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Three-dimensional structure of magnetic skyrmions
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Magnetic skyrmions (skyrmions hereafter) are magnetization configurations, whose topological robustness
and nanoscale size have led to speculation that they could find use as a next-generation information carrier.
Skyrmions have been observed in magnetic multilayer materials that are thin compared to the radius of a
skyrmion, and chiral cubic single crystals that can be far larger than any characteristic skyrmion scale. In these
single crystals, one would expect that skyrmions could exhibit interesting three-dimensional (3D) characteristics.
Here, the symmetry of the micromagnetic free energy is investigated. This symmetry permits a complex 3D
modulation of a skyrmion string, which we show to be a requirement of a skyrmion coexisting with the
conical state. We discuss the implications of this modulation with respect to Thiele’s equation and interskyrmion
interactions. Further to this internal modulation, we study theoretically and show experimentally that the strings
themselves must contort towards the surfaces of their confining crystals.
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I. INTRODUCTION

In two dimensions, skyrmions appear as localized whirls
of magnetic moments. In three dimensions, the structure of
skyrmions is thought to remain roughly constant, and the
whirl propagates through the third dimension with a string-
like structure [1]. The inverse stereographic projection of the
magnetization field hosting a skyrmion is a sphere in which
the magnetic moments are mapped onto its surface. This maps
the surface precisely once if the winding number is 1. Conse-
quently, calculating its winding number using [2,3]

N[m] =
∫∫

S
m · (∂xm × ∂ym)dx dy, (1)

where ∂x = ∂/∂x, along any surface S not containing the
skyrmion string’s propagation vector, gives N = 1. Consider
a deformation of the skyrmion’s magnetization m whose con-
sequence is that the winding number N[m] decreases below 1.
The surface mapped out by the inverse stereographic projec-
tion of m will no longer be the surface of a sphere, but a sphere
with a hole in it. As the stereographic projection is a confor-
mal map, this discontinuity in the sphere must manifest itself
in m as a discontinuity in the gradient of the magnetization.
For any finite exchange interaction, this deformation would
result in a divergent increase in energy. In real materials, this
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leads to a substantial energy barrier that prevents skyrmions
from being easily deformed into topologically trivial states,
such as the uniformly magnetized or conical phases, and
so skyrmions are often hailed as being “topologically pro-
tected” (an excellent analysis of the topological protection of
skyrmions can be found in Ref. [4]).

As well as this topological stability, skyrmions exhibit
other fascinating topological behaviors. Consider a skyrmion
in an itinerant helimagnet. In the strong Hund’s coupling limit,
one can think of conduction electrons perfectly exchange
coupling to the magnetization. The most simple mathematical
construction of the magnetization of a skyrmion is [2,5,6]

m = [C sin f (r), S sin f (r), cos f (r)], (2)

where C = cos(Nθ + γ ), S = sin(Nθ + γ ), γ is the
skyrmion’s helicity angle, f (r) is the angle between
the magnetization and the z axis, and θ and r are the
azimuthal and radial coordinates, respectively. Then,
the wave function of conduction electrons becomes
|χ〉 = [cos( f /2), ei(Nθ+γ ) sin( f /2)]ᵀ [2,7]. The amplitude for
an electron to hop a distance Aek from a coordinate x
is then t (Aek ) = t 〈χ (x)|χ (x + Aek )〉, where t is the
hopping magnitude, A the lattice parameter, and ek the
unit vector along the kth spatial dimension. This can
be written t (x, Aek ) = teiak (r)qe/h̄c, which is nothing but
the Peierls factor for hopping in the presence of an
applied magnetic field, where qe is the charge of an
electron, c is the speed of light, and h̄ is the reduced
Planck constant—the skyrmion appears to source a vector
potential of the form ak (r) = h̄c

2qe
[1 − cos f (r)]∂kNθ .

Differentiating reveals the remarkable fact that skyrmions
give rise to an effective electric and magnetic field, whose
ith components are BSk,i = h̄c

2qe
εi jkm · (∂ jm × ∂km) and

ESk,i = h̄
2qe

m · (∂im × dm
dt ), respectively, where εi jk is
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the Levi-Civita tensor of rank 3. So, when a skyrmion
moves through a medium with conductivity σ , it exerts a
spin-transfer torque with a current of magnitude j = σESk on
its surrounding magnetization.

The approach shown above is very common for the in-
vestigation of the properties of skyrmions: begin with the
magnetization Ansatz in Eq. (2) and study its properties
in various contexts. Unfortunately, this Ansatz has very lit-
tle physical justification, and is typically introduced using
phrases such as “using the symmetry of the skyrmion” without
discussion or explanation [2,5,6]. Here we investigate the
rotational and translational symmetry of the micromagnetic
free energy, deriving constraint equations that, when satisfied
by a magnetization field m, show that m is a symmetry of the
free energy.

