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Abstract

In this thesis, 4-4’-bis(carbazol-9-yl)biphenyl, CBP, is investigated using accurate and
efficient quantum chemical methods to identify key factors for the correct description
of excited states. Investigation of local-minima geometries reveal that the charge
transfer states of CBP are accurately described by the GW-BSE approach, while
time-dependent density functional theory yields incorrect state ordering. It is also
shown that the relative orientation of carbazole and phenyl groups causes smaller
excitation energy shifts, while the bond distance of the biphenyl moiety has a stronger
effect. These observations are supported by an ensemble approach used to simulate the
temperature dependence of absorption and emission spectra. The statistical analysis
indicates that the reduction of charge-transfer absorption bands is related to a large
spread in the distribution of oscillator strengths, which reflects considerable changes in
the transition moments. The excited-state properties of CBP dimers are also assessed.
Using PNO-ADC(2) reference calculations, it is shown that TD-LC-DFTB is a good
alternative to compute excitonic couplings employing the two-state approximation.
A comparison of relaxed and unrelaxed dimer geometries from an MD-equilibrated
CBP slab reveal that constrained structural optimization can significantly improve
geometries, and thus couplings, while preserving monomer arrangements from the
bulk. Additionally, the influence of explicit environment on couplings is investigated
using the FDE approach on CBP clusters. The shifts in excitonic couplings due to
polarization from the environment highlight the importance of the bulk structure.
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Kurzfassung
In dieser Arbeit wird 4-4’-bis-(carbazol-9-yl)-biphenyl, CBP, mit akkuraten und effizi-
enten quantenchemischen Methoden untersucht, um Schlüsselfaktoren für die korrekte
Beschreibung angeregter Zustände zu identifizieren. Die Untersuchung der Geometrien
lokaler Minima zeigt, dass die Charge-Transfer -Zustände von CBP durch den GW-
BSE-Ansatz mit hoher Genauigkeit beschrieben werden, während die zeitabhängige
Dichtefunktionaltheorie eine falsche Reihenfolge der angeregten Zustände liefert. Es
wird auch gezeigt, dass die relative Orientierung der Carbazol- und Phenylgruppen klei-
nere Verschiebungen der Anregungsenergie verursacht, während der Bindungsabstand
der Biphenyleinheit einen stärkeren Effekt hat. Diese Beobachtungen werden durch
einen Ensemble-Ansatz unterstützt, der zur Simulation der Temperaturabhängigkeit
von Absorptions- und Emissionsspektren verwendet wird. Die statistische Analyse
zeigt, dass die Verringerung der Charge-Transfer -Absorptionsbanden mit einer großen
Streuung in der Verteilung der Oszillatorstärken zusammenhängt, die erhebliche
Veränderungen in den Übergangsmomenten widerspiegelt. Die Eigenschaften von
CBP-Dimeren im angeregten Zustand werden ebenfalls untersucht. Anhand von PNO-
ADC(2)-Referenzrechnungen wird gezeigt, dass TD-LC-DFTB eine gute Alternative
zur Berechnung der exzitonischen Kopplungen unter Verwendung einer Zweizustands-
näherung ist. Ein Vergleich von relaxierten und nicht relaxierten Dimergeometrien
aus einer MD-ausgeglichenen CBP-Auswahl zeigt, dass eine Strukturoptimierung mit
Einschränkungen die Geometrien und damit die Kopplungen erheblich verbessern
kann, während die Monomeranordnungen aus der Masse erhalten bleiben. Zusätzlich
wird der Einfluss der expliziten Umgebung auf die Kopplungen mit Hilfe des frozen
density embedding Ansatzes an CBP-Clustern untersucht. Die Verschiebungen der exzi-
tonischen Kopplungen aufgrund der Polarisierung durch die Umgebung unterstreichen
die Wichtigkeit der Berücksichtigung einer Umgebungsstruktur.
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1 Introduction

Research on organic light emitting diodes, OLEDs, has become an increasingly active
field in past years due to their properties and potential applications in lighting and dis-
play technologies. This has led to the development of several subclasses, with phospho-
rescent OLEDs, PhOLEDs, among the most efficient.[1] PhOLEDs use organometallic
compounds as emitters embedded in an organic semiconductor matrix.[2] However,
they suffer from degradation through various processes that limit their lifetime by
gradually decreasing their luminosity.[3] One of the mechanisms proposed to explain
degradation through molecular aggregation involves the interaction of excitons and
polarons generated in host molecules by electrical driving.[4] Studying degradation
processes in OLEDs and PhOLEDs is not a trivial task, as they span through a wide
range of time and length scales. This highlights the need to develop a multi-scale
approach capable of giving a detailed description of PhOLED degradation. This thesis
aims to identify key aspects for the accurate description of excited-state properties of
4-4’-bis(carbazol-9-yl)biphenyl, CBP, and to help establish a balanced framework of
methods to compute these properties.

In general, OLEDs consist of thin layers of organic materials sandwiched between two
electrodes, all deposited on a substrate, which emit light when subjected to electrical
driving.[5] A special variant are PhOLEDs, which use organometallic compounds as
triplet emitters like Ir(ppy)3 or Ir(Fppy)2(acac).[2] These are embedded into so-called
host materials, which work as a dispersion matrix for the emitters while ensuring
appropriate transport of charge carriers and excitons towards the emissive dopant.
One essential requirement for host molecules is that the lowest triplet excited state, T1,
should be higher in energy than the phosphorescent emitter to avoid back transfer.[6,7]

Such characteristic becomes more challenging when using blue emitters, as they typi-
cally have triplet energies of 2.7 eV or higher.[8]
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1 Introduction

Figure 1: 4-4’-bis(carbazol-9-yl)biphenyl, CBP

At the same time, host materials can be used to fulfill charge transport roles. Depend-
ing on the type of charge carrier, they are classified in three categories: hole-, electron-
and bipolar transport. In particular, hole-transport materials are used for positive
polaron/charge mobility. Typical molecules employed for this purpose should contain
electron-donating groups, provide a good hole mobility, and have a relatively high glass
transition temperature to ensure thermal stability. The characteristics of their highest
occupied and lowest unoccupied molecular orbitals, HOMO and LUMO respectively,
should also be considered: the HOMO should guarantee a low hole-injection barrier
into the emission layer, EML, while the LUMO should inhibit the passing of electrons
from the EML back to the hole-transport layer.[8]

Carbazole based compounds are often used as host materials given their relative
high triplet energies, typically in the 2.7-3.3 eV range.[9] One particularly common
hole-transport host molecule is 4-4’-bis(carbazol-9-yl)biphenyl, CBP, shown in Fig. 1.
It is composed of two carbazole moieties, one at each end of a biphenyl group. Blue-
green and green PhOLEDs containing CBP have been reported to have remarkable
efficiencies of up to 89.1 cd A-1.[10] In contrast, using CBP as host for typical blue
emitters will lead to poor device performance because the higher triplet energies of
the dopant lead to inefficient host-guest energy transfer.[8]

The use of device architectures with embedded organometallic phosphorescent emit-
ters has led to PhOLEDs with internal quantum efficiencies close to 100%.[1] Still,
PhOLEDs have some stability problems that make them susceptible to degradation,
significantly reducing their lifetimes.[3,11,12] The consequences of OLED and PhOLED
degradation can be typically observed as a decrease in their luminosity. Among the
different causes for loss of luminance, intrinsic degradation remains the most prob-
lematic, as it occurs from long-term operation under normal circumstances.[3] One
such mechanism is proposed to involve aggregation of hole-transport host molecules
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used in PhOLEDs, which occurs through the interaction of excitons and positive
polarons generated by electrical driving, hence the name exciton-polaron induced
aggregation, EPIA.[4,13–17] The problem of EPIA is reported to be most severe in blue
and blue-green PhOLEDs, where wide band-gap materials like CBP are typically used
as hosts.[18–20]

The study of OLED and PhOLED degradation processes requires the combination
of different methods that can correctly model the generation of reactive charged-
excited species, the interactions with their environment, their transport properties and
rate constants. High-level quantum chemical methods are amongst the fundamental
ingredients to investigate excited-state species involved in normal PhOLED opera-
tion, and degradation processes. These approaches can also provide reference data to
parametrize and validate low-scaling methods, which can simulate considerably larger
systems.[21] On the other hand, highly-accurate methods can become very expensive
due to the computational scaling with system size. Thus, one of the aims of this work
is to help establish a framework of excited-state methods that offer good balance
between cost-effectiveness and accuracy.

Time-dependent density functional theory, TD-DFT, is a widespread method for
excited-state calculations due to its relative ease of use, and computational efficiency.
It allows calculations of relatively large systems yielding results that can be in good
agreement with experiments, with typical errors between 0.2 and 0.4 eV for valence
excited-states.[22,23] Additionally, it is widely available in most popular computational
chemistry codes, with implementations that allow the calculation of oscillator strengths
and analytic gradients. TD-DFT results can have a strong dependence on the choice
of exchange-correlation functional, and the type of excitation being described.[24]

Some problematic cases include Rydberg states, excitations in extended π-systems,
double excitations and charge-transfer, CT, states.[25–28] A cost-effective alternative
to TD-DFT is the Bethe-Salpeter equation based on the single-particle Green’s func-
tion, GW-BSE. With a scaling similar to TD-DFT, the GW-BSE method can yield
excitation energies with typical errors of 0.1-0.3 eV, while also avoiding problems with
Rydberg or CT states.[23,29–31] Though high-level wavefunction-based methods can be
used to obtain very accurate excitation energies, their inherent computational scaling
restricts their use to small systems. Nonetheless, local correlation approaches, like
pair natural orbitals, PNOs, have become a viable alternative to accurately describe
excited states in larger systems, like CBP, without significant loss in accuracy.[32] In
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1 Introduction

case of CBP, the accurate description of CT states is particularly important as there
is evidence of a low-lying excited state with charge-transfer character.[33]

This thesis aims to characterize CBP for the accurate description of excited-state
properties, and to help establish a balanced framework of accurate and efficient
quantum chemical methods that can correctly describe excited states and excitonic
couplings of CBP. The main research objectives are:

1. The structural determination of ground- and excited-state geometries of the
CBP monomer in gas phase.

2. The benchmark of different quantum-chemical methods for excited-state compu-
tations.

3. The assessment of influence of molecular conformation on absorption and emis-
sion.

4. The study of the influence of different environments on dimer structure and
excitonic couplings.

5. The evaluation of environmental effects on dimers embedded inside molecular
clusters.

This thesis is structured as follows. Chapter 2 gives a brief review of the main quantum
chemistry methods used in the present work, which consist of CIS(D), ADC(2), DFT,
TD-DFT and GW-BSE. The frozen density embedding approach in quantum chemical
calculations is also included. Chapter 3 investigates the electronic properties of CBP
as a single molecule in the gas phase. It is shown that the CT-type state is poorly
describe by TD-DFT, while GW-BSE manages to give a correct description of both
absorption and emission. Chapter 4 presents a study of the effects of rotational
conformation on absorption and emission spectra of the CBP molecule. The analysis
is extended by using Boltzmann averaging to simulate temperature-dependent effects
of fragment orientation in a free-rotating CBP picture. Chapter 5 explores the effects
of different environments on the excitation energies and excitonic couplings of CBP
dimers. Here, the frozen density embedding approach is used to assess the effects of
environment polarization on dimers inside CBP clusters. Finally, a summary and the
main conclusions of this thesis are given in Chapter 6.
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2 Theoretical background

The scope of this chapter is to motivate the choice of methods used in this work. The
chapter is split into four main parts: Section 2.1 focuses on the wave function based
methods for excited-states. Section 2.2 deals with Density Functional Theory. Section
2.3 describes the many-body Green’s function formalism and the Bethe-Salpeter
equation. Finally, Section 2.4 introduces the frozen density embedding approach as an
effective method to account for relevant environmental effects.

2.1 Ab initio methods

The time-independent Schrödinger equation describes the quantum state of non-
relativistic systems in a stationary state:

ĤΨ = EΨ . (1)

Here, E is the energy of the system, Ψ is the wave function, and Ĥ is the Hamilton
operator for a many electron-system, which under the Born-Oppenheimer (BO)
approximation reads:

Ĥ = −
n∑
i=1

1

2
∇2
i︸ ︷︷ ︸

T̂e

−
n∑
i=1

N∑
I=1

ZI
riI︸ ︷︷ ︸

V̂Ne

+
n−1∑
i=1

n∑
i<j

1

rij︸ ︷︷ ︸
V̂ee

+
N−1∑
I

N∑
I<J

ZIZJ
rIJ︸ ︷︷ ︸

V̂NN

, (2)

where the nuclear charges are represented by ZI and ZJ , while rij , rIJ , and riI refer to
the electron-electron, nucleus-nucleus, and electron-nucleus distance, respectively.[34,35]

The labels T̂e, V̂Ne, V̂ee and V̂NN in Eq. (2) correspond to the electron kinetic energy,
nucleus-electron attraction, and electron-electron and nucleus-nucleus repulsion re-
spectively. In the BO approximation, the motion of nuclei and electrons is decoupled
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2 Theoretical background

due to the large mass differences. As a result, the potential energy of the nuclei, V̂NN ,
is treated as a constant.

In the Hartree-Fock, HF, approximation, each electron occupies a spin orbital, which
is the product of a spacial one-electron function ψ(r) and an α or β spin function,
σ.[36] The space and spin coordinates can be expressed together as a product, so that
the spin orbital becomes

φ(x) = ψ(r)σ(s) , σ = α, β . (3)

The many-electron wave function, Ψ, is then the product of n one-electron spin orbitals

Ψ(x1,x2, ...,xn) = φ1(x1)φ2(x2), ..., φn(xn) . (4)

Following the Pauli exclusion principle, the total electronic wave function should
be antisymmetric when any two electron coordinates are interchanged. This can be
represented by the Slater determinant, SD:

Ψ0 =
1√
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) ... φn(x1)

φ1(x2) φ2(x2) ... φn(x2)
...

...
...

...

φ1(xn) φ2(xn) ... φn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5)

The representation of the total n−electron wave function as an SD is a good first
approximation to the real many-body wave function. It can be improved to obtain
the energy closest to the ground state, E0, using the variational principle:〈

Ψ̃
∣∣∣Ĥ∣∣∣ Ψ̃〉
〈Ψ|Ψ〉

= E ≥ E0 , (6)

which means that the energy E obtained from some trial wave function Ψ̃ cannot be
lower than E0, which is given only by the true wave function Ψ.[34,37]

The variation of the spin orbitals, such that the energy from the SD is minimized,
represents the core of the Hartree-Fock method. This minimization leads to the
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2.1 Ab initio methods

Hartree-Fock equations, of the form

fφ(xi) = εiφ(xi) , (7)

where εi is the energy of the ith spin orbital, and f is the Fock operator, which
contains the kinetic energy, the potential due to the nuclei, and the Coulomb and
exchange operators. The latter is a purely quantum chemical contribution and a direct
consequence of the Pauli principle.

The HF equations can be solved using the Roothaan-Hall method, which introduces a
set of K known basis functions, χi, to express the spatial part of the spin orbitals, φi,
as a linear combination with expansion coefficients Cµi:

φi =
K∑
µ=1

Cµiχµ , (8)

This procedure is known as linear combination of atomic orbitals (LCAO).[34,35]

Combination of the LCAO method with the HF equations results in the matrix
equation

FC = SCε , (9)

known as the Roothaan-Hall equation. Here, F is the Fock matrix, C is a K × K
matrix containing the molecular orbital, MO, expansion coefficients Cµi, S contains
the overlap elements between basis functions, and ε is the K ×K diagonal matrix
containing the orbital energies εi.

A solution of the Roothaan-Hall equations requires the diagonalization of the Fock
matrix, which in turn gives the expansion coefficients and the MO energies. The
total electronic energy, EHF , is given by the expectation value EHF =

〈
Ψ0

∣∣∣Ĥ∣∣∣Ψ0

〉
.

Addition of the nuclear repulsion to EHF yields the total energy of the system.[38]

2.1.1 Electron correlation

Electron correlation refers to the motion of electrons under the influence of all other
individual moving electrons in the system. The correlation affecting electrons with
same spin is known as Fermi correlation, and is introduced by the Pauli antisymmetry

7



2 Theoretical background

principle. The correlation caused by electron-electron repulsion is known as Coulomb
correlation. Fermi correlation is well described in the HF approach due to the use of
SDs. On the other hand, the use of the mean-field approximation and single-particle
functions in HF does not allow to model the correlated motion of electrons. Thus, HF
fails to describe Coulomb correlation correctly, which is one of the major drawbacks
of this approach for n-electron systems.[36,37]

The correlation energy is defined as the difference between the exact non-relativistic
of the system, E0, and the HF energy, EHF ,

Ecorr = E0 − EHF , (10)

and it typically represents a small fraction of the exact energy, as HF can recover around
99% of the electronic energy. To correctly account for electron-electron interactions,
the so-called correlated methods are used. These are also known as post-HF since
they try to improve upon a HF reference solution.[34,35,38]

2.1.2 Configuration interaction

In the configuration interaction, CI, method the wave function is expressed as a
linear combination of Slater determinants, each representing a specific electronic
configuration:

ΨCI = C0ΨHF +
∑
i,a

Ca
i Ψa

i +
∑
i<j
a<b

Cab
ij Ψab

ij +
∑
i<j<k
a<b<c

Cabc
ijkΨabc

ijk + · · · , (11)

where ΨHF is the HF reference and Ψa
i , Ψab

ij , and Ψabc
ijk are the excited Slater determi-

nats due to single, double, and triple excitations, respectively. The corresponding CI
coefficients are written as Ca

i , Cab
ij , Cabc

ijk , etc.

The coefficients are variationally optimized, and the resulting eigenvalues correspond
to the CI energies: the lowest is equal to the ground-state energy, the second lowest
to the first excited state, and so on. Due to the variational principle, the total ground-
and excited-state energies represent upper bounds of their true values.[35,38,39]
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2.1 Ab initio methods

Calculations including all possible SDs, known as full CI, are limited to small systems,
since the number of determinants is ∼ Nn, with N unoccupied and n occupied spin
orbitals in the reference wave function.[39]Truncated CI methods limit the number
of excited determinants in the CI expansion by considering one or few types of
excitations. For example, if only single excitations are considered one arrives to CI
with singles, CIS, while single and double excitations result in the CISD approximation.

One drawback of truncated CI schemes is that, in contrast to full CI, they are not
size consistent. Also, the description of the electron correlation as a function of the
number of atoms decreases with the system size.[35,39] Excitation energies computed
with CIS tend to be overestimated, with errors of up to 1 eV.[23] One source of this
problem comes from using HF determinant to construct the excited SDs. The other
problem stems from neglecting dynamic correlation as single excitations do not mix
with the ground state, therefore not improving over HF.[22]

2.1.3 CIS(D) method

The CIS approximation can be improved by introducing electron correlation through
a second-order perturbative correction, similar to Møller-Plesset perturbation theory
to second order, MP2. The resulting method is known as CIS(D).[40,41]

In CIS(D), a triple excitation relative to the ground state requires an initial single
excitation to obtain ΨCIS. Then, the triple excitation can be generated from a double
promotion of orbitals not involved in the first excitation. Additionally, promoting
orbitals that had been excited in the initial step will give an overall double excitation
relative to ΨHF . A triples operator can be replaced by a product of the ground-state
double, T2, and excited-state single, U1, substitutions. This gives the CIS(D) correction
to a CIS state

ECIS(D) = 〈ΨCIS|V |U2Ψ0〉+ 〈ΨCIS|V |T2U1Ψ0〉 , (12)

where V is the perturbation potential due to correlation, and U2 is the excited state
operator of the double substitutions. The first term on the right-hand side describes
double excitations relative to Φ0. The CIS(D) correction to the excitation energies is
then

ωCIS(D) = ECIS(D) − EMP2 . (13)

9



2 Theoretical background

The CIS(D) method is size consistent, and has a computational scaling of N5, with
molecular size.[40]

2.1.4 The algebraic-diagrammatic construction scheme

An alternative to wave function-based methods for electronic excited states of molecules
comes from the so-called electron propagator approaches, which originate from many-
body Green’s function theory. The algebraic-diagrammatic construction, ADC, meth-
ods have become popular for excited state calculations due to comparable accuracy
to the approximate coupled-cluster method to second order, CC2, at a slightly lower
computational cost.[42] The ADC scheme is based on the diagrammatic perturbation
expansion of the polarization propagator, which can be done up to different orders of
perturbation theory.[43]

The polarization propagator describes the time evolution of the polarization of a
many-electron system, and thus contains information about the excited states of such
system. The spectral representation of the polarization propagator is

Πpq,rs(ω) =
∑
n6=0

〈
Ψ0|c†qcp|Ψn

〉 〈
Ψn|c†rcs|Ψ0

〉
ω + EN

0 − EN
n

+
∑
n6=0

〈
Ψ0|c†rcs|Ψn

〉 〈
Ψn|c†qcp|Ψ0

〉
−ω + EN

0 − EN
n

.

(14)

where Ψ0 and Ψn correspond to the electronic many-body ground state, and nth excited
state of the system respectively. c†q and cp are creation and annihilation operators for
electrons in the corresponding one-electron state. EN

0 and EN
n are the ground- and

excited-state energies. The polarization propagator, Eq. (14), has poles at excitations
ωn = EN

n − EN
0 , while the corresponding transition probabilities are given by the

residues.

