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Physico-chemical continuum battery models are typically para-
meterized by manual fits, relying on the individual expertise of
researchers. In this article, we introduce a computer algorithm
that directly utilizes the experience of battery researchers to
extract information from experimental data reproducibly. We
extend Bayesian Optimization (BOLFI) with Expectation Prop-
agation (EP) to create a black-box optimizer suited for modular
continuum battery models. Standard approaches compare the
experimental data in its raw entirety to the model simulations.

By dividing the data into physics-based features, our data-
driven approach uses orders of magnitude less simulations. For
validation, we process full-cell GITT measurements to character-
ize the diffusivities of both electrodes non-destructively. Our
algorithm enables experimentators and theoreticians to inves-
tigate, verify, and record their insights. We intend this algorithm
to be a tool for the accessible evaluation of experimental
databases.

Introduction

Batteries are essential for the decarbonization of heavy industry
and electricity supply. With their high specific energy density,
Li-ion batteries are crucial for efficiently electrifying personal
transport, freight transport, and aviation. These applications
require materials with optimal energy density, efficiency, and
safety.

Theoretical electrochemists use physics-based continuum
battery models[1] to aid in the search for optimal materials.
Physics-based models can predict battery operation and failure
modes from material properties rather than artificial fit
parameters.[2] The parameterization of these models is crucial to
verify and enhance them. Since the amount of data grows

faster than experts can analyze it, such parameterization should
be automated.

Parameterization of physics-based battery models may
reveal the material properties of a battery from non-destructive
measurements. Non-destructive measurements are essential
since specific material properties change during the lifetime of
a battery. Ageing effects include the formation of a Solid-
Electrolyte Interphace (SEI)[3] and Lithium plating.[4] Tracking
these mechanisms is imperative for modelling them.

Non-destructive measurements of physical battery parame-
ters usually require special experimental setups. Examples are
the Galvanostatic Intermittent Titration Technique (GITT) to
measure transport properties,[5] Staircase GITT to measure
reaction kinetics,[6] Electrochemical Impedance Spectroscopy
(EIS) to measure the electrode-electrolyte interfacial kinetics,[7]

or Nuclear Magnetic Resonance (NMR) to measure ionic trans-
port in the electrolyte.[8,9] Associated analytical formulas may
extract the physical properties of a battery. However, these
formulas seldomly adapt well to slight variations in operating
conditions, as demonstrated by Horner et al.[10] in the case of
GITT.

This traditional approach often requires some manual fine-
tuning. Recent efforts are devoted to developing automated
parameterization methods. Automated algorithms based on
physics-based models can cope with less handpicked input. In
this case, the task is to match the simulated model to the
experimental data. Usually, this will involve repeated model
evaluations by an optimization algorithm. Commonly used
optimizers for battery models are Least Squares,[11] Monte
Carlo,[12] and Genetic Algorithms.[13,14] All of these have a
stochastical element for efficiency but do not give error bars
for their parameterizations. Bayesian algorithms such as Kalman
Filters[15,16] and Markov-Chain Monte Carlo[17] simultaneously
provide the optimal parameters and their uncertainty. Another
method of adding error bars is to repeat the parameterization
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with artificial noise in the data that mimics the original noise.[18]

For best results, multiple approaches to parameterization have
to be combined.[19] Model substitution is a technique primarily
employed by data scientists to accelerate parameterization.
There, a Neural Network or other stochastical classifier gets
fitted to a physics-based model and is then used instead in an
optimizer.[20–23] Imaging techniques also give essential input
parameters for spatially resolved simulations and have to
concern themselves with the uncertainty propagation from
imaging to simulation outcome.[24–28] The State-of-Health
estimation of degradation modes may also benefit from a
physical understanding of the degradation processes
involved.[29]

Bayesian algorithms directly match model simulations to
experimental data and to the uncertainty in that data. The
considerable noise in battery characterization measurements is
thus well handled in Bayesian algorithms. To the best of our
knowledge, only two distinct types of Bayesian algorithms are
in use for the simultaneous estimation of parameters of
continuum battery models and their uncertainty. On the one
hand, there are Dual Kalman Filters (DKF),[15,16] which estimate
the state of the simulated battery over time and can also
optimize the model parameters. The high flexibility of DKF
estimations has a drawback: DKFs have to be tuned perfectly
and require an increased effort for integration with the model
simulation. Otherwise, their results are technically correct but
physically unreasonable. On the other hand, there are Markov-
Chain Monte Carlo (MCMC) algorithms,[17] which run tens of
thousands of simulations to find the one that fits the experi-
ment the best. Stability is thus enhanced at the cost of run-
time, so only simplified battery models that simulate in
milliseconds are currently used.[11,17]

Uncertainty Quantification (UQ), i. e., estimation of the
precision of parameter fits, is a significant advantage of
Bayesian algorithms. Predicting battery performance and failure
modes relies heavily on the accuracy of the model parameters.
However, the precision with which a parameter is identifiable
in a given measurement gets often neglected.[30–32] In other
words, it is then doubtful that the measurement uniquely
identifies the fit parameters. For example, Escalante et al.[33]

apply Bayesian inference to charge-discharge cycles and find
that they are barely suitable for battery model parameter-
ization. Especially in the presented case of a partial Differential-
Algebraic Equation model, parameterizing it is an “inverse
problem”. “Inverse problems” are ill-posed in that they admit a
family of infinitely many approximate solutions rather than one
unambiguous one, as “direct problems” do. With Bayesian
algorithms, these many solutions can be ranked systematically
by their assigned probabilities and parameter interdependen-
cies can be formally analyzed via their correlations. Still, it is
important to keep the number of estimated model parameters
small. Systematic model parameterizations[11,13,34,35] are crucial
for the reproducibility and transferability of the results. Further
theoretical and experimental developments may build upon
such reusable prior work.

This article introduces a new Bayesian algorithm, called EP-
BOLFI, for the automated estimation of model parameters by

applying it to continuum battery models. Our algorithm
requires one order of magnitude fewer simulations and is more
stable than the MCMC approach, requiring only a consumer-
grade computer. Our algorithm is independent of the battery
model and the experiment, so different battery models can be
examined quickly for identifiability from any measurement.
Battery modelling experts can input their expertise to improve
the parameterization by segmenting the data into “features”.
Other than taking segments of the raw data, using the
parameters of fitting functions on the data as features can
improve weighting of the information contained in the data.
While we deliberately do not automate the feature selection, it
is possible to automatically select from a set of candidate fitting
functions.[36]

We briefly show the battery model’s equations we apply
our algorithm to as an example in Subsection Physics-based
battery models. We give a short introduction to the Bayesian
idea in general in Subsection Introduction to the Bayesian
Principle (for Likelihood-Free Inference). A deeper understand-
ing of the two Bayesian algorithms we use follows, namely
Expectation Propagation[37] in Subsection Expectation Propaga-
tion and a specific Bayesian Optimization implementation[38] in
Subsection Bayesian Optimization (for Likelihood-Free Infer-
ence). We compare our algorithm with the state of the art in
Bayesian parameterization, namely MCMC, in Section Validation
of EP-BOLFI performance. The properties of the lithium-ion
battery we measured, the selection of the unknown parameters
we fit and the setup of the battery model we fit are in Section
Experimental. We then show the application of these algo-
rithms to full-cell GITT measurements in Section Results from
full-cell GITT data. A discussion of the results of our algorithm
follows in Section Discussions. We conclude this paper with our
findings in Section Conclusion.

Theory

Physics-based battery models

Physics-based continuum battery models consist of partial
Differential-Algebraic Equations (DAE). Solving partial DAEs on
a microstructure-resolving 3D grid requires high-performance
computers. Volume-averaged 3D model simulations still take a
couple of days.[39] Hence, volume-averaged 1D+1D models[1]

have been developed as a suitable compromise between
accuracy and speed.

In this paper we will use the Doyle-Fuller-Newman (DFN)
1D+1D model. There are further simplifications down to 1D,
especially the Single Particle Model (SPM) and the SPM with
electrolyte modification (SPMe).[40] However, we found that
these cannot accurately describe the GITT experiments which
represent the main example in this article.

1D+1D models[1] represent a battery on the cell level:
porous anode, porous separator, and porous cathode. Inside
this porous structure, the ionically conducting electrolyte is
modelled as a continuum. The electrodes are simplified to a
cluster of spherical, homogenous particles in which intercalated
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lithium diffuses. These representative particles are separated by
electrolyte and not in direct contact.

