KIT | KIT-Bibliothek | Impressum | Datenschutz

Elastoresistivity in the incommensurate charge density wave phase of BaNi₂(As₁₋ₓPₓ)₂

Frachet, M. 1; Wiecki, P. 1; Lacmann, T. ORCID iD icon 1; Souliou, S. M. 1; Willa, K. 1; Meingast, C. 1; Merz, M. 1,2; Haghighirad, A.-A. 1; Le Tacon, M. ORCID iD icon 1; Böhmer, A. E. 1
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Electronic nematicity, the breaking of the crystal lattice rotational symmetry by the electronic fluid, is a fascinating quantum state of matter. In this work, using electronic transport under strain we investigate the electronic nematicity of BaNi$_2$(As$_{1−x}$P$_x$)$_2$, a candidate system for charge-induced nematicity. We report a large B$_{1g}$ elastoresistance coefficient that is maximized at the tetragonal-to-orthorhombic transition temperature, that slightly precedes the first-order triclinic transition. An hysteretic behavior is observed in the resistance versus strain sweeps and interpreted as the pinning of orthorhombic domains. Remarkably, the elastoresistance only onsets together with a strong enhancement of the incommensurate charge density wave of the material, strongly suggesting that this electronic instability is uniaxial in nature and drive the orthorhombic transition. The absence of sizeable elastoresistance above this electronic phase clearly contrasts dynamic and static electronic nematicity. Finally, the elastoresistance temperature dependence that strongly differs from the Curie-Weiss form of iron-based superconductors reveals major differences for the respective coupling of electronic nematicity to the lattice. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000153709
Veröffentlicht am 12.12.2022
Originalveröffentlichung
DOI: 10.1038/s41535-022-00525-8
Scopus
Zitationen: 9
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2397-4648
KITopen-ID: 1000153709
HGF-Programm 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Erschienen in npj Quantum Materials
Verlag Nature Research
Band 7
Seiten Article no: 115
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 09.12.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page