In general, the three-dimensional structure of skyrmions
has the freedom to take a much richer form than shown in
Eq. (2). To begin to understand the nature of the complicated
three-dimensional states available to skyrmions, the effect of
embedding a state inside a topologically distinct phase is
investigated. This is applied to the case of a skyrmion being
immersed in the conical phase, which is a situation that has
been studied previously. In 2016, it was first predicted that
skyrmions should acquire an attractive interparticle interac-
tion when coexisting with the cone phase [8]. Such attractive
skyrmion clusters were later observed in a Lorentz transmis-
sion electron microscopy experiment [9], and a significant
amount of research has been carried out on modulated topo-
logical structures since, both in magnetic and in liquid-crystal
systems [10–17].

Here it is shown analytically that, if a topological state
is embedded within a periodic magnetization texture, the
topological state must become modulated with the same peri-
odicity as the surrounding phase. This implies that skyrmions
embedded in the cone phase should become conically mod-
ulated, which provides an important link between a phase
coexistence that can be measured experimentally, and the
wealth of research carried out on the properties of conically
modulated skyrmions. This modulation is studied using com-
putational micromagnetics, agreeing with previous literature.
The interactions between conically modulated skyrmions are
briefly discussed, and it is shown that one cannot model their
dynamics using Thiele’s approximate equation of motion.

Finally, the contortion of skyrmion strings near a surface is
investigated. Using resonant elastic x-ray scattering (REXS),
we show that skyrmions become pinned to their confining
surfaces. This is reproduced using computational micromag-
netics, where it is found that this is driven by the low energy
density of so-called surface twist states, which arise as kink
solutions to the sine-Gordon equation.

II. THE SYMMETRY OF THE FREE ENERGY

The free energy for the magnetization field in a ferromag-
net without an inversion center takes the form [5,18,19]

E =
∫

V
E (m)d3x

=
∫

V
[EJ (m) + ED(m) + EB(m)]d3x, (3)

where EJ = J (∇m)2 is the exchange energy density, ED =
Dm · (∇ × m) is the antisymmetric exchange energy density,
EB = −m · B is the Zeeman energy density, and E is the total
micromagnetic energy density. To probe the symmetry of E ,
it is prudent to investigate the rotations and translations of
m that leave E , or each of EJ , ED, and EB, invariant. Here,
we first consider the effect of infinitesimal rotations of the
magnetization on E , then look at how infinitesimal translations
affect E .

The most general form of an infinitesimal rotation to a vec-
tor field v can be written as v′ = v + lim�→0 �a × v, where
primes refer to rotated/translated quantities throughout, and
a(x) is an arbitrary vector field. So, in general, rotations
generated by a(x) affect the Zeeman energy according to the
expression

E ′
B = EB − lim

�→0
[�a(x) × m(x)] · B(x). (4)

The exchange energy density takes the form EJ =
(∂im j )(∂im j ), when using Einstein’s summation convention.
Also using the Levi-Civita tensor to write cross products as
[u × v]i = εi jku jvk , the exchange energy density in the ro-
tated frame is

E ′
J = (∂im

′
j )(∂im

′
j )

= EJ + J lim
�→0

(2�∂im j∂iε jklakml ) + O(�2). (5)

The response of the Dzyaloshinskii-Moriya interaction
(DMI) energy to the application of a general rotation to m
can be found similarly. Writing

E ′
D = Dm′ · (∇ × m′), (6)

= lim
�→0

[D(mi + �εi jka jmk ) × εilm∂l (mm + �εmnoanmo)],

(7)

keeping only terms O(�), and replacing each contraction of
Levi-Civita tensors with products of Kronecker deltas, allows
Eq. (7) to take the form

E ′
D = ED + lim

�→0
D�{m · [(m · ∇)a]

+ (m · m)(∇ · a) + (m · a)(∇ · m)

− a · [(m · ∇)m]} + O(�2). (8)

To understand the symmetry of the free energy under trans-
lations, consider infinitesimal translations generated by the
vector field b(x). These act on a vector field v such that v′ =
v + lim�→0 �(b · ∇)v. The response of the Zeeman energy
to translations of the magnetization is readily found to be

E ′
B = EB − lim

�→0
[�(b · ∇)m] · B. (9)

The same translations affect the exchange energy density
according to

E ′
J = EJ + J lim

�→0
2�∂im j∂ibk∂kmj + O(�2), (10)

and the antisymmetric exchange energy density becomes

E ′
D = ED + D lim

�→0
�{m · [∇ × (b · ∇)m]

+ [(b · ∇)m] · (∇ × m)} + O(�2). (11)
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Having derived the way that energies are affected by trans-
lations and rotations of the magnetization, it is interesting
to consider what constraints must be placed on a, b, and m
such that the energy density is invariant under rotations and
translations.