Eq. (14) can be written in a simplified manner as

Π(ω) = Π+(ω) + Π−(ω) . (15)

Since the two sums contain the same information, it is sufficient to consider Π+(ω).[43,44]
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2.1 Ab initio methods

The general algebraic form of the polarization propagator is

Π+(ω) = f †(ω −M)−1 x , (16)

where M is a matrix representation of the Hamiltonian, while f is the matrix of transi-
tion moments. Through diagrammatic perturbation theory, M and f can be expanded
with respect to their perturbation order,[42,44] in agreement with the partitioning of
the Hamiltonian used in Møller-Plesset theory[45]

M = M(0) + M(1) + M(2) + · · · (17)

f = f (0) + f (1) + f (2) + · · · . (18)

By using these expansions in the algebraic, or ADC, form of Eq. (16), the formal
perturbation expansion of the propagator is obtained. Analysis through perturbation
theory at order n allows the determination of contributions to M and f in increasing
order, generating the hierarchy of ADC(n) approximations.[42,44]

The excitation energies are obtained by diagonalizing the M matrix at a desired order
of perturbation theory. Vertical excitation energies, ωn and corresponding eigenvectors,
y, are obtained by solving the Hermitian eigenvalue problem

MY = YΩ; Y†Y = 1 . (19)

The transition moments, x, are calculated from y by solving

x = y†f . (20)

The ADC(n) approximations are size-consistent respect to excitation energies, transi-
tion moments and excited-state properties.[42,44] By adopting the the intermediate state
representation, ISR, the ADC(n) schemes allow the explicit calculation of excited-state
wave functions. This enables access to excited-state properties, like nuclear gradients
or dipole moments, as well as transition moments between different excited states[46]

In particular, the ADC(2) scheme considers singly excited particle-hole, p− h, states
Ψa
i , and doubly excited states Ψab

ij , known as two particle-two hole states, 2p − 2h.
The ADC(2) approximation is a reliable method for electronic excitations of relatively
large molecules, with typical mean errors of 0.2-0.6 eV and 0.1-0.3 eV for singlet and
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triplet excitations respectively, while having a moderate computational scaling of
N5.[42] Moreover, ADC(2) yields a correct description of CT excited states, making it
a suitable tool to study organic semiconductors.[47]

2.1.5 Scaled opposite-spin ADC(2)

Spin-component scaled MP2, SCS-MP2, was proposed to improve the description
of electron correlation in MP2. The justification for this approximation is rooted in
the differences in contribution to the correlation energy of electrons with same, SS,
and opposite, OS, spins. In the SS case, contribution to the electron is overestimated,
while for SO, the contribution is underestimated. The SCS-MP2 correlation energy
has the form

ESCS−MP2 = cOSE
OS
MP2 + cSSE

SS
MP2 , (21)

where cOS and cSS are the scaling parameters for opposed and same spin, respectively,
with values of 6/5 and 1/3, determined by fitting to high quality ab-initio data.[48]

Further simplification can be achieved by scaling only the OS component, leading to
the scaled opposite-spin second order correlation energy, SOS-MP2, defined as

ESOS−MP2 = cSOSE
OS
MP2 , (22)

with a scaling factor cSOS of 1.3. Evaluation of the SOS-MP2 energy scales as N4,
compared to N5 of MP2, when used in combination with resolution-of-the-identity,
RI, approximation, and Laplace transformations for the energy denominators.[49]

The SOS approach can be extended to the ADC(2) scheme, yielding the SOS-ADC(2)
approximation, which also scales as N4.[48,50] Removal of same-spin components in
the 2p− 2h configurations reduce the dimensionality of the ADC matrix, thus cutting
the computational cost by reducing the prefactor of the time-determining step. SOS-
ADC(2) gives excitation energies that are comparable to non-scaled CC2, with mean
errors of less than 0.15 eV for singlet, and triplet excitations.[48]
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2.2 Density functional theory

2.1.6 Pair natural orbitals

The Pair Natural Orbital, PNO, method exploits the locality of electron correlation
to ease the computational cost of correlated calculations, while introducing small
errors to the correlation energy. It is based on the use of NOs to correlate each
electron pair in a system of interest. The PNO approach works as follows: starting
from a single-determinant reference calculation, the occupied orbitals are localized,
and the electron correlation of the entire system becomes the sum over the correlation
energies of the electron pairs. The pair correlation energy is estimated via a local MP2
calculation, and the electron pairs are separated into “strong” and “weak”, depending
on their pair correlation value with respect to a threshold. The pairs classified as
strong, are treated using the high-accuracy correlated method, e.g. coupled cluster
or ADC(2), while for the weak group only the MP2 estimates are added to the total
correlation energy. Afterwards, the virtual space for the correlation is constructed,
only for strong pairs, using PNOs from the MP2 pair densities. Only the PNOs with
occupation numbers above a specified threshold are kept, for which an MP2 correction
for the truncation of the virtual space is calculated.[32]

2.2 Density functional theory

Density functional theory, DFT, provides an alternative to wave function-based
methods to describe quantum systems. It is based on the idea that all properties of
such systems can be obtained from the electronic density, defined as

ρ(r1) = n

∫
· · ·
∫
|Ψ(r1, r2, ..., rn)|2 dr2...drn , (23)

with n as the number of electrons. Since the electron density depends only on three spa-
tial and a spin variable, the DFT approach simplifies the electronic structure problem
compared to wave function methods, where an n electron system has 4n variables.[34,35]

The use of the electron density, ρ(r), as key in determining the energy and properties
of the systems was established by the Hohenberg-Kohn, HK, theorems.[51] The first HK
theorem states that there is a one-to-one correspondence between ρ(r) and the number
of electrons, the nuclear (external) potential, vext, and the ground-state energy. Thus,
the total electronic ground-state energy of the system, within the BO approximation,
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can be given as a functional of the ground-state density, ρ0

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0] , (24)

with T [ρ0] being the electronic kinetic energy, Eee[ρ0] is the electron repulsion, and
ENe[ρ0] is the electron-nuclei interaction. The expression of the energy functional can
be simplified by grouping the system independent contributions, T [ρ0] and Eee[ρ0],
inside the Hohenberg-Kohn functional, FHK[ρ]

EHK[ρ] = ENe[ρ0] + FHK[ρ] =

∫
ρ(r)VNedr + FHK[ρ] . (25)

The second HK theorem works as the DFT analogue to the variational principle,
showing that the energy functional can obtain its lowest value, the ground state energy,
E0, only if the the ground-state density is used,

E0 6 EHK[ρ̃] . (26)

The work of Hohenberg and Kohn established an exact theory for computing the
energy of any electronic system. Unfortunately, it provides no information about the
exact form of FHK[ρ].

Using DFT as computational tool in chemistry was made possible by the Kohn-Sham,
KS, ansatz.[52] The central idea of this contribution was to use a model system of
non-interacting electrons that have the same electron density as the real, interacting
system by introducing an effective potential.

For this model system, first a Hamiltonian with no electron-electron interactions is
constructed by introducing an effective local potential, Vs(r),

ĤKS = −1

2

n∑
i=1

∇2 +
n∑
i=1

Vs(ri) . (27)
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2.2 Density functional theory

The ground-state wave function of this system can be represented by a single Slater
determinant, where the corresponding spin orbitals, known as Kohn-Sham orbitals,
ϕKS, are determined through the KS equations,

fKSϕKS
i = εKS

i ϕKS
i , (28)

where fKS is the one-electron Kohn-Sham operator

fKS = −1

2
∇2 + Vs(r) . (29)

Introduction of the non-interacting system allows to recover most of the total kinetic
energy through the exact solution of the non-interacting kinetic term, Ts[ρ], given by

Ts[ρ] =
N∑
i=1

〈
ϕi

∣∣∣∣−1

2
∇2

∣∣∣∣ϕi〉 . (30)

A similar treatment can be done for the electronic potential, where one part can be
approximated via semi-classical electron-electron repulsion, J [ρ], and nuclei-electron
interaction, ENe[ρ]. The remaining contributions to the total kinetic and electronic
energies, which come from the real interacting system, are then grouped within the
so-called exchange correlation term Exc,

Exc = (T [ρ]− Ts[ρ]) + (Eee − Js[ρ]) . (31)

Thus the expression of the total DFT energy takes the form

E[ρ] = Ts[ρ] + J [ρ] + ENe[ρ] + Exc . (32)

The expression for the electron density in terms of KS orbitals

ρs =
n∑
i=1

∣∣ϕKS
i (r)

∣∣2 = ρ0 , (33)

can be used to write the KS energy from Eq. (32) in terms of non-interacting orbitals,
which can be then subjected to the variational principle relative to the independent
orbitals. The resulting equation indicates that the sum of the nuclear potential, VNe,
semi-classical Coulomb potential, and the potential from Exc, Vxc, correspond to the
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effective potential, Veff,(
−1

2
∇2 +

[∫
ρ(r2)

r12
dr2 + Vxc(r1)−

N∑
I

ZI
r1I

])
ϕKS
i = εKS

i ϕKS
i (34)(

−1

2
∇2 + Veff(r)

)
ϕKS
i = εKS

i ϕKS
i . (35)

Also, the term Veff corresponds to Vs in the KS one-electron operator in Eq. (29):

Vs(r) ≡
∫
ρ(r2)

r12
dr2 + Vxc(r1)−

N∑
I

ZI
r1I

, (36)

with the exchange correlation potential, Vxc(r), defined as the functional derivative of
Exc:

Vxc(r) ≡
δExc

δρ
. (37)

The KS equations are solved in an iterative scheme, in which orbitals are expanded in
sets of basis functions and the coefficients are optimized to compute the corresponding
energies. The KS approach is in principle exact. However, since the exact form of
Exc, and thus Vxc, is not known, it is necessary to use of approximate forms for the
exchange-correlation energy. These explicit forms are known as exchange-correlation
functionals, Exc[ρ].

2.2.1 Time-dependent DFT

The traditional formulation of DFT, based on the HK theorems and the KS ap-
proach, can only be used to describe the properties of ground states. Nonetheless,
it is possible to use a time-dependent variant of DFT, called time-dependent DFT,
TD-DFT, to deal with excited-state properties of systems of interest. This is achieved
by using time-dependent versions of the HK theorems, as well as the KS formulation.[22]

The time-dependent analogue for the first Hohenberg-Kohn theorem was proposed
by Runge and Gross.[53] It establishes the existence of a one-to-one correspondence
between the time dependent density ρ(r, t) and the time dependent external potential
Vext(r, t) up to an additive time function Ψ(t). If this time dependent external potential
determines the time dependent wave function, Ψ(r, t), then the wave function is a
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2.2 Density functional theory

functional of the time dependent electron density, ρ(r, t):

ρ(r, t)←−−→ vext(r, t) + Ψ(t) .

The requirement for a variational principle, is satisfied by introducing the action
integral

A[ρ] =

∫ tf

t0

dt

〈
Ψ(r, t)

∣∣∣∣i~ ∂∂t − Ĥ(r, t)

∣∣∣∣Ψ(r, t)

〉
. (38)

When the time-dependent wave function is a solution of the time-dependent SE, then
the wave function will correspond to a stationary point of the action integral, which
is a functional of the time-dependent density. Hence, the exact electron density can
be obtained from the Euler equation

δA[ρ]

δρ(r, t)
= 0 . (39)

The Kohn-Sham ansatz can also be formulated within a time-dependent framework
by introducing a time-dependent reference system of non-interacting electrons. Like
in the time-independent KS approach, this system should have an electron density,
ρs(r, t), equal to that of the real system ρ(r, t), expressed as a sum of one-electron
orbitals

ρ(r, t) = ρs(r, t) =
n∑
i=1

|ϕ(r, t)|2 . (40)

These orbitals correspond to the solution of the time-dependent Schrödinger equation,

i
∂

∂t
φi(r, t) =

(
−1

2
∇2
i + VS(r, t)

)
φi(r, t) , (41)

where VS(r, t) is the time-dependent effective one-particle potential, which has the
form

VS(r, t) = V (r, t) +

∫
d3r′

ρ(r′, t)

|r− r′|
+
δAxc[ρ]

δρ(r, t)
. (42)

Axc[ρ] is known as the exchange-correlation action functional and, in a similar fashion
to the time-independent formulation, the functional derivative δAxc[ρ]/δρ(r, t), will
carry all unknown exchange correlation parts that need to be addressed using an
approximate functional. Insertion of VS(r, t), Eq. (42), into Eq. (41) yields the time-
dependent Kohn-Sham equations, TDKS. Assuming that the density remains in its
instantaneous state when a slow enough perturbation acts on it, then the functional
dependence of the xc potential at time t will be only at that exact time t. This enables
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the use of ground-state xc DFT functionals in combination with the time-dependent
density, defining the adiabatic local density approximation.[54]

The extension of TD-DFT with linear response, LR, theory made excited-state calcula-
tions accessible to practical applications.[24] Linear response refers to the expansion of
the response function up to linear terms in a perturbation, which in this case is the elec-
tric field. Thus, excitation energies can be computed from the linear time-dependent
response of a time-independent, ground-state electron density to a time-dependent
electric field.[22]

Considering the expansion of the density response in powers of a small perturbation

δρ(t) = ρ(r, t)− ρ0(r) = ρ1(r, t) + ρ2(r, t) + ρ3(r, t) + · · · , (43)

the first-order response of the electron density of a KS system, also known as the
TD-DFT linear response equation, takes the form

δρ1(r, t) =

∫
dt′
∫
dr′χs(r, r

′, t− t′)δVs1(r′, t′) , (44)

where χs is the density-density response function for non-interacting particles in the
KS framework

χs(r, t, r
′, t′) =

δρ[Vs](r, t)

δVs(r, t)

∣∣∣
Vs[ρ0](r)

, (45)

and δVs1 is the linearized effective potential:

Vs1[ρ](r, t) = V1(r, t) +

∫
dr
ρ1(r

′, t)

|r− r′|
+ Vxc1(r

′, t) . (46)

The term Vxc1 in Eq. (46) is the linear exchange-correlation potential. Its explicit form
contains the exchange-correlation kernel fxc = δVxc/δρ.

The Fourier transform of Eq. (44) leads to the frequency-dependent, non-interacting
KS response function

χs(r, r
′, ω) =

∞∑
j,k=1

(fk − fj)
ϕ0
j(r)ϕ0∗

k (r)ϕ0∗
j (r′)ϕ0

k(r
′)

ω − ωjk + iη
, (47)
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where fk and fj are the occupation numbers of the Kohn-Sham ground-state orbitals,
and ωjk correspond to KS energy eigenvalue differences εj − εk. The only contributing
terms are those where the sum indexes refer to one occupied and one virtual orbital,
while the rest are cancelled. As a result, the absolute values of ωjk will correspond to
the excitation energies of the Kohn-Sham system, which corresponds to poles in χs.

Equation (44) can be related to its interacting analogue, resulting in a Dyson-type
equation which connects the interacting and non-interacting response functions.[24]

The corresponding Fourier transformed Dyson equation is

(1− χs(ω)fHxc(ω))χ(ω) = χs(ω) , (48)

with the combined Hartree-xc kernel as

fHxc(r, r
′, ω) =

1

|r− r′|
+ fxc(r, r

′, ω) . (49)

The frequency dependent response function, Eq. (47), has an indetermination when
ω = ωjk. This can be circumvented by forcing the left hand side of Eq. (48) to be 0 at
these points, which can be done by solving the eigenvalue problem given by the linear
response TD-DFT equation

(1− χs(ω)fHxc(ω))χ(ω) = ωχs(ω) . (50)

When expanded in the Kohn-Sham orbital basis, Eq. (50) acquires the form known as
the Casida equation A B

B∗ A∗

X

Y

 = ω

1 0

0 −1

X

Y

 . (51)

The matrix elements are defined as

Aia,jb = (εa − εi)δijδab + 〈ib|aj〉+ 〈ib|fxc|aj〉 (52)

Bia,jb = 〈ij|ab〉+ 〈ij|fxc|ab〉 . (53)

By assuming B = 0, the excitations and de-excitations from linear response TDDFT
become decoupled. This is known as the Tamm-Dancoff approximation, which leads
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to the Hermitian eigenvalue equation

AX = ωX . (54)

The TD-DFT/TDA approach offers a simplified computational method with accuracy
comparable to TD-DFT, while avoiding the triplet instability problem.[28,55]

2.2.2 Considerations on TD-DFT and charge transfer excitations

Some considerations are needed when using TD-DFT to investigate excited states. For
example, as with regular DFT, use of time-dependent DFT for practical applications
requires the use of some approximation to the exchange-correlation potential, having a
high sensitivity to the choice of the functional.[56] Another thing to take into account is
the type of excitation being studied. For example, the accuracy for valence excitations
is comparable with high-accuracy correlated methods.[24] On the other hand, it has
severe problems when describing local valence excitations, Rydberg states, extended
π systems, double excitations, and charge transfer, CT, excited states.[22,24]

In particular, an excitation is considered to have CT character if the transition of
electrons occurs between two separated regions, meaning the particle and hole contri-
butions are situated on different parts of the molecule.[27,57] One source of this problem
is the underestimation of excitation energies. This is due to typically overbound
LUMOs, caused by the KS potential. Since in TD-DFT the excitation energy is given
by the energy difference between electron accepting and donating orbitals, from the A

matrix, Eq. (51), the lowered LUMOs yield orbital energies that are considerably un-
derestimated. This problem can be diminished by using range-separated functionals.[26]

Another source of error stems from an incorrect 1/R behaviour. This has been regarded
as a type of electron transfer self-interaction error caused by using pure exchange-
correlation functionals. The problem occurs because the orbital energy difference
includes the electrostatic repulsion between a and i orbitals. This means that in the
CT state, the electron that transitioned to orbital a experiences electrostatic repul-
sion from still being in orbital i. This can be avoided by using exchange-correlation
functionals with exact exchange.[25,26]
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2.3 The GW method and the Bethe-Salpter equation

A third source of error originates from so-called “triplet instabilities”, which can lead
to severe underestimation of triplet energies and wrong ordering of states.[58–60] It has
been observed that imaginary triplet excitation energies will occur in cases where the
symmetry broken solution becomes lower in energy than the non-broken solution for
the ground state. This is typical in systems with large internuclear distances. The
stability of the KS determinant, with respect to triplet rotations, is quantified by
the eigenvalues of the triplet part of the A−B matrix. If one of these eigenvalues
approaches zero, the corresponding excitation energy will also be close to zero, thus
significantly underestimating it. By allowing only excitations between occupied-virtual
pairs, and ignoring de-excitations, the Tamm-Dancoff approximation eliminates the
occurrence of imaginary excitation energies since A becomes Hermitian.

2.3 The GW method and the Bethe-Salpter equation

One solution to the problems encountered by TD-DFT concerning charge-transfer
type excitations comes from the Bethe-Salpeter equation (BSE) based on the GW
approximation, commonly known as GW-BSE. The use of this approach to assess
intramolecular CT-type excitations can yield results in excellent agreement with exper-
iments through the correct description of long-range electron-hole interactions.[29,30] In
addition to this, the GW-BSE method maintains a favourable computational scaling,
of N4, making it also an appealing alternative to wavefunction based methods.[23,31,61]

This method is briefly described in the following.

2.3.1 The single-particle Green’s function approach

Through the single-particle Green’s function, many body perturbation theory, MBPT,
provides a rigorous and systematic framework to describe spectral properties of a
system, which can overcome some deficiencies from DFT, like the self-interaction error,
or the lack of long range polarization.[62]

Single-particle Green’s function is defined as

G(1,2) = −i
〈

ΨN
0

∣∣∣T [ψ̂(1)ψ̂†(2)
]∣∣∣ΨN

0

〉
= −iθ(τ)

〈
ΨN

0

∣∣∣ψ̂(1)ψ̂†(2)
∣∣∣ΨN

0

〉
+ iθ(−τ)

〈
ΨN

0

∣∣∣ψ̂†(2)ψ̂(1)
∣∣∣ΨN

0

〉
,

(55)

21



2 Theoretical background

where, for a system of N electrons, |ΨN
0 〉 is the many-electron ground state, ψ̂† is the

field operator that creates an electron at point r, and T is the time ordering operator.
Considering τ = t1 − t2, θ(τ) is the Heaviside step function which is equal to 1 for
τ > 0 and 0 otherwise. For simplicity, the spacial r, spin σ, and time t coordinates are
collected under the notation 1 = (r, σ, t). When t1 > t2, the single-particle Green’s
function gives the probability amplitude that a hole created at r1t1 will propagate to
r2t2, while t2 > t1 yields the probability amplitude of an electron added at 2t2 propa-
gating to 1t1. Thus the single-particle Green’s function is related to photoemission
and inverse photoemission.[63]

By introducing a complete set of (N ± 1) electron states (fA(x) = 〈ΨN
0 | ψ̂(x) |ΨN+1

A 〉,
and fI(x) = 〈ΨN

0 | ψ̂(x) |ΨN−1
I 〉, with xi = r1σi), followed by a Fourier transformation,

the Lehmann, or spectral, representation of the one-particle Green’s function is
obtained

G(x1,x2, ω) =
∑
A

fA(x1)f
∗
A(x2)

ω − εA + iη
+
∑
I

fI(x1)f
∗
I (x2)

ω − εI − iη

=
∑
S

fS(x1)f
∗
S(x2)

ω − εS + iη sgn(εS − EF )
.