1D+1D models are still too costly to evaluate for
parameter identification schemes that require hundreds of
thousands of simulations. For example, Aitio et al.[17] instead
use an asymptotically simplified model, the Single-Particle
Model with electrolyte (SPMe).[40] The SPMe consists of ordinary
differential equations (ODE) only. These ODEs simulate in
milliseconds, but the SPMe gives inaccurate results at currents
over 1 C.

In Table 1 we summarize the common ancestor of all 1D+

1D models, the Doyle-Fuller-Newman (DFN) model,[41] in a non-
dimensionalized form laid out by Marquis et al.[40] Figure 1

visualizes the level of detail the DFN describes: all material
properties and dynamics are assumed to be homogenous
perpendicular to the line between the current collectors. Along
this line, the DFN describes lithium(-ion) concentrations and
potentials in the electrodes and the electrolyte. The DFN model
parameters are summarized in Table 5 and Table 6. The
boundary conditions and initial conditions that complete the
DAE system are stated in the Supporting Information Section
SI-I.

Introduction to the Bayesian Principle (for Likelihood-Free
Inference)

Updating prior knowledge given new evidence: this is the
central idea behind any Bayesian algorithm. The precondition-
ing of estimation problems with prior knowledge enables
Bayesian algorithms to require far fewer data points than
empirical approaches. Some standard textbooks for Bayesian
inference are References [42–44].

“Probability” in the Bayesian context describes the level of
uncertainty in the data rather than randomness. The result of
any Bayesian algorithm is a probability distribution providing a
range of estimates with their respective “probabilities” to be
the correct estimate. The estimated probability distribution also
includes information about how the estimated model parame-
ters influence the measurement individually and
collectively.[42–44]

Here we describe the basic Bayesian algorithm, which we
outline in Figure 2. Firstly, transform the prior knowledge about
the range of probable model parameters into a probability
distribution P parameterð Þ, called Prior or “belief”. Secondly,
take random samples from the Prior and calculate the so-called
Likelihood P datað jparameterÞ for each parameter sample. The
Likelihood represents the “Likelihood” for each model simu-
lation to match the experimental data. A simple approximation
for the Likelihood is a Gaussian distribution with the simu-
lation-experiment agreement as its expectation value and some
variance.[17] Finally, multiply the Likelihood with the Prior and
normalize the result into a probability distribution

Table 1. 1D+1D physics-based continuum battery model equations.

electrolyte cation flux ie;k ¼ e
bk
k k̂eke � @x�e;k þ 2ð1 � tþÞð1þ @lnðce* Þ lnðfþÞÞ@x lnðce;kÞ

� �
(1.1)

electrolyte cation source @x ie;k ¼ ise;kwith ise;s :¼ 0 (1.2)

electrolyte cation molar flux Ne;k ¼ � e
bk
k Deðce;kÞ@xce;k þ

Cetþ
ge

ie;k (1.3)

electrolyte cation diffusion @tce;k ¼ �
1
ek
@x

Ne;k

Ce
þ

1
geek

@x ie;k (1.4)

electrode electronic flux is;k ¼ � sk@x�s;k; (1.5)

electrode electronic source @x is;k ¼ � ise;k (1.6)

electrode lithium diffusion @tcs;k ¼ �
1
r2k
@rk � r

2
k
Ds;kðcs;k Þ

Ck
@rk cs;k

� �
(1.7)

interface reaction current density ise;k ¼
gk

Cr;k
ise;k;0 eþan;k zkhk � e� ap;kzkhkð Þ (1.8)

interface overpotential
hk ¼ �s;k � �e;k � Uk cs;k rk¼1

�
�

� �
�

ln ce;kð Þ
zk

(1.9)

Figure 1. Schema of a battery cell as represented by the DFN model in
Table 1. All particles at the same place in x-direction are averaged into one
representative particle.
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P parameterð jdataÞ, called Posterior. The third step is Equa-
tion (2), called Bayes’ Theorem. Bayes’ Theorem ensures that
the Posterior reasonably updates the prior belief about
probable parameter candidates,[42–44]

P parameterjdatað Þ / P datajparameterð Þ � P parameterð Þ: (2)

In the following, we abbreviate “parameter” as θ and “data”
as y, as shown in Figure 2. Bayes’ Theorem then reads as
PðqjyÞ / PðyjqÞ � P qð Þ.

The performance of a Bayesian algorithm crucially depends
on the quality of the Likelihood approximation. A rough
approximation of a Likelihood with a Gaussian[17] might lead to
slow convergence or wrong estimates. And in the case of 1D+

1D models without analytic solutions, a better Likelihood
cannot be derived. However, the approximation that the
Posterior is Gaussian is usually justified if the estimated
parameters are identifiable from the data, given the Central
Limit Theorem.[42–44]

Likelihood-Free Inference (LFI), also called Approximate
Bayesian Computation (ABC), is a class of algorithms that
approximate the unknown Likelihood from model evaluations.
The shape of the Likelihood in LFI algorithms results from a
Machine Learning procedure on simulated data samples, e.g.,
Cross-Validation.[45] Instead of a Likelihood, LFI algorithms only
need to know the discrepancy measure between a simulated
measurement and an experiment. The added flexibility enables
one to try out different models freely.[46]

In contrast to DKFs, the discrepancy measure in LFI
algorithms may encompass the whole experimental data rather
than only one point in a time series at a time. The difference to
MCMC methods such as the Metropolis-Hastings algorithm
used by Aitio et al.[17] is that the quality of parameter guesses is
judged by the approximated Likelihood rather than by the
Posterior. Using the Posterior like Metropolis-Hastings may
result in confirmation bias since it mixes the Prior into
evaluating the quality of parameter fits.

The following sections present the two LFI algorithms we
employ to minimize the required number of model simulations.
Despite the improved generality and accuracy of our approach,

we achieve a reduction rather than an increase in computa-
tional load compared to Metropolis-Hastings.

Expectation Propagation

Expectation Propagation (EP) was developed by Minka in his
PhD thesis[47] and later revisited in a paper.[48] EP has uses for
training neural networks,[49] object detection,[50] speech
recognition,[51] and signal processing.[52] We present Barthelmé
et al.’s adaptation of EP to Likelihood-Free Inference (LFI)[37]

using BOLFI as LFI algorithm (see Subsection Bayesian
Optimization (for Likelihood-Free Inference) for BOLFI). For
further reading, we recommend the general introduction to EP
in Reference [53] Chapter 3.6.

The great advantage of EP for LFI is splitting the data into
multiple segments or discrete features. These features give the
sampling algorithm within EP the more straightforward task of
matching one part of the data at a time.

EP is proven to work accurately and efficiently based on its
two core principles. First, the moments of the approximated
Posterior converge to the moments of the actual Posterior.
Examples of moments for probability distributions are the
expectation value and the variance. Formally, moment-match-
ing is only guaranteed if Posteriors get selected from an
exponential family. Further details are summarized in the
Supporting Information Section SI-II.

Second, EP efficiently optimizes multiple measurement
parts together by iterating through them. From now on, we call
these measurement parts “features” and denote them with yi.
EP searches the optimal parameter set for each feature in the
range of probable candidates for the other features. Examples
of possible features range from measurements in time to
characteristic values, like decay rates.

The user sets up EP with the following two inputs.[37] One is
a functional definition of the features in simulation and data,
which defines the cost function. The other is a Prior P0, which
represents the initial belief P0(θ) for every vector of parameter
values θ and defines the “initial value” of the Bayesian
algorithm. Additionally, one may pre-define the Likelihood sites
pi for each of the i ¼ 1; :::; n features, but for initialization
“uninformative Priors” pi qð Þ ¼ 1 are appropriate. The EP
algorithm then expresses the Posterior as the product of the
Prior and each Likelihood site, as shown in Equation 3.

P /
Yn

i¼1

pi

 !

� P0: (3)

The procedure for EP[37] factorizes the simulation and data
into individual features. EP then iterates through all features
multiple times. For each feature, BOLFI optimizes the model
parameters to fit this feature. The result of BOLFI is a more
precise probability distribution of the model parameters. EP
utilizes this result to update its distribution of probable model
parameters for all features. EP uses the new Posterior as input
for next feature optimization.

