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Abstract

We compute the nonsinglet Adler D-function and the coefficient function for Bjorken polarized sum 
rules SBjp at order O(α4

s ) in an extended QCD model with arbitrary number of fermion representations. 
The Crewther-Broadhurst-Kataev (CBK) relation in this order is confirmed.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Crewther-Broadhurst-Kataev (CBK) relation [1,2] demonstrates a non-trivial connection 
between two (at first sight seemingly unrelated) important physical quantities, namely the (non-
singlet) Adler D-function

D(L,a) = 1 + 3CF a +
∞∑
i=2

di(L)ai(μ2) (1)

and the (non-singlet) coefficient function for the Bjorken polarized sum rules

SBjp(L,a) = 1 − 3CF a +
∞∑
i=2

ci(L)ai(μ2). (2)
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Here L = ln μ2

Q2 , μ is the normalization scale in MS-scheme [3,4] (which we will assume 

throughout the paper) and a = g2
s

16π2 = αs

4π
(precise definitions for both functions and color factors 

involved will be given in Sections 2.2, 2.3 and 2.1 correspondingly).
The functions (1) and (2) are very well studied in perturbative QCD. Due to works [5–14] they 

are known to impressively high order α4
s . The CBK relation connecting both functions reads1:

D(a)CBjp(a) = 1 + β(a)K(a), K(a) = a K1 + a2 K2 + a3 K3 + . . . (3)

Here

β(a) = μ2 d

dμ2 lna(μ) =
∑
i≥1

βia
i (4)

is the QCD β-function describing the running of the coupling constant a with respect to a change 
of the normalization scale μ and with its first term

β1 = −11

3
CA + 4

3
TF nf

being responsible for asymptotic freedom of QCD. The term proportional the β-function respon-
sible for deviation from the limit of exact conformal invariance, with the deviation starting in 
order α2

s , and was suggested [2] on the basis of O(α3
s ) calculations of D(a) [8,15] and CBjp(a)

[16]. The original relation without this term was first proposed in [1].
The fact that the CBK relation is valid up to maximally known order in αs is highly non-trivial. 

Indeed, a simple counting of available color factors shows that fulfillment of (3) sets as many as 
6 constraints at the sum d4 + c4 and all of them are met identically. At lower orders the number 
of constraints is 2 and 3 for the sums d2 + c2 and d3 + c3 correspondingly (see discussions in 
[2,14] and Section 4).

Some formal arguments in favor of (3) were suggested in [17,18]. Unfortunately, these con-
siderations can not replace a real proof. Such a proof should demonstrate at least how it works in 
detail and in which renormalization schemes it holds.2 Finally, it would be highly desirable if the 
future proof would clarify a way of computing the factor K(a) directly that is without previous 
calculations of D(a) and CBjp(a).

In the present work we use an extended QCD (eQCD) model with arbitrary number of fermion 
representations in order to subject the CBK relation to one more non-trivial test. We compute 
both components D(a) and CBjp(a) within the extended QCD to order α4

s and demonstrate 
the validity of the resulting CBK relation. Let us stress that the knowledge of both D(a) and 
CBjp(a) in QCD with multiple fermion representations provides important ingredients to obtain 
the so-called β-expansion representation [20–23] for observables.

This representation allows one to apply the extended BLM (eBLM) approach to optimize 
the PT series [20,23,24]. Note that there exists a method known as the Principle of Maximum 
Conformality (PMC) [25–28], which suggests a systematic and self-consistent way to solve the 
scale-setting problem. However, in the PMC approach content of β-expansion in general differ 
from those in eBLM. Both of these approaches suggest the ways to resume the non-conformal 
parts of various QCD observables into the scale of the coupling for any optimization task. But 
the results of optimization are different partly due to the different β-expansions.

1 We omit direct indication on L-dependence in places where it can not lead to misunderstandings.
2 It has been shown in [19] that the CBK relation ceases to take place in the ’t Hooft MS-based scheme.
2
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Any detailed comparison of both methods is certainly beyond the scope of this paper. We refer 
the reader for a thorough discussion of both approaches to [29] as well as to a detailed review 
[30].

2. Preliminaries

2.1. QCDe Lagrangian and notations for color factors

The Lagrangian of a (massless) QCD-like model extended to include several fermion repre-
sentations of the gauge group (to be referred as QCDe) is given by (our notations essentially 
follow those of [31])

LQCD = −1

4
Ga

μνG
a μν − 1

2λ

(
∂μAa μ

)2 + ∂μc̄a∂μca + gsf
abc ∂μc̄aAbμcc

+
Nrep∑
r=1

nf,r∑
q=1

{
i

2
ψ̄q,r

←→
/∂ ψq,r + gsψ̄q,r /A

a
T a,rψq,r

}
, (5)

with

Ga
μν = ∂μAa

ν − ∂νA
a
μ + gsf

abcAb
μAc

ν,
[
T a,r , T b,r

]
= if abcT c,r , (6)

and f abc being the structure constants of the gauge group. The index r specifies the fermion 
representation and the index q the fermion flavor, ψq,r is the corresponding fermion field. The 
number of fermion flavors in representation r is nf,r for any of the Nrep fermion representations.