(56)

A and I indicate electron and hole states respectively, which are collected under
S, and η is an infinitely small positive regularization parameter. EF is the energy
of the Fermi level, and ε are the single-particle excitation energies, also known as
quasiparticle, QP, energies. The term quasiparticle is used to refer to the combination
of a particle, or hole, and a cloud of virtual electron-hole pairs around it, which screens
the interactions with its environment. This can be regarded as the representation of the
particle and the perturbation it introduces in the system.[62,64] Addition of an electron
is described by εA = EN+1

A − EN
0 , while removal is εI = EN

0 − EN−1
I , which corre-

spond to the negative of the electron affinities (EAs) and ionization potentials (IPs).[62]

As shown by Equation (56), the single-particle Green’s function has singularities at
the quasiparticle energies. In a non-interacting scenario, for which a non-interacting
Green’s function G0 is used, the Lehmann amplitudes and energies will correspond
to the eigenfunctions and eigenvalues of the one-electron Hamiltonian. Thus, the QP
energies will be replaced by the one-electron eigenvalues in the poles of G0.[64]
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2.3 The GW method and the Bethe-Salpter equation

Through the equation of motion of the one-particle Green’s function the Dyson
equation can be constructed[62,63]

G(1,2) = G0(1,2) +

∫
G0(1,3) Σ(3,4)G(4,2)d3d4 . (57)

The Dyson equation connects the fully-interacting one-particle Green’s function,
G(1,2), to the non-interacting G0(1,2). This allows, in principle, to calculate the fully
interacting G(1,2) from a suitable reference, like a KS system, and some approximate
form of the self energy, Σ, which contains all exchange and correlation effects.[62,63] Σ

describes the interaction energy of the quasiparticle with the induced potential due to
the screening of the electrons around the QP.[63]

2.3.2 Hedin’s equations and the GW approximation

Hedin proposed an expansion of the Green’s function and self energy in terms of the
screened Coulomb potential, W , as alternative to the bare Coulomb potential.[65] This
expansion allows to write the many-body problem as a set of five coupled integral
equations from which the Green’s function and the self-energy can be calculated.
Hedin’s equations have a hierarchical relation which can, in principle, be solved
iteratively until self consistency is achieved. These equations relate the self-energy,
Σ, the Dyson equation, Eq. (57), the vertex function, Γ(1,2,3), the time-ordered
polarization operator, P (1,2), and the dynamical screened interaction, W (1,2)

Σ(1,2) = i
∫
G(1,3+)W (1,4)Γ(3,2,4)d3d4 (58)

G(1,2) = G0(1,2) +

∫
G0(1,3) Σ(3,4)G(4,2)d3d4 (59)

Γ(1,2,3) = δ(1,2)δ(1,3) +

∫
δΣ(1,2)

δG(4,5)
G(4,6)G(7,5)Γ(6,7,3)d4d5d6d7 (60)

P (1,2) = −i
∫
G(1,3)Γ(3,4,2)G(4,1+)d3d4 (61)

W (1,2) = v(1,2) +

∫
v(1,3)P (3,4)W (4,2)d3d4 . (62)

The bare Coulomb interaction is given by v, and the superscript “+” indicates addition
of a positive infinitesimal time step after t.
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The dependence between Hedin’s equations makes them rather difficult to solve,
thus further simplifications are needed. One of such approximations is based on the
assumption that only diagonal contributions of Γ(1,2,3) are kept. By only keeping
the first term from Equation (60), Γ becomes

Γ(1,1,3) = δ(1,2)δ(2,3) , (63)

which neglects the so-called vertex corrections. Thus, the polarizability is given by
non-interacting quasielectron and quasihole pairs

P0(1,2) = iG(2,1)G(1,2+) , (64)

and the self-energy is simplified to

Σ(1,2) = iG(1,2)W (1+,2) . (65)

The screened Coulomb potential W becomes,

W (1, 2) = v(1, 2) +

∫
d3d4v(1, 3)χ(3, 4)v(4, 2) , (66)

where χ is the interacting electron susceptibility. The expression vχv represents the
field created in 2 by the rearrangement of charge in the system upon the addition
of a particle, or hole, at 1. This is known as the GW approximation. The simplified
form of the self-energy operator allows, in principle, for the calculation of the Green’s
function of an interacting many-electron system using the Green’s function G0 of a non-
interacting KS system with an effective one-electron energy-dependent potential, which
is then iterated within the self-consistent scheme until convergence is achieved.[64,66]

The GW method can be used to improve Kohn-Sham single-particle excitations, under
the consideration that these are already a good approximation to the QP states.[62]

2.3.3 The Bethe-Salpeter equation

The Green’s function formalism can be used to model optical processes, like photon
absorption. This is done by the Bethe-Salpeter equation, which is a Dyson-like equation
that connects the two-particle correlation, L, with the non-interacting correlation
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2.3 The GW method and the Bethe-Salpter equation

function, L0,

L(1, 2, 1′, 2′) = L0(1, 2, 1
′, 2′)

+

∫
L0(1, 3

′, 1′, 3)Ξ(3, 4′, 3′, 4)L(4, 2, 4′2′)d3d3′d4d4′ . (67)

L describes the propagation of the difference between the correlated and uncorrelated
motions of pair states, such as a two particle, or particle-hole state. L0 describes the
propagation of an electron and a hole separately. The term Ξ is known as the BSE
kernel

iΞ(3, 4′, 3′, 4) = v(3, 4)δ(3, 3′)δ(4+, 4′) + i
∂Σ(3, 3′)

∂G(4, 4′)
(68)

where v is the instantaneous Coulomb potential, and Σ is the self energy, defined in
Eq. (58).

The BSE can be expressed in a simplified manner as

L = L0 + L0(v + Ξ)L , (69)

which resembles TD-DFT, but instead of the two-point exchange correlation kernel
fxc(∂V xc/∂ρ), the BSE uses Ξ which has an intrinsic two-particle character. Intro-
ducing the self energy from the GW approximation gives the approximate BSE kernel

iΞ(3, 4′, 3′, 4) = δ(3, 3′)δ(4+, 4′)v(3, 4)− δ(3, 4)δ(3′, 4′)W (3+, 3′) . (70)

The problem is further simplified by only considering the static limit for the Coulomb
interaction, W (ω = 0), which is similar to the adiabatic approximation for the
exchange-correlation kernel in TD-DFT. Projection of the BSE into a suitable basis
leads to a matrix eigenvalue problem similar to Casida’s equation Eq. (51)A B

B∗ A∗

X

Y

 = ω

1 0

0 1

X

Y

 , (71)

where ω are the excitation energies, and X and Y are the orbital rotation parameters.
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The matrix elements of A and B are

ABSEia,jb = δijδab(ε
GW
a − εGWi ) + (ai|bj)−WGW

ij,ab (72)

BBSE
ia,jb = (ai|bj)−WGW

ib,aj . (73)

If compared to TD-DFT, the Kohn-Sham eigenvalues are replaced by the QP energies
obtained from the GW approximation, and the screened Coulomb interaction W

replaces the DFT exchange-correlation kernel. Solution of these equations using the
QP energies, andW obtained from an underlying GW calculation defines the GW-BSE
scheme. The BSE eigenvalue problem can be solved at the exact same cost as the
standard TD-DFT analogue.[66]

2.4 Frozen density embedding (FDE)

Typical quantum-chemical methods employed to treat excited states quickly become
prohibitively expensive with an increase of the size of the system. This is particu-
larly problematic for systems where the environment has a considerable influence on
the excited-state properties.[67] One possible approach is to truncate the system by
using only the molecule of interest and the closest neighbours in the first solvation
shell, known as the supermolecular approach.[68] An alternative approach in treating
environmental effects are the so-called embedding methods. The main advantage of
these methods resides in the possibility to partition the whole supermolecule into
smaller interacting subsystems. This allows the accurate treatment of the subsystem of
interest, while also accounting for the environment in a more approximate manner.[69]

Such an approach is particularly useful when dealing with local excitations, because
the surrounding subsystem can be of a smaller size, thus facilitating convergence.

The frozen density embedding, FDE, method is based on partitioning the electronic
density of the total system, ρtot(r),

ρtot(r) = ρI(r) + ρII(r) = ρI(r) +
∑
n

ρ
(n)
II (r) , (74)

where ρI(r) is the density of the active subsystem, and ρnII(r) refers to the subsystems
that compose the environment.
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2.4 Frozen density embedding (FDE)

Since FDE is based on DFT, the partitioning of the density allows to express the total
energy of the system, Etot, as the sum of the subsystem energies and their interaction
energy, Eint[ρI , ρII ]:

Etot = EI [ρI ] + EII [ρII ] + Eint[ρI , ρII ] . (75)

The contribution of the subsystems to the total energy is given by the method chosen
to describe each subsystem, e.g. DFT for the environment, and PNO-ADC(2) for the
active subsystem.

The interaction energy, Eint[ρI , ρII ], Eq. (75), is given by

Eint[ρI , ρII ] =

∫
ρI(r)V II

nuc(r)dr +

∫
ρII(r)V I

nuc(r)dr + EI,II
nuc +∫ ∫

ρI(r)ρII(r
′)

|r− r′|
+ Enadd

xck [ρI , ρII ] , (76)

where EI,II
nuc is the nuclear repulsion energy between subsystems, V i

nuc is the electrostatic
potential of the nuclei of system i, and the non-classical contributions to the interaction
energy are included through Enadd

xck [ρI , ρII ], which consists of the sum of exchange-
correlation and kinetic energy contributions[68]

Enadd
xck [ρI , ρII ] = Exck[ρI + ρII ]− Exck[ρI ]− Exck[ρII ] , (77)

whose evaluation requires the use of the exchange-correlation and kinetic energy
functionals.

The next step in the FDE approach is to account for the effects of the interaction
of the electron density of the environment, ρII(r), with the density of the active
system, ρI(r).[69,70] This is done by including the interaction with the environment in
the quantum-chemical description of the active subsystem. In a KS framework, the
electron density of the active system, ρI(r), can be calculated by minimizing the total
FDE energy, eq. (75), with respect to ρI(r), while fixing ρII(r):

δEI [ρI ]

δρI
+
δEint[ρI , ρII ]

δρI
= µI . (78)
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where the Lagrange multiplier, µI , is introduced to keep a constant number of electrons
in the active subsystem. This yields the KS equations of the active subsystem[69,71]

[
−∇

2

2
+ VKS[ρI ] + V I

emb[ρI , ρII ]

]
ϕIi = εIiϕ

I
i . (79)

The term VKS[ρI ] corresponds to the δEI/[ρI ]δρI term in Eq. (78), which is the
KS potential of subsystem I, and includes the nuclear, inter-electronic Coulomb,
and exchange-correlation potentials. On the other hand, V I

emb[ρI , ρII ], known as the
embedding potential, has the form

V I
emb[ρI , ρII ] =

δEint[ρI , ρII ]

δρI
= V II

nuc(r) +

∫
ρII(r

′)

|r− r′|
dr′ +

[
δExck

δρ

∣∣∣
ρtot
− δExck

δρ

∣∣∣
ρI

]
,

(80)
and it describes the effects of the environment on the density of the active system. It
is also possible to obtain such embedding potential using a wave-function description
of the active subsystem, where the electron density is represented instead with a wave
function.

To fulfill Equation (74), where the total density, ρtot, from an FDE treatment is equal
to the one calculated from a complete system, some requirements need to be filled.
First, ρtot(r) ≥ ρII(r). This is often troublesome for most frozen densities, because
they can vary significantly depending on the region, thus not yielding the exact density.
This condition ensures that the complimentary density of the active system is always
positive. Second, is that the complementary form ρtot−ρII needs to be V representable.

As a solution to ρII(r) being too large or small, the densities of I and II can be sepa-
rately determined while taking into account the frozen density of the other subsystem.
One procedure to solve this system of equations is known as the freeze-thaw scheme,
which is an iterative method where the density of each system is computed, one at
a time, while considering the frozen densities of all other subsystems. This can be
regarded as a way to account for polarization, both of the environment on the active
subsystem and vice versa. The densities are updated in this manner until convergence
is achieved.[68,69,71]

The FDE scheme can be employed to compute excitation energies within the formalism
of linear response theory.[70,72] The effective environmental response function can be
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2.4 Frozen density embedding (FDE)

simplified for local excited states situated in the active subsystem. However, since
there is no exchange of particles between subsystems, the description of excitations
with significant contributions from the environment is not always adequate.[68]
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3 Properties of CBP in the single molecule

picture

In this chapter1 CBP is investigated in the the gas-phase, single molecule picture. To do
so, a set of stable torsional conformers is employed to investigate electronic properties
such as ionization energies, singlet vertical excitations, and emission. The ionization
energy, IE, of the ground-state geometries are computed. Also, a comparison of vertical
absorption transitions is done between TD-DFT, and the GW-BSE approaches to
assess performance regarding charge-transfer type excitations reported in CBP.[33] The
singlet vertical absorption spectra of the stable CBP rotamers are calculated using the
GW-BSE method, and the charge-transfer states are further discussed. Finally, the
relaxed excited-state geometries and fluorescence of the stable rotamers are studied.

3.1 Computational details

The TURBOMOLE computational chemistry package was used to perform all elec-
tronic structure calculations.[73,74] The details on the different job types are described
in the following.

3.1.1 Ground-state geometry optimizations

All ground-state geometries presented in this chapter were obtained through gas-
phase geometry optimizations performed at the DFT level[75,76] using the PBE0
functional[77,78] with a medium sized grid (grid 4), and the def2-TZVP basis set.[79]

The RI-J approximation[80,81] was employed with the corresponding auxiliary basis
set.[82] The derivatives of quadrature weights for correct derivatives of the DFT energy
were enabled using the weight derivatives option. Optimization thresholds were set
to 10-8 Eh for the energy, and 10-5 Eh a0-1 for the gradient residual norm. Convergence

1Partially adapted from R. Cortés-Mejía, S. Höfener, W. Klopper, Mol. Phys. 2021, 119, e1876936

31



3 Properties of CBP in the single molecule picture

of the SCF energy of the geometries was set to 10-9 Eh. Minima and transition states,
TS, in this section were characterized through vibrational frequency analysis.[83]

3.1.2 Ionization energies

The ionization energies, IE, of the optimized ground-state CBP rotamers R1, R2, and
R3 were calculated through the vertical and adiabatic ∆SCF approaches. For the
vertical IEs, the geometries of the stable rotamers were used for both neutral, and
singly-charged cation (doublet spin multiplicity). The cations for the adiabatic IEs
correspond to the relaxed geometries of the Ri rotamers with a +1 charge and doublet
multiplicity. The cation structures were optimized as detailed in Sec. 3.1.1. Ionization
energies were also approximated through the QP energies of the relaxed, and unrelaxed
CBP radical cations, computed using the GW method. These calculations were carried
out using a PBE0/def2-TZVP reference of the neutral, and singly-charged geometries.
The energies of the HOMO and LUMO levels from the DFT references were corrected
using the GW approximation.[84] The default value of 128 was used for the imaginary
frequency integration points, and Padé approximants.

3.1.3 Excited-state calculations using TD-DFT and GW-BSE

Reference single-point calculations of the ground-state optimized geometries were
converged to at least 10-9 Eh respect to the energy, and 10-7 respect to changes the
electron density. These were done at the DFT level using the PBE0[77,78] and the
def2-TZVP basis set. The singlet vertical excitation energies were computed at the
TD-DFT[85–87] level of theory, using the same functional and basis set as the ground-
state calculations. Again, the RI-J approximation[80,81] was used with the def2-TZVP
auxiliary basis.[82] Excitation energies were converged to an Euclidean residual norm
of at least 10-5.

The geometry of the CBP rotamers was also optimized in the corresponding lowest-
lying singlet excited-state. These optimizations were carried out at the TD-DFT
level[87–89] using the PBE0 functional and def2-TZVP basis set. The convergence
criteria was set to the same thresholds as the ground-state geometry optimizations.

The absorption and emission spectra of the CBP rotamers were also computed
employing the GW approximation and Bethe-Salpeter equation as implemented in
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3.2 CBP in the electronic ground state

TURBOMOLE.[61,90] For these calculations, a PBE0/def2-TZVP reference was used.
The energies of the HOMO and LUMO were corrected by eigenvalue-only self-consistent
GW, evGW, calculations employing the contour deformation, CD, variant for the self-
energy, and the RI algorithm for accelerated convergence (RI-CD-evGW variant).[84]

In this work, only the RI-CD-evGW variant is employed, so for simplicity the GW-BSE
label will be used. As additional calculation parameters, the imaginary frequency
integration points and Padé approximants was set to 128. The lowest 25 excitation
energies were computed employing both the TD-DFT, and GW-BSE methods for
the simulation of the absorption spectra within the experimental spectral window of
200-350 nm, or 3.5-6.0 eV.[4,91] The simulated Gaussian spectra were plotted using
TURBOMOLE’s Peak ANalyzing MAchine, PANAMA,[92] with 0.10 eV for the full
width at half maximum, FWHM.

3.2 CBP in the electronic ground state

Several CBP rotational conformers were generated through manual variation of the
dihedral angles between the carbazole, CBZ, and phenyl, Ph, moieties displayed in
Fig. 2: 1 carbazole (red), 2 phenyl (green), 3 phenyl (orange), and 4 carbazole (blue).
The geometries of these conformers were optimized as indicated in the computational
details, cf. Sec. 3.1.1. The colour coding is used as reference for measuring the different
structural parameters of the optimized geometries: 1-2 refers to the torsion angle of
carbazole 1 (atoms a, b), and phenyl 2 (atoms c, d), 2-3 is the dihedral angle between
the two phenyl rings (atoms e, f , g, and h), 3-4 is the torsion angle between the
opposite phenyl-carbazole pair (atoms i, j, k, and l), and 1-4 is the dihedral angle of
the carbazole systems at both ends of CBP (atoms a, b, k, l). Additionally the angle
of the carbazoles were measured using the c− b− x, and j − k − y points.

The relative energies with respect to the lowest lying geometry, structural parameters,
and symmetries of selected optimized isomers are displayed in Tab. 1. The optimized
geometries can be seen in Fig. 3. Conformer R1 was identified as the global minimum
rotamer. R2, and R3 have small energy differences of less than 1 kJ/mol, as shown by
the first row of Tab. 1. Concerning symmetry, rotamers R1, and R3 correspond to a D2

point group, while R3 belongs to the C2 point group. In the table it can be observed
that the central biphenyl (Dihedral 2-3) ranges between 36.4°, and 37.2° for the local
minima conformers. The torsion angles of the carbazole-phenyl moieties 1-2, and
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3 Properties of CBP in the single molecule picture

Figure 2: Colour coding of the moieties of CBP: 1 carbazole (red), 2 phenyl (green), 3
phenyl (orange), 4 carbazole (blue). The a− l tags mark the atoms used to
measure torsion angles and bond distances. The CBZ angles are measured
between points c− b− x, and j − k − y.

3-4, of the tree geometries are similar, with sign variations due to the measurement
references. Despite these changes in sign, the overall relative orientation is preserved
in the three conformers with the CBZ fragment at ±50° relative to the phenyl group.
The CBZ angles, c − b − x, and j − k − y in Fig. 2, are 180° in all local minima
geometries. These small differences suggest a potential energy surface, PES, with
several close-lying local minima.

One example of the close-lying minima stems from the TS structure, R2-TS in Tab.1.
Analysis of the vibrational normal modes revealed a single imaginary frequency at
i65.99 cm-1 in which the phenyl rings twist out of plane in opposing directions. R2-TS

connects R2 with its enantiomer, R2’. The structures are shown in Fig. 4, while the
corresponding relative energies, symmetries, and structural parameters are collected
in the right section of Tab. 1. Comparison of the R2 and R2’ geometries shows that
the torsion angles are identical except for a flip in signs. In case of R2-TS, it can be
seen that both carbazole moieties are on the same plane, which is also the case for
the phenyl rings, though CBZ and Ph are not coplanar. The activation barrier of
the isomerization, shown in Fig. 4, is 7.57 kJ/mol. Also noteworthy is the change in
symmetry along the process: R2, and R2’ belong to a C2 point group, whereas R2-TS

has a C2h symmetry.
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3.2 CBP in the electronic ground state

Table 1: Relative energies Erel, symmetries, and relevant geometrical parameters of
the ground-state CBP rotamers R1, R2, and R3. Columns R2-TS and R2’

correspond to species related to the isomerization of R2, shown in Fig. 4.

R1 R2 R3 R2-TS R2’

Erel [kJ/mol] 0 +0.49 +0.83 +8.06 +0.49

Symmetry D2 C2 D2 C2h C2

Dih. ang.a

1-2 −53.9 −54.1 +54.8 +53.7 +54.1

2-3 +36.4 +36.8 +37.3 0.0 −36.8

3-4 −53.9 +55.0 +54.8 −53.7 −55.0

1-4 −70.5 +37.7 −33.9 0.0 −37.7

Bond dist.b [Å]

r 1-2 1.41 1.41 1.41 1.41 1.41

r 2-3 1.47 1.47 1.47 1.48 1.47

CBZ ang.c

1-2 180.0 180.0 180.0 180.0 180.0

3-4 180.0 180.0 180.0 180.0 180.0
a Dihedral angle.
b Bond distance.
c Carbazole angle.

3.2.1 CBP ionization energies

Motivated by the use of CBP as hole-transport material, this section focuses on
computing ionization energies to study the formation of single-charge radical CBP
cations. The calculated IEs are collected in Tab. 2 and the structural parameters of
the radical cations are shown in Tab. 3. The relaxed CBP radical cations have overall
lower IEs than the non-optimized counterparts, with a difference close to 50 meV. The
IEs from the GW quasi-particle energies are practically the same for both relaxed,
and unrelaxed geometries, showing little sensitivity to small structural changes. The
IEs from the HOMO QPs are about 0.24 eV larger than the vertical ∆SCF IEs, and
0.28 eV larger than the adiabatic ∆SCF ionization energies. A comparison with the
geometries of the neutrally-charged CBP, cf. Tab. 1, show that removal of one electron
has rather small effects on the conformation of the molecule. Changes in dihedral
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3 Properties of CBP in the single molecule picture

Figure 3: Front view of R1, and side view of the CBP rotamers R1, R2, and R3.

angles 1-2, 2-3, and 3-4 are, for most cases, smaller than 4°. In case of bond distances,
the Ph-Ph bond is slightly increased by about 0.01 Å, while the CBZ-Ph bonds remain
unchanged. The results suggest that a ∆SCF approach would be better suited to
compute the first ionization energy of CBP since it seems more sensitive to slight
structural changes caused by the removal of one electron. On the other hand, it should
be noted that the ∆SCF approach can suffer from spin contamination which is not
the case for GW.