Figure 2. Monte Carlo algorithm for Bayes’ Theorem. y is a placeholder for
“data” and q is a placeholder for “model parameters”.
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The algorithm of EP[37] iterates through the features yi of
the whole data y until a stop criterion is met, as shown in
Figure 3. After initialization of the current Posterior with the
Prior and the initial Likelihood sites, there are four steps in each
iteration. Firstly, produce a “Pseudo-Prior” P� i :/ p=pi by
omitting the corresponding Likelihood site pi from the current
Posterior. Secondly, use an LFI algorithm like BOLFI to compute
an approximation ~pi to the Likelihood of the selected feature.
We introduce BOLFI in Subsection Bayesian Optimization (for
Likelihood-Free Inference). Thirdly, produce a “Pseudo-Posteri-
or” Pþi :/ P~pi=pi by replacing pi with the updated ~pi. BOLFI
basically takes the Pseudo-Prior as its Prior, approximates a
Likelihood, and outputs the Pseudo-Posterior as its Posterior,
i. e., the product of Pseudo-Prior and approximated Likelihood.
Finally, replace the current Posterior with the Pseudo-Posterior
for the next iteration and start the next iteration.

There is one caveat inherent in the capability to run
multiple loops through all features. At the step where ~pi

replaces pi, more precisely a projection of ~pi replaces pi. The
projection to a certain type of probability distribution ensures
that the replacement results in a Pseudo-Posterior that retains
its type of probability distribution. In our case, all involved
quantities P0, pi and ~pi, and hence, P, are normal distributions.
Any multi-modality in ~pi before projection gets lost and only
results in a wider normal distribution after projection that
smooths over the multiple modes. In the algorithm description
above, we omit dampening for clarity. With a dampening
parameter a 2 0; 1� ½, dampening is introduced to EP by linearly
interpolating between P qð jyÞ prior to each site update and
Pþi qð jyÞ in terms of their so-called “natural parameters”.[37] We
show the detailed formula in the Supporting Information
Section SI-III.

The advantage of subdividing the discrepancy between
experiment and simulation into features is the reduced number
of simulations needed for convergence. Any LFI algorithm must
decide which of the sample simulations it should include in the
Likelihood approximation. The more complex the Likelihood is,
the more samples the LFI algorithm ultimately discards due to
the so-called “curse of dimensionality”. With each additional
“dimension of complexity”, the computational effort to deal
with it grows exponentially. By “dimension of complexity”, we
refer to the effective dimension of the information in the data.
For example, suppose a set of fitting functions describe the
data up to noise. Then, the information contained has a
dimension not larger than the number of fit parameters rather
than the number of data points. Using a subset of the whole
discrepancy with a lower dimension gives a much higher
chance of any random sample being close to the optimum of
this subset.[37]

The sequential handling of the features further reduces the
computational complexity. Each fitted feature, i. e., updated pi,
preconditions the estimation task much like the Prior does at
the beginning of every Bayesian algorithm. Hence, EP takes no
unnecessary samples that contradict an already fitted feature.
This preconditioning is most efficient when the features are
uncorrelated, which gives an upper limit on the sensible
number of features.

Minka[47] has proven that EP converges in the sense of
minimizing the so-called Kullback-Leibler Divergence (KLD).
KLD is not an actual distance metric for distributions, but its
second derivative gives a pragmatic approximation of the
usually used Fisher Information Metric (FIM).[54] EP converges on
the mean of the posterior with quadratic speed Oð1=K2Þ when
the posterior tends to a normal distribution, as stated in
Barthelmé et al.[37] Here, K is the total number of simulation
samples.

Bayesian Optimization (for Likelihood-Free Inference)

Bayesian Optimization for Likelihood-Free Inference (BOLFI)
was developed by Gutmann et al.[38] Applications of their
algorithm include the fields of cosmology,[55] ecology,[56]

genetics,[57] and neurobiology.[58] We use an implementation of
BOLFI by Lintusaari et al. in the software ELFI.[59] For further

Figure 3. Iterative Expectation Propagation (EP) algorithm. Choose a random
feature yi , create a search space Pi by omitting the factor for yi in P qð jyÞ,
sample that search space to obtain a local Posterior ~pi and replace pi with it.
BOLFI is presented in Subsection Bayesian Optimization (for Likelihood-Free
Inference) and is our choice for the LFI algorithm inside EP.
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reading, we recommend the introduction to BOLFI in Ref. [60].
To the best of our knowledge, we are the first to combine
BOLFI with Expectation Propagation.

Bayesian Optimization takes the idea of preconditioning an
estimation task with a Prior one step further: this class of
algorithms utilizes each sample to optimize the choice of the
following sample. This short-circuiting of the usual Bayesian
recipe allows for the active selection of the most informative
following sample, where standard Bayesian algorithms draw
samples randomly. Figure 4 visualizes how BOLFI “explores” the
parameter search space before “exploiting” the region where
BOLFI expects the optimal parameter set. A sample is chosen
by minimizing its “acquisition” function in Equation 5. To this
aim, a Gaussian Process is trained on the preceding simulation
samples and acts as a fast surrogate for the intractable
discrepancy-parameter relationship to enable this minimization.

BOLFI works best for low sample numbers. This is because
it involves the inversion of a matrix with rank equal to the
sample size at each sample. Expectation Propagation helps in
this respect as it keeps the sample size small. Each feature
update resets the samples to 0 and provides a more precise
Prior for the next iteration. While this resolves the most
significant weakness of BOLFI, it requires that the form of the
current Posterior does not change over multiple site updates.
Here, we limit ourselves to Gaussian distributions. The trans-
formations can limit the parameters to positive numbers by
taking the logarithm or to an interval by taking the tangent.
Please note that any proper probability distribution can be
optimized with BOLFI.

For each feature with index i, the algorithm of BOLFI[38]

starts with a user-defined number K0 of (quasi-)random samples
from the Prior. To achieve optimal integration efficiency, these
samples stem from a Sobol sequence.[61] These samples θk and
the deviations between simulation and experiment
log k yi qkð Þ � y?i k
� �

constitute the data that BOLFI trains a
surrogate function on. Here, y?i is the current feature of the

experimental data and yi qkð Þ is the simulated feature for the
parameter set θk. For illustration, Figure 4 shows as blue dots
log k yi qkð Þ � y?i k
� �

over θk, where the blue line labelled
“discrepancy” would be that surrogate function.

The training points log k yi qkð Þ � y?i k
� �

are assumed to
follow a Gaussian Process with parabolic mean function. From
this model, BOLFI applies a filter to this Gaussian Process to
calculate the approximation to the model-simulation discrep-
ancy logðk yið�Þ � y?i kÞ,

log; k yi qð Þ � y?i k
� �

� N mK qð Þ; vK qð Þ þ s2ð Þ; (4)

where s2 > 0 is adjusted automatically. We show the derivation
of this Posterior in the Supporting Information Section SI-IV.

mK and vk constitute a differentiable surrogate function for
the intractable model-simulation discrepancy function
logðk yið�Þ � y?i kÞ. Following the initial regression to the K0

Sobol quasi-random samples, further samples are generated
from the surrogate in Equation 4 in the following manner,
called “lower confidence bound selection criterion”.[38] The next
sample gets taken as the minimum value of the so-called
acquisition function

AK qð Þ :¼ mK qð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
KvK qð Þ

p
: (5)

where h2
K is a sufficiently large scaling factor that grows

logarithmically with K.[38] Figure 4 shows a visualization of the
acquisition function, where mK qð Þ is represented by the blue
line and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
KvK qð Þ

p
is the width of the grey-shaded region

around that blue line, while the orange line represents the
acquisition function itself.

The minimum of the acquisition function approximates the
parameter set with the highest chances of generating a
simulation closest to the experiment. Hence, BOLFI generates
samples sequentially and optimally to minimize the remaining
uncertainty in the Likelihood estimation.

After finishing the acquisition of samples, the final
surrogate in Equation 4 forms the basis for the Likelihood

Figure 4. BOLFI sampling paradigm. A Gaussian Process approximates the
relationship between the model-data distance and the model parameters,
labelled as “discrepancy” with “uncertainty”. An “acquisition”function can be
calculated from this Gaussian Process. The minimum of the “acquisition”
function gives the most informative next sample. Circles indicate the sample
points. The black border in the bottom right plot indicates the cutout
presented in Figure 5a.