For every fermion representation r we have two quadratic Casimir operators CF,r and TF,r

δijCF,r = T
a,r
ik T

a,r
kj , TF,rδ

ab = Tr
(
T a,rT b,r

)
= T

a,r
ij T

b,r
j i . (7)

The dimension of r will be denoted as dF,r . As for gluon (adjoint) representation we use the 
standard notation CA and NA for the corresponding quadratic Casimir operator and dimension 
of the gluon representation. The standard QCD corresponds to the case of Nrep = 1. If Nrep > 1
we will consider the first fermion representation as a special one in what follows with

CF,1 ≡ CF , dF,1 ≡ dF , nf,1 ≡ nf , TF,1 ≡ TF and T a,1 ≡ T a.

Let us stress that all external operators (like the EM current) which appear later are assumed to 
involve only fermion fields ψq,1 which we will refer also as ψq .

In addition to quadratic Casimir operators we need also quartic ones which are expressed in 
terms of symmetric tensors (see [32] for details)

d
a1a2a3a4
R = 1

n!
∑

perm π

Tr
{
T aπ(1),RT aπ(2),RT aπ(3),RT aπ(4),R

}
, (8)

where R can be any fermion representation, R = F, r (r = 1 . . .Nrep) or the adjoint representa-
tion, R = A where T a,A

bc = −i f abc .
The following quartic Casimir operators appear in our results at order α4

s :

d̃FA = dabcd
F

dabcd
A

dF

, d̃FF,r = dabcd
F

dabcd
F,r

dF

, (9)

with dabcd
F

≡ dabcd
F,1 and d̃FF ≡ dabcd

F dabcd
F,1 .
dF

3
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Fig. 1. Examples of diagrams contributing to the coefficient function C
Bjp
NS

at three and four loops.

2.2. Adler function in QCDe

We start with the (non-singlet) polarization function 
(L, a) of the vector current jα =
ψqγαψq and defined as

(−gαβq2 + qαqβ)
NS(L,a) = i

∫
d4x eiq·x〈0|Tjα(x)jβ(0)|0〉NS, (10)

where Q2 = −q2, L = ln μ2

Q2 . It is understood that the rhs of (10) includes only non-singlet 
diagrams, that is those with both external currents belonging to one and the same quark loop. 
The Adler function is defined as (the normalization factor below is conventionally fixed by the 
requirement that in Born approximation the Adler function starts from one) [33]

dF nf D(L,as) = −12π2 Q2 d

dQ2 
NS(L,a). (11)

It is worthwhile to note that the Adler function unlike the polarization operator (10) is scale 
invariant due to the derivative in Q2 which kills a quadratic UV divergence of (10) around inte-
gration region x ≈ 0.

2.3. Bjorken function in QCDe

The most convenient for us definition of the coefficient function SBjp comes from the follow-
ing Operator Product Expansion (OPE):∫

T [jα(x) jβ(0)] eiqx dx|q2→−∞ ≈ qσ

q2 C
Bjp

NS (L,a) εαβρσ Aρ(0) (12)

+ . . . (singlet and other terms),

where Aρ = ψq γργ5 ψq is the axial vector current. The function CBjp
NS is by definition con-

tributed by non-singlet diagrams only (see Fig. 1). In what follows we will not write index NS
explicitly. Singlet contributions to OPE (12) were discussed in [34]. There is a technical subtlety 
in definition of the γ5 matrix appearing in the definition of the axial current. Following works 
[16,14] we will use so-called Larin’s approach [35]. It means that renormalized axial current is 
defined as

Aρ ≡ zNS
A

1
εαβσρ [ψqγ[αβσ ]ψq ]MS, γ[αβσ ] ≡ 1

(γαγβγσ − γσ γβγα), (13)

6 2
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Table 1
Proliferation of the nf -dependent color factors in the QCDe-
model.

QCD QCDe

α2
s

nf Tf nT

α3
s

C2
F

nf Tf C2
F

nT, Cf nTC1
CF n2

f
T 2
f

CF (nT)2

CF CA nf Tf CF CA nT

α4
s

C3
F

nf Tf C3
F

nT, C2
f

nTC1, Cf nTC2

C2
F

n2
f
T 2
f

CF (nT)2,Cf nTC1

C2
F

CA nf Tf C2
F

CA nT,CF CA nTC1
CF n3

f
T 3
f

CF (nT)3

CF CAn2
f
T 2
f

CF CA (nT)2

CF C2
A

nf Tf CF C2
A

(nT)

nf d̃FF

∑
r

nf,r d̃FF,r

where [ ψqγ[αβσ ]ψq ]MS stands for the MS-renormalized current. The (finite) factor zNS
A is chosen 

in such a way to effectively restore the anticommutativity of γ5 (see corresponding discussion in 
[35,36]).