The most general constraint on m imposed by rotations
and translations can be found by simply combining each of
Eqs. (4), (5), (8), (9), (10), and (11), and is given by

0 = −Biεi jka jmk − bi∂im jB j

+ 2J (∂im jε jklak∂iml + ∂im j∂ibk∂kmj )

+ D[miml∂l ai − mimi∂l al + miai∂lml − a jmk∂kmj

+ miεi jk∂ jbl (∂lmk ) + bl (∂lmi )εi jk∂ jmk]. (12)

In principle, it is possible that some magnetization field m
satisfies Eq. (12) for nontrivial a and b in such a way that all or
some of the terms in Eq. (12) are finite—this would represent
the magnetization with the most nontrivial symmetry under
rotations and translations. In a real material, the free energy
as given by Eq. (3) is an approximation, so that Eq. (12) is
simplified compared to the true constraint a magnetization
field must satisfy in order to be symmetric under translation
and rotation. As such, a detailed investigation of the solutions
of Eq. (12) may not be particularly useful. However, some in-
teresting qualitative information can be gleaned from Eq. (12)
by understanding what happens when the individual terms in
the equation are zero.

Discussion of rotational invariance. First considering ro-
tations of the Zeeman energy density, from Eq. (4), EB = E ′

B
when a(x) ‖ B(x). This leads to an unsurprising conclusion: if
the magnetization is rotated about the direction of the external
field, then the energy density remains constant.

For the exchange energy density to remain invariant under
rotations of m, it is necessary to require that the rotations are
generated by a constant vector a, i.e., a �= a(x). Then, Eq. (5)
becomes

E ′
J = EJ + J lim

�→0
(2�∂im jε jkl ak∂iml ) + O(�2)

= EJ + O(�2), (13)

where the term O(�) in Eq. (13) vanishes by symmetry under
exchange of the dummy j and l indices, using ε jkl = −εlk j

[this is precisely analogous to the vector identity v · (a × v) =
0, but replacing the vector v with the tensor ∂im j]. The be-
havior of the Dzyaloshinskii-Moriya energy density under
rotations is less trivial, but using the frame invariance of the
dot product and the curl, then, from Eq. (6) and the definition
of ED, if

m′ · (∇ × m′) = m′ · (∇′ × m′), (14)

then ED = E ′
D. This occurs to lowest order in � when

m × [�(a × ∇) × m] = 0, (15)

which is satisfied when ∇ × m ‖ a.
Summary of rotational invariance. The Zeeman energy

density is invariant under rotations generated by a when a
is parallel to B. The exchange energy density is invariant
under constant rotations [a �= a(x)]. Combining these two
constraints, there is only a rotational symmetry if B always

points in the same direction; otherwise a would have to rotate
to follow B, in which case a would no longer be constant.

From Eq. (15), the DMI term is invariant only when the
curl of the magnetization is parallel to a. Also taking into
account the exchange and Zeeman constraints, the curl of the
magnetization has to be parallel to the external magnetic field,
which must be uniform. If these conditions are broken, the
free energy will have no rotational symmetry.

Discussion of translational invariance. One could be for-
given for expecting that the Zeeman energy density has
translational symmetry when the generator of translations b ‖
B. This turns out to not be the case. Instead, Eq. (9) vanishes
in two cases, which can be more easily understood writing
m′ = m + T (�b)m, where T (�b) = lim�→0(�b · ∇) is an
operator that maps vectors v(x) to v(x + �b). The first case is
when T (�b)m ⊥ B; the second is the trivial T (�b)m = 0.

The translated exchange energy density in Eq. (10) satisfies
E ′

J = EJ when the gradient of the magnetization is normal to
the gradient in the change in magnetization due to translation,
where the gradient is taken along each axis in turn. This is
difficult to understand intuitively from Eq. (10), but written
out in terms of the translation operator T , Eq. (10) becomes

E ′
J = EJ + 2J (∂im) · [∂iT (�b)m] + O(�2). (16)

This symmetry may sound esoteric, but a nontrivial example
can be found in a simple spin helix, defined by

mHelix = MS[cos(kz + φ), sin(kz + φ), 0], (17)

in Cartesian coordinates where MS is the saturation magneti-
zation, φ is an arbitrary phase factor, and k = kẑ is the wave
vector, which has been set parallel to the z axis without loss
of generality. Now the derivatives in Eq. (16) are

∂i(�b · ∇)m = −k2�bzδiz[cos kz, sin kz, 0], (18)

∂im = kδiz[− sin kz, cos kz, 0], (19)

so that clearly E ′
J = EJ under arbitrary translations.

The symmetry of the antisymmetric exchange under trans-
lations shown in Eq. (11) is also somewhat easier to digest
when written out in terms of the translation operator T . Then,
the condition for translational symmetry is

m · [∇ × T (�b)m] = −T (�b)m · (∇ × m), (20)

which can be read as “The dot product between the curl
of the change in magnetization due to translation, and the
unperturbed magnetization must equal the negative of the
dot product between the change in the magnetization due to
translation and the curl of the unperturbed magnetization.”