Figure 5. Calculation of the Likelihood approximation in BOLFI. LK qð Þ is
defined in Equation 6. (a) Cutout of Figure 4 at 14 samples, zoomed in on
the minimum of the discrepancy surrogate. The threshold e is visualized as a
green line. (b) The Likelihood is the integral of the discrepancy surrogate
beneath the threshold.
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approximation, as shown in Figure 5. In the Likelihood-Free
Inference (LFI) framework, the approximation LK to the Like-
lihood is the probability that the discrepancy surrogate falls
below a threshold value e:

LK :/ P log k yi �ð Þ � y?i k
� �

� e
� �

: (6)

The threshold value is arbitrary in most LFI algorithms, but
BOLFI infers it from the surrogate itself as e :¼ min# mKð ð#ÞÞ.
With the probability density function of the Gaussian surrogate,
LK can be calculated as

LKðyijqÞ /
Ze

� ∞

exp �
ðx � mKðqÞ

2

2 vK qð Þ þ s2ð Þ

� �

dx (7.1)

/ F
min
#

mK #ð Þð Þ � mK qð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vK qð Þ þ s2

p

 !

; (7.2)

where F is the cumulative distribution function of a standard
normal variable,

F xð Þ ¼
Z x

� ∞

1
ffiffiffiffiffiffi
2p
p exp �

1
2 u

2

� �

du: (8)

Simultaneously regressing and sampling from the sampling
distribution reduces the number of required samples by several
orders of magnitude.[38]

Validation of EP-BOLFI performance

Our reference for state-of-the-art automated battery model
parameterization is the work of Aitio et al.[17] They create two
types of synthetic data with an SPMe model, multimodal
sinusoidal excitations at eleven SOCs denoted “excitation-point
case” and a discharge with a superimposed small unimodal
sinusoidal excitation denoted “wide-excursion case”. Aitio et al.
fit five parameters with an MCMC algorithm: the electrolyte D�e
and solid diffusivities D�s;n, D

�

s;p, the cation transference number
tþ, and the variance of the white noise superimposed on the
synthetic measurement. In the wide-excursion case, MCMC fits
the parameters nicely. However, the MCMC algorithm finds a

wide range of inconsistent values in the excitation-point
case.[17]

We apply our EP-BOLFI algorithm to the same synthetic
data with the same SPMe model as Aitio et al.[17] Aitio et al. take
the L2-distance of the voltage as the cost function. For the EP-
BOLFI algorithm, we preprocess the voltage response and
define features. For the excitation-point cases, we perform a
Fast Fourier Transform on the current input and voltage output
to calculate the impedance for each mode as features. For the
wide-excursion case, we use the L2-distances of four voltage
curve segments as features.

The results for the wide-excursion case are shown in
Table 2. We observe that EP-BOLFI reaches a similar accuracy to
that in Aitio et al.[17] with about 12 times less simulations,
depending on the model parameter. Between 3120 and 6240
simulations for EP-BOLFI we observe an order of magnitude
increase in accuracy, and at 8320 simulations all but D�s;p are as
accurately or even more accurateley estimated as by MCMC.

The comparison of EP-BOLFI to MCMC in Aitio et al.[17] for
the excitation-point case is shown in the Supporting Informa-
tion Table SI-II. Across all excitation points, EP-BOLFI with 6240
simulations vastly outperforms the MCMC approach in terms of
stability and accuracy.

EP has the potential to deal with the data at all excitation
points at once. Hence, we perform an additional experiment,
collating the four excitation points 1, 2, 3 and 7 with the
smallest uncertainties. While that leads to overfitting, the
number of simulations required to reach convergence even
shrinks to 2080. This demonstrates that the computation time
of EP scales favourably with the dimension of the data.[37]

Experimental

Experimental setup and a priori known parameters

The full cell GITT data got measured at BASF. Here, we list the
parameters known before starting our estimation algorithms,
following the checklist in Ref. [65]. The only points in that checklist
we do not fulfill are “specifications of used materials” and
“coulombic efficiency”.

The GITT measurement protocol consists of repeating sets of 360s–
0.1 C, 180s–0.2 C, 72s–0.5 C and 36s–1.0 C pulses with occasional
30s–2.5 C pulses each 25% SOC (State-Of-Charge). 1 C corresponds
to a theoretical capacity of 0.03 Ah. The rest periods at zero current
between the pulses were 15 min, with the exception of the 2.5 C

Table 2. Performance comparison between MCMC[17] and EP-BOLFI. The estimation results refer to one standard deviation.

true initial std. Aitio et al. (MCMC), EP-BOLFI EP-BOLFI EP-BOLFI
parameter value deviation 100000 simulations 2080 sim. 4160 sim. 6240 sim.

D*e /10
� 10 m2/s 2.8 1.54 2:8� 0:007 2:72� 0:110 2:79� 0:027 2:80� 0:024

tþ/� 0.4 0.156 0:4� 0:0008 0:42� 0:012 0:40� 0:003 0:40� 0:003

D*s;n/10
� 14 m2/s 3.9 1.39 3:9� 0:0005 3:91� 0:158 3:90� 0:021 3:90� 0:004

D*s;p/10
� 13 m2/s 1.0 1.98 1:0� 0:0002 1:09� 0:167 1:00� 0:019 1:00� 0:005

s2/10� 9 V2 1.6 1.17 1:4� 3:5 2:75� 0:40 2:65� 0:20 1:66� 0:09
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pulses, which were enclosed in 30 min rests. The GITT experiment
was conducted at 25 °C. The minimum and maximum operating
voltage of the cell are 2.7 V and 4.2 V, respectively. The GITT data
spans from SOC 25% to 100%, i. e., 25% discharged to 100%
discharged.

The cell contains the following materials. The negative electrode
mostly consists of graphite with 95.7% active material and is
slightly overbalanced. The separator is Celgard 2500 with 25 μm
thickness. The positive electrode is 94% NCM-851005 with 3%
Solef 5130, 2% SFG 6 L and 1% Super C 65. The electrolyte is
1 mol/l LiPF6 in EC:DEC 3 :7 with 2% VS as SEI former.

Here, we list the geometric parameters and the electrolyte proper-
ties. The cell is a square pouch cell. The cross-sectional areas are
52 mm×52 mm, 55 mm×55 mm, and 50 mm×50 mm for the
negative electrode, separator, and positive electrode, respectively.
The porosities are roughly 0.27, 0.55, and 0.29 for the negative
electrode, separator, and positive electrode, respectively. The
porosities of the electrodes were approximated by comparing their
density with the bulk densities of graphite at 2.26 g/cm3 and NCM-
851005 at 4.8 g/cm3 (times 94%), respectively. The porosity of the
separator and its Bruggeman coefficient of 3.6 were taken from
Patel et al.[66] The thicknesses of the electrodes are 45 μm and
25 μm for the negative and positive electrodes, respectively. Both
thicknesses were calculated from densities and areal mass loadings,
i. e. the mass of active material per cross-sectional area of the
respective current collector. The areal mass loadings of the
negative and positive electrode are 0.072 kg/m2 and 0.080 kg/m2,
respectively. Thus, the electrolyte volume is about 0.0926 mL and
the volumetric ratio of electrolyte to active material is about 0.737.
The electrolyte has cation transference number 0.3�0.1, thermo-
dynamical factor 1.475/(1� t+), diffusivity 3.69 ·10� 10 m2/s, and
conductivity 0.950/(Ω m). We take the a priori electrolyte
parameters from Nyman et al.,[67] even though they characterized
EC:EMC 3 :7, not EC:DEC 3 :7. We neglect this disparity, since our
focus is to demonstrate our parameterization procedure. We
consider the cation transference number unknown with known
error bounds and tie the thermodynamical factor to it as 1.475/
(1� t+).

At this point, we fixed most parameters. We discuss the remaining
unknown parameters listed in Table 3 in the next subsections. We
shortly discuss the few unknown parameters with negligible impact
here. The electronic conductivities of the electrodes are from
Danner et al.;[62] there, the electrode materials were graphite and
NMC-111. We accept the potential error due to the different
materials, since the electronic conductivities typically only account
for a static IR drop of up to 2 mV at current 1C. The charge-transfer
coefficients, also known as asymmetry factors, are set to 0:5, i. e.,
we make the standard assumption that the charge-transfer
reactions are symmetric.

Measurement of the OCV curves

The Open-Cell Voltage (OCV) has by far the most significant effect
on the overall operating cell voltage, typically about 3 V to 4.5 V.
The minor voltage losses described by the equations in Table 1 are
due to the limiting transport processes and reactions the so-called
“overpotential”. The overpotential is typically around 10 mV–
100 mV. Hence, before we analyze cell processes via the over-
potential, we need to know the OCV of the cell with high
precision.[68]

The most precise measurement of the OCV is possible with GITT,
with a voltage error of 0.1 mV–1 mV.[63] Still, measurements at low
constant current get often misused as “quasi-OCV” (qOCV)
measurements.[30,34] Chen et al.[31] demonstrate how constant-

current curves exhibit significant deviations from OCV at high or
low charge and between voltage plateaus, even at low current.
Hence, we do not use qOCV measurements.