The main reference value for these results consists of the experimental IEs measured
by ultraviolet photoelectron spectroscopy on a thin film of CBP, which are within
the 6.10-6.20 eV range.[93,94] We also refer to the adiabatic ∆SCF IE, of 6.65 eV,
from a DFT (B3LYP/def2-TZVP) calculation with implicit solvent model PCM, for
qualitative comparison.[95] The adiabatic ∆SCF results are overestimated about 0.20
eV relative to the DFT qualitative reference, and at least 0.60 eV relative to the
experiment. In case of the experimental values, the deviation is significantly larger.
The overestimation relative to the experimental IEs could be related to environmental
effects, but studying the influence of the environment on the properties of charged
molecules is beyond the scope of this thesis.
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C2

R2

C2h

R2-TS

C2

R2’

7.57 kJ/mol

Figure 4: Energy diagram of the rotation of CBP R2 into its enantiomer R2’ including
symmetry labels. Geometrical parameters are collected in Tab. 1.

Table 2: Ionization energies, IE, in eV, of the CBP rotamers. Experimental reference
values from ultraviolet photoelectron spectroscopy are in the 6.10-6.20 eV
range.[93,94]

PBE0 GW

adiab a vertb w/o c w/ d

R1
•+ 6.85 6.89 7.13 7.13

R2
•+ 6.86 6.89 7.13 7.13

R3
•+ 6.86 6.89 7.12 7.12

a ∆SCF, adiabatic ionization.
b ∆SCF, vertical ionization.

c GW approximation, without geometry relaxation.
d GW approximation, with geometry relaxation.
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Table 3: Symmetries and geometrical parameters of relaxed-geometry ground-state
CBP radical cations.

R1
•+ R2

•+ R3
•+

Symmetry D2 C2 D2

Dih. ang.a

1-2 −58.4 −60.9 +58.7

2-3 +40.2 +40.9 +40.0

3-4 −58.4 +56.9 +58.7

1-4 −76.1 +36.9 −23.1

Bond dist.b [Å]

r 1-2 1.41 1.41 1.41

r 2-3 1.48 1.48 1.48

CBZ ang.c

1-2 180.0 180.0 180.0

3-4 180.0 180.0 180.0
a Dihedral angle.
b Bond distance.
c Carbazole angle
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3.3 Singlet vertical excitations

3.3 Singlet vertical excitations

Previous studies have revealed that one of the lower-lying excited states of CBP
has a charge-transfer character, dominated by the N-phenylcarbazole and biphenyl
moieties.[33] As discussed in Sec. 2.2.1, CT states are prone to be inaccurately described
by TD-DFT.[25,26] Thus, in this section a comparison of singlet absorption spectra
computed with the TD-DFT and GW-BSE methods is performed. The GW-BSE
approach is further used to study the absorption spectra of the local minima, as well
as the emission of the corresponding relaxed excited-state geometries.

3.3.1 Method comparison: TD-DFT and GW-BSE

In this section singlet vertical absorption results from TD-DFT and GW-BSE calcula-
tions are compared. The density functionals employed are PBE0,[77,78] CAM-B3LYP,[96]

and ωB97X.[97] The calculations were performed as indicated in the computational
details section, cf. Sec. 3.1.3, using only the ground-state geometry of the global
minimum, R1. Results of the first singlet excitation, S1, are collected in Tab. 4. The
corresponding absorption spectra are shown in Fig. 5.

Table 4: First vertical singlet transition (S1) of CBP calculated with TD-DFT, em-
ploying the functionals PBE0, CAM-B3LYP and ωB97X, and the GW-BSE
approach. Values are given in eV.

PBE0 CAM-B3LYP ωB97X GW-BSE

R1 3.69 4.25 4.46 3.99

R2 3.68 4.25 4.46 3.98

R3 3.68 4.26 4.46 3.99

The PBE0 absorption, followed by BSE, have the best agreement with experimental
values of the first excitation located near 3.70 eV.[4,91] Regarding the spectra in Fig. 5,
the intensities of the first two states from the PBE0 and BSE calculations are inverted,
the latter being in better agreement with the experimental absorption.[4] The first
root is also much stronger than the second one in the CAM-B3LYP spectrum. In case
of ωB97X, there first state has about half the intensity of the second one, but the
roots are blue-shifted about 0.5 eV relative to the experiment.
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Figure 5: Absorption of CBP rotamer R1 (FWHM 0.1 eV) calculated with different
methods: GW-BSE in dark blue, PBE0 in yellow, CAM-B3LYP in orange,
and ωB97X in red.

Some resemblance between the PBE0 and BSE spectra can also be found for the
3rd to 5th bands, between 4.50, and 5.50 eV, despite of the red shift in the PBE0
plot. However, the spectra from the range separated functionals CAM-B3LYP and
ωB97X are blue-shifted, and quite different from PBE0 and BSE. These discrepancies
could be related to differences in their formulation: CAM-B3LYP has 19% exact
exchange and 81% Becke 1988 (B88) exchange at short range, while for long range it
has 65% exact and 35% B88 exchange.[96] On the other hand, ωB97X has nearly 16%
exact exchange at short range and 100% exact exchange at long range.[97] Inclusion of
exact exchange using these range-separation schemes allows for a better description of
CT-type excitations using TD-DFT, when compared to semi local functionals.[57] Aside
from the exact exchange portion, the main difference between these functionals arises
from the way they define the range of their short- and long-range parts: CAM-B3LYP
allows to include both types of exchange over the whole range, while ωB97X allows
exchange mixing only in the short-range region. In the case of CBP, it seems that for
B88 exchange has a positive effect on the overall result.
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First “dim” excitation First “bright” excitation

PBE0

4.03 eV (0.094) 3.69 eV (0.70)

CAM-B3LYP

4.31 eV (0.0001) 4.25 eV (1.12)

ωB97X

4.46 eV (0.39) 4.57 eV (0.90)

Figure 6: Comparison of transition-density plots (isosurface value of 2 × 10−4 a−30 )
of the first “dim” (left), and “bright” (right) singlet vertical excitations
computed at the TD-DFT level. Corresponding excitation energies and
oscillator strengths (in parenthesis) are given for each plot. Density loss is
indicated by a red contour, while increase in density is given by the blue
contour.

To look further into the nature of the first two absorption bands, the transition
densities of states S1 and S3 of rotamer R1 were plotted. The S0 → S2 transition
is symmetry forbidden, cf. Tab.5, thus it is not considered. The contour plots are
depicted in Fig. 6, where the rows indicate the density functional used in the TD-DFT
calculation. The columns use the labels “dim”, to refer to the first non-dark singlet
transition which is typically less intense, and “bright”, to refer to the first relatively
intense transition. In the rows corresponding to PBE0 and CAM-B3LYP, it can be
seen that the “bright” excitations occur at lower energies than the “dim” ones. The
difference in case of PBE0 close to 0.3 eV, while for CAM-B3LYP it is smaller than
0.1 eV which can also be noticed in the spectrum in Fig. 5. Both functionals yield the
picture of a CT-type state for the “bright” transition, and a more localized character
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Figure 7: Absorption spectra (FWHM 0.1 eV) of the CBP rotamers calculated with
the BSE approach. First excitation energies and oscillator strengths, in
parenthesis, are R1 3.99 eV (0.14), R2 3.98 eV (0.06), and R3 3.99 eV (0.09).
Second absorption bands occur at R1 4.15 eV (1.06), R2 4.15 eV (1.05), and
R3 4.26 eV (1.06).

for the “dim” excitation. In comparison, ωB97X yields a “dim” transition at a lower
excitation energy, while the “bright” CT-type excitation is located about 0.10 eV
higher. Though the ordering is in agreement with the BSE results, the intensities, and
energy shifts differ significantly from the references.[4,91]

Based on the relative good agreement with the experimental reference, and the general
performance of the BSE method regarding CT-excitations,[29–31] we limit ourselves to
the GW-BSE method to calculate singlet excited states of the CBP molecule.

3.3.2 Absorption spectra of stable rotamers

Here the GW-BSE approach is used to investigate the three stable rotamers R1, R2,
and R3. The vertical absorption energies and spectra are computed according to Sec.
3.1.3. The absorption spectra are displayed in Fig. 7, where almost identical plots
can be seen for the three minima geometries. The structural parameters in Tab. 1
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3.3 Singlet vertical excitations

show that the largest structural variation occurs for the CBZ-CBZ torsion angle
(Dihedral 1-4). In the case of R1, the carbazoles are close to being perpendicular
(-72°), while in R2 and R3 they are close to 35°. This suggests that differences in the
relative orientation of CBZ-CBZ dihedral yield no significant change in the absorption
spectra of local minima geometries. On the other hand, the biphenyl moiety is highly
conserved in all minima, with differences of less than 1°. The CBZ-Ph torsion angles
are also similar in all rotamers, at about ±55°. Since there are small differences in the
Ph-Ph, and CBZ-Ph, dihedrals, the influence of these angles on the absorption cannot
be identified from the local minima geometries. The effects of rotational conformation
on absorption and emission is further investigated in chapter 4.

3.3.3 The charge-transfer state in CBP

To delve into the CT-character in CBP excitations,[33] the BSE transition densities
were computed for the three ground-state rotamers R1, R2, and R3. Again, the “dim”,
and “bright” labels are used to refer to the first low (S1 or S2 states), and high
intensity transitions. The corresponding density plots are shown in Fig. 8, where the
red contour denotes a reduction of electron density, and the blue contour denotes
an increase in electron density due to the electronic transition. In case of the “dim”
singlet excitations, all rotamers clearly display a negative character in the biphenyl
system, while having a mostly heterogeneous orbital distribution on the carbazole
fragments. For this excitation, a CT-state is not completely defined due to the mixed
transition orbitals of the CBZ moiety.

Tab. 5 shows the excitation energies, oscillator strengths, and irreducible representa-
tions of the first three singlet excitations of the CBP minima R1, R2, and R3. From
the data in the table it can be observed that the rotamers have an S2 state that is
quasi-degenerate to S1, but only in case of R2 a mixing of S1 and S2 is allowed by
symmetry. Thus, the transition density plots of the “dim” excitations of R1 and R3

involve one dark and one low-intensity state, while for R2 the plot is a linear combina-
tion of two low-intensity states. In comparison, the “bright” excitation corresponds
only to the S3 state of each rotamer.
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3 Properties of CBP in the single molecule picture

First “dim” excitation First “bright” excitation

R1

3.99 eV (0.14) 4.15 eV (1.06)

R2

3.98 eV (0.06) 4.15 eV (1.05)

R3

3.99 eV (0.09) 4.16 eV (1.06)

Figure 8: Transition-density plots (isosurface value of 2× 10−4 a−30 ) for first “dim” (left
column), and first “bright” (right column) singlet vertical absorptions at
ground-state geometries, calculated with BSE. Corresponding excitation
energies and oscillator strengths (in parenthesis) are given for each plot.
Density loss is denoted by a red contour, while increase in density is denoted
by a blue contour.

Analysis of the transition density plots of the S3 “bright” state, displayed on the right
column of Fig. 8, shows a well defined charge-transfer character in which the transition
occurs from the biphenyl group towards the carbazole moieties. The charge-transfer
character is observed in all ground-state rotamers with small differences among them.
Confirmation of a charge-transfer type excitation also helps to explain why DFT
methods presented larger discrepancies than the GW-BSE method when compared to
the experiments.
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3.3 Singlet vertical excitations

Table 5: First three BSE vertical singlet transitions, S1, S2, and S3, of CBP minima
R1, R2, and R3.

Rotamer S1 S2 S3

R1 Symmetry B1 A B1

ωa 3.985 3.989 4.147

f b 0.142 0.000 1.056

R2 Symmetry A A A

ωa 3.984 3.990 4.148

f b 0.064 0.047 1.049

R3 Symmetry B1 A B1

ωa 3.985 3.988 4.156

f b 0.085 0.000 1.057
a Excitation energy in eV.

b Oscillator strength (length representation).

To address the CT-character of the absorption, the state-specific atomic charges of
the ground-state geometries were analysed. The atomic charges were computed using
a point charge fit to the electrostatic potential. These state-specific quantities require
orbital-relaxed density matrices, not yet available for BSE methods. Thus, only the
orbital-relaxed density matrices as obtained from TD-DFT calculations with the PBE0
functional are employed. The atomic charges, calculated for S0 and S1, were added for
each state to obtain the fragment charge of the carbazoles, qCBZ, and biphenyl, qBPh.
The difference fragment charges, ∆q, between CBP states were computed using qCBZ
and qBPh.

The results of the fragment and difference atomic charges are displayed in Tab. 6.
In the ground state the carbazoles have negative partial charges shown by a qCBZ of
-0.50 e, while BPh shows a positive character with qBPh of +0.50 e. In the S1 state,
the difference in fragment charge is significantly lower, with qCBZ and qBPh of -0.10
and +0.10 e respectively. This means that upon excitation there is a shift of about
0.40 e from the carbazole to the biphenyl fragment, supporting the CT-character of
the excitation. It should be noted that the reason for using the S0, and S1 states
for the fragment charge analysis is that the charge fit is based on TD-DFT relaxed

45



3 Properties of CBP in the single molecule picture

Table 6: CBP fragment charges in e of biphenyl, BPh, and carbazole, CBZ, groups
from orbital-relaxed ground, S0, and excited-state, S1, density matrices of the
optimized ground-state geometries. ∆q is the difference between fragment
charges upon excitation, i.e. absorption.

Geometry S0 S1 ∆q

R1 qBPh +0.49 +0.09 −0.40

qCBZ −0.49 −0.09 +0.40

R2 qBPh +0.49 +0.09 −0.40

qCBZ −0.49 −0.09 +0.40

R3 qBPh +0.50 +0.10 −0.41

qCBZ −0.50 −0.10 +0.41

density matrices. Thus, by choosing S1 and not S3, the CT-state predicted by TD-DFT
calculations is correctly selected.

3.4 Relaxed excited-state geometries and fluorescence

The geometry of rotamers R1, R2, and R3 were relaxed in their lowest allowed singlet
excitation, cf. 3.1.3. The resulting excited-state structures were labeled E1, E2, and E3,
following the convention established for the ground-state geometries. For example, E1

was obtained after geometry optimization in the excited state of R1. The corresponding
point groups, relative energies, adiabatic energy differences, AED, vertical emission
energies, and structural parameters are collected in Tab. 7.

The table shows an energy difference between the excited state rotamers of less than
2 kJ/mol. In this case however, E3 is the more stable excited-state rotamer, having
also the lowest AED of 3.40 eV. The AED of the other two rotamers are about 0.03
eV higher than E3. All vertical transition energies are within 0.01 eV. In the ground
state the dihedral angle of the biphenyl group is approximately 36°, but becomes
significantly more flat, at less than 10°, upon excitation to the S1 state; cf. Tab. 1.
Changing to an almost-in-plane orientation promotes conjugation of the pi-system,
which could improve excited-state stabilization by allowing delocalization over more
atoms. This is also supported by a contraction in the biphenyl bond after excitation,

46



3.4 Relaxed excited-state geometries and fluorescence

which decreases from 1.47 to 1.43 Å. Upon excitation, the CBZ-Ph dihedral angles
change about ±1° relative to the ground-state geometries, while the corresponding
bond bistance remains practically unchanged, at 1.41 Å.

Table 7: Geometric and energetic data corresponding to E1, E2, and E3. Relative
energies, Erel, in kJ/mol, of singlet excited-state optimized geometries relative
to E3. Adiabatic energy differences, AED, and vertical emission energies, ω,
in eV. Oscillator strengths in parenthesis. Symmetries of excitations are B1,
A, and B for E1, E2, and E3, respectively.

E1 E2 E3

Symmetry D2 C2 D2

Singlet

Erel +0.04 +1.87 0

AED 3.43 3.42 3.40

ω 3.19 3.18 3.19

(0.79) (0.76) (0.75)

Dih. ang.a

1-2 −55.5 −55.6 +55.9

2-3 +5.2 +6.8 +8.0

3-4 −55.5 +56.2 +55.9

1-4 +74.2 +7.7 −59.9

Bond dist.b [Å]

r 1-2 1.41 1.41 1.41

r 2-3 1.43 1.43 1.43

CBZ ang.c

1-2 180.0 180.0 180.0

3-4 180.0 180.0 180.0
a Dihedral angles.
b Bond distances.
c Carbazole angle.

The relaxed geometries are included in Fig. 9, where the values for vertical emission
energies from TD-DFT (PBE0), and the BSE method are also collected. As observed
in the ground-state case, there are small variations in emission energies and oscillator
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3 Properties of CBP in the single molecule picture

strengths, within the same method, due to very similar structures. The BSE emission
energies are in closer agreement with experimental measurements, which show a peak
at about 3.45 eV.[91] TD-DFT emission is underestimated by about 0.40 eV with
respect to BSE. A comparison of the emission and absorption energies, cf. Tab. 5,
reveals that emission is red-shifted by approximately 0.40 eV with respect to lowest
absorption energy. The conservation of CBZ-Ph structural parameters in the relaxed
ground- and excited-state geometries suggests that the red shift of the emission energy
is related to the contraction of the Ph-Ph bond and the in-plane torsion of the phenyl
groups.

BSE TD-DFT

E1

3.58 eV (1.26) 3.19 eV (0.79)

E2

3.58 eV (1.22) 3.18 eV (0.76)

E3

3.60 eV (1.22) 3.19 eV (0.75)

Figure 9: Transition-density plots (isosurface value of 2×10−4a−30 ) of CBP rotamers E1,
E2, and E3 for fluorescence, i.e. de-excitation, at the excited-state geometry
cf. Tab. 7, for the first singlet state, calculated with BSE, and TD-DFT
(PBE0). Density loss is denoted by a red contour, while increase in density
is denoted by a blue contour. Oscillator strengths shown in parenthesis.
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3.4 Relaxed excited-state geometries and fluorescence

Table 8: CBP fragment charges in e of biphenyl (BPh) and carbazole (CBZ) groups
from orbital-relaxed ground, S0, and excited-state, S1, density matrices of
the relaxed excited-state geometries. ∆q′ is the difference between fragment
charges upon de-excitation, i.e. emission.

Geometry S1 S0 ∆q′

E1 qBPh +0.12 +0.50 +0.38

qCBZ −0.12 −0.50 −0.38

E2 qBPh +0.11 +0.50 +0.39

qCBZ −0.11 −0.50 −0.39

E3 qBPh +0.10 +0.50 +0.40

qCBZ −0.10 −0.50 −0.40

3.4.1 Emission and charge-transfer states

Vertical transition density plots of E1, E2, and E3, as well as emission energies and oscil-
lator strengths computed at the GW-BSE and TD-DFT levels of theory are displayed
in Fig. 9. Both sets of plots show that emission also has a charge-transfer character,
where the transition occurs now from the biphenyl region towards the carbazoles. The
qualitative similarity between these plots is a good indicator of sufficiently accurate
excited-state geometries from TD-DFT optimizations, and that there seems to be no
problem for the description of the CT emission, in contrast with the vertical absorption.

In analogy to the absorption, cf. Sec. 3.3.3, the CT-character of emission was inves-
tigated using state-specific atomic charges. In this case, the orbital-relaxed density
matrices were obtained from TD-DFT calculations of the relaxed excited-state ge-
ometries E1, E2, and E3. The results are collected in Tab. 8. The difference in atomic
charges, ∆q′, also point to a significant CT character of the emission, in which 0.4 elec-
trons are moved from the biphenyl towards the carbazole moieties. This is consistent
with the total change in biphenyl and carbazole charges upon absorption, shown in
Tab. 6, where nearly 0.4 e are displaced from the carbazole to the biphenyl fragments
when CBP is excited.

Optimization of different torsional CBP conformers led to three close-lying local
minima geometries which have very similar dihedral angles for the carbazole and
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3 Properties of CBP in the single molecule picture

phenyl moieties. This suggests that minima rotamers share a highly-conserved set
of geometrical parameters. One important consequence is that electronic properties,
like ionization energies or vertical absorption, have almost no variations among local
minima. Investigation of vertical singlet transitions due to absorption showed that the
lowest CT-type excitation of CBP is not described correctly by TD-DFT, even when
using the range-separated functionals CAM-B3LYP or ωB97X. In particular, PBE0 and
CAM-B3LYP yield an incorrect state ordering, while ωB97X introduces a substantial
blue shift. These problems are not present in the GW-BSE approach, making it
a suitable method to study singlet excitations in CBP. Interestingly, problems to
describe the CT-state seem te be missing in the emission from the relaxed excited-state
geometries, where the TD-DFT and GW-BSE descriptions match. A study based only
on gas-phase optimized CBP geometries cannot fully assess the connection between
conformation and electronic properties of CBP. Hence, an ensemble-like approach is
proposed in the next chapter, based on a CBP molecule with free-rotating carbazole
and phenyl groups.
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4 E�ects of rotational conformation of

CBP on excited-state properties

In the case of CBP, a broad variety of rotational conformers can be attributed to two
structural motifs: the torsion angles between the phenyl rings, Ph1 and Ph2, in the
biphenyl moiety, and the orientation of the carbazole moieties relative to their phenyl
rings. These are depicted in Fig. 10.

