KIT | KIT-Bibliothek | Impressum | Datenschutz

Robust Parameter Estimation and Tracking through Lyapunov-based Reinforcement Learning

Rudolf, Thomas 1; Ransiek, Joshua 2; Schwab, Stefan 1; Hohmann, Sören 1
1 Institut für Regelungs- und Steuerungssysteme (IRS), Karlsruher Institut für Technologie (KIT)
2 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

This work presents an approach for parameter estimation of nonlinear systems by means of robust maximum entropy offline reinforcement learning (RL). The identification of parameter variant systems is a challenging problem in industrial applications. We address the parameter estimation on disturbed measurements with an actor-critic RL agent that is extended by a Lyapunov neural network. Accordingly, a robust soft actor-critic algorithm (RSAC) is applied to the parametrization problem. The policy is learned on test trajectories and can be applied to identify nonlinear system parameter maps for comparable system dynamics across an operating range. In a simulative study, the performance of the proposed concept is shown for a permanent magnet synchronous machine model in the d/q-frame formulation with current dependent and nonlinear flux linkages. The trained RL agent is evaluated on a different nonlinear machine parameter set under noisy measurements. The results indicate applicability to real-world tasks such as system parameter tracking.


Originalveröffentlichung
DOI: 10.1109/IECON49645.2022.9968893
Scopus
Zitationen: 3
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-1-6654-8025-3
ISSN: 2577-1647
KITopen-ID: 1000153697
Erschienen in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
Veranstaltung 48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022), Brüssel, Belgien, 17.10.2022 – 20.10.2022
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1-6
Serie Proceedings of the Annual Conference of the IEEE Industrial Electronics Society
Vorab online veröffentlicht am 09.12.2022
Schlagwörter Electric machines, Industrial electronics, Parameter estimation, Parameter varying systems, System dynamics, Neural networks, Reinforcement learning, Parameter tracking
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page