We use the physics-inspired OCV model of Birkl et al.,[63] as it
assigns an SOC range to incomplete OCV data in an informed and
automatic way. This SOC range will approximate the maximally
lithiated and de-lithiated states of the positive electrode at SOCs 0
and 1, respectively. We denote that SOC range as “positive
electrode SOC” or SOCp. Likewise, we refer to the maximally
lithiated and de-lithiated states of the negative electrode when we
assign the “negative electrode SOC” or SOCn.

We fit the OCV curve of the positive electrode given the OCV curve
of the negative electrode in Subsection Extracting positive
electrode OCV from full-cell GITT. The maximum intercalation
concentrations were fitted to the CC–CV and GITT data at the same
time.

Parameters fitted with EP-BOLFI

We now have seven model parameters q of interest that we can fit
to the GITT data, summarized in Equation 9. These are the model
parameters that appear independently from unknown properties in
our physics-based model,

(9)

For simplicity, we assume that these parameters are independent
from electrolyte concentrations and location within the cell. We
ignore the concentration dependence of the cation transference
number.[69] We assume that the Bruggeman coefficients are
spatially constant. Spatially and concentration resolved measure-
ments are required to parameterize these heterogeneities.

GITT measurements give us information about SOC dependence.
The functional form of the exchange-current density i�se;k;0 c�e ; c

�

s;k

� �

is an active topic of research.[70–73] Likewise, the active material
diffusivities D�s;k c�s;k

� �
depend on electrode SOC.[74] Hence, there are

Table 3. The missing battery parameters and how we procure them. For
the symbols, cf. Table 5.

parameter source value

A priori assumed parameters
s�p ½=Wm� value for NMC-111[62] 1.07
s�n ½=Wm� value for graphite[62] 10.67
ak;‘ symmetry assumption 0.5
Subsection Measurement of the OCV curves
U�n ½V� GITT measurement[63] [0.0, 1.0]
U�p ½V� our GITT measurement [3.0, 5.0]
R�p ½m� scaling factor, cf. Equation 9[62] 5.5·10� 6

R�n ½m� scaling factor, cf. Equation 9[62] 12·10� 6

a�p ½m� scaling factor, cf. Equation 9[64]
3 1� epð Þ

R�p

a�n ½m� scaling factor, cf. Equation 9[64] 3 1� enð Þ

R�n

Subsection Parameters fitted with EP-BOLFI
D�s;p ½m

2=s� EP-BOLFI fit TBD
D�s;n ½m

2=s� EP-BOLFI fit TBD
i�se;p;0 ½A=m

2� EP-BOLFI fit TBD
i�se;n;0 ½A=m

2� EP-BOLFI fit TBD

tþ ½� � EP-BOLFI fit TBD

bp �½ �
EP-BOLFI fit TBD

bn �½ �
EP-BOLFI fit TBD
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three parameters of interest that do not depend on SOC, namely
tþ, bp, and bn, and four that do depend on SOC, namely i�se;p;0, i

�

se;n;0,
D�s;p and D�s;n. Therefore, we fit all seven parameters of interest in
Equation 9 once to a pair of GITT pulses with different C-rates.
Then, we hold the three SOC-independent parameters constant,
and fit only the four SOC-dependent ones to all other GITT pulses.

We also miss the geometric parameters for the electrode particles
to correctly scale the active material diffusivities D�s;k and the
exchange-current densities i�se;k;0. However, their absolute values
can be corrected when the specific surface areas and particle radii
get measured. Without loss of generality, we assume the specific
surface area a�k ¼ 3 1 � ekð Þ=R�k .

[64] Analogously, the particle radii are
just a scaling factor in our model. We arbitrarily take the particle
radii from a battery of Danner et al.[62]

For Expectation Propagation, we reduce the experimental data to
discrete features as visualized in Figure 6. The five features yi we fit
are the voltage directly after the current has been shut off
(concentration overpotential), the relaxation times during the
discharge pulses, the ohmic voltage drop, and the GITT and ICI
(Intermittent Current Interruption) square-root slopes[75] during
discharge pulses and rest periods, respectively.

We use the following fit function to obtain the square-root slopes
dU
d
ffi
t
p and the offsets of the square-root segments U0:

square root fit t;U0;
dU
d
ffiffi
t
p

� �

:¼ U0 þ
dU
d
ffiffi
t
p �

ffiffiffiffiffiffiffiffiffiffiffi
t � t0

p
; (10)

where t0 refers to the start of the current pulse or the start of the
rest phase. The square-root function fitted to the current pulse
gives the ohmic voltage drop as U0 and the GITT square-root slope
as dU=d

ffiffi
t
p

. The square-root function fitted to the rest phase gives
the concentration overpotential as U0 and the ICI square-root slope
as dU=d

ffiffi
t
p

. To get the relaxation time tr , we use the following fit
function on the current pulse:

exp fit t;U0;DU; t� 1r

� �
:¼ U0 þ DU � exp � t� 1r � t � t0ð Þ

� �
; (11)

where t0 refers to the start of the current pulse. While our current
pulses are too short to fulfill the requirements for ICI as an
analytical formula, we will later see that “incomplete” our ICI square
root slopes still give valuable information. We omit the exponential
relaxation at rest as a feature since it is difficult to fit uniquely.[69,76]

This is discussed in Section Discussions. We omit U0 and DU from
the exponential fit function in Equation 11 as features, as they are
less consistently fitted than the concentration overpotential, which
contains much of the same information.

The analysis of GITT and ICI with approximate formulas introduces
some inaccuracy as discussed by Geng et al.[77] EP-BOLFI fits the
whole DFN model directly to the experimentally observed square
root slopes. A detailed discussion for the complementary relevance
of both GITT and ICI features is performed in the Supporting
Information Section SI-VII. We emphasize that one might also use
simple time segments of the data with their L2-distance as features
for EP-BOLFI if no better preprocessing step is known. The features
we chose have less interdependence than L2-segments, accelerat-
ing the computations and making the results more interpretable.
As we can see in Figure 6, we capture the main information of the
raw voltage curve in the five features.

We choose normal distributions for the Bruggeman coefficient
priors and the cation transference number, and log-normal
distributions for the priors of all other parameters of interest. We
motivate the log-normal distributions with the Arrhenius relation:
reaction rates and diffusivities may be modelled as a reaction
following an Arrhenius relation, and hence are log-normally
distributed if the corresponding activation energies are normally
distributed. In the spirit of Laplace approximations,[78] a good
approximation of the true distributions close to the true estimate is
sufficient, even for global optimization. The bounds of the prior
and posterior 95% confidence intervals and the most likely
estimates are listed in Table 4.

Computational details

We employ the helpful checklist from Mistry et al.[79] to ensure that
we include every aspect of sensitivity of numerical inputs. The
filled-in checklist is in the Supporting Information Table SI-III in the
Supporting Information Section SI-X.

We discretize the 1D+1D model equations in Table 1 with Spectral
Volumes[80] and solve them with CasADi[81] interfaced through
PyBaMM.[82] Compared to Finite Volumes and the ode15 s solver in
MATLAB, our simulations run 20 times faster. The Spectral Volumes
mesh is of order 8 in the electrolyte and the negative electrode
particles and of order 20 in the positive electrode particles. For the
electrolyte mesh, 2 Spectral Volumes are in the negative electrode,
and 1 Spectral Volume each is in the separator and the positive
electrode. We check for mesh independence by running a
simulation with orders 16 and 40 instead of 8 and 20, respectively:
the features change by no more than 0.2%. The timesteps are at
most 0.1 s, and reducing them to at most 0.01 s changes the
features by no more than 2%.

Whenever we fit a parameterized function to data points, we use
the trust-region algorithm for constrained optimization imple-
mented in SciPy. The OCV model[63] we use gives the electrode SOC

Figure 6. The five features yi for Expectation Propagation in the experimental
data at each GITT pulse.

Table 4. The prior 95% bounds and posterior standard deviation bounds
for the 7-parameter estimation, including the most likely estimate.

