KIT | KIT-Bibliothek | Impressum | Datenschutz

Multimodal Detection of Unknown Objects on Roads for Autonomous Driving

Bogdoll, Daniel 1; Eisen, Enrico; Nitsche, Maximilian; Scheib, Christin; Zollner, J. Marius 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Tremendous progress in deep learning over the last years has led towards a future with autonomous vehicles on our roads. Nevertheless, the performance of their perception systems is strongly dependent on the quality of the utilized training data. As these usually only cover a fraction of all object classes an autonomous driving system will face, such systems struggle with handling the unexpected. In order to safely operate on public roads, the identification of objects from unknown classes remains a crucial task. In this paper, we propose a novel pipeline to detect unknown objects. Instead of focusing on a single sensor modality, we make use of lidar and camera data by combining state-of-the art detection models in a sequential manner. We evaluate our approach on the Waymo Open Perception Dataset and point out current research gaps in anomaly detection.


Volltext §
DOI: 10.5445/IR/1000153664
Veröffentlicht am 09.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000153664
Umfang 8 S.
Vorab online veröffentlicht am 03.05.2022
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page