optimization libraries. The
first version of the planner relied on constrained nonlinear optimization with
penaltymethods. It showed excellent results in international autonomous driving
contests and ordinary urban driving scenarios. Convenient driving corridor
representations allowed the penalty function constrained solver to yield reliable
results even for lateral maneuvering in urban driving. For more complicated
motion planning tasks, the problem was solved with an interior-point nonlinear
optimization solver that is robust against poor initialization. The simulation
results from arbitrary real driving scenarios showed that uncertainty-aware,
risk sensitive proactive motion plans are especially advantageous where the
current environment information entails considerable amount of uncertainty.
The simulations were restricted to scenarios where all traffic participants are
vehicles, but the approach can be generalized for cyclists and pedestrians – if
the dynamic boundaries are defined accordingly.

Framing the motion planning problem as a decision process and solving it
with sampling-based POMDPs requires utilizing reward shaping to promote
information gathering actions. Reward shaping for active information gathering
in MCTS has been a unique contribution of this work. Motion planning with
active information gathering for autonomous driving is done in real-time when
a simple motion model is used. Utilizing Lipschitz continuity during sampling
in MCTS enables massive performance improvements especially for a high
number of actions, which is the default setting in motion planning.

Apart from the developments in motion planning, the close relationship of
prediction and planning led to the development of a sampling-based, and a
reachable set-based motion prediction algorithm. The reachable set-based
prediction library is utilized in the safe planning approach within the arbitration
framework of Bertha. Both planning approaches can also be employed within
this framework or any other behavior tree.
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Future Work

The contributions of this work create several directions for future work in
different categories. The first category is regarding planning with the MPC for-
mulation. As a fallback plan, i.e. Z-plan, full-braking maneuver is selected. An
alternative is to plan other types of maneuvers such as lane change or swerving.
However, these must be thoroughly inspected and carefully developed, as this
may end with an increased hazard due to imperfect environment perception.
Another possible direction is the utilized vehicle model. The nonlinear opti-
mization algorithm allows integration of more complex vehicle models, making
the planner especially suitable for fallback maneuver computation. Last but
not least, Dempster-Shafer theory can be utilized for weighting the individual
maneuver options against each other.

The second category of future work encompasses planning with the POMDP
framework. The POMDP modeling in this work does not consider a limited
visible field and the existence probabilities of other participants. However, the
state representation can easily be extended with such additional features. The
experiments evaluated active information gathering only to reveal maneuver
intentions of other participants. Another application is the visible field maxi-
mization for regions of interest. Even though this is an inferior problem that can
be solved using state-based rewards, it requires lateral offsetting from the center
of the driving corridor. A potential extension would utilize an appropriate
vehicle model to cover such actions.

In planning with the POMDP framework, actions and observations are sampled
fromGaussian distribution. Real applications enable defining an upper and lower
bound, resulting in a truncated Gaussian distribution. Utilization of specialized
sampling procedures for such distributions can improve the efficiency further.

Exploiting the Lipschitz continuity of rewards enables significant performance
improvements. A theoretical analysis on the validity of Lipschitz continuity
and the regret of utilizing Lipschitz bandits will make this approach more
sound. Recent works suggest that problems with information rewards also have
a Lipschitz continuous reward function [Feh+18]. A potential further work
includes inspecting the convergence of utilizing Lipschitz bandits for POMDPs
with belief-based rewards. Finally, the use of generative models for sampling in
conjunction weighted particle filtering is also a vital issue for future research.
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8 Conclusion & Future Directions

A major problem in planning is the identification of driving goals and behavior.
The parameter values quantifying them change continuously while driving. The
quality of motion from both MPC and POMDP planning frameworks strongly
depend on their accurate values. Thus, learning them significantly contributes
to the quality.

Realizing autonomous driving is an important milestone for increasing driving
safety and improving traffic flow efficiency. This work has made a significant
contribution to model-based motion planning for autonomous driving. Future
achievements in motion planning will strongly benefit from the developments
in machine learning, as goal definitions pose a multi-objective problem of infor-
mation gathering and utility maximization that can only be learned from driving
data. Integrating them into model-based approaches will make autonomous
driving robust and reliable.
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A Appendix

A.1 Appendix on Modeling Uncertain
Information

A.1.1 Truncated Gaussian Distribution

Density calculation of a truncated univariate Gaussian distribution (TUVG) is
done by limiting the density of its parent Gaussian distribution into a bounded
interval. The density of a TUVG k( ˇ̀, f̌, 0, 1) with ˇ̀, f̌ the mean and the
variance of its parent and 0 ≤ G ≤ 1 its probable interval, can be calculated as

k(G | ˇ̀, f̌, 0, 1) =


0 G < 0,

[ (q(b (G | ˇ̀, f̌))) 0 ≤ G ≤ 1,
0 1 < G.