Parameter prior bounds posterior estimate

ise;n;0* [A/m2] [1.0, 100.0] 12.3, [10.2, 14.8]
ise;p;0* [A/m2] [1.0, 100.0] 36.3, [29.9, 44.0]
Ds;n* [m2/s] [1e–14, 1e–10] (1.19, [0.82, 1.73])e-11
Ds;p* [m2/s] [1e–14, 1e–10] (0.82, [0.56, 1.22])e-11
tþ �½ � [0.2, 0.4] 0.349, [0.343, 0.355]
bn �½ � [1.8, 4.2] 2.72, [2.64, 2.81]
bp �½ � [1.8, 4.2] 3.06, [2.99, 3.13]
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as a function of its OCV. Since the 1D+1D model equations in
Table 1 require the inverse function, we invert OCV model fits
numerically and fit a spline to the inverse. Compared to direct
spline fits to data, we retain the model-informed smoothing of the
data and the estimation of the SOC range.

Our algorithm can consider the uncertainties of all model
parameters if the simulator function randomly samples them.
Hence, we included the uncertainties of the SOC-independent fit
parameters tþ, bn and bp in the parameterization of the individual
GITT pulses.

For the initial fit of the SOC-dependent parameters, we choose the
final GITT pulse in the dataset. The final GITT pulse corresponds to
the most extreme SOC and, therefore, the largest overpotential,
ideal for an initial fit. The SOC-dependent parameters i�se;k and D�s;k
vary over two to four orders of magnitude, respectively. To allow
for this parameter variability from one GITT pulse to the next, we
magnify the error bars of the SOC-dependent parameters of one fit
before we use them as Prior for the next fit. We limit the lower and
upper bounds the priors could take to [0.5, 80.0] A/m2 for the
exchange-current densities and to [1e–14, 1e–10] m2/s for the
electrode diffusivities. This limiter prevents the fit parameters from
diverging into regions with infinite exchange-current density or
instant diffusion. The error bars are then magnified to span at least
half of the lower and upper bounds in the log scale.

We fit the seven parameters of interest in Equation 9 to GITT data
in Subsection Extracting model parameters with EP-BOLFI from
FITT with our EP-BOLFI algorithm. We estimate n ¼ 4; 7 parameters
with 26 þ 1; 27 þ 1 warm-up samples and 2 � 26 þ 1ð Þ; 2 � 27 þ 1ð Þ

samples in total for BOLFI for each individual feature update,
respectively. The pseudo-posteriors are estimated with an effective
sample size of 0:5 � 62 þ 1:5 � 6; 0:5 � 72 þ 1:5 � 7 for n ¼ 4; 7, respec-
tively, by the No-U-Turn-Sampler,[83] a Markov-Chain Monte-Carlo
sampler implemented in ELFI.[59] We set up 4 EP iterations in both
cases. We set the EP dampening parameter such that the total
dampenings at the end are 0:5.

For validation of our novel EP-BOLFI algorithm, we repeat the
estimation procedures with one difference. We replace the
measured data with synthetic simulated data for the most likely fit
parameters. The better a given parameter is identifiable from the
features, the closer the verification run would be to the first results.
With this validation, we also make sure that EP-BOLFI converged,
such that we can be sure that invisible non-identifiability issues
arise purely from model and data.

The total time for the estimation of seven parameters of interest
with 10320 simulations on our office PC with an Intel Core i7-6700
at 4.00 GHz×8 is about 20 hours. Of that, roughly twelve hours is
the simulation time for 10320 simulations of two GITT pulses. The
total time for the estimation of the four SOC-dependent parame-
ters of interest with 2600 simulations for each pulse is about 120
minutes on our PC. Of that, roughly 80 minutes is the simulation
time for 2600 simulations of one GITT pulse.

Results from full-cell GITT data

Before we describe the application of EP-BOLFI to GITT data, we
have to identify the OCV of the positive electrode in Subsection
Extracting positive electrode OCV from full-cell GITT. The
application of EP-BOLFI is then presented in Subsection
Extracting model parameters with EP-BOLFI from GITT.

Extracting positive electrode OCV from full-cell GITT

We want to obtain the open-circuit voltage (OCV) Up of the
positive electrode. Since we do not have half-cell data, our
estimation relies on our approximate knowledge of the OCV Un

of the negative electrode.[63]

As a first step, we determine the cell balancing, i. e., the
negative electrode SOC as a function of the positive electrode
SOC. To find the cell balancing, we determine an approximate
second derivative of Un from the data. We obtain that by
shifting the CC curves by the CV step against each other,
adding them, and subtracting the GITT curve two times. The
derivation of this preprocessing step and the utilized data are
laid out in the Supporting Information Section SI-VI.

We compare the second derivative of Un to that of a known
graphite OCV curve[63] in the Supporting Information Section SI-
VI. Though being a rough approximation, we can identify the
peak positions of the second derivative. We find that the
negative electrode SOC ranges from 3% to 84% over the SOC
range of the positive electrode.

Taking into account this cell balance, we obtain Up from the
sum of Un and the cell OCV from GITT data in Figure 7. We find
that the cell capacity is 39.65 mAh. The OCV model of Birkl
et al.[63] with eight phases gets fitted to the SOC range
0:18 . . . 0:97 and we trust its extrapolation to the SOC range
0:15 . . . 1:00. We ignore OCV hysteresis effects[63] and only
consider the discharge direction from now on.

Extracting model parameters with EP-BOLFI from GITT

With the procedure laid out in Subsection Computational de-
tails, we fit seven parameters to GITT pulses 66 (0.1 C) and 67
(1.0 C) in the data. We choose these pulses since the OCV
curves of both electrodes have significant gradients there,
which improves the sensitivity of our experimental data to
electrode diffusivities.[75] Our prior bounds are based on the
LiionDB database[85] and an order-of-magnitude estimate of the

Figure 7. The model fit[63] of the OCV curve of the positive NCM-851005
electrode that we obtain by adding the OCV curve of the negative electrode
to the GITT data. The root-mean-square-error is 13 mV and the mean
absolute error is 0.25 mV.
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exchange-current densities and active material diffusivities. We
show the fitting results as estimates and 95% confidence
intervals in Table 4.

In Figure 8, we depict the five fit features in the experiment
and how we predict them in the simulation. The good
agreement between features in simulation and data at low and
high current verifies our optimization. The square-root GITT
and ICI features have an excellent agreement. However, there is
a significant difference in fit quality between low (0.1 C) and
high (1.0 C) current for the exponential relaxation. We discuss
that electrode heterogeneity can explain this mismatch (see
Section Discussions). We find direct relationships between
features and parameters below; thus, the excellent fit of most
of the features gives insights on its own. Figure 8a a is a good

example to illustrate our featurization approach. If we had
optimized the model for the time series, the simulation would
cut across the voltage measurements, matching neither short-
term nor long-term processes in the battery.

We now discuss the correlation matrix, i. e., the covariance
matrix normalized by the variances. In Figure 9, the correlation
matrix indicates how a parameter change affects the estimates
of the other parameters. Each matrix entry shows how the (lack
of) knowledge of some parameters influences the accuracy of
the other parameters. Correlations close to 0 indicate that the
two parameters are not coupled in the data as interpreted by
our model. Note that the two exchange-current densities are
correlated with each other in our full cell examination. We see
correlations between the SOC-independent model parameters

Table 5. Physical battery parameters and their non-dimensionalizations. j= s: active material phase. j=e: electrolyte. j= se: electrolyte-electrode interface.
k=n/p: negative/positive electrode. k= s: separator. S: dimensional symbol. typ or ref : arbitrary reference parameter.

Parameters Units Description Non-dimensionalization

Spatial and temporal discretization
L* metre Thickness of the cell L :¼ 1
Lk* metre Thickness of cell component Lk :¼ Lk*=L*
x* metre Spatial coordinate through the cell x :¼ x*=L*
Rk* metre Radius of electrode particles Rk :¼ 1
rk* metre Radial coordinate through a particle rk :¼ rk*=Rk*
td* s Discharge timescale td* :¼ F*cs;p;max*L*=Ityp*
t* s Time since beginning of experiment t :¼ t*=td*
Electrolyte variables

ce* t* ; x*ð Þ mol/m3 Electrolyte concentration ce :¼ ce*=ce;typ*

�e;k* t* ; x*ð Þ V Electrolyte potential �e;k :¼
�e;k* � Un;ref *
R*T*=F*

ie;k* t* ; x*ð Þ A/m2 Electrolyte ionic current density ie;k :¼ ie;k*=Ityp*

Ne;k* t* ; x*ð Þ mol/(m2s) Molar ionic flux Ne;k :¼
Ne;k*L*

De;typ*ce;typ*

Electrode variables
cs;k t* ; x* ; r*ð Þ mol/m3 Concentration of intercalated lithium cs;k :¼ cs;k*=cs;k;max*