Summary of translational invariance. To satisfy the sym-
metry of the Zeeman energy density, any change in the
magnetization due to the translation must be perpendicu-
lar to the magnetic field lines. The symmetry demands for
translational invariance of the symmetric and antisymmetric
exchange energy densities have much less physically intuitive
interpretations than those derived for rotational invariance.
The equations themselves are, however, still useful for study-
ing the symmetry of magnetization fields; an example of how
to check these symmetries by hand has been provided in
Eq. (19).
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III. SKYRMIONS IN THE CONICAL PHASE

The coexistence of multiple magnetic phases with identi-
cal topology is typically a temporary affair. If two magnetic
structures p(x) and q(x) coexist and have the same topological
winding number N as defined in Eq. (1), the magnetic material
will inevitably tend towards hosting exclusively the magnetic
structure that has the lowest free energy. While there could
be some finite energy barrier that separates p(x) and q(x),
this will eventually be overcome by thermal fluctuations, with
the energy barrier setting the expected lifetime of the higher
energy state.

States with distinct topological winding numbers, however,
can generally coexist. This is because the energy barrier sep-
arating two topologically distinct magnetization structures is,
in theory, infinite; any path between two topologically distinct
magnetization textures would involve an intermediate state
with a divergent exchange energy. In reality, this idealized
logic is imperfect. Phonons flip magnetic moments, which
can provide the “tear” in the magnetization fabric required
to change the topology of magnetic states. Nevertheless, as
a guiding principle, one should expect states with different
topologies to coexist much more readily than states with
equivalent topologies.

A trivial but widely studied example would be the co-
existence of a two-dimensional magnetic skyrmion with the
field polarized state. The skyrmion has a topological winding
number N = 1, while the field polarized state has N = 0. The
two-dimensional skyrmion Ansatz given in Eq. (2) describes
a skyrmion embedded within the field polarized state—
using this construction, writing m = m(r, θ ), we have that
limr→∞ m(r, θ ) = ẑ, which is uniformly magnetized along
the field direction.

Much more complicated is the three-dimensional case of a
magnetic skyrmion embedded in the conical state. The above
study of the symmetry of the magnetization should be suf-
ficient evidence that there is no simple Ansatz that we can
justify by symmetry that will describe something as compli-
cated as a skyrmion embedded in the cone phase. However,
even with a limited mathematical description of the system, it
is possible to make progress.

First, we will define an embedded magnetic state as being
a state m1 satisfying

lim
r→∞ m1(r, θ, z) = m∞(r, θ, z), (21)

so that m1 coexists with m∞. For a skyrmion coexisting with
the conical phase, we have

lim
r→∞ m1(r, θ, z) = mCon(z), (22)

mCon(z) = [cos(kz) sin χ, sin(kz) sin χ, cos χ ], (23)

where mCon(z) represents the cone phase propagating along
the z axis.

Now the challenge is to construct a valid m1 that can satisfy
Eq. (22). To do so, it is useful to express vector fields in terms
of a basis that includes, as one of its basis vectors, the conical
state. Noticing that the vector

m⊥(z) = [cos(kz) sin χ, − sin(kz) sin χ, 0] (24)

is orthogonal to mCon in Eq. (23) throughout all space, a
convenient orthonormal basis for vector fields is given by

ê1 = mCon(z), (25)

ê2 = m⊥(z), (26)

ê3 = ê1 × ê2. (27)

In this basis, any localized configuration m1 satisfying
Eq. (22) can be written as

m1 = Cg cos R(x)ê2 + Sg cos R(x)êe + sin R(x)ê1, (28)

where Cg = cos g(x), Sg = sin g(x), g(x) is an arbitrary func-
tion of x that controls the internal structure of m1 and R(x) =
R(r, θ, z) determines the projection of a state along the conical
direction. Applying the limit in Eq. (22) to Eq. (28) yields the
requirement

lim
r→∞ R(r, θ, z) = π/2. (29)

Derivatives of Eq. (29) give limr→∞ ∂θR(r, θ, z) =
limr→∞ ∂zR(r, θ, z) = 0, so that the most general form
of R(r, θ, z) is given by

R(r, θ, z) = ρπ/2(r) + ρ0(r)Rθ,z(θ, z), (30)

where limr→∞ ρn(r) = n.
Now that some constraints have been applied to

R(r, θ, z), it is interesting to consider how to con-
struct a state m1 = mNoCone that has absolutely no coni-
cal modulation (i.e., ∂zmNoCone = 0). Choosing mNoCone =
[x0(r, θ ), y0(r, θ ), z0(r, θ )] and solving the simultaneous equa-
tions

aê1 + bê2 + cê3 = x0x̂ + y0ŷ + z0ẑ (31)

gives the expression for a (found using the Gaussian elimina-
tion method numerically),

a = x0 cos kz + y0 sin kz + z0 cot χ cos 2kz

sin χ + cos χ cot χ cos 2kz
, (32)

so that, if m1 is to be independent of the z coordinate, the
function R(r, θ, z) must satisfy the equation

