KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep learning approaches to building rooftop thermal bridge detection from aerial images

Mayer, Zoe 1; Kahn, James ORCID iD icon 2; Hou, Yu; Götz, Markus ORCID iD icon 2; Volk, Rebekka ORCID iD icon 1; Schultmann, Frank ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Thermal bridges are weak points of building envelopes that can lead to energy losses, collection of moisture, and formation of mould in the building fabric. To detect thermal bridges of large building stocks, drones with thermographic cameras can be used. As the manual analysis of comprehensive image datasets is very time-consuming, we investigate deep learning approaches for its automation. For this, we focus on thermal bridges on building rooftops recorded in panorama drone images from our updated dataset of Thermal Bridges on Building Rooftops (TBBRv2), containing 926 images with 6,927 annotations. The images include RGB, thermal, and height information. We compare state-of-the-art models with and without pretraining from five different neural network architectures: MaskRCNN R50, Swin-T transformer, TridentNet, FSAF, and a MaskRCNN R18 baseline. We find promising results, especially for pretrained models, scoring an Average Recall above 50% for detecting large thermal bridges with a pretrained Swin-T Transformer model.


Verlagsausgabe §
DOI: 10.5445/IR/1000153712
Veröffentlicht am 14.12.2022
Originalveröffentlichung
DOI: 10.1016/j.autcon.2022.104690
Scopus
Zitationen: 14
Web of Science
Zitationen: 7
Dimensions
Zitationen: 15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2023
Sprache Englisch
Identifikator ISSN: 0926-5805
KITopen-ID: 1000153712
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Automation in Construction
Verlag Elsevier
Band 146
Seiten Art.-Nr.: 104690
Vorab online veröffentlicht am 12.12.2022
Schlagwörter Building analysis, Thermal bridges, Drones, Deep learning, Computer vision, Object detection
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page