�s;k* t* ; x*ð Þ V Electrode potential
�s;k :¼

�s;k* � Uk;ref * � Un;ref *ð Þ
R*T*=F*

Electrolyte-Electrode interface reaction variables
is;k* t*; x*ð Þ A/m2 Electrode electronic current density is;k :¼ is;k*=Ityp*

hk* t* ; x*ð Þ V Reaction overpotential hk :¼ hk*= R*T*=F*ð Þ

ise;k* t* ; x*ð Þ A/m2 Intercalation reaction current density ise;k :¼ ak*L*ise;k*=Ityp*

Operating conditions
I* t*ð Þ A/m2 Current density applied to the battery I :¼ I*=Ityp*
T* K Temperature of the cell T :¼ T*=Tref *
Electrolyte parameters
D�e c�e
� �

m2/s Electrolyte diffusivity De ceð Þ :¼ D�e=D
�

e;typ
k�e c�e
� �

1/(Ωm) Electrolyte ionic conductivity ke :¼ k�e c�e;typce
� �

=k�e;typ
tþ c�e
� �

– Cation transference number –
1þ @ln fþð Þ

@ln c�eð Þ
– Thermodynamic factor –

Electrode parameters
ek – Electrode porosity –
bk – Electrode Bruggeman coefficient –
D�s;k c�s;k
� �

m2/s Electrode active material diffusivity Ds;k cs;k
� �

:¼ Ds;k*=Ds;k;typ*
s�k 1/(Ωm) Electrode electronic conductivity sk :¼

R*T*
F* =

Ityp*L*
sk*

� �

a�k 1/m Electrode surface area to volume ratio ak :¼ Rk*ak*
U�k c�s;k
� �

V Open-Cell Voltage (OCV) Uk :¼
U�k � U

�
k;ref

R�T�=F�

Electrolyte-Electrode interface reaction variables
a k¼n;pð Þ; k¼n;pð Þ – Reaction symmetry factors –
zk – Charge transfer numbers –
i�se;k;0 c�e ; c

�

s;k

� �
A/m2 Exchange-current density ise;k;0 :¼ i�se;k;0=i

�

se;k;0;ref
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and the SOC-dependent ones, especially between the diffusiv-
ity of the positive electrode and both Bruggeman coefficients.
We rerun the estimation procedure twice with different initial
random seeds to validate that these correlations are consistent

properties of model and data rather than numerical artefacts.
The corresponding data are in the accompanying GitHub
repository. These correlations demonstrate the benefit of
estimating all seven parameters together, namely that we
obtain a consistent parameter set.

Next, we fit all GITT pulses with only the SOC-dependent
four parameters ise;n;0* , ise;p;0* , Ds;n* and Ds;p;* under consider-
ation of the remaining uncertainty of tþ, bn and bp. In Figure 10,
we plot the optimal estimates and error bars corresponding to
one standard deviation of the logarithmic parameters as a
function of electrode SOC. Please note that we define
“electrode SOC” by the theoretical minimum and maximum
lithiation of an electrode. The error bars in Figure 10 show us
how precise the parameters are estimated in each GITT pulse.

We compare the exchange-current densities in Figure 10a
and Figure10b with the standard SOC-dependence of the
Butler-Volmer rate in Equation 1.8.[71] One reason for the large

Table 6. Scalings used for non-dimensionalization.

Symbol Units Description Definition

t�d s Discharge timescale F�c�s;p;maxL
�=I�typ

t�e s Electrolyte transport timescale

Ce – Ratio of electrolyte transport and discharge timescales t�e=t�d

ge – Ratio of electrolyte and electrode concentration c�e;typ=c
�

s;p;max

k̂e – Ratio of thermal voltage to ionic resistance R�T�k�e;typ= F�I�typL
�

� �

t�k s Particle transport timescale

Ck – Ratio of partical transport and discharge timescales t�k=t�d

gk – Maximum electrode through maximum positive electrode concentration c�s;k;max=c
�

s;p;max

t�r;k s Intercalation reaction timescale F*cs;k;max*= ise;k;0;ref *ak*
� �

Cr;k – Ratio of reaction to discharge timescale t�r;k=t�d

Figure 8. The two GIT pulses (a) 66 at 0.1 C and (b) 67 at 1.0 C to which we
fitted all 7 model parameters of interest. We compare the features as
presented in Figure 6.

Figure 9. The correlation matrix of the estimation result for 7 model
parameters from two GITT pulses.
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error bars is that the two exchange-current densities primarily
act as interchangeable resistances. In the Supporting Informa-
tion Figure SI-3, we plot their joint resistance. Since it is not
much smoother and has large error bars, we can conclude that
there are more identifiability issues than just the interchange-
ability of the two exchange-current densities. The low identifi-
ability is not surprising, as GITT was not designed with
measuring exchange-current densities in mind. Both exchange-
current densities are visible in measurements on much smaller
timescales[6] than the GITT pulses used here, which means that
they mostly collectively show up as a contribution to the ohmic
drop.

The diffusivities in Figure 10c and Figure 10d are smoother
functions of SOC. The error bars are still more prominent than
in a half-cell setup, for which GITT was initially designed.[5] We
attribute the larger error bars to a limited discernability of the
two electrodes in the data. To discuss the results for D�s;p, we
plot the results of the analytic formulas for the GITT and ICI
methods[75] for D�s;p in Figure 10c. We show these formulas in
the Supporting Information Equation 8.37. These formulas

neglect the influence of the negative electrode and the
electrolyte; hence, there is no equivalent formula for D�s;n. We
instead compare D�s;n with a measurement by Schmalstieg
et al.[84]

The results for D�s;p in Figure 10c have fairly small error bars
and seem to be rather constant, in contrast to the analytical
GITT and ICI formulas. The analytical formulas have especially
large deviations from our results in the regions around
SOCp � 0:3 and SOCp � 0:85. At SOCp � 0:3 the positive
electrode OCV curve has a very flat plateau that impedes the
analytic formula and introduces large uncertainty to it. At
SOCp � 0:85 the low diffusivity of the negative electrode at
corresponding SOCn � 0:15 may disturb the analytical formu-
las. EP-BOLFI, instead, produces consistent estimates for both
diffusivities and can even distinguish between the two electro-
des. Hence, the prediction of the uncertainty displayed in
Figure 10c gives us further information about the completeness
of the experimental data and the predictability of the model
parameters.

Figure 10. (a) i�se;n;0 and (d) D�s;n and D�s;p estimates with error bars corresponding to one standard deviation of the logarithmic parameters. The comparison to a

standard Butler-Volmer fit ¼ i�se;k;0;0
ffiffiffiffiffiffiffiffi
c�ec
�
k

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c�k
p

(see Eq. 1.8) shows that we can not use the results for i�se;n;0 and i�se;p;0.
However, if other parameters have been fitted correctly, their uncertainty then considers that i�se;n;0 and i�se;p;0 are effectively unknown. The results for D�s;n , are
similar to those with half-cell GITT data from Schmalstieg et al. [84], Figure 7, apart from the wrong scaling. For D�s;p , we plot the results of the analytic
formulas for GITT and ICI for comparison. For D�s;n and D�s;p we plot the corresponding OCV curves of their respective electrode.
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The results for D�s;n in Figure 10d exhibit slightly smaller
error bars than those for D�s;p and reproduce the literature data
of Schmalstieg et al.[84] well. They observe the same shape of
the diffusivity curve in a half-cell with graphite, especially the
dip around SOCn � 0:45. Kang et al.[86] perform a detailed
analysis of the possible sources of uncertainty, such as the
duration or intensity of the current pulses.

Please note that we can not determine the absolute
magnitude of the estimates for D�s;n and D�s;p, as they depend on
the unknown particle radius R�n and R�p, respectively. We
emphasize that we can identify D�s;n and D�s;p separately, as
indicated by their weak correlation in Figure 9 and their
agreement with expected behaviours. We achieve this even
though we measured a full cell and do not know the electrolyte
properties perfectly.

In Figure 11a we verify how reliable our parameterization
result is. For this purpose, we create synthetic data from a DFN
model with the parameters we fitted to the experimental data
(see Figure 8). We apply EP-BOLFI to this SOC-dependent
synthetic data in a verification run. We depict here the relative
deviation between the true and estimated parameters in this
verification run. As the fitted probability distributions are log-
normal, we observe the relative deviations on a log-scale. We
confirm that the solid diffusivities are identifiable within 1%
accuracy. Notably, the exchange-current densities show a much
larger variability in accuracy, matching their erratic behaviour
in Figure 10ab. We conclude that the diffusivities in Figure 10cd
can be trusted at most SOC, while the exchange currents in
Figure 10ab are not clearly identifiable from GITT. We also verify
that the model justifies the limitation to a Gaussian Posterior
with only one mode since multiple distant sets of equally
optimal parameters would result in far poorer accuracy.