2.4. Color factors

For future reference let us describe color factors which appear in all three components of the 
CBK relation. First, we note an obvious fact that one and the same collection of color factors may 
appear in dn, cn. Second, due to the prefactor β(a) in (3), the same set of color factors describes 
coefficient Kn+1. This is true for both QCD and QCDe cases [14]. Another important fact is that 
transition from QCD to QCDe does touch only nf -dependent color factors.3 The corresponding 
modifications are shown in Table 1. Here we use the following notations:

nT ≡
∑

i

nf,iTF,i , nTC1 ≡
∑

i

nf,iTF,iCF,i, nTC2 ≡
∑

i

nf,iTF,iC
2
F,i

. (14)

Note that if a color structure in the left column of Table 1 does not proliferate then the corre-
sponding contributions should be identical in QCD and QCDe results.

In order to transform a QCDe result to the corresponding one in the standard QCD one should 
make the following replacements:

nT → nf TF , nTC1 → nf TF CF ,

nTC2 → nf TF C2
F ,

∑
r

nf,r d̃FF,r → nf d̃FF . (15)

3 This means that contributions proportional to nf -independent color factors are identical in both cases.
5
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An inspection of Table 1 clearly shows that in the case of the QCDe-model the number of extra 
constraints imposed by the CBK relation on the combinations d3 + c3 and d4 + c4 is increased 
from 3 and 6 to 4 and 9 correspondingly.

3. Calculation and results

3.1. Results for D and SBjp

We have computed the functions D and SBjp to order O(α4
s ) using essentially the same meth-

ods as in [14] (for a short review see [37]). All momentum diagrams have been generated with 
QGRAF [38] and reduced to master integrals (well known from [39,40]) with the help of the 
1/D expansion [41,42].

For calculation of color factors we have employed a generalization of the FORM [43] package 
COLOR [32] developed by M. Zoller [31]. Below we present our results for the Adler fuction 
and the coefficient function SBjp as defined by (1), (12). Note that we set μ2 = Q2; the full 
dependence on μ can be easily restored by expressing a(Q2) by a(μ2) with the help of the 
standard RG evolution equation for a (the β-function for QCDe is known at four loops from 
[31]).

d1 = 3CF , (16)

d2 = −3

2
C2

F
+ CF CA

(
123

2
− 44ζ3

)
− 2CF(nT)(11 − 8ζ3), (17)

d3 = −69

2
C3

F +

C2
F

[
CA (−127 − 572ζ3 + 880ζ5) + (nT)(72 + 208ζ3 − 320ζ5)

]
+

CF C2
A

(
90445

54
− 10948

9
ζ3 − 440

3
ζ5

)
+

CF CA(nT)

(
−31040

27
+ 7168

9
ζ3 + 160

3
ζ5

)
+

CF (nT)2
(

4832

27
− 1216

9
ζ3

)
+ CF (nTC1)(−101 + 96ζ3), (18)

d4 = C4
F

(
4157

8
+ 96ζ3

)
+

C3
F

[
CA(−2024 − 278ζ3 + 18040ζ5 − 18480ζ7)

−nT (−298 + 56ζ3 + 6560ζ5 − 6720ζ7)
]
+

C2
F

[
C2

A

(
−592141

72
− 87850

3
ζ3 + 104080

3
ζ5 + 9240ζ7

)
+

CA(nT)

(
67925

9
+ 61912

3
ζ3 − 83680

3
ζ5 − 3360ζ7

)
+

(nT)2
(

−13466 − 10240
ζ3 + 16000

ζ5

)
+ nTC1(251 + 576ζ3 − 960ζ5)

]
+

9 3 3

6
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CF

[
C3

A

(
52207039

972
− 912446

27
ζ3 − 155990

9
ζ5 + 4840ζ 2

3 − 1540ζ7

)

C2
A
(nT)

(
−4379861

81
+ 275488

9
ζ3 + 150440

9
ζ5 − 1408ζ 2

3 + 560ζ7

)
+

CA(nT)2
(

1363372

81
− 83624

9
ζ3 − 43520

9
ζ5 − 128ζ 2

3

)
+

CA(nTC1)

(
−375193

54
+ 7792ζ3 + 400ζ5 − 2112ζ 2

3

)
+

(nT)3
(

−392384

243
+ 25984

27
ζ3 + 1280

3
ζ5

)
+

(nT)(nTC1)