R(r, θ, z)NoCone = sin−1[a(r, θ, z)]. (33)

If, for some finite interval r ∈ [a, b], a, b ∈ R>0, ρπ/2(r) =
0, and ρ0(r)Rθ,z(θ, z) = RNoCone, then it is possible, in
this region, for m1 to be independent of z. However, as
limr→∞ ρπ/2(r) = π/2 and limr→∞ ρ0 = 0, if |b − a| > ε for
any ε > 0, then the ρn, and by extension R(r, θ, z) and m1,
are not analytic. Therefore, if m1 is an analytic vector field, it
cannot be independent of the z coordinate.

The above proof that m1 cannot be independent of the z
coordinate is identical to the proof that the dependence of m1

on the z coordinate cannot be different than the dependence of
the basis vectors on the z coordinate. To show that m1 must not
be independent of the axial coordinate, the functions x0(r, θ ),
y0(r, θ ), and z0(r, θ ) were not allowed to vary with z. However,
if the functions x0, y0, and z0 were allowed to vary arbitrarily
with z, the proof is identical, with the only changes being that
x0(r, θ ) → x0(r, θ, z), y0(r, θ ) → y0(r, θ, z), and z0(r, θ ) →
z0(r, θ, z). Again it is found that the basis vectors ê1, ê2, and
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FIG. 1. A slice through a simulation of the conically modulated
skyrmion state. (a) The skyrmion string propagates along the z axis,
shifting left and right as it progresses, represented by cones which
point parallel to the magnetization and are colored by the z compo-
nent of the magnetization. (b) As in (a), but the surface of the slice is
colored by the y component of the magnetization.

ê3 are incapable of simultaneously satisfying the localization
constraint in Eq. (22) and allowing m1 = x0x̂ + y0ŷ + z0ẑ for
a finite region of r.

Therefore, if m1 is an analytic vector field embedded
within the conical state, it must be conically modulated.

Internal structure. While the above argument provides
strong evidence for the fact that the skyrmion state ought to

be conically modulated in some way when coexisting with the
cone phase, it gives very little insight into the internal structure
of skyrmions embedded in the cone phase. This is a case that
has been studied numerically before [8,9], but a visualization
is provided here for reference in Fig. 1. The skyrmion can be
seen to oscillate internally with exactly the same periodicity
as the surrounding conical state, with a π phase offset.

In addition to having a much richer internal structure,
skyrmions embedded within the cone phase exhibit unusual
interparticle interactions. Skyrmions that are embedded in a
uniformly magnetized state are well understood to have re-
pulsive interactions [5,20]. This is very common for magnetic
multilayer systems with interfacial DMI that host skyrmions.
Recently, attractive skyrmion clusters have been observed
both in numerical calculations and experiment. It has been
found numerically that skyrmions become attractive when co-
existing with the cone phase, which has been used to explain
experimental observations of attractive skyrmions [8,9]. A
bound state of two attractive conically modulated skyrmions
is also provided here in Fig. 2.

As the bound state in Fig. 2 is localized in the cone phase,
the bound state must be conically modulated. This modulation
is most easily seen in Fig. 2(c), where the x component of the
magnetization oscillates with the same period as the surround-
ing conical state. A recent scattering study of the coexistence
of reflections associated with the skyrmion lattice phase and
the conical phase lends further credence to the hypothesis that
experimental measurements of attractive skyrmion clusters
are due to conically modulated skyrmions [21].

Thiele’s equation. Thiele’s equation is a simple semiclas-
sical model of the motion of magnetic domains [22]. This
has gained popularity recently in the field of skyrmionics

FIG. 2. Conically modulated skyrmions in three dimensions interact attractively and form bound states. (a) An aerial view of the bound
state, where the magnetization is represented by cones whose orientation is set by the magnetization, and the color is set by the z component
of the magnetization. (b) As in (a), but colored by the y component of the magnetization. (c)–(e) A cross section normal to the y axis through
the bound state, where the surface is colored by the x, y, and z components of the magnetization, respectively.
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as the interaction potential between two isolated repulsive
skyrmions [taking the simple form given in Eq. (2)], which
needs to be known to use Thiele’s approach, has been well
studied [5,20,23]. Integrating Thiele’s equation is vastly more
computationally efficient than computational micromagnetics,
as in conventional computational micromagnetics a skyrmion
is constructed from a very large number of finite difference
cells, whereas using Thiele’s approach only the skyrmion’s
position needs to be tracked.