(A.1)

b (G | `, f) = G−`
f

maps the parent Gaussian distribution to the standard
Gaussian distribution(0, 1). Since the density is bounded into the interval
[0, 1], the density obtained from q is multiplied with [ = I−1, where I is
a normalizing constant I = Φ (b (1 | ˇ̀, f̌)) −Φ (b (0 | ˇ̀, f̌)). Likewise, its
CDF is

Ψ(G | ˇ̀, f̌, 0, 1) =


0 G < 0,

[(Φ (b (G | ˇ̀, f̌)) −Φ (b (1 | ˇ̀, f̌))) 0 ≤ G ≤ 1,
1 1 < G.

(A.2)

The density calculations above transform the density of a TUVG to a scaled
and shifted Gaussian distribution (`, f). By slicing the resulting internal
distribution into intervals, it yields accurate results. The internal distribution
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serves as a rough approximation of the original TUVG, benefiting from the
features of a UVG distribution (see Figure A.1).
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Figure A.1: Truncated univariate Gaussian distribution with ˇ̀ = 0.00, f̌ = 1.00 bounded into the
interval −1.0 ≤ G ≤ 2.5. It is internally mapped into (0.27, 0.77) .

A.1.2 Further Information Measures

In information theory, information quantification that solely reflects the shape
of the distribution is often not sufficient. A measure reflecting difference in
both shape and shift between a target distribution % and a proposal distribution
& is frequently required. Such a measure must always return a non-negative
value and take zero only if % = & [Yeu12, p. 19]. The relative entropy, or the
Kullback-Leibler divergence (KLD), satisfies these requirements

�KL (% ‖ &) =
∑
G

%(G) log
%(G)
&(G) . (A.3)

This definition requires using the convention %(G) log
(
% (G)

0

)
= ∞ for continuity.

There are two things to underline on the use of KLD: First, �KL (% ‖ &) is not
symmetric in % and &, and second, it does not satisfy the triangle inequality.
Therefore, although KLD is a statistical distance measure, it is not a metric.

Information theory contains many further alternative measures for information
quantification. ℓ?-norms, such that ‖%(G)‖? with ? ∈ [1,∞) can be seen
as approximations of KLD where & B � [Ara13, p. 45]. In this way, the
non-negativity condition of KLD is satisfied for any distribution. Similarly, if
the probability distributions are inspected on a probability simplex, where each
point represents a probability distribution, the distribution with the maximal
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uncertainty corresponds to the center of that simplex. The distance of a point
to this center is called distance to the simplex center (DSC)

�DSC (%) = �W (%,�) (A.4)

and can be used as an information measure [Ara13, p. 47]. The distance �W to
the uniform distribution � can be calculated with the Bhattacharyya distance,
which measures the amount of overlap between two distributions, or an ℓ?-norm.
In case of an ℓ?-norm, as the probabilities at any point in a probability simplex
sum up to one, ? > 1 must be chosen.

A.2 Appendix on Mathematical Models

A.2.1 Intelligent Driver Model

The Intelligent Driver Model (IDM) yields the acceleration of a vehicle as

0IDM = 0des + 0int, (A.5)

where the first term yields a comfortable acceleration to desired speed

0des = 0
+

(
1 −

(
E

Edes

)4
)
,

and the second term accounts for interaction in presence of other vehicles

0int = −0+
( Bint
B

)2
,

with

Bint = Bmin + E Chw +
(
E Erel

2
√
0+0−cft

)
.

The parameters are: B distance between vehicles in the Frenet frame, Bmin
stand-still distance, Chw time headway, E current speed of the vehicle, Edes
desired speed of the vehicle, Erel relative speed of the vehicle to its leader, 0−cft
comfortable deceleration, and 0+ maximum acceleration. The values of these
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parameters vary for different driver profiles and can be estimated as proposed
in [HSD17]. Their commonly used values are presented in [Lie+12]. The
interaction term takes only negative values, meaning that the vehicle can interact
only by braking.

A.2.2 Runge-Kutta Integration

k1 = f (x (8) , a (8) ) (A.6a)

k2 = f (x (8) + Cs
2
k1, a

(8) ) (A.6b)

k3 = f (x (8) + Cs
2
k2, a

(8) ) (A.6c)

k4 = f (x (8) + Cs k1, a
(8) ) (A.6d)

x (8+1) = x (8) + Cs
6
(k1 + 2k2 + 2k3 + k4) (A.6e)

A.2.3 A General and Adaptive Loss Function

d(G, U, 2) =



1
2 (G/2)

2 ifU = 2
log

(
1
2 (G/2)

2 + 1
)

ifU = 0

1 − exp
(
− 1

2 (G/2)
2
)

ifU = −∞
|U − 2|
U
−

((
(G/2)2
|U − 2| + 1

)U/2
− 1

)
otherwise

(A.7)

md

mG
(G, U, 2) =



G

22 ifU = 2
2G

G2 + 222 ifU = 0
G

22 exp
(
− 1

2 (G/2)
2
)

ifU = −∞
G

22

(
(G/2)2
|U − 2| + 1

) (U/2−1)
otherwise

(A.8)

For additional information, please refer to [Bar19].
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A.3 Additional Results