(
63250

27
− 2784ζ3 + 768ζ 2

3

)
+

nTC2
(

355

3
+ 272ζ3 − 480ζ5

)]
−

16

[∑
r

nf,r d̃FF,r · (13 + 16ζ3 − 40ζ5) + d̃FA · (−3 + 4ζ3 + 20ζ5)

]
. (19)

The results for ck of the Bjorken SR in QCDe,

c1 = −3CF , (20)

c2 = 21

2
C2

F
− 23CACF + 8CF(nT), (21)

c3 = −3

2
C3

F
+ C2

F

[
CA

(
1241

9
− 176

3
ζ3

)
− nT

(
664

9
− 64

3
ζ3

)]
+

CF C2
A

(
−10874

27
+ 440

3
ζ5

)
+

CF CA(nT)

(
7070

27
+ 48ζ3 − 160

3
ζ5

)
−

CF (nT)2 920

27
+ CF (nTC1)(59 − 48ζ3), (22)

c4 = −C4
F

(
4823

8
+ 96ζ3

)
+ (23)

C3
F

[
−CA

(
3707

18
+ 7768

3
ζ3 − 16720

3
ζ5

)
+

nT
(

5912

9
+ 3296

3
ζ3 − 6080

3
ζ5

)]
+

C2
F

[
C2

A

(
1071641

216
+ 25456

9
ζ3 − 22000

9
ζ5 − 6160ζ7

)
−

CA(nT)

(
106081

27
+ 9104

9
ζ3 − 8000

9
ζ5 − 2240ζ7

)
+

(nT)2
(

16114 − 512
ζ3

)
− nTC1

(
1399 − 400ζ3

)]
+

27 3 3

7
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CF

[
C3

A

(
−8004277

972
+ 4276

9
ζ3 + 25090

9
ζ5 − 968

3
ζ 2

3 + 1540ζ7

)
+

C2
A
(nT)

(
1238827

162
+ 236ζ3 − 14840

9
ζ5 + 704

3
ζ 2

3 − 560ζ7

)
−

CA(nT)2
(

165283

81
+ 688

9
ζ3 − 320

3
ζ5 + 128

3
ζ 2

3

)
+

CA(nTC1)

(
124759

54
− 1280ζ3 − 400ζ5

)
+

38720

243
(nT)3 − (nT)(nTC1)

(
19294

27
− 480ζ3

)
−

nTC2
(

292

3
+ 296ζ3 − 480ζ5

)]
+

16

[∑
r

nf,r d̃FF,r · (13 + 16ζ3 − 40ζ5) + d̃FA · (−3 + 4ζ3 + 20ζ5)

]
.

4. CBK relation in QCDe

Using the color structures of d2 and d3 as templates we find that the CBK relation (3) is indeed 
fulfilled identically with the following values for the coefficients Ki:

K1 = CF

(
−21

2
+ 12 ζ3

)
, (24)

K2 = C2
F

(
397

6
+ 136 ζ3 − 240 ζ5

)
+ CF CA

(
−629

2
+ 884

3
ζ3

)

+(CF nT)

(
326

3
− 304

3
ζ3

)
, (25)

K3 = C3
F

(
2471

12
+ 488 ζ3 − 5720 ζ5 + 5040 ζ7

)

+C2
F
CA

(
99757

36
+ 16570

3
ζ3 − 24880

3
ζ5 − 840 ζ7

)

+CF C2
A

(
−406043

36
+ 72028

9
ζ3 − 1232 ζ 2

3 + 11900

3
ζ5

)

+CF CA(nT)

(
67520

9
− 40336

9
ζ3 − 8000

3
ζ5 − 128 ζ 2

3

)

+CF (nT)2
(

−9824

9
+ 6496

9
ζ3 + 320 ζ5

)

+C2
F (nT)

(
−11573

9
− 2288 ζ3 + 4000 ζ5

)

+CF (nTC1)

(
1713 − 1380 ζ3 + 576 ζ 2

3

)
. (26)
2

8
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As expected from Table 1 and relations (15) and (15) coefficient K2 in QCD is essentially 
identical to the one in QCD (that is after identification nT with nf Tf ). Coefficient K3 in QCDe 
is different from the case of QCD only by 2 last terms. All constraints imposed by the CBK 
relation are fulfilled.

5. Conclusion

We have computed the nonsinglet Adler D-function and the coefficient function for Bjorken 
polarized sum rules SBjp at order O(α4) in the extended QCD model. The CBK relation is 
confirmed.

These results have been extensively used for construction and analyzing explicit expressions 
for the elements of the {β}-expansion for the nonsinglet Adler D-function and Bjorken polarized 
sum rules SBjp in the N4LO and higher orders in [44].

They may be also useful for renormalization group analysis of the D and SBjp functions in 
large-Nc and large-Nf limits [45,46].

For readers’s convenience all our results are collected in an ancillary file.
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