A core assumption made to derive Thiele’s equation is
that the internal structure of a magnetic domain must remain
constant. As can be seen from a glance at Fig. 2, this is not the
case. The bound conical skyrmion state deforms each of the
constituent skyrmions in a different and nontrivial way. Even
if an approximate attractive interaction potential could be de-
rived for these modulated skyrmions, Thiele’s equation would
be invalid as additional energy dissipation would occur as a
result of the modification of the individual skyrmion’s internal
structure.

Summary. In this section, it has been shown that if
skyrmions are embedded within the cone phase, skyrmions
themselves must become modulated with the same periodic-
ity of the conical state. The approach taken generalizes well
to any topologically distinct magnetization configurations.
While conically modulated skyrmions have been studied
before, the purpose of this section is to provide strong math-
ematical evidence for their existence whenever skyrmions are
surrounded by the cone phase. We anticipate that this will be
particularly useful in scattering experiments. It is relatively
straightforward to observe the conical state in diffraction
experiments by looking for magnetic peaks along the direc-
tion of the applied magnetic field. If any scattering peaks
associated with a topological magnetic phase are measured
simultaneously to the conical reflections, as in Ref. [21], one
can say with confidence that the topological phase will be con-
ically modulated, which could significantly affect the physics
of the topological object.

It has also been emphasized that, because conically mod-
ulated skyrmions form a bound state affecting their internal
structure, Thiele’s equation cannot be used to model their
motion.

IV. THE SURFACE-PINNED SKYRMION STATE

In the previous section, the internal structure of a skyrmion
string as it propagates along the z axis have been explored,
but it was assumed that a skyrmion string would not deviate
spatially from its path along the z axis, where the z axis is
defined by the externally applied magnetic field. Here we
show that this does in fact occur at the surfaces of materials
when the surface normal is not parallel to the magnetic field
lines. In this sense, skyrmion strings appear to be pinned to
the surfaces of their confining materials.

A. REXS

To study this effect, a REXS experiment at the Cu L3

resonance was carried out on a sample of Cu2OSeO3 using
beamline I10 at the Diamond Light Source (Didcot, UK)
[24,25]. The sample was aligned so that a (001) face was

out of plane, and the diffractometer was set up such that the
scattering vector of the x rays was parallel to (001). Adjacent
to this (001) face was the (011) face, from which the x rays
were scattered. The magnetic field was applied along the (001)
direction throughout. The sample was kept at a temperature of
56.5 K with a measured TC of 57.5 K, and the magnitude of
the magnetic field was 20 mT.

REXS from a face that is not parallel to the scattering
q vector has a significant complication: magnetic truncation
rods are rotated by the angle between the q vector and the
surface normal [26–28]. In the case of scattering from the
(011) face with a q vector parallel to the (001), the truncation
rods are rotated by 45◦. As a result, even the scattering pattern
from a skyrmion lattice propagating along the (001) direction
will show a significant distortion when measured from a (011)
face, as the penetration depth of x rays at resonance is very
shallow.

A graphic showing the reciprocal space geometry of scat-
tering from a skyrmion lattice pinned to a face that is not
normal to the scattering vector is shown in Fig. 3(a). In
this figure, the translucent sphere is the Ewald sphere for
the (001) reflection and the brown surface is an approximate
representation of the region of reciprocal space sampled by
an area detector. This region will be referred to hereafter as
the detector’s reciprocal surface. A close-up of the detector’s
reciprocal surface is shown in Figs. 3(b) and 3(c), where
Fig. 3(b) assumes that the skyrmions are pinned to the surface
normal, and Fig. 3(c) assumes that skyrmions propagate along
the (001). In these figures, the magnetic reciprocal lattice is
represented by blue spheres, while the magnetic truncation
rods are represented by blue cylinders.

What is observed on detector images is the intersection
between the detector’s reciprocal surface and features in
reciprocal space. At the Cu L3 resonance, the penetration
depth for REXS is very small [29] and, correspondingly,
the truncation rods are very long. So, typically one mea-
sures the intersection between magnetic truncation rods and
the detector’s reciprocal surface, not the magnetic reciprocal
lattice itself. Assuming that skyrmions are pinned to propa-
gate parallel to the surface normal, the intersection between
the detector’s reciprocal surface and the magnetic truncation
rods is shown in Fig. 3(d). The intersection between mag-
netic truncation rods and the detector’s reciprocal surface,
assuming that skyrmions are free to propagate along the field
direction [which was along the (001) direction], is shown in
Fig. 3(e). Crucially, these two scattering patterns look almost
identical.

A single image captured on the area detector is shown in
Fig. 3(f). Because of the similarities between Figs. 3(d) and
3(e), it is impossible to determine from this data alone which
direction the skyrmion lattice is propagating along.