To have a better understanding of the effects of torsional conformation on the electronic
properties of CBP, this chapter 1 focuses on the changes in absorption and emission
spectra in the free-rotating, non-interacting CBP molecule. Although confinement
within the bulk would only allow some conformations, the picture offered by the free-
rotating CBP serves as a first step to understand the influence of purely geometrical
changes.

(a) (b)

Figure 10: Principal torsion angles of CBP. Rotation is indicated for the (a) phenyl-
phenyl, and (b) carbazole-phenyl dihedrals.

1Partially adapted from R. Cortés-Mejía, S. Höfener and W. Klopper, Mol. Phys. 2021, 119,
e1876936.

51



4 Effects of rotational conformation of CBP on excited-state properties

4.1 Computational details

4.1.1 Rotation scan of CBP and electronic structure calculations

The influence of torsional conformation on the absorption spectrum of CBP was
investigated using a sample of conformers that could give a significant overview of
the conformational space. Using as reference the geometry of the ground-state global
minimum, R1, cf. Sec. 3.2, the sample was generated by incrementally rotating the
crabazole and phenyl groups in 15° steps from 0 to 345°. The rotated angles are de-
picted in Fig. 10. Given the structure of CBP, there are several cases where rotations
lead to identical geometries due to symmetry. Thus, the nuclear repulsion energies
of all rotational conformers were calculated and used as criterion to select unique
geometries, e.g. structures with repeating values of nuclear repulsion energies were
discarded. From a total of 13.8 k structures from the scan, 1596 were identified as
unique. These structures were used for the electronic structure calculations detailed
below, all of which were carried out with the TURBOMOLE program package.[73,74]

The unique rotamers were subjected to single point calculations at the DFT level
with the PBE0 functional,[77,78] and a medium multiple-grid of size 3 (m3 grid in
TURBOMOLE).[75] The def2-SVPD basis,[98] and the RI approximation[80,81] with
the def2-SVPD auxiliary basis[82] were used. Convergence criteria of the single-point
calculations were set to 10-7 Eh for the energy, and 10-7 for the electron density.

Singlet vertical excitation energies of all unique rotamers were computed employ-
ing the GW approximation and the Bethe-Salpeter equation as implemented in
TURBOMOLE.[61,90] For these, energies of the HOMO and LUMO were corrected
using the RI-CD-evGW variant.[84] Absorption energies were computed for 25 exci-
tations to approximate experimental spectral windows of 200-500 nm.[4,91] Response
equations were converged to an Euclidean residual norm of less than 10-5.

To investigate the influence of rotation on emission, a different set of rotamers was
employed, which was based on singlet excited-state geometries. The the lowest excited-
state geometry E3, cf. Sec. 3.4, was used as starting point for the rotation scan
described above. All reference- and excited-state calculations of the unique rotamers
generated from E3 were carried out as detailed above.
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4.2 Fragment charge analysis

4.1.2 Boltzmann averaging to simulate temperature-dependent spectra

The average CBP absorption spectrum was obtained by weighting the individual
oscillator strengths, taking into account the number of structures with equal nuclear
repulsion energies (structure degeneracies) and a temperature-dependent Boltzmann
factor:

f̃r,i(T ) = Q−1 · fr,i · gr · exp

(
−Er − Eref

kT

)
, (81)

where Er is the ground-state DFT energy of rotamer r and Eref is the ground-state
DFT energy of the global minimum rotamer R1, both in Eh. k is the Boltzmann
constant, k = 3.167 · 10−6Eref/K, the temperature T , in Kelvin, fr,i is the oscillator
strength of the i-th electronic state of rotamer r, gr denotes the degeneracy of the
r-th rotamer, f̃r,i is the weighted oscillator strength, and Q is the partition sum:

Q =
∑
r

gr · exp

(
−Er − Eref

kT

)
. (82)

The weighted oscillator strengths f̃r,i are used to simulate the Gaussian spectra εir(ν)

of each excitation i of every r rotamer,

εir(ν, T ) ∝ f̃r,i(T ) · exp(−(ν − νi)2) , (83)

which are combined to a spectrum for one rotamer r:

εr(ν, T ) =
∑
i

εir(ν, T ) . (84)

The averaged spectrum 〈ε(ν, T )〉 for a given temperature T is finally constructed from
all rotamers:

〈ε(ν, T )〉 =
∑
r

εr(ν, T ) . (85)

4.2 Fragment charge analysis

As discussed in Sec. 3.3.3, the fragment charge distribution and its changes upon
absorption and emission can be employed to assess the charge-transfer character of
an excitation. Thus, the changes in fragment charges due to torsion of the dihedral
angles of CBP are investigated in the following. One thing to consider is that for
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Figure 11: Carbazole (red), and biphenyl (blue) subsystem charge histogram. Charges
are grouped in 0.05 e intervals. Box height indicates rotamer count for the
corresponding charge interval.

this section, only ground-state fragment charges of the S0 state are computed for the
biphenyl (BPh), and carbazole (CBZ) fragments of the rotamers in the collection.

Fig. 11 shows a histogram of fragment charges. The horizontal axis corresponds to
charge intervals with a step size of 0.05 e, electrons, in the interval from −0.70 to
+0.70 e. The vertical axis indicates the total rotamer count, taking into account the
degenerate structures. Carbazole and phenyl fragment charges are summed from the
corresponding ground-state atomic charges.

The plot reveals that, throughout the 13 824 CBP rotamers, the BPh moiety always
maintains a partial positive charge, while the CBZ remains negative. The interval
with the highest rotamer count ranges from ±0.55 to ±0.50 e, in agreement with the
fragment charges of the ground-state reference structure where the carbazole and
biphenyl charges are −0.50 e and +0.50 e, respectively; cf. Tab. 6.
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4.3 Temperature dependence of absorption spectra

(a) Rotamer 30− 75− 120 (b) Rotamer 165− 135− 120

Figure 12: Geometries of rotamers with largest and smallest fragment charges. (a)
CBZ and BPh charges of −0.66 e and +0.66 e, respectively. (b) CBZ and
BPh charges of −0.37 e and +0.37 e.

Fig. 12 shows a comparison of the geometries of the rotamers with the largest fragment
charge differences. The highest fragment charge separation has a value of −0.66 e for
the CBZ and +0.66 e for the BPh, which correspond to rotamer 30−75−120 (left). The
phenyl−carbazole and phenyl−phenyl torsion angles are 96°and 8.6°, respectively. In
contrast, rotamer 165−135−120 (right) shows the lowest fragment charges of −0.37 e

and +0.37 e for the carbazole and biphenyl fragments. Here, the phenyl−carbazole
and phenyl−phenyl dihedral angles are 38°and 66°, respectively. This suggests that
fragment charge is predominantly dependent on the phenyl-carbazole torsion angles,
and that the charge separation increases as the planes of these groups become more
orthogonal.

Through torsion of the dihedral angles of the carbazole and biphenyl moieties a change
in charge separation up to ±0.2 e can be expected. The overall positive or negative
character of the moiety is maintained.

4.3 Temperature dependence of absorption spectra

The vertical transition energies obtained for the collection of rotamers were used to
model average spectra at temperatures of 0, 100, 200, 300, 400, and 500 K. The corre-
sponding weighted spectra are shown in Fig. 13, where the vertical axis corresponds
to molar absorption coefficients, ε, in units of L mol-1 mol-1. For reference purposes,
Fig. 13 also includes the absorption lines of the lowest energy structure, labelled R1.
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Figure 13: Boltzmann-average weighted CBP absorption spectra (FWHM 0.1 eV) at
temperatures 0, 100, 200, 300, 400, and 500 K. The black vertical lines
correspond to the absorption lines of the lowest energy rotamer R1. The
first excitation occurs at 3.81 eV.

A significant change in the absorption spectra can be observed as the temperature
used for the Boltzmann weighting factor, given by Eq. (81), is raised. This is caused
by the increased contribution of higher-energy rotamers. For example, at 0K only the
lowest-energy rotamer will have a non-zero weight, thus the spectrum will match the
reference absorption lines exactly. At 100 K, the weight of most rotamers is close to
zero, so the dominant contribution to the spectrum comes from the global minimum
geometry.

Absorption spectra beyond temperatures of 200 K change considerably in the energy
window between 3.70 eV and 5.20 eV, with an overall slight blue shift. With increasing
temperature, the first excitation, at 3.81 eV, becomes smeared together with the signal
at 4.10 eV. The latter is substantially attenuated with increasing temperature. The
5.1 eV excitation shows a similar behaviour, where higher temperatures result in a
peak widening. In contrast, signals located close to 4.3 eV, 5.3 eV, and 5.7 eV undergo
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4.3 Temperature dependence of absorption spectra

Table 9: Temperature-weighted statistical analysis of the 4.1, and 5.7 eV peaks in the
Boltzmann-weighted absorption spectra of CBP, cf. Fig. 13.

Near 4.1 eV peak Near 5.7 eV peak

νa f b νa f b

T / K µc Vard µc Vard µc Vard µc Vard

0 4.11 0 1.05 0 5.72 0 0.40 0

100 4.13 <0.01 1.00 0.01 5.72 <0.01 0.42 <0.01

200 4.18 0.01 0.86 0.07 5.74 <0.01 0.46 0.01

300 4.20 0.02 0.76 0.11 5.75 <0.01 0.47 0.01

400 4.22 0.02 0.71 0.13 5.75 <0.01 0.48 0.02

500 4.22 0.02 0.67 0.14 5.75 <0.01 0.49 0.02
a Excitation energy in eV.

b Oscillator strength, length gauge.
c Mean value.
d Variance.

significantly smaller changes due to raising temperature. In the following section,
selected bands are analysed to assess the changes in intensities and energy shifts due
to increase of temperature in the Boltzmann factor.

4.3.1 Statistical analysis: ground-state rotamers

The differences in energy shifts and intensities indicate that not all excitations are
equally sensitive to changes in the torsion angles of CBP. To investigate these varia-
tions, the distribution of energies and oscillator strengths of the signals at 4.10 eV and
5.70 eV were analysed. The temperature-weighted data distribution of these peaks
is shown in Tab. 9. The mean values of excitation energy and oscillator strength are
shown for each temperature, together with the corresponding variance.

Tab. 9 shows that, in case of the 4.10 eV signal, there is a significant increase in the
variance of the oscillator with temperature. This translates into an overall decrease of
the mean oscillator strength, with a factor near 3.7, for a temperature increase from
100 K to 500 K. With rising temperature the number of contributing geometries also
grows, however, the band becomes significantly less intense. This suggests that there
are few torsional conformations associated with strong transition moments, while the
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4 Effects of rotational conformation of CBP on excited-state properties

vast majority of rotamers yield weaker transitions, pointing to a strong dependence
of the CT band on the conformation of CBP. Hence, an increase in the temperature
of the ensemble picture will result in a drastic intensity decrease of the band. In
contrast, the 5.7 eV band shows comparatively small changes in excitation energies
and oscillator strengths throughout the temperature range, pointing to an excitation
with almost no dependence on the torsional conformation.

Changes to the 4.1 eV signal can be visualized in the distribution histograms shown
in Fig. 14 and Fig. 15. The graphs contained in Fig. 14 correspond to a "temperature-
independent" case, meaning that all 13.8 k rotamers have the same weight and the
count of molecules is shown in the vertical axis. The top (blue) plot shows the distri-
bution of excitation energies, while the plot on the bottom (red) shows the oscillator
strengths, in length gauge. The distribution of excitation energies shows that a good
amount of rotamers are expected to have a blue shift for their third, "bright", root with
respect to the minimum, which does not show in the mean data between 4.11−4.22
eV, cf. Tab. 9. Similarly, the red histogram shows it should be a rather weak excitation
since the majority of rotamers are below the mean at any given temperature, which is
in the 0.67−1.05 interval.

The picture changes in a temperature dependent scenario, where the 13.8 k molecules
have been weighted for the different temperatures with the Boltzmann distribution,
shown in Fig. 15. In this figure, the vertical axes display the weight of the molecules
in the distributions. The top plot corresponds to temperature weighted excitation
energies, while the bottom plot shows oscillator strengths. With increasing tempera-
ture, rotamers with blue-shifted excitation energies become more relevant, but their
contribution is not significant enough to induce a big shift. Thus, the excitation energy
has a 4.22 eV mean value at 500 K. In case of the bottom pane of Fig. 15, not only
the oscillator strengths become noticeably spread with increasing temperature, but
the rotamers with higher weights are also those that have a relatively weak excitation.
This results in the 4.10 eV vanishing peak.

A similar set of histograms for the 5.70 eV signal is presented in Fig. 16 and Fig. 17.
The distributions in Fig. 16 correspond to the temperature independent case. Here, the
excitation energies are relatively well grouped, with most rotamers between 5.70 and
5.90 eV. For oscillator strengths, the values with most rotamer counts are around 0.40.
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4.3 Temperature dependence of absorption spectra
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Figure 14: Temperature independent distribution histograms of excitation energies
(top) and oscillator strengths (bottom) of the third root, near 4.10 eV, of the
13.8 k molecules generated from CBP rotation in 15° steps. Vertical axes
correspond to CBP molecule count. All rotamers have the same weight.

The Boltzmann-weighted picture in Fig. 17 shows a comparatively tighter distribution
of both excitation energies and oscillator strengths. This results in the 5.7 eV signal,
which is highly conserved through the temperature range.
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Figure 15: Distribution of excitation energies (top) and oscillator strengths (bottom)
of the third root, near 4.10 eV, of the 13.8 k molecules generated from
CBP rotation, weighted for different temperatures using the Boltzmann
distribution based on the ground-state energy differences.
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Figure 16: Temperature-independent distribution of excitation energies (top) and
oscillator strengths (bottom) of the band at about 5.70 eV of the 13.8 k
molecules generated from CBP rotation.
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Figure 17: Distribution of excitation energies (top) and oscillator strengths (bottom) of
the 5.70 eV peak of the 13.8 k molecules from CBP rotation scan, weighted
for different temperatures using a Boltzmann distribution, cf. Sec.4.1.2.
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4.3 Temperature dependence of absorption spectra

Near 4.10 eV band Near 5.70 eV band

Near 5.10 eV band Near 4.30 eV band

Figure 18: Transition-density plots (isosurface value of 2× 10−4 a−30 ) of the absorption
bands at 4.10, 5.70, 4.30, and 5.10 eV of R1. As shown by Fig. 13, the 4.10 eV,
and 5.10 signals decrease drastically as temperature grows. Conversely, the
5.70, and 4.30 eV signals remain mostly unchanged at higher temperatures.
Density loss is denoted by a red contour, while increase in density is denoted
by a blue contour.

4.3.2 Transition densities of vanishing and non-vanishing bands

To look into the influence of rotational conformation on vanishing and non-vanishing
bands, the transition densities of the corresponding excitations are shown in Fig. 18.
The top left frame depicts a CT-type excitation for the band near 4.10 eV. On the top
right pane, the transition density plot corresponding to the 5.70 eV peak reveals an
excitation local character. CT excitations in CBP will be more strongly influenced by
the torsional conformation of the molecule, as the relative orientation of the fragments
affects the pi-system, where the electron-hole pair is delocalized. For the excitation at
5.70 eV, the orientation of the carbazole and phenyl moieties has virtually no effect
on these interactions.

A similar comparison was done for two other vanishing and non-vanishing bands, at
5.10 and 4.30 eV, respectively. The corresponding transition density plots are displayed
in the bottom row of Fig. 18. The 5.10 eV band seems to involve also a CT-type
excitation, but this character is much weaker in comparison with the 4.10 eV signal.
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4 Effects of rotational conformation of CBP on excited-state properties

This could also explain why the decrease in intensity of the 5.10 eV band with higher
temperature less pronounced than for the 4.10 eV peak. In contrast, the 4.30 eV
peak corresponds to a local excitation involving mainly the carbazole groups, hence it
undergoes no major changes with raising temperature.

4.4 E�ects of rotational conformation and temperature on

emission of CBP

The influence of temperature upon fluorescence of CBP was also investigated. The
lowest vertical transition was simulated at different temperatures based on excited-
state rotamer geometries. In this case, the rotamer with relative torsion angles of 15,
15, and 30° was found to be lowest in energy, thus it was chosen as reference for the
Boltzmann weighting.

The temperature-weighted emission bands are shown in Fig. 19. The emission of
the reference excited-state rotamer is included as a black vertical line located at
3.49 eV. The increasing temperature induces a slight blue shift on the emission of
CBP, together with a decrease in intensity. This is most noticeable for the 500 K
average band, which has a maximum intensity of almost half of the 0K emission. The
maxima of the average spectra at 0, 100, 200, 300 400, and 500 K are located at 3.42,
3.45, 3.47, 3.48, 3.49, and 3.49 eV, respectively. Similar to the emission of the minima
in the relaxed excited-state geometries, cf. Sec. 3.4, the Boltzmann-averaged emission
also yields a red shift of approximately 0.40 eV, with respect to the lowest absorption
energy. The distribution of the emission bands is analysed in the following.

The statistical data of the energies and oscillator strengths of the emission at the
different temperatures is displayed in Tab. 10. The temperature-independent and de-
pendent distribution histograms are shown in Fig. 20 and Fig. 21. Overall, an average
blue shift of up to 0.10 eV occurs for the 500 K emission, relative to the 0K spectrum.
The distribution of energy data is relatively close. For the oscillator strengths, there
is an average decrease of 0.15, relative to the 0 K fluorescence spectrum, which is
observed at 500 K. The oscillator strengths have also a relatively small variance.
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Figure 19: Boltzmann-averaged emission of CBP from the S1 state within a 0-500
K temperature range. The dark vertical line corresponds to the emission
of the rotamer with the lowest total excited-state energy (”15-15-30∗”).
Maxima of the averaged spectra are located at 3.42, 3.45, 3.47, 3.48, 3.49
and 3.49 eV for 0, 100, 200, 300, 400, and 500 K, respectively.

The temperature-independent distribution of the energy, shown on the top pane
of Fig. 20, shows a blue shift of emission energies when the dihedrals of CBP are
rotated. The oscillator strengths in the temperature-independent scenario (bottom)
are spread through a very wide range, where there is a very noticeable amount of
rotamers with rather weak emission. When the structures from the torsion scan are
weighted using the Boltzmann factor, the distributions from Fig. 21 are obtained. In
the temperature-dependent scenario, the distributions of transition energies (top) and
oscillator strengths are considerably less scattered, with the highest weights centred
around 3.50 eV and 1.40, respectively. Overall, emission seems less sensitive to changes
in the rotational conformation of the CBP molecule.

The Boltzmann fit based on ground-state energy differences shows that the ensemble
picture has a strong influence on CT-type excitations, while more local excitations
are not as sensitive to the ensemble scenario. A similar approach to study the effects
of temperature on the emission of CBP shows a much weaker effect of the ensemble
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4 Effects of rotational conformation of CBP on excited-state properties

Table 10: Temperature-weighted statistical analysis of the Boltzmann-weighted emis-
sion spectra of CBP, cf. Fig. 13.

Emission

νa f b

T / K µc Vard µc Vard

0 3.42 0 1.47 0

100 3.46 <0.01 1.40 <0.01

200 3.48 <0.01 1.38 <0.01

300 3.49 <0.01 1.36 <0.01

400 3.51 <0.01 1.35 0.01

500 3.52 <0.01 1.32 0.03
a Excitation energy in eV.

b Oscillator strength, length gauge.
c Mean value.
d Variance.

approach, with a blue shift of up to 0.10 eV relative to the 0K fluorescence. The
results in this chapter contribute to understand the relationship between the structure
of CBP and its spectral behaviour. However, an improved picture of CBP in the
condensed phase needs to account for the interactions of a given molecule with its
surroundings. Thus, in the next chapter the excited-state properties of CBP dimers in
different environments are investigated.
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4.4 Effects of rotational conformation and temperature on emission of CBP
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Figure 20: Temperature-independent distribution of the S1 emission. Top pane cor-
responds to emission energy. Bottom pane shows data distribution of the
oscillator strengths. The vertical axis indicates the number of rotamers in
a given excitation energy interval, shown in the horizontal axis.
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Figure 21: Distribution of vertical transition energies (top) and oscillator strengths
(bottom) of the S1 state of the 13.8 k molecules from CBP rotation scan.
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5 CBP dimers: excitonic coupling in

di�erent environments

In this chapter the excited state properties of CBP dimers in different environments
are explored. First, dimers obtained from gas-phase geometry optimizations are used
to compare different quantum-chemical methods for calculating excitation energies and
excitonic couplings. Second, a set of dimers is extracted from a CBP slab and employed
to assess the influence of geometries on the accuracy of excitonic couplings. Finally,
dimers are studied within molecular clusters to account for electronic polarization of the
environment on excitation energies and couplings. Dimer excitation and couplings are
properties that determine exciton transport within the material, hence their importance
for multiscale models of devices that employ CBP as part of their architecture.

5.1 Computational details

Three sets of CBP dimers are used in the investigation presented here. The first set
consists of dimers based on the global minimum structure R1 (Section 3.2), obtained
using gas-phase geometry optimizations. The other two dimer sets were sampled from a
CBP slab which contains 5000 molecules. The slab was modelled by Samaneh Inanlou
and Deniz Özdemir from the groups of Marcus Elstner and Wolfgang Wenzel.[21] The
disordered thin-film morphology was generated through simulation of physical vapour
deposition, based on a Monte-Carlo, MC, protocol in which molecules are added one
after the other to a simulation box where the xy-plane represents the substrate. Addi-
tion of each molecule is followed by a series of simulated annealing cycles, where only
molecular translations and rotations of the Ph-Ph and CBZ-Ph dihedral angles,cf. Fig.
10, are allowed. The thin-film generated by the deposition protocol was equilibrated
through an MD simulation of 2 ns at 300 K and 1 bar. One set of dimers was obtained
from the slab, based on a relatively high excitonic coupling, between 50 and 70 meV
(slab mean is ∼ 30meV). This coupling was computed in Reference [21] using atomic
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5 CBP dimers: excitonic coupling in different environments

transition charges of nearest-neighbour CBP molecules from TD-LC-DFT calculations.
The second group of CBP dimer samples were extracted together with their closest
13 molecules, resulting in small molecular clusters of 15 CBPs in total. Dimers were
selected by identifying all molecular pairs within a radius of 10 Å, which were then
randomly selected. These were inspected to ensure dimers were at least 20 Å from the
edges of the simulated CBP slab. This was done to guarantee the complete embedding
of the dimers within the clusters.