A.3.1 Active Information Gathering
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Figure A.2: Before the ego vehicle realizes it has misidentified the route intention; after 1.1 s.
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Figure A.3: Results after 2.1 s for Edes, ego = 6.55 m/s and Edes, : = 5.0 m/s.
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Figure A.4: Results after 2.1 s for Edes, ego = 4.0 m/s and Edes, : = 10.0 m/s.
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Figure A.5: Harsh braking after identifying the correct route intention for conflicting Edes values,
i.e. Edes, ego = 6.55 m/s and Edes, : = 10.0 m/s; after 1.3 s.
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Figure A.6: Evolution of the predicted route probability and the speed profile over time while using
geometric features for route probability identification. Particle set size is < = 10 and
the behavior model of the vehicle is not reinforced. The blue line ( ) represents the
results for the case with active information gathering, and the green line ( ) is for
the case without information rewards. The dotted line ( ) in the route probability
shows the probability of driving straight. The red dashed line ( ) in the speed
profile shows the desired travel speed.
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Figure A.7: Evolution of the predicted route probability and the speed profile over time for a particle
set size < = 4. Geometric features are not used for route probability identification and
the behavior model of the vehicle is not reinforced.
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A.3.2 Lipschitz Continuity of Rewards
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Figure A.8: Mean absolute error for 17 actions in intersection scenarios.

A.4 Parameter Values Used in the Evaluations

Scenario Parameters

The scenario used in Section 7.2.1 corresponds to the DR_DEU_Roundabout_OF
scenario of InteractionDataset, track file number 0, timestamp 214000. The
ego vehicle is the ID 95.

The parameters of the T-intersection scenario used in Section 7.2.2 for active
information gathering evaluations are presented in Table A.1.

Vehicle Distance to Merge Point Speed

ego 15.97 6.55
other 22.37 8.33

Table A.1: Parameters of the T-intersection scenario used in active information gathering evalua-
tions.

The parameters that define the criticality of the scenarios in the Lipschitz
continuity evaluations are presented in Table A.2.
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Scenario Vehicle Time-to-Intersection (s)

SColl
ego 2.11
vehicle2 2.71

ego 5.33 5.14 6.81
SI-Lo vehicle1 3.99 4.20 4.78

vehicle2 6.35 6.14 7.89 7.73

ego 2.66 2.28 5.63
SI-Hi vehicle1 2.78 3.23 4.52

vehicle2 3.42 3.05 6.21 5.92

Table A.2: Times until the merge point (MP) for vehicles in the Lipschitz continuity evaluations.

Solver Parameters

Parameters of the IPFT-based motion planner are presented in Tables A.3
and A.4.

Parameter Value Unit

< 10 -
W 0.95 -
2 4000 -
3max 10 -

Table A.3: Parameters of the IPFT used in Sections 7.2.1 and 7.2.2.
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Parameter Value Unit

Cs 0.5 s

Bmin 2 m
Ch 1.0 s
0+ 0.73 m/s2

0−cft −1.67 m/s2

0− −7.0 m/s2

fB,o0 0.1 m
fE,o0 0.2 m/s

fIDM 1.5 m/s2

fG,o0 1.0 m
fH,o0 1.0 m
fE,o0 0.5 m/s

fG,o0 1.0 m
fH,o0 1.0 m
fE,o0 0.5 m/s
fG,o:

4.0 m
fH,o:

4.0 m
fE,o:

2.0 m/s
fk,o:

5.0 °

fPF
B,o:

1.0 m
fPF
B,o0

4.0 m
fPF
3

0.75 m
fPF
Δk

10.0 °
fPF

E 3.0 m/s
fPF

EA
3.0 m/s

Fcoll −10 000 -
FE −100 -
F0,lat −50 -

Table A.4: Scenario parameters used in Sections 7.2.1 and 7.2.2.

The solver parameters of the POMCP in the Lipschitz continuity evaluations
are presented in Table A.5.
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Parameter Value Unit

Cs 1 s
Bgoal 15 m
Bveh 2 m

Bmin 2 m
Ch 1.5 s
0+ 0.73 m/s2

0−cft −1.67 m/s2

f0 3 m/s2

fo,B 0.2 m
fo,E 1.0 m/s
3thresh 1 m

Fcoll −10 000 -
FE −100 -
F9,lon −100 -
F0,lat −100 -

l 0.77 -
W 0.95 -
2 10 000 -
ℒ 2000 s2/m
3max 20 -

Table A.5: Parameters used in the Lipschitz continuity evaluations. The effect of fB and fE are
covered with f0 and the effect of fIDM is covered with fo,B and fo,E .

|A | Straight Curve SColl SI-Lo SI-Hi

5 1247 1847 1003 1241 573
9 1271 2157 1981 1345 728

17 1336 2280 2742 1453 787
33 1370 2246 1260 1432 1033

Table A.6: Estimated Lipschitz constantℒ [s2/m].

|A | Straight Curve SColl SI-Lo SI-Hi

5 −0.30 −2788.93 −4033.37 −3557.44 −6963.64
9 −12.52 −2695.64 −3950.14 −3283.98 −6639.67

17 −6.63 −2676.03 −3923.30 −3230.04 −6286.98
33 −2.03 −2726.60 −3908.22 −3249.59 −5927.48

Table A.7: Optimal &-value.
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