To remove this ambiguity, the same experiment was
performed at 5 eV below the Cu L3 edge. This has two ef-
fects. Firstly, penetration depth significantly increases and the
magnetic reciprocal space becomes pointlike [28,29]. This
means that not all six peaks can be seen simultaneously on
a single detector image, as in Fig. 3(f). The second con-
sequence is that scattered intensity is drastically decreased.
This was compensated for by increasing the exposure time
of the CCD camera. Individual detector frames acquired off
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FIG. 3. (a) Geometry of the surface-pinned skyrmion scattering. The sample surface normal is not parallel to the scattering vector, or even
in the scattering plane. The skyrmion lattice is taken to be pinned to the surface normal. (b) Close-up of the intersection between the detector’s
reciprocal surface and the truncation rods from the surface-pinned skyrmion state shown in (a). (c) As in (b), but assuming that skyrmions
are not pinned to the surface. (d) The intersections between the magnetic truncation rods in (b) and the detector’s reciprocal surface. (e) The
intersections between the magnetic truncation rods in (c) and the detector’s reciprocal surface. (f) A REXS pattern obtained from the (011)
face of a crystal of Cu2OSeO3 where the field and scattering vectors are both aligned along the (001) direction.

resonance are shown in Figs. 4(a) and 4(b), and the average
over these off-resonance frames is shown in Fig. 4(c). The ver-
tical streaks of intensity in Fig. 4 are a trivial consequence of
the low scattered intensity in these images; they originate from
a line of damaged pixels in the detector and can be ignored.
Crucially, the major axis of the ellipse on which the magnetic
signal lies is not parallel to the detector vertical, which is
possible only if skyrmions are pinned to the surface of their
confining material—if the skyrmion strings were parallel to
the applied field at the surface, then the major axis of the
ellipse of intensity recorded in Fig. 4(c) would be parallel to
the vertical of the detector, as in Refs. [24,25].

B. Modeling

To investigate this numerically, a wedge was cut from
a cuboid with dimension 420 × 140 × 480 nm3 and finite
difference cells of volume 2.5 × 2.5 × 2 nm3. Setting the
exchange and antisymmetric exchange interactions, as well as
the saturation magnetization, to be the values of a generic,
well-studied noncentrosymmetric crystal (FeGe), the exter-
nal field was set to 286 mT. For simplicity [and consistency
with the free energy in Eq. (3)] demagnetizing effects were
neglected, which is why the external field value is so large.

The system was initialized with nine equally spaced
skyrmionlike strings propagating along the z direction. The

FIG. 4. Images of the surface-pinned skyrmion state at 5 eV below the Cu L3 edge; (a) and (b) show different images captured on an area
detector at different diffractometer |q| values. Off the resonance energy, the x-ray penetration depth significantly increases, making features
in reciprocal space more pointlike and requiring that |q| be scanned to image all six magnetic satellites. Due to decreased intensity, a line of
damaged pixels is visible, but should be ignored. (c) The summation of the ten images taken at different |q| values from which (a) and (b) were
taken. The line of damaged pixels seen in (a) and (b) is blurred across this subfigure, but is an artifact of the image alignment process and
should be ignored.
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FIG. 5. A micromagnetic simulation of skyrmion strings near a
tilted surface. Approximately one in four finite difference cells were
randomly selected to be rendered, with the cell’s magnetization rep-
resented by an arrow whose length is scaled by the magnetization’s
z component (with mz = 1 having length 0 and mz = −1 having
maximal length).

simulation was then relaxed using the Fidimag package [30].
The ground state obtained as a result of this energetic re-
laxation is displayed in Fig. 5, which shows the minimum
energy configuration for skyrmions incident on a tilted surface
is reached when the skyrmions cant towards the surface.

The physical origin of this effect is related to energy densi-
ties. In materials with a free energy described by Eq. (3), the
magnetic moments at the surface of the material always be-
come twisted [19]. These so-called surface twist instabilities
are nothing but kink solutions to the sine-Gordon equation,
which one also encounters when studying the chiral soliton
lattice state [31–33].

This surface-twist state has an extremely low energy den-
sity. The complicated skyrmion structures shown in Fig. 5 can
be simply explained by the simulation attempting to maxi-
mize the area of surface-twist instabilities at the surface of
the material. So, skyrmions are energetically obliged to be-
come hexagonally close packed at the surface, even though
the skyrmions in this simulation are not conically modulated
(and have repulsive interskyrmion interactions).

Summary. An experiment has been carried out, carefully
overcoming magnetic truncation rod effects, to show that
skyrmions become pinned to surfaces. This data has been
backed up by numerical calculations which show exactly the
same effect, that near the surface of materials skyrmions
stop propagating along magnetic field lines and instead prefer
to align themselves with the surface normal. This curious

three-dimensional effect has a simple energetic explanation:
The magnetic system wants to maximize the area on its sur-
face that is not covered by skyrmions, so that as much as
possible of the surface can be covered by the surface-twist
state, which has a low energy density.

