KIT | KIT-Bibliothek | Impressum | Datenschutz

Gas-assisted blade-coating of organic semiconductors: molecular assembly, device fabrication and complex thin-film structuring

Mejri, Hadhemi 1; Haidisch, Anika 1; Krebsbach, Peter 1; Seiberlich, Mervin ORCID iD icon 1; Hernandez-Sosa, Gerardo ORCID iD icon 1,2; Perevedentsev, Aleksandr 1
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices. Here we present a versatile approach to achieving performance parity for spin- and blade-coated devices using in situ gas-assisted drying enabled by a modular 3D-printed attachment. This is illustrated for organic photodetectors (OPDs) featuring bulk heterojunction active layers comprising blends of P3HT and PM6 polymer donors with the nonfullerene acceptor ITIC. Compared to conventionally blade-coated devices, mild drying gas pressures of 0.5–2 bar yield up to a 10-fold enhancement of specific detectivity by maximising external quantum efficiency and suppressing dark-current. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000153682
Veröffentlicht am 09.12.2022
Originalveröffentlichung
DOI: 10.1039/d2nr05947a
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 08.12.2022
Sprache Englisch
Identifikator ISSN: 2040-3364, 2040-3372
KITopen-ID: 1000153682
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Erschienen in Nanoscale
Verlag Royal Society of Chemistry (RSC)
Band 14
Heft 47
Seiten 17743–17753
Vorab online veröffentlicht am 21.11.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page