All calculations presented in this section were performed using the TURBOMOLE
program suite.[73,74] The details are described in the following.

5.1.1 Geometry optimizations

All geometry optimizations of the different dimers in this chapter were carried out
at the DFT level,[75,76] using the PBE0 functional[77,78] with a modified grid[75] (grid
m3) and the def-SVPD basis set.[98] The RI-J approximation[80,81] was employed with
the corresponding auxiliary basis set.[82] The Multipole Accelerated RI-J (MARI-J )
option was used to further speed up the calculations.[99] Additionally, the DFT−D4
dispersion correction by S. Grimme was also employed.[100,101] The derivatives of
quadrature weights for correct derivatives of the DFT energy were enabled through
the weight derivatives option. Geometry optimization thresholds were set to 10-6 Eh

for the energy, and 10-3 Eh a0-1 for the maximum gradient residual norm. The SCF
energy convergence was set to 10-7 Eh.

The geometries of the gas-phase dimers were allowed to fully relax, i.e. without
constrains. All structures sampled from the CBP slab use MD geometries as a starting
point for the optimizations. The sampled dimers were subjected to constrained
geometry optimizations, where the nitrogen atoms were kept frozen. This was done to
preserve the overall orientation of the monomers and their intermolecular distance.
In case of the sampled clusters, a frozen-environment approach was employed. The
complete molecular clusters were used in the optimizations, but only the central dimer
was allowed to relax while the embedding molecules were kept frozen.
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5.1 Computational details

5.1.2 Excitation energies

Singlet vertical transition energies were computed for all dimer groups in the gas
phase. Additionally, the dimers were split into the individual monomers for which
also singlet vertical excitation energies were evaluated. In case of the cluster dimers,
excitation energies of the embedded dimers were calculated taking into account the
environmental effects due to the small cluster using the frozen density embedding
approach. Details of the calculations with the different methods are given below.

A Hartree-Fock single-point calculation was performed as reference for the post-HF
methods used to compute the excitation energies of all dimers and monomers. For this
calculation the def2-SVPD basis set was used.[98] RI approximation was employed with
the universal auxiliary basis set.[82,102,103] The seminumerical approximation for the
HF-exchange (senex) was used in all ground- and excited-state calculations throughout
this section.[104,105] The energy in the SCF iterations was converged to 10-7 Eh, and
the variations in the electron density to 10-7.

The CIS(D) method was used to compute the lowest 10 singlet excited states[106] of the
CBP gas-phase dimers, and corresponding monomers, using the def2-SVPD orbital
basis set.[98] The RI approximation was used with the def2-SVPD auxiliary basis set
in all excited-state calculations described here.[107–109] The convergence threshold for
the ground-state energy was set to 10-7 Eh, and 10-6 for the residuals of the cluster
equations. For the calculation of excitation energies, 76 core orbitals were frozen for
the dimers and 38 for the monomers. The convergence threshold for the norm of
residual vectors was set to 10-6.

Up to 5 vertical excitations using the Laplace-transformed scale opposite-spin ADC(2)
method, LT-SOS-ADC(2), were computed for the gas-phase dimers and monomers.[50,106,110]

Similar to the CIS(D) calculations, the def2-SVPD basis set was employed with the
corresponding auxiliary basis.[82,98,109] The number of frozen core orbitals and thresh-
olds for convergence are the same as those used with CIS(D).

The pair natural orbital based version of ADC(2), PNO-ADC(2), was used to calculate
up to 5 singlet vertical excitations of dimers and split monomers.[111,112] For these,
the def2-SVPD basis set and auxiliary basis set were employed.[82,98,109] The full
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5 CBP dimers: excitonic coupling in different environments

algorithm was selected for the generation of coefficients corresponding to the orbital
specific virtuals, OSVs.[111,113] The PNO truncation threshold was set to 10-8, 10-9 for
the OSV truncation, and 10-7 for the energy of the amplitude solver.

Reference single-point calculations of the ground-state geometries were performed at
the DFT level[75,76] using the CAMB3LYP functional[96] with a medium sized grid
(grid 4) and the def2-SVPD basis set.[98] SCF convergence thresholds were set equal
to the HF reference calculations. Singlet vertical excitation energies were evaluated at
the TD-DFT[85–87] level of theory, using the same functional and basis set. Excitation
energies were converged to an Euclidean residual norm of at least 10-5. In all cases 25
excitations were calculated.

The singlet vertical excitations of all dimers and monomers were also calculated
employing the GW-BSE approach as implemented in TURBOMOLE.[61,90] For these
calculations, a PBE0/def2-SVPD reference was used, with a set-up similar to that of
the DFT reference. HOMO and LUMO energies were corrected using the RI-CD-evGW
variant.[84] The imaginary frequency integration points and Padé approximants was
set to 128 (default). The number of excitations to be computed was set to 25.

The DFTB+ program suite[114] (v.19.1) was used to compute the lowest 25 excita-
tion energies using the TD-LC-DFTB method. For these calculations, the mio-0.8

parameter set was employed.[115] All calculation parameters were set to default values.

5.1.3 Frozen density embedding

The FDE[116,117] approach was used to compute up to 5 singlet excitation energies
of the dimers within CBP molecular clusters. These calculations were carried out
considering the dimer at the centre as active subsystem, and the remaining 13
surrounding molecules as the embedding subsystem. The def2-SVP orbital basis[79]

and auxiliary basis sets were used for both subsystems. The densities of the subsystems
were expanded using the monomolecular basis. To obtain the embedding potential,
the PBE[77] exchange-correlation functional was used with a medium-sized atomic
integration grid (size 3). The non-additive kinetic potential was approximated using the
revAPBEk kinetic functional.[117,118] The freeze-and-thaw cycles were carried on until
the electronic energies of all subsystems converged to at least 10-7 Eh, and the densities
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5.1 Computational details

to 10-7. Afterwards, excitation energies were computed using the PNO-ADC(2) method
following the set-up described above. For the excited-state calculations, the def2-SVP
auxiliary basis set was employed.[82,103]

5.1.4 Excitonic coupling

Excitonic coupling refers to the interactions between individual electronically excited
states.[119] Coupling of dimers can be studied using the supermolecular and monomer
approaches. In the supermolecular picture, coupling of a dimer can be obtained from
the excitation energy difference between two interacting states n and m. The monomer
approach requires the local excitation energies ωa and ωb of monomers A and B,
correspondingly, to construct a two-state model Hamiltonian:

H =

∣∣∣∣∣∣ωa J

J ωb

∣∣∣∣∣∣ , (86)

where J are the coupling elements. By diagonalizing the matrix given by Eq. (86) the
excitation energies of the adiabatic dimer states ωn and ωm can be obtained. The
energy difference between the dimer states is then given by

∆ωnm = 2

√
1

4
∆ω2

ab + J2
nm,ab . (87)

Equation (87) can be arranged to evaluate the semiempirical exciton coupling J [115]

Jnm,ab =
1

2

√
∆ω2

nm −∆ω2
ab . (88)

When dimers are symmetric the local excited states on monomers A and B are equal,
thus ∆ωab = 0. The coupling, J , is sometimes approximated through ∆ωnm directly
from the supermolecular calculation, even for cases where ∆ωab 6= 0,

Jnm =
1

2
∆ωnm . (89)

In cases where there mixing with other states is absent, Eq. (88) yields the exact
coupling. If mixing is not significant, Eq. (88) still holds as a good approximation.
However, for cases with considerable state mixing, the two-state model Hamiltonian
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5 CBP dimers: excitonic coupling in different environments

is a poor description in general, hence Eq. (88) will also yield a poor description, e.g.
∆2ωab > ∆2ωnm.

5.2 Gas-phase CBP dimers

For this section, a set of five dimer structures was obtained from the gas-phase
geometry optimization of dimers built using the geometry of the global minimum
R1. The converged dimers, labelled as anti-sandwich (AS), sandwich (S), T-shape
(T) and X-shape (X), are shown in Fig. 22. Information regarding their structural
parameters is given in Tab. 11. Torsion angles and bond distances were measured
according to Section 3.2. Intramonomer bond distances, between fragments 1-2, 2-3,
and 3-4, match those of the local minima monomers. In the dimers, intermonomer
distances were measured between the closest atoms.

5.2.1 Optimized geometries

The monomers in system S have differences in torsion angles 1-2 and 3-4 of about
+10°, while for dihedral 2-3 is around +8°, with respect to the global minimum, R1.
The stacked, symmetric conformation of this dimer translates to almost identical
structural features in both monomers, which have the largest intermonomer distance
in the set, of 3.72 Å. System S is the most stable, and also has the lowest binding
energy, Ebind, of −193.6 kJ/mol.

System AS has torsion angles Ph-Ph close to 36° for both monomers, in agreement
with the local minima geometries. In each monomer of system AS, one of the CBZ-Ph
torsion angles is in agreement with the minima, near ±55°, while the other is slightly
shifted by about ±10°. This change could be caused by the intermolecular interaction
of the carbazoles, which are about 3.57 Å apart. System AS is the least stable in
this set of dimers, with a relative energy, Erel, of 96.2 kJ/mol with respect to dimer S.
This dimer also has the weakest Ebind of -97.4 kJ/mol.

In system T, one monomer maintains the Ph-Ph and one CBZ-Ph torsion angles
close to those of the gas-phase minima, while the carbazole approaching the other
monomer seems to cause a +10° change in the CBZ-Ph angle. The other monomer is
distorted about +10° both in CBZ-Ph and Ph-Ph angles. System T has the smallest
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(a) (b)

(c) (d)

Figure 22: CBP dimers obtained from gas-phase geometry optimizations: a) Anti-
Sandwich, AS, b) Sandwich, S, c) T-shape, T, and d) X-shape, X.

intermonomer separation, of nearly 3.19 Å. It is the second most stable dimer in the
set, with Erel of 63.8 kJ/mol, with respect to system S, and binding energy of −130.9
kJ/mol.

System X has a +8° rotation in one of the CBZ-Ph dihedrals, which correspond to the
groups approximating the other monomer, separated by 3.58 Å. All other structural
parameters are conserved from the monomer minima. System X has a Ebind of −106.13
kJ/mol, and is the third in descending stability with Erel of 87.3 kJ/mol, relative to
system S .

The completely-stacked monomer arrangement in dimer S results in the most stable
dimer, which also has the strongest binding energy. Inter monomer interaction between
parallel, non-coplanar carbazoles, like in dimer AS, results in weaker binding energies
and overall lower stability. Interaction between biphenyl moieties, like in dimer X,
gives a similar result as CBZ-CBZ dimers in terms of stability.
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5 CBP dimers: excitonic coupling in different environments

Table 11: Structural parameters of monomers, I and II forming the optimized gas-
phase dimers AS, S, T, and X. Dihedral angles, Dih., are given in degrees;
distances, r, are given in Å, c.f. Sec. 3.2. Relative energies, Erel, and binding
energies, Ebind, in kJ/mol.

System AS S T X

I Dih. 1-2 -53.7 -46.2 -44.3 -51.1

Dih. 2-3 37.3 42.0 -47.2 33.5

Dih. 3-4 -43.3 -44.8 -48.7 -53

r 1-2 1.41 1.41 1.41 1.41

r 2-3 1.47 1.47 1.47 1.47

II Dih. 1-2 53.9 -44.8 -46.2 -48.7

Dih. 2-3 36.4 42.0 33.0 33.0

Dih. 3-4 67.9 -48.6 -54.1 -52.6

r 1-2 1.41 1.41 1.41 1.41

r 2-3 1.47 1.47 1.48 1.47

Dimer r 3.57 3.72 3.19 3.58

Erel 96.21 0.00 62.77 87.30

Ebind -97.41 -193.62 -130.85 -106.13

5.2.2 Excitation energies

The singlet excitation energies of systems AS, S, T, and X were computed at the
CIS(D), LT-SOS-ADC(2), PNO-ADC(2), GW-BSE, TD-DFT and TD-LC-DFTB
levels, cf. Sec. 5.1. The five lowest excitation energies of these dimers, computed with
each of the above methods, are given in Appendix A.1.1.

In Fig. 23, the PNO-ADC(2) excitation energies are plotted for dimers AS, S, and
T. The lowest excitation energy of system S is at 3.79 eV. Systems AS and T are
slightly blue shifted, at 3.89 and 3.92 eV. The S2 state of system T is almost de-
generate, with a difference of less than 0.01 eV relative to S1. For dimers AS and
S the S2 state is 3.91, and 3.84 eV, respectively. The S3 state is very close to the
S2 of dimer S, at 3.48 eV, whereas the third singlet state is higher for systems AS
and T, at 4.08 and 3.98 eV, respectively. From S3 on, the trend between systems AS
and T becomes inverted, and AS has higher excitation energies respect to system
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(a) PNO-ADC(2) excitation energies (b) Dimer AS

(c) Dimer S (d) Dimer T

Figure 23: (a) PNO-ADC(2) excitation energies of the gas-phase dimers AS, S, and
X. (b-d) Excitation energy difference, ∆ω, with respect to PNO-ADC(2).

T: S4 and S5 are nearly 0.15 and 0.50 eV higher, respectively. S1, S2, and S3 of
system S are about 0.10, 0.07, and 0.15 eV lower in energy than its counterparts.
Dimers S and AS have a difference in S4 and S5, close to 0.40 and 0.60 eV. With
respect to dimer S, S4 and S5 of dimer T are 0.30 to 0.20 eV higher in energy. Exci-
tation energies are overall lower for dimers with stronger binding energies, i.e. S and T.

Method accuracy was assessed by comparison of dimer excitation energies with respect
to PNO-ADC(2). The energy differences of the TD-DFT, GW-BSE, TD-LC-DFTB,
CIS(D), and LT-SOS-ADC(2) are shown in Fig. 23.
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5 CBP dimers: excitonic coupling in different environments

The TD-DFT energies (red) of system AS excitations up to S3 are about 0.20 eV
higher than PNO-ADC(2), S4 is in relative good agreement, and S5 is lower by about
0.25 eV. For system S, energies are overestimated by at least 0.20 eV and up to
0.36 eV with respect to PNO-ADC(2). For dimer T, the first three states are overes-
timated by about 0.25 eV, and the S4 and S5 by about 0.10 eV relative to PNO-ADC(2).

Regarding the results from GW-BSE calculations (green), it can be seen that these
are underestimated at least 0.20 eV for the set of dimers discussed in this section. The
underestimation is slightly less pronounced for systems S and T, whereas for dimer
AS it is at least 0.26 eV.

The TD-LC-DFTB results (yellow) are the closest to those from PNO-ADC(2), partic-
ularly in the two lowest states. In case of dimer AS, S3 is on par with the reference, but
then S4 and S5 become significantly underestimated close to 0.20 and 0.24 eV. For dimer
S, TD-LC-DFTB results are always greater than the reference: S1 is 0.10 eV higher,
but the difference increases with the sate. The S1 of dimer T is very similar to the refer-
ence; S1, S2, and S4 are slightly overestimated, while S3 is 0.08 eV below PNO-ADC(2).

Next, CIS(D) (light blue) is overestimated in all cases at least about 0.20 eV. For
dimer AS, the difference increases with the state in general; however S5 has the best
agreement with PNO-ADC(2) among all compared methods. In case of system S, the
S2 state is slightly lower than the first excitation, but all following states are higher
than PNO-ADC(2) about 0.20-0.4 eV. As for system T, CIS(D) excitation energies
increase up to 0.50 eV for S3, followed by a decrease to about 0.40 eV for S4 and S5,
relative to the reference.

LT-SOS-ADC(2) energies (dark blue) of system AS are overestimated for the S1 and
S2 states, about 0.10 eV, while S4 and S5 are about 0.20 eV below the reference. S3 is
in good agreement with PNO-ADC(2). For the S system, S1 is 0.20 eV above PNO-
ADC(2), S2 is almost the same as TD-LC-DFTB at 0.18 eV above the reference S3, S4
and, S5 are all within the 0.20 eV difference. The LT-SOS-ADC(2) excitation energies
of system T show a slight overestimation of the S1 and S2 states of approximately
0.10 eV respect to the reference method; S3 is lowered about 0.02 eV respect to the
first two states; S4 is at −0.90 eV; and S5 is 0.20 eV higher than PNO-ADC(2).
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5.2 Gas-phase CBP dimers

Table 12: Excitonic couplings, Jnm,ab in eV, of the A, AS, T, and X dimers. Excitation
energies are given in the Appendix (A.1.1).

Dimer TD-DFT GW-BSE TD-LC-
DFTB CIS(D) LT-SOS-

ADC(2)
PNO-
ADC(2)

AS 6 0* 3 0* 17 10

S 70 4 58 0* 5 25

T 0* 40 20 110 7 0*

X 17 0* 10 28 2 - a

* ∆ωnm < ∆ωab in Eq. (88).
a calculation did not converge.

Since the S1 and S2 are the states considered to calculate excitonic couplings according
to Eq. 88, the method comparison indicates that the best alternative to PNO-ADC(2)
is the TD-LC-DFTB method.

5.2.3 Excitonic couplings

Excitonic couplings, Jnm,ab, of dimers AS, S, T, and X were calculated using the
two-state model, Eq. (88). The corresponding results are collected in Tab. 12. The
table shows considerable differences between the methods, even in the qualitative
ordering of the dimers. For example in TD-DFT, TD-LC-DFTB, and PNO-ADC(2),
system S has the highest excitonic coupling in the series. The second in order of
decreasing coupling is dimer X for TD-DFT, whereas for TD-LC-DFTB it is dimer T,
and for PNO-ADC(2) corresponds to system AS. The dimers with the third strongest
coupling are AS for TD-DFT, X for TD-LC-DFTB, and T for PNO-ADC(2). The
weakest coupled are T for TD-DFT, and AS for TD-LC-DFTB. For GW-BSE, dimers
in decreasing order of coupling are T, S, AS, and X. The dimer ordering from CIS(D)
results, also in descending order of coupling, are T, X, AS, and S. The descending
order for LT-SOS-ADC(2) corresponds to AS, T, S, and X. The big differences in
the results from GW-BSE, CIS(D), and LT-SOS-ADC(2) methods could indicate that
they are less adequate to describe excitonic coupling in these systems. There seems to
be good agreement between TD-DFT and PNO-ADC(2) regarding excitonic coupling.
Nonetheless, due to the good overall agreement with the PNO-ADC(2) reference,
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TD-LC-DFTB can be considered a reasonable alternative to study excitonic coupling
in CBP, especially if the use of fast computational methods is required.

5.3 Influence of dimer geometry

In the previous section, a framework of methods to compute excitonic couplings in
CBP was established. Using PNO-ADC(2) as reference, the TD-LC-DFTB method
showed the best agreement in dimer excitation energies. In this section, the importance
of monomer geometries for accurate description of excitonic couplings is assessed. For
this purpose, a set of five dimer geometries, extracted from a CBP slab, is studied
without any additional environment molecules. The dimers from the slab recover
structural effects that the unconstrained, fully-relaxed dimers do not.

The structural parameters of the relaxed DFT geometries, cf. Sec. 5.1.1, and unrelaxed
MD structures are collected in Appendix A.3. Inspection of the geometries shows
differences between the MD unrelaxed and relaxed DFT structures, with the latter
being in better agreement with the bond distances and dihedral angles of the global
minimum. In particular, the CBZ-Ph bond distances are generally underestimated in
the unrelaxed MD geometries, with differences between 0.01-0.09 Å relative to the
global minimum, R1. Also, the Ph-Ph bond is overestimated in the MD geometries,
with variations up to 0.08 Å with respect to R1. In the unrelaxed MD geometries
there is a noticeable bend on the CBZ angle, which is not observed in any of the
local minima or gas-phase dimer structures. This distortion can be seen in Fig. 24,
where the unrelaxed MD (a) and relaxed DFT (b) geometries of one of the monomers
in dimer E are compared. Ideally, the red markers in the perpendicular perspective
(upper) should be aligned, as observed in all fully-relaxed structures. However, in
the unrelaxed MD geometry such angle differs by about 25° from the R1, whereas
the relaxed DFT geometry differs approximately 3°. The lower panel shows a close-
up of the same angle, viewed from a parallel perspective relative to the plane of
the document. Overall the CBZ angle has variations between 3 and 30°, relative to
R1. On the other hand, the relaxed DFT geometries have a carbazole distortion of 1-6°.

The relaxed DFT geometries were compared to the unrelaxed MD structures employing
mean relative differences, MRD, of total energies with respect to R1, cf. Sec. 3.2.
The MRD was calculated by averaging the monomer total energies per dimer. The
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(a)
(b)

Figure 24: Distortion of the CBZ angle of monomer ii extracted from dimer E, mea-
sured at (a) unrelaxed MD and (b) relaxed DFT geometry. Structures are
shown perpendicular (upper) and parallel (lower, close-up) to the plane of
the document. The red markers correspond to the points used to measure
the angle.

results are given in Fig. 25. The plot shows a difference of 200 kJ/mol between the
geometries: the unrelaxed MD geometries average at about 220 kJ/mol while the
relaxed DFT geometries average around 20 kJ/mol above the global minimum, cf.
Tab. 1. The MRD discrepancy between unrelaxed MD and relaxed DFT geometries is
a qualitative measure of the structural differences. In particular, the off-axis distortion
of the carbazole group and the bond distance can have significant effects on the
properties of the molecules. One example is the effect of the shortened Ph-Ph bond
when CBP is relaxed in the lowest excited state, resulting in a red shift of the first
excitation of about 0.4 eV (cf. Sec. 3.4.1 and 4.4). Thus, in the following the influence
of dimer geometry on excitation energies and excitonic couplings is assessed.