In Figure 11b, we verify that the parameterization accu-
rately reproduced the experimental data. For that, we collect
the deviations between features in the experimental data to
the features in the fitted simulated data. We see that all
features were fitted well except for the exponential relaxation
time tr . We conclude that tr is an unreliable feature in our GITT
dataset with the DFN model.

In the Supporting Information Section SI-IX, we perform a
complementary sensitivity analysis on the DFN model at the
fitted parameters at each GITT pulse. Based on these
sensitivities, we can identify parameters that appear to be fitted
well in Figure 11a, but depend on unreliable features in
Figure 11b. As we can see in Supporting Information Figure SI-
4, D�s;n and D�s;p both depend on all features but the ohmic
resistance, with D�s;n being more sensitive to the concentration
overpotential than D�s;p. We find that all four SOC-dependent
parameters also have a consistently high sensitivity to the
exponential relaxation time tr , which we just ruled out as a
reliable feature. Despite that sensitivity, EP-BOLFI automatically
ignored tr in favour of fitting the parameters more consistently
with other features. We conclude that we can nicely estimate
D�s;n and D�s;p accurately from our GITT dataset because they are
sensitive to the square-root features and the concentration
overpotential.

Discussions

We gain three benefits from our Bayesian method, EP-BOLFI.
The first benefit is universality; treating the model as a black
box allows us to change the equations and fit parameters
arbitrarily. The second benefit is global optimization, i. e., the
thorough exploration of the range of feasible parameters. The

Figure 11. Summary plots where the circles indicate the mean and the bars indicate plus-minus one standard deviation. (a) The relative comparison of the
verification run with the original fit parameters in log-space. We fit the DFN model to itself for each GITT pulse estimation to see if it identifies the same
parameters. (b) The relative deviation of the fitted simulated features to the experimental features. We see that all features but the exponential relaxation
time get close to the 2% accuracy with which we simulate the features.
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third benefit is that we consistently estimate both the fit
parameters and their uncertainty with only one algorithm.

State-of-the-art battery parameterization most often re-
quires a complicated calculation of the parameter-output-
gradient.[18,24] For example, Sethurajan et al.[18] and Zhao et al.[24]

conduct microscopic imaging of electrolyte concentration
profiles. They then apply gradient-based iterative optimization
to diffusion equations to extract electrolyte properties. While
this specialization produces fantastic results, adapting their
algorithm to other battery parameters or differential equations
would warrant a new paper. With our algorithm, you only need
to update the simulator and the feature definitions.

The “exploration” aspect of BOLFI ensures that it evenly
minimizes the remaining uncertainty across the whole parame-
ter search space. A gradient-based approach would be limited
to the estimate “closest” to the initial guess. Repeating the
gradient-based optimization from various starting points can
alleviate this locality problem, but it quickly becomes infeasible
with a growing number of estimated parameters.

The Bayesian analysis of Sethurajan et al.[18] and Zhao
et al.[24] is preceded by a gradient-based optimization. EP-BOLFI
is stable enough not to require this step, drastically cutting
down on the implementation effort while incorporating a more
expansive parameter space into the uncertainty estimate.

The comparable computation time for the simulations and
the EP-BOLFI algorithm shows a considerable cost to optimiz-
ing the samples. Compared to Aitio et al.,[17] we require at least
12 times fewer samples for the estimation of five parameters.
Hence, we significantly reduce the computation time and
enable the simultaneous estimation of more than four param-
eters.

The primary use of our technique is model parameter-
ization, i. e., it tunes the model for predictive simulations, e.g.,
for a digital twin. Depending on the sophistication of the
model, its parameters might be very close to the actual material
properties. Thus, we may also characterize the battery non-
destructively multiple times over its lifetime. Established
characterization techniques usually require separate setups
with Li-metal electrodes or destructive disassembly.[5,8,31] Our
results for D�s;n are comparable to those of a half-cell GITT
measurement,[84] indicating that we extract the actual electrode
property rather than some effective cell parameter.

We believe that directly fitting continuum models includes
significant coupled effects that analytic approximations can not
describe. For example, the analytical formulas for GITT date
back to 1977,[5] and are only accurate for electrodes whose
Open-Circuit Voltage (OCV) is locally describable by a Nernst
equation. Modern electrode materials feature OCV curves with
plateaus and kinks that severely impact GITT measurements, as
we saw in Subsection Extracting model parameters with EP-
BOLFI from GITT in Figure 10c. Our approach is less sensitive to
this problem, as seen in Figure 10c.

Our focus is salvaging CC–CV and GITT measurements and
other organically grown measurement protocols such as WLTP
since they constitute most of the experimental data available.
Hence, our algorithm can also deal with raw data that is simply
divided into multiple time segments, where their respective

L2-distances between measurement and data would be the
features. Such a segmentation reproduces the total L2-distance
while utilizing the benefits of Expectation Propagation. The
result is a better global L2-fit with less computational cost. This
flexibility alleviates the dependence on data that is generated
specifically for optimal parameter estimation performance.[87]

We can optimize a fitting procedure itself using the results
of our algorithm. By studying the itemized correlation matrices
for each feature, we can select the feature set with the clearest
distinguishability between fit parameters. An analysis of the
individual identifiability of each fit parameter is possible with
either the diagonal of the covariance matrix or an interval
analysis with the corresponding 95% confidence intervals.

The poor agreement between model and data exponential
relaxation times at rest is likely due to the artificial homoge-
neity of the DFN model. The spatial heterogeneities of a battery
cell significantly impact its performance and are best captured
by microstructure-resolved modelling.[12,88] The link between
exponential relaxation times at rest and heterogeneity has
been discussed by Kirk et al.[89] They propose at least a multi-
particle 1D+1D model, the MP-DFN, that incorporates the
different length scales of the electrode particles.

Conclusion

Our newly developed algorithm EP-BOLFI is an optimizer that
only requires the to-be-optimized model while minimizing the
algorithm setup and the model evaluations. At the same time,
the results of EP-BOLFI grant further insight into the data and
the measurement uncertainty. EP-BOLFI and the data we
applied it to are freely available. The GitHub repository
containing the algorithm and the data is linked in Section Code
availability.

We show that EP-BOLFI is more robust than MCMC, while
simultaneously being an order of magnitude faster. The
segmentation into expert-informed features allows the algo-
rithm to reliably match the model to the parts of the data that
it can actually reproduce. We successfully parameterize a DFN
model to a real full-cell GITT experiment while treating the
model as a black box. “Black box” refers to the fact that EP-
BOLFI does not require a pre-calculated gradient of the model-
data discrepancy with the model parameters. Our results
extract both electrode diffusivities, which would not be
possible with the analytical GITT formula.

The non-destructive parameterization of models for the
SEI,[90] double-layers,[91] and plating[4] might be possible with
our algorithm. We expect to elucidate important correlations
between these effects.

EP-BOLFI allows to combine different measurement techni-
ques for parameterisation. For example, Electrochemical Impe-
dance Spectroscopy (EIS) can distinguish processes occurring at
different time scales like reaction kinetics. This is a deficiency of
GITT, as shown in this article. EP-BOLFI could fit EIS and GITT
measurements simultaneously and determine a greater param-
eter set.
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An adaptation of our algorithm to faster simulators or more
parallel processing power may swap out BOLFI for Robust
Optimization Monte Carlo (ROMC),[92] implemented in ELFI.[59]

For fitting a large number of features, EP may be (partially)
parallelized. The EP features can be updated iteratively or in
parallel. But they can alternatively be updated in a in-between
manner, where one can still reap some of the benefits of
iterative preconditioning while utilizing more parallel process-
ing power.[37]

Code availability

The bytecode of the presented EP-BOLFI optimization algo-
rithm and the code which we use to create the figures is
available at the following GitHub repository:
https://github.com/YannickNoelStephanKuhn/EP-BOLFI. The
source code of EP-BOLFI will be available at that same GitHub
repository at a later date. The experimental data is there as well
in the “Releases” section.
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We introduce a computer algorithm
that incorporates the experience of
battery researchers to extract infor-
mation from experimental data re-
producibly. This enables the fitting of
complex models that take up to a
few minutes to simulate. For valida-
tion, we process full-cell GITT meas-
urements to characterize the diffusiv-
ities of both electrodes non-
destructively.
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