V. DISCUSSION

Due to the nanoscale size of skyrmions, it is experimen-
tally not realistic to uniquely ascertain their three-dimensional
structure (as this would generally require the unambiguous
determination of a vector field with nanometer resolution
throughout space). As such, the experimental state of the art
does not attempt to uniquely determine the magnetization
field. Instead, experimentalists acquire clues using different
techniques and rely on theoretical work to put the pieces of the
puzzle together. The primary purpose of the second and third
sections of this work is to provide additional theoretical tools
and stronger arguments that can be used to extract physical
information from experimental data.

The relations derived in Sec. II can be used to check the
symmetry of the Ansätze for the magnetization, and provide
mathematical justification for the necessity of the study of
three-dimensional skyrmion structures. The free energy used
in Eq. (3) is minimal, but the technique used to derive these
relations generalizes straightforwardly to higher order energy
terms.

The conically modulated skyrmion state discussed in
Sec. III has been widely investigated [10–17]. The purpose of
the arguments presented in Sec. III is to provide strong math-
ematical justification for the observation that the coexistence
of the skyrmion lattice phase and the conical phase implies
that skyrmions will become conically modulated. While the
nanoscale measurement of the internal structure of skyrmions
is difficult, it is a relatively straightforward experimental task
to measure the phase coexistence of the conical and the
skyrmion lattice states.

It is worth emphasizing that we expect this conical modu-
lation to propagate throughout skyrmion lattices—we do not
expect this modulation to exist solely at the spatial boundary
between the skyrmion lattice and the cone phase. In Sec. III
we show that, if a skyrmion is embedded in a periodic state,
the skyrmion must inherit this periodicity. Since a conically
modulated skyrmion has the same periodicity as the cone
phase, any skyrmion in contact with a conically modulated
skyrmion should also become conically modulated. In this
way, even skyrmions that are not in direct contact with the
conical phase should become conically modulated, so long as
the cone phase borders the skyrmion lattice somewhere in the
material.

Additionally, many aspects of the structure of skyrmion
strings (often referred to as skyrmion tubes) as they prop-
agate through materials have been the subject of academic
scrutiny. The emergent magnetic monopole dynamics at the
extremity of skyrmion strings has been studied theoretically
[34,35]. Skyrmion strings displaying terminations that would
lead to monopolelike behavior have been recently observed
directly using x-ray and electron microscopy [36–39]. Here,
in Sec. IV, we study the properties of skyrmion strings that
have no monopolelike properties and that terminate at the
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boundaries of their confining materials. We show experi-
mentally using REXS, and theoretically using computational
micromagnetics, that this effect can be considered to be the
consequence of the low energy density of the so-called surface
twist instabilities present in B20 magnets [19]. The bending of
skyrmion strings towards surfaces has been measured before;
previously this bending has been associated with the demag-
netizing field [40,41]. Our micromagnetic calculations show
that this bending is very significant in the absence of the de-
magnetizing field. It is likely a combination of the two effects
that lead to the experimental fact that skyrmion strings bend
towards surfaces, but our results are particularly significant for
small samples and thin films in which the demagnetizing field
is smaller in magnitude.

VI. CONCLUSIONS

In conclusion, the general three-dimensional symmetry of
the free energy of the magnetization has been investigated.
The simple model used in this study considers only the ex-
change, Dzyaloshinskii-Moriya, and Zeeman interactions, but
the approach can be straightforwardly extended to other en-
ergy terms. Equations that constrain the conditions for the
rotational and translational symmetry of arbitrary magne-
tization fields have been generated independently for each
term in the free energy. These conditions have been given
meaningful physical interpretations. This work shows that the
symmetries of the magnetization field are fundamentally three
dimensional, and that one should expect magnetization struc-
tures measured in real materials to have three-dimensional
properties.

The three-dimensional structure of skyrmions embedded
in the conical phase was then studied. It was found that if
the mathematical description of skyrmions is analytic, then
skyrmions must acquire a three-dimensional modulation with
the same period of the conical phase when embedded within
it. This mathematical argument was then compared with nu-
merical results, which also show that skyrmions acquire a
rich periodic structure when coexisting with the conical state.
The attractive nature of the interactions between conically
modulated skyrmions was discussed, with reference to the fact
that the dynamics of attractive skyrmions cannot be modeled
using Thiele’s equation.

Finally, the structure of skyrmions near a surface whose
normal vector is not parallel to the direction of the applied
magnetic field was studied. A REXS experiment was carried
out, where it was found that skyrmion strings cant towards
tilted surfaces. This result was reproduced using computa-
tional micromagnetics. The physical origin of this “surface
pinning” was found to be related to the very low energy den-
sity of surface-twist instabilities. By leaning towards surfaces,
skyrmions decrease the surface area that they occupy and in-
crease the surface area that can be populated by surface-twist
instabilities.
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