5.3.1 Excitation energies

The five lowest PNO-ADC(2) singlet excitations of the relaxed DFT dimers are
displayed in Fig. 26. The excitation energies are collected in Appendix A.1.3. The
first excitation energies of D, E, F, G, and H are 3.64, 3.80, 3.68, 3.69, and 3.70 eV,
respectively. For the first excitation it can be noticed that the energies of systems
F, G, and H, at 3.68, 3.69, and 3.70 eV, respectively, are grouped with differences
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Figure 25: Mean relative differences, MRD, of total energies, of unrelaxed MD and
relaxed DFT geometries, with respect to to the global minimum R1. For
each dimer, monomer values were averaged.

of less than 0.020 eV. Dimer D is slightly lower, at 3.64 eV, while dimer E has the
highest S1, at 3.79 eV. The difference between the S1 states could indicate that the
influence of the confinement on the geometries can lead to shifts of at least 0.10 eV.
Effects from bulk confinement can be further observed by comparing these results
with the excitation energies of dimers AS, S, and T (cf. Fig. 23). Despite the different
monomer arrangements, all S1 excitation energies are 0.10-0.20 eV higher than the F,
G, and H dimers. This suggests that the shift cannot be attributed only to monomer
arrangement, but rather structural effects that are not present in the fully relaxed
geometries.

Starting from the S2 state, the differences in excitation energies become smaller: S2
is located around 3.81±0.02 eV, S3 at 3.83±0.03 eV, S4 at 3.86±0.03 eV, and S5
at 3.88±0.02 eV. For these states, there is also a marked difference with respect to
the fully relaxed dimers, where the S5 is at least 0.10 eV, and up to 0.30 eV higher.
Though investigation of the specific effects causing these shifts is beyond the scope of
this thesis, the results highlight the importance of bulk confinement for the correct
description of CBP dimer excitations.
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Figure 26: PNO-ADC(2) singlet excitation energies of the relaxed DFT geometries.

The PNO-ADC(2) data of the relaxed DFT geometries was employed to assess the
influence of dimer structure on excitation energies. This was achieved by calculating
the mean absolute deviation (MAD) of excitation energies of the unrelaxed MD
geometries, at the TD-LC-DFTB and PNO-ADC(2) levels, and the TD-LC-DFTB
excitations of the relaxed DFT dimers. The results are shown in Fig. 27, where the
excitation energies from unrelaxed MD geometries are displayed as dashed lines, and
the TD-LC-DFTB at relaxed DFT geometries correspond to the blue plot. It can be
seen that a variation of up to 0.11 eV in the PNO-ADC(2) results can occur by using
the unrelaxed MD geometries. The largest difference is observed for the S1 and S2
states. This can lead to larger errors when using the two-state model Hamiltonian to
compute the excitonic couplings, especially if the simplified model, Eq. (89), is used.
The TD-LC-DFTB results from unrelaxed MD geometries have a similar problem for
the lowest state, which gets reduced in S2 to about 0.07 eV. However, the differences
with respect to the reference increase drastically for the higher states up to almost 0.18
eV. In case of the excitations of the relaxed DFT geometries at the TD-LC-DFTB level,
the S1 and S2 states have the smallest MAD, near 0.06, and 0.07 eV, correspondingly.
For the S3 state, and up to the S5, the MAD increases up to 0.26 eV. Still, the
smaller deviation in the lowest two states suggests that the TD-LC-DFTB method,
in combination with relaxed DFT geometries, could be a good option to compute
excitonic couplings within the two-state approximation.
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Figure 27: Mean absolute deviation (MAD) of excitation energies, ω, with respect to
the PNO-ADC(2) results of the relaxed DFT geometries.

5.3.2 Excitonic couplings

In this section, the influence of the geometries on excitonic couplings is assessed.
The couplings were computed from the PNO-ADC(2) and TD-LC-DFTB excitations,
using the two-state model, Eq. (88), and the simplified version for symmetric dimers,
Eq. (89). The results are collected in Tab. 13. Within each method, the geometry is
indicated for the unrelaxed MD and relaxed DFT geometries, for which the couplings
Jnm and Jnm,ab were computed.

A comparison of Jnm can be used as a measure for the accuracy of the simplified
two-state model. For example, the differences in Jnm and Jnm,ab for the same geometry
and method would indicate that some dimers are not symmetrical, thus the influence
local excitations of monomers A and B need to be considered for an accurate descrip-
tion of excitonic couplings. If Jnm results from the same method are compared across
geometries, it works as an estimate of the effects due to structural relaxation. For
example, relaxing dimers D, F, and H, leads to an increase in the coupling, whereas
for dimer E the opposite effect is observed. For equal geometries, comparison of Jnm
across methods gives an overall measure of the accuracy of the simplified two-state
model. In case of unrelaxed MD geometries, TD-LC-DFTB yields couplings up to 75
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Table 13: Excitonic couplings, in meV, computed for the unrelaxed MD,
and relaxed DFT geometries of dimers D-H. Excitation energies
are given in Appendix A.1.2 and A.1.3.

TD-LC-DFTB PNO-ADC(2)

MD DFT MD DFT

Dimer Jnm Jnm,ab Jnm Jnm,ab Jnm Jnm,ab Jnm Jnm,ab

D 50 0* 64 59 19 19 78 75

E 115 52 38 31 42 32 11 0*

F 58 52 76 63 29 9 45 45

G 48 48 57 49 76 75 60 56

H 76 31 50 48 1 0* 56 55
* ∆ωnm < ∆ωab in Eq. (88).

meV higher than the PNO-ADC(2), observed for dimers E and H. For relaxed DFT
geometries, the largest difference is about 30 meV, for dimer F.

We decided to employ Jnm,ab as a qualitative measure of the accuracy of the geometries.
In particular, comparison across methods shows that unrelaxed MD geometries have
poor agreement, where differences can be as high as 43 meV, but not less than 20
meV. In contrast, the TD-LC-DFTB and PNO-ADC(2) couplings from relaxed DFT
geometries have an overall improved agreement, with differences between 30 and 7
meV. Thus, if accurate excitonic couplings are sought, the Jnm,ab approach should
be used with excitation energies computed for relaxed DFT geometries. It is worth
noting that couplings of the relaxed D-H dimers are at least 20 meV higher than those
of the AS, S, and T dimers, cf. Tab. 12, stressing the importance of confinement for
accurate dimer structures.

In the following, a comparison of the excitonic couplings, Jnm,ab, calculated for the
unrelaxed MD and relaxed DFT geometries using the TD-LC-DFTB, PNO-ADC(2),
GW-BSE, and TD-DFT methods is presented. The differences, ∆Jnm,ab , from unre-
laxed MD and relaxed DFT geometries, relative to PNO-ADC(2) at DFT geometries,
are shown in Fig. 28. GW-BSE and TD-DFT couplings are included in Appendix A.2.1.
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(a) Unrelaxed MD geometries

(b) Relaxed DFT geometries

Figure 28: Difference in excitonic couplings, ∆Jnm,ab, with respect to the PNO-ADC(2)
results of relaxed DFT geometries. Dimers were arranged in decreasing
order of ∆Jnm,ab, according to the TD-LC-DFTB results at relaxed DFT
geometries.
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First, the unrelaxed MD geometries, in Fig. 28a, are discussed. The ∆Jnm,ab of PNO-
ADC(2) (yellow) shows large a variation for all systems with respect to the relaxed
geometry, ranging from +30 to −55 meV. In this case, no MD dimer is within ±20
meV from the reference. This difference also suggests a high sensitivity of the method
to the geometries. The ∆Jnm,ab plot from TD-LC-DFTB (red) show that dimers F
and H vary less than ±10 meV from the PNO-ADC(2) couplings with DFT geome-
tries. Dimer H is at −20 meV, while E and F have a ∆Jnm,ab of +50 and −75 meV.
Regarding the GW-BSE results (green) the excitonic coupling of dimer E vanishes,
since ∆ω2

ab > ∆ω2
nm in Eq. (88), hence the match with the reference. Dimer F is

also a close match, within 3 meV. Dimers G and H differ around −55 meV, while
coupling of dimer D is underestimated about 20 meV. The TD-DFT results with the
CAM-B3LYP functional (blue) also yield a vanishing excitonic coupling for systems D
and E, while F, G, and H are around 20 meV lower with respect to the PNO-ADC(2)
couplings at relaxed DFT geometries. System D is almost 80 meV lower, which is the
largest ∆Jnm,ab from the TD-DFT method with respect to the reference.

Regarding the ∆Jnm,ab results from TD-LC-DFTB at relaxed DFT geometries in Fig.
28b, there is an improvement for systems E, at +30 meV, G and H, around −8 meV
and D at −18 meV. Dimer F is shifted up to +20 meV after structure relaxation,
which is about 15 meV higher than the relaxed MD geometry. After optimization, the
∆Jnm,ab results from GW-BSE calculations remain underestimated for dimers F, G,
H, and D, at −20, −38, −41, and −62 meV. Dimer D is about +20 meV higher than
the PNO-ADC(2) reference. The TD-DFT coupling differences of all dimers have a
positive shift due to geometry optimization, with ∆Jnm,ab of dimers E-H at +42, +12,
+11, +10, and +12 meV. The excitonic couplings from the relaxed DFT geometries
are about 40 meV higher than those at unrelaxed MD structures, without considering
D and E which have a vanishing Jnm,ab, due to ∆ω2

ab > ∆ω2
nm. Overall, relaxation of

the geometries reduces the differences in excitonic couplings between PNO-ADC(2)
and TD-LC-DFTB, also improving TD-DFT results to a good extent.

The results obtained in this section indicate that, if excited-state properties are
sought for a given dimer from the bulk, geometries from MD simulations need to
be re-optimized using more accurate methods. This is because there are some struc-
tural features that are crucial for excited-state properties, which are not accurately
described by MD. In particular, the distance of the Ph-Ph bond can induce a shift of
approximately 0.4 eV between the absorption and emission as discussed in Sec. 3.4.1
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and 4.4. Geometry re-optimization is further encouraged by the relative energies, with
respect to R1, of unrelaxed MD and relaxed DFT monomers. These results suggest
that the latter are substantially more stable, thus better suited for high accuracy
methods. However, optimization until full relaxation of the geometries should not
be pursued. Otherwise, important effects from the bulk confinement would be lost,
leading to inaccurate description of properties. We found that a mixed approach would
be adequate, where dimers are sourced from a simulated slab, while DFT constrained
re-optimizations are performed to “fine-tune” the geometries.

With sufficiently accurate geometries, we consider the two-state model, Jnm,ab, as the
best approximation to compute excitonic couplings since it includes contributions
from local excitations on monomers in addition to the two interacting states in the
dimer supermolecule. Though high accuracy methods are advised to compute excitonic
couplings of CBP dimers, good agreement of TD-LC-DFTB with PNO-ADC(2) make
it a reasonable option with lower computational scaling.

5.4 Electronic polarization due to explicit environment

Having assessed the importance of confinement from the bulk on dimer geometries,
the influence of explicit environment molecules on the excited-state properties of CBP
dimers is studied. For this purpose a set of molecular clusters, sampled from a CBP
slab, are used to explore the effects of polarization due to embedding on excitonic
couplings. In accordance with the previous section, the dimers at the centre of the
clusters were optimized, cf. Sec. 5.1.1.

As a first step, the cluster size was investigated to identify the required number of
surrounding molecules. The clusters employed were generated by selecting molecules
within different radii around a reference CBP at the centre. The clusters ranged
from 5 to 25 CBP molecules in total, from which either the central monomer or
dimer was selected as active subsystems. The FDE approach was used to compute
the lowest five singlet excitation energies of the central monomer, or dimer, at the
LT-SOS-ADC(2)-in-DFT level. For comparison, the monomer and dimer were also
treated in absence of environment molecules. The results are shown in Fig. 29a and
29b, where excitation energies are plotted against system size.
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(a) CBP monomer

(b) CBP dimer

Figure 29: LT-SOS-ADC(2)-in-DFT excitation energies, in eV, with respect to increas-
ing number of molecules around a CBP (a) monomer and (b) dimer. The
monomer was surrounded by 5, 9, 14, 18, and 24 molecules; the dimer by
8, 13, 17, and 23 CBPs.
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The graph of the monomer active centre, in the upper panel of Fig. 29, shows no
significant changes in excitation energies due to polarization of the environment
regardless of the system size. The S1 to S5 states remain relatively constant at about
3.80, 3.95, 4.20, 4.41, and 4.65 eV, with variations of less than 0.02 eV. In contrast, the
plot corresponding to the dimer active subsystem, in the lower panel of Fig. 29, shows
a red shift, of about 0.10 eV, in dimer excited state S1 of cluster sizes of 15 molecules
or larger. The S2 state remains practically unchanged, whereas S3 is red shifted about
0.05 eV. The other major shift occurs for the S4 excitation, which is red shifted around
0.10 eV. No further significant shifts are observed up to clusters containing 25 CBP
molecules. This suggests that at least 15 molecules are needed to recover polarization
effects from the environment around a CBP dimer, possibly forming a “first solvation
shell”. Considering these results, and the scaling of the method with system size, the
following section is limited to the study of CBP clusters containing 15 molecules in
total.

5.4.1 Relaxed embedded dimers

Once the minimum size of the embedding system was established, several CBP clusters
were extracted from the slab, cf. Sec. 5.1. The dimers at the centre were optimized
following the procedure described in Section 5.1.1. However, only 3 cluster geometries
reached convergence within the allocated time frame.

The clusters A, B, and C, with relaxed DFT dimer geometries at their centre, are
displayed in Fig. 30. In general, geometry relaxation allowed the Ph-Ph bond to
contract between 0.01 and 0.07 Å, while the CBZ-Ph bonds are increased between 0.03
and 0.08 Å. Relevant bond lengths of the unrelaxed MD and relaxed DFT geometries
are included in Appendix A.3. In the following “dimer” will refer only to the molecules
highlighted in Fig. 30, i.e. without environment CBPs.
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(a) (b)

(c)

Figure 30: Molecular clusters sampled from a CBP slab. Highlighted dimers at the
centre correspond to relaxed DFT geometries. All clusters contain 15
molecules in total.

5.4.2 Excitonic couplings and embedding

To assess the effects of polarization due to explicit environment, the excitonic couplings,
Jnm,ab, of clusters and dimers were computed. Couplings of clusters A, B, and C were
calculated from PNO-ADC(2)-in-DFT excitation energies (cf. Sec. 5.1.3). Couplings
of dimers were also computed at the TD-LC-DFTB and PNO-ADC(2) levels. The
results are displayed in Fig. 31.
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The plot corresponding to the excitonic couplings, Fig. 31a, shows that the PNO-
ADC(2) Jnm,ab of dimers A, B, and C are about 17, 15, and 15 meV, respectively.
On the other hand, TD-LC-DFT couplings are at 28, 39, and 34 meV. As shown
in the previous section, the difference of about 10-20 meV falls within the expected
variation between these methods when relaxed DFT geometries are employed. The
larger differences of in the TD-LC-DFTB couplings of dimers B and C with respect
to the PNO-ADC(2) could be caused by unsolved structural issues due optimization
within a frozen environment.

Since there were no density embedding schemes for TD-LC-DFTB available to us, only
the ADC(2) results were used to assess the polarization effects from the environment.
The difference in excitonic coupling, ∆Jnm,ab, due to embedding is shown in Fig. 31.
The graph reveals that inclusion of the environment can lead to positive and negative
shifts in excitonic coupling, with respect to the isolated dimer. This suggests that
couplings are not only affected by the monomer arrangements due to confinement, but
is also influenced by the structure of the surrounding molecules. Therefore, embedding
schemes should be considered to recover effects from the structure of the environment
relevant for the accurate description of excitonic couplings in CBP. As an outlook,
the amount of sampled clusters could substantially be increased to investigate the
polarization effects on excitonic couplings averaged over a large number of embedded
dimers.
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5.4 Electronic polarization due to explicit environment

(a)

(b)

Figure 31: (a) Excitonic couplings of dimers A-C. (b) Shift in coupling, ∆Jnm,ab,
induced by the environment.
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6 Summary and conclusion

In this thesis, the electronic properties of 4-4’-bis(carbazol-9-yl)biphenyl, CBP, are
investigated using efficient and accurate quantum chemical methods. The aim of the
present work is to identify key aspects for the accurate description of excited-state
properties of CBP, and to help establish a balanced framework of methods to compute
them. The research is divided in three parts: the characterization of ground- and
excited-state properties of CBP as single molecule in the gas-phase, the assessment of
structural effects on excited-state properties in an ensemble picture, and the study of
the environmental influence on excited states.

In the ground-state, single-molecule picture, differences in the relative orientation
of phenyl and carbazole moieties of minima structures seem to have no significant
effect on electronic properties like ionization energies or singlet excitation energies. A
comparative study of vertical absorption spectra from TD-DFT and GW-BSE calcula-
tions confirmed the presence of a charge-transfer type excitation, which is inaccurately
described by TD-DFT. In contrast, the GW-BSE approach showed correct ordering of
excitations, in particular the CT state at about 4.15 eV. Hence the Bethe-Salpeter
equation based o the GW approximation was the method of choice for excited-state
properties of single CBP molecules. The properties of the lowest excited-state structure
of CBP were also investigated. It was found that the phenyl-phenyl bond is contracted
by almost 0.05 Å upon excitation, which seems to be connected with the observed red
shift in the lowest excitation, of about 0.40 eV. Thus, while the relative orientation of
torsion angles in local minima has little influence, the bond distance of the biphenyl
group has a strong effect on the excitation energy.

The influence of torsional conformation of CBP on absorption and emission spectra
was investigated using an ensemble approach based on excited-state calculations of
about 1.6 k molecules. The structures, generated from a dihedral angle scan, simulate
ground- and excited-state geometries of a CBP molecule with free rotating torsion
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6 Summary and conclusion

angles. The Boltzmann averaged absorption spectra showed that charge−transfer
type excitations are considerably affected by changes in the dihedrals. The statistical
analysis indicates that the reduction of the CT peaks with increasing temperature
is caused by a large spread of oscillator strengths rather than on shifts of the exci-
tation energies. In comparison, it was found that increasing the temperature has a
significantly weaker effect in the averaged emission spectra. The data from the free
rotating ground- and excited-state geometries shows that there is a strong influence
due to changes in the Ph-Ph bond, leading also to an emission red shift of about 0.40 eV.

The effects of different environments on the excited-state properties of CBP dimers
were also explored. The investigation of fully-relaxed dimers was used to benchmark
methods for dimer excitation energies and excitonic couplings, where PNO-ADC(2)
was employed as reference. It was shown that, for excitonic couplings calculated
using the two-state model, the best alternative to PNO-ADC(2) is the TD-LC-DFTB
method. The study of dimers sampled from an MD-equilibrated slab demonstrated the
importance of accurate geometries to compute excitonic couplings. Sampled dimers
from simulated thin film structures have geometries that reflect confinement from
neighboring molecules within the bulk. However, these structures still need to be
refined to correct bond distances, and general distortions to bond angles. The use of
relaxed geometries can reduce errors in excitonic couplings by up to 30 meV. Effects
on excitonic coupling of polarization due to environment were investigated using
dimers embedded within CBP molecular clusters. The positive and negative shifts in
excitonic coupling of dimers with similar structures suggest that the structure of the
environment is also important for the correct description of said couplings.

One of the main drawbacks in this study stems from the reduced number of clusters
used in the investigation of couplings in embedded dimers. The sample size used is
not meaningful for a correct picture of the configuration space, which is necessary if
the bulk effects of polarization are to be investigated. Thus, one outlook is to increase
the amount of extracted clusters to investigate averaging of excited-state properties
within the bulk. Furthermore, the study of species that are in a charged-excited state,
as a first step towards the investigation of degradation mechanisms caused by the
interaction of excitons and polarons, remains the subject of future work.
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In conclusion, the results presented in this thesis show that accurate description of
excited states of CBP requires to go beyond the gas-phase, single-molecule approaches
to account for key aspects with strong influence on the properties of the material, like
structural variation, confinement from the bulk, and interaction of molecules with
their surroundings.
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Supplementary Data for Chapter Five
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A.1 Singlet excitation energies of CBP dimers

A.1 Singlet excitation energies of CBP dimers

A.1.1 Excitation energies of gas-phase dimers

Table 14: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the gas-phase optimized CBP systems AS, S, T, and X. Energies
were calculated using the CIS(D) method. Values correspond to gas-phase
dimers and gas-phase monomers, monomerI and monomerII . All energy
values are given in eV.

CIS(D)

S1 S2 S3 S4 S5

AS monomerI 4.293 4.639 4.695 4.698 4.838

AS monomerII 4.403 4.460 4.668 4.787 4.865

AS dimer 4.042 4.124 4.369 4.571 4.600

S monomerI 4.233 4.475 4.639 4.788 5.069

S monomerII 4.177 4.344 4.640 4.936 5.113

S dimer 4.018 4.026 4.119 4.269 4.347

T monomerI 4.173 4.519 4.692 4.756 5.103

T monomerII 4.187 4.451 4.653 4.913 4.968

T dimer 4.201 4.422 4.495 4.599 4.602

X monomerI 4.141 4.145 4.634 5.106 5.113

X monomerII 4.216 4.269 4.654 4.968 5.051

X dimer 4.188 4.244 4.445 4.473 4.553
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Table 15: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the gas-phase optimized CBP systems AS, S, T, and X. Energies
were calculated using the LT-SOS-ADC(2) method. Values correspond to
gas-phase dimers and gas-phase monomers, monomerI and monomerII . All
energy values are given in eV. Oscillator strengths of dmers in parenthesis.

LT-SOS-ADC(2)

S1 S2 S3 S4 S5

AS monomerI 4.088 4.095 4.391 4.512 4.598

AS monomerII 4.086 4.095 4.415 4.517 4.594

AS dimer 3.980(0) 4.015(177) 4.084(97) 4.090(69) 4.331(1882)

S monomerI 4.091 4.101 4.421 4.542 4.574

S monomerII 4.093 4.101 4.422 4.547 4.573

S dimer 3.982(0) 3.993(0) 4.030(199) 4.036(30) 4.180(1)

T monomerI 4.085 4.099 4.483 4.556 4.574

T monomerII 4.088 4.098 4.388 4.491 4.612

T dimer 4.024(41) 4.037(111) 4.061(34) 4.075(81) 4.356(433)

X monomerI 4.084 4.090 4.374 4.493 4.610

X monomerII 4.084 4.093 4.093 4.510 4.614

X dimer 4.047(75) 4.051(76) 4.088(95) 4.096(70) 4.294(503)
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A.1 Singlet excitation energies of CBP dimers

Table 16: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the gas-phase optimized CBP systems AS, S, T, and X. Energies
were calculated using the PNO-ADC(2) method. Values correspond to
gas-phase dimers and gas-phase monomers, monomerI and monomerII . All
energy values are given in eV.

PNO-ADC(2)

S1 S2 S3 S4 S5

AS monomerI 3.969 3.987 4.042 4.731 4.738

AS monomerII 3.976 3.976 4.058 4.503 4.744

AS dimer 3.890 3.910 4.080 4.306 4.553

S monomerI 3.977 3.985 4.079 4.763 4.767

S monomerII 3.979 3.980 4.084 4.484 4.491

S dimer 3.791 3.841 3.848 3.890 3.955

T monomerI 3.972 3.982 4.136 4.498 4.746

T monomerII 3.980 3.989 4.028 4.421 4.743

T dimer 3.918 3.919 3.978 4.177 4.183

X monomerI 3.971 3.975 4.011 4.458 4.522

X monomerII 3.975 3.977 4.017 4.333 4.751

X dimer
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Table 17: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the gas-phase optimized CBP systems AS, S, T, and X. Energies
were calculated using the GW-BSE method. Values correspond to gas-phase
dimers and gas-phase monomers, monomerI and monomerII . All energy
values are given in eV. Oscillator strengths in parentheses, expressed as
multiples of 10-3.

GW -BSE

S1 S2 S3 S4 S5

AS monomerI 3.746(80) 3.758(47) 4.020(1113) 4.212(134) 4.225(150)

AS monomerII 3.753(73) 3.769(49) 4.039(1111) 4.219(136) 4.234(149)

AS dimer 3.594(84) 3.597(37) 3.790(1) 3.829(243) 3.940(2091)

S monomerI 3.747(117) 3.754(21) 4.046(1148) 4.220(100) 4.223(179)

S monomerII 3.748(129) 3.754(8) 4.048(1146) 4.219(109) 4.224(170)

S dimer 3.623(0) 3.631(1) 3.679(145) 3.683(7) 3.787(1)

T monomerI 3.760(85) 3.772(41) 4.108(1102) 4.228(101) 4.234(186)

T monomerII 3.755(80) 3.767(45) 4.008(1094) 4.219(126) 4.225(161)

T dimer 3.632(58) 3.712(64) 3.728(26) 3.842(68) 3.976(524)

X monomerI 3.748(93) 3.756(33) 3.996(1095) 4.217(105) 4.220(178)

X monomerII 3.755(119) 3.759(0) 4.011(1079) 4.217(132) 4.225(153)

X dimer 3.639(76) 3.641(40) 3.679(52) 3.682(39) 3.915(421)
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A.1 Singlet excitation energies of CBP dimers

Table 18: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest sin-
glet states of the gas-phase optimized CBP systems AS, S, T, and X.
Energies were calculated using the CAM-B3LYP density functional. Val-
ues correspond to gas-phase dimers and gas-phase monomers, monomerI
and monomerII . All energy values are given in eV. Oscillator strengths in
parentheses, expressed as multiples of 10-3.

CAM-B3LYP

S1 S2 S3 S4 S5

AS monomerI 4.185(1183) 4.279(7) 4.285(0) 4.604(0) 4.670(15)

AS monomerII 4.199(1173) 4.279(4) 4.286(4) 4.612(1) 4.676(19)

AS dimer 4.142(112) 4.161(2231) 4.233(46) 4.238(55) 4.279(2)

S monomerI 4.211(1174) 4.280(0) 4.299(69) 4.658(0) 4.701(12)

S monomerII 4.213(1170) 4.282(2) 4.300(68) 4.657(0) 4.703(14)

S dimer 4.038(1) 4.179(24) 4.197(0) 4.219(1795) 4.253(7)

T monomerI 4.245(797) 4.277(9) 4.322(395) 4.681(3) 4.711(13)

T monomerII 4.168(1152) 4.281(7) 4.287(3) 4.577(0) 4.647(14)

T dimer 4.161(448) 4.217(509) 4.245(9) 4.257(230) 4.270(15)

X monomerI 4.161(1157) 4.278(4) 4.280(6) 4.572(1) 4.647(14)

X monomerII 4.174(1137) 4.279(2) 4.283(7) 4.571(1) 4.664(20)

X dimer 4.127(570) 4.164(1123) 4.247(15) 4.252(21) 4.287(25)
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Table 19: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the gas-phase optimized CBP systems AS, S, T, and X. Energies
were calculated using LC-TD-DFTB. Values correspond to gas-phase dimers
and gas-phase monomers, monomerI and monomerII . All energy values are
given in eV. Oscillator strengths in parentheses, expressed as multiples of
10-3.

LC-TD-DFTB

S1 S2 S3 S4 S5

AS monomerI 3.950(1039) 4.116(1) 4.248(104) 4.473(4) 4.482(16)

AS monomerII 3.956(1033) 4.118(1) 4.250(109) 4.475(5) 4.483(15)

AS dimer 3.938(1692) 3.947(419) 4.093(6) 4.120(2) 4.239(209)

S monomerI 3.965(1058) 4.119(0) 4.274(166) 4.486(16) 4.489(17)

S monomerII 3.966(1056) 4.120(0) 4.275(167) 4.488(13) 4.488(21)

S dimer 3.889(3) 4.006(1703) 4.078(11) 4.150(0) 4.243(0)

T monomerI 3.991(954) 4.118(4) 4.293(237) 4.481(13) 4.483(22)

T monomerII 3.943(1055) 4.118(1) 4.239(74) 4.444(2) 4.483(18)

T dimer 3.926(364) 3.990(1257) 4.101(27) 4.108(12) 4.232(75)

X monomerI 3.940(1062) 4.117(1) 4.239(76) 4.447(1) 4.483(18)

X monomerII 3.949(1037) 4.119(1) 4.241(78) 4.444(0) 4.484(18)

X dimer 3.924(646) 3.946(1138) 4.098(3) 4.126(3) 4.227(14)
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A.1.2 Excitation energies of sampled dimers: unrelaxed MD geometries

Table 20: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the unrelaxed MD geometries using the PNO-ADC(2) method. Values
correspond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV.

PNO-ADC(2)

S1 S2 S3 S4 S5

D monomerI 3.744 3.856 3.879 4.173 4.228

D monomerII 3.748 3.815 3.911 4.075 4.210

D dimer 3.674 3.713 3.759 3.800 3.817

E monomerI 3.762 3.815 3.934 4.272 4.707

E monomerII 3.894 4.023 4.027 4.134 4.585

E dimer 3.675 3.759 3.866 3.891 4.021

F monomerI 3.909 3.977 3.982 4.196 4.826

F monomerII 3.830 3.885 4.020 4.204 4.666

F dimer 3.708 3.765 3.769 3.818 3.877

G monomerI 3.732 3.885 3.966 4.230 4.750

G monomerII 3.705 3.782 4.013 4.100 4.161

G dimer 3.468 3.621 3.732 3.881 3.881

H monomerI 3.743 3.771 3.974 4.253 4.615

H monomerII 3.825 3.864 3.961 4.158 4.734

H dimer 3.655 3.658 3.732 3.776 4.050
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Table 21: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the unrelaxed MD geometries using the GW-BSE method. Values cor-
respond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV. Oscillator strengths in parentheses, expressed as
multiples of 10-3.

GW -BSE

S1 S2 S3 S4 S5

D monomerI 3.550(25) 3.646(39) 3.893(750) 4.106(179) 4.106(76)

D monomerII 3.567(28) 3.633(8) 3.705(1199) 3.934(14) 4.132(82)

D dimer 3.413(21) 3.513(32) 3.573(23) 3.628(112) 3.644(139)

E monomerI 3.669(60) 3.701(88) 3.768(796) 4.153(51) 4.196(10)

E monomerII 3.811(24) 3.845(43) 4.082(63) 4.270(6) 4.296(110)

E dimer 3.632(70) 3.636(24) 3.667(46) 3.741(404) 3.822(102)

F monomerI 3.697(28) 3.774(22) 3.996(873) 4.159(78) 4.232(97)

F monomerII 3.644(25) 3.730(46) 4.042(800) 4.230(33) 4.251(82)

F dimer 3.556(11) 3.666(6) 3.712(25) 3.718(8) 3.815(112)

G monomerI 3.639(58) 3.696(97) 3.764(766) 4.106(50) 4.193(87)

G monomerII 3.548(81) 3.642(1012) 3.723(180) 3.896(21) 4.057(102)

G dimer 3.509(88) 3.524(6) 3.525(133) 3.613(625) 3.656(178)

H monomerI 3.527(39) 3.724(1) 3.752(1132) 4.059(172) 4.099(6)

H monomerII 3.599(7) 3.665(1) 3.814(1068) 4.017(61) 4.163(63)

H dimer 3.494(9) 3.564(26) 3.613(158) 3.623(30) 3.663(41)
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Table 22: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the unrelaxed MD geometries at the TD-DFT level, using the CAM-
B3LYP functional. Values correspond to dimers and monomers, monomerI
and monomerII . All energy values are given in eV. Oscillator strengths in
parentheses, expressed as multiples of 10-3.

CAM-B3LYP

S1 S2 S3 S4 S5

D monomerI 4.057(426) 4.086(422) 4.162(13) 4.432(59) 4.482(47)

D monomerII 3.907(1095) 4.118(39) 4.216(60) 4.320(13) 4.460(1)

D dimer 3.883(328) 3.990(1166) 4.086(89) 4.112(53) 4.151(1)

E monomerI 3.892(844) 4.113(35) 4.240(36) 4.336(11) 4.501(37)

E monomerII 4.167(379) 4.238(230) 4.322(15) 4.387(7) 4.682(88)

E dimer 3.863(526) 4.084(58) 4.182(182) 4.207(58) 4.235(341)

F monomerI 4.155(681) 4.200(188) 4.323(67) 4.469(2) 4.504(15)

F monomerII 4.129(42) 4.159(316) 4.179(497) 4.419(3) 4.637(4)

F dimer 4.006(80) 4.052(34) 4.112(52) 4.139(420) 4.166(639)

G monomerI 3.904(766) 4.179(42) 4.241(127) 4.401(84) 4.482(5)

G monomerII 3.831(1135) 4.072(47) 4.273(54) 4.345(24) 4.413(1)

G dimer 3.738(71) 3.831(1422) 4.048(32) 4.179(14) 4.224(251)

H monomerI 3.916(998) 4.073(78) 4.267(37) 4.355(16) 4.485(10)

H monomerII 3.996(871) 4.119(166) 4.242(61) 4.392(28) 4.527(57)

H dimer 3.849(187) 3.957(12227) 4.023(87) 4.107(219) 4.199(54)
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Table 23: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the unrelaxed MD geometries at the LC-TD-DFTB level. Values cor-
respond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV. Oscillator strengths in parentheses, expressed as
multiples of 10-3.

LC-TD-DFTB

S1 S2 S3 S4 S5

D monomerI 3.887(709) 3.972(3) 4.033(58) 4.195(15) 4.411(120)

D monomerII 3.780(1109) 4.014(43) 4.140(14) 4.281(6) 4.371(26)

D dimer 3.760(440) 3.859(1136) 3.977(26) 4.018(40) 4.025(17)

E monomerI 3.689(792) 4.042(27) 4.078(4) 4.141(35) 4.452(5)

E monomerII 3.895(577) 4.048(0) 4.097(10) 4.204(39) 4.419(6)

E dimer 3.678(513) 3.909(714) 4.017(9) 4.053(13) 4.081(36)

F monomerI 3.958(748) 4.089(19) 4.171(10) 4.183(19) 4.275(85)

F monomerII 3.907(623) 4.023(34) 4.100(129) 4.200(20) 4.349(17)

F dimer 3.832(114) 3.947(978) 4.023(68) 4.050(7) 4.075(13)

G monomerI 3.664(795) 4.013(83) 4.148(28) 4.200(33) 4.388(18)

G monomerII 3.651(1149) 3.934(16) 4.093(20) 4.191(13) 4.271(17)

G dimer 3.571(116) 3.667(1547) 3.922(25) 3.981(102) 4.098(7)

H monomerI 3.706(1029) 3.929(16) 4.087(7) 4.213(0) 4.371(75)

H monomerII 3.845(953) 4.028(124) 4.154(13) 4.191(13) 4.358(76)

H dimer 3.665(405) 3.816(1285) 3.924(20) 4.029(79) 4.066(10)
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A.1.3 Excitation energies of sampled dimers: relaxed DFT geometries

Table 24: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the relaxed DFT geometries using the PNO-ADC(2) method. Values
correspond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV.

PNO-ADC(2)

S1 S2 S3 S4 S5

D monomerI 3.834 3.913 3.927 4.249 4.673

D monomerII 3.872 3.914 3.925 4.657 4.665

D-dim 3.640 3.795 3.819 3.845 3.882

E monomerI 3.879 3.905 3.950 4.671 4.673

E monomerII 3.910 3.920 3.981 4.675 4.672

E-dim 3.796 3.818 3.833 3.885 3.901

F monomerI 3.913 3.926 4.072 4.485 4.470

F monomerII 3.898 3.911 3.951 4.350 4.668

F-dim 3.688 3.778 3.803 3.836 3.861

G monomerI 3.857 3.897 3.938 4.656 4.664

G monomerII 3.908 3.931 3.983 4.661 4.669

G-dim 3.692 3.811 3.853 3.865 3.879

H monomerI 3.902 3.913 3.938 4.308 4.186

H monomerII 3.909 3.921 3.945 4.659 4.670

H-dim 3.704 3.816 3.838 3.841 3.895

111



A Appendix

Table 25: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the relaxed DFT geometries using the GW-BSE method. Values cor-
respond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV. Oscillator strengths in parentheses, expressed as
multiples of 10-3.

GW -BSE

S1 S2 S3 S4 S5

D monomerI 3.642(207) 3.655(28) 3.810(1150) 4.089(18) 4.107(207)

D monomerII 3.676(135) 3.683(18) 3.875(1070) 4.125(14) 4.132(272)

D-dim 3.594(5) 3.620(173) 3.653(143) 3.681(122) 3.699(3)

E monomerI 3.650(193) 3.658(3) 3.878(1191) 4.109(113) 4.111(174)

E monomerII 3.691(73) 3.708(59) 3.968(1048) 4.138(130) 4.159(159)

E-dim 3.537(62) 3.581(79) 3.633(64) 3.659(27) 3.799(156)

F monomerI 3.732(87) 3.737(14) 4.086(957) 4.180(100) 4.189(194)

F monomerII 3.685(127) 3.690(4) 3.930(1069) 4.140(23) 4.145(2620)

F-dim 3.599(3) 3.645(4) 3.680(175) 3.685(6) 3.738(347)

G monomerI 3.643(159) 3.654(35) 3.862(1067) 4.104(85) 4.113(194)

G monomerII 3.697(74) 3.721(66) 3.966(1073) 4.141(125) 4.165(170)

G-dim 3.578(54) 3.623(60) 3.648(45) 3.703(200) 3.781(215)

H monomerI 3.698(93) 3.711(47) 3.916(1020) 4.143(145) 4.161(119)

H monomerII 3.689(86) 3.699(42) 3.923(1074) 4.140(132) 4.148(150)

H-dim 3.625(43) 3.649(54) 3.680(3) 3.729(185) 3.749(77)
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Table 26: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calculated
for the relaxed DFT geometries at the TD-DFT level, using the CAM-
B3LYP functional. Values correspond to dimers and monomers, monomerI
and monomerII . All energy values are given in eV. Oscillator strengths in
parentheses, expressed as multiples of 10-3.

CAM-B3LYP

S1 S2 S3 S4 S5

D monomerI 3.995(1285) 4.216(3) 4.222(9) 4.496(5) 4.550(4)

D monomerII 4.046(1146) 4.220(16) 4.226(8) 4.496(0) 4.545(2)

D-dim 3.879(369) 4.054(1614) 4.167(1) 4.193(8) 4.203(14)

E monomerI 4.065(1342) 4.210(1) 4.225(6) 4.559(6) 4.606(4)

E monomerII 4.127(1111) 4.225(17) 4.231(4) 4.549(4) 4.606(2)

E-dim 4.015(411) 4.122(1502) 4.152(48) 4.175(35) 4.186(1)

F monomerI 4.216(511) 4.234(78) 4.259(432) 4.576(0) 4.653(193)

F monomerII 4.103(1148) 4.217(2) 4.227(7) 4.541(3) 4.585(4)

F-dim 3.968(467) 4.125(34) 4.169(226) 4.201(10) 4.222(73)

G monomerI 4.043(1213) 4.201(14) 4.214(1) 4.535(4) 4.570(19)

G monomerII 4.123(1148) 4.230(14) 4.240(5) 4.542(2) 4.605(10)

G-dim 3.950(451) 4.104(1279) 4.173(41) 4.191(15) 4.206(52)

H monomerI 4.069(1067) 4.225(11) 4.239(20) 4.446(1) 4.547(12)

H monomerII 4.093(1140) 4.224(9) 4.227(7) 4.527(2) 4.586(10)

H-dim 3.962(177) 4.090(1513) 4.165(100) 4.193(5) 4.213(30)
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Table 27: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of CBP sampled systems D, E, F, G, and H. Energies were calcu-
lated for the relaxed DFT geometries at the LC-TD-DFTB level. Values
correspond to dimers and monomers, monomerI and monomerII . All energy
values are given in eV. Oscillator strengths in parentheses, expressed as
multiples of 10-3.

LC-TD-DFTB

S1 S2 S3 S4 S5

D monomerI 3.797(1174) 4.025(4) 4.150(67) 4.379(41) 4.380(3)

D monomerII 3.847(1074) 4.037(0) 4.154(58) 4.352(1) 4.387(13)

D-dim 3.731(220) 3.859(1691) 4.003(3) 4.048(0) 4.139(8)

E monomerI 3.843(1173) 4.024(1) 4.180(153) 4.376(22) 4.377(22)

E monomerII 3.888(976) 4.040(9) 4.174(116) 4.382(23) 4.383(8)

E-dim 3.813(345) 3.890(1397) 4.009(36) 4.025(0) 4.158(33)

F monomerI 3.963(754) 4.052(5) 4.223(232) 4.392(8) 4.393(28)

F monomerII 3.877(1023) 4.040(5) 4.170(104) 4.388(24) 4.391(11)

F-dim 3.811(363) 3.963(1081) 4.010(2) 4.067(4) 4.158(4)

G monomerI 3.829(1052) 4.018(23) 4.164(119) 4.363(22) 4.379(20)

G monomerII 3.885(999) 4.044(10) 4.174(110) 4.377(11) 4.384(33)

G-dim 3.776(344) 3.889(1279) 4.005(20) 4.038(46) 4.159(55)

H monomerI 3.854(989) 4.038(2) 4.143(35) 4.286(7) 4.390(21)

H monomerII 3.882(1024) 4.039(1) 4.171(103) 4.363(2) 4.389(20)

H-dim 3.785(83) 3.885(1609) 4.008(11) 4.053(1) 4.138(1)
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A.1.4 Excitation energies of molecular clusters

Table 28: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the sampled clusters A, B, and C. Excitations of clusters were
computed with the FDE approach at the CIS(D)-in-DFT level. Energies of
dimers and monomers, monomerI and monomerII , were obtained using the
CIS(D) method. All energies are given in eV.

CIS(D)

S1 S2 S3 S4 S5

A monomerI 4.099 4.107 4.630 5.024 5.035

monomerII 4.099 4.103 4.632 5.031 5.042

dimer 4.070 4.079 4.094 4.154 4.539

cluster 4.042 4.086 4.126 4.342 4.562

B monomerI 4.116 4.125 4.620 5.012 5.012

monomerII 4.128 4.140 4.949 5.002 5.056

dimer 4.079 4.114 4.121 4.129 4.438

cluster 4.107 4.117 4.122 4.408 4.458

C monomerI 4.084 4.105 4.418 5.045 5.049

monomerII 4.083 4.118 4.680 5.039 5.047

dimer 4.098 4.118 4.156 4.335 4.345

cluster 4.073 4.139 4.357 4.370 4.530
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Table 29: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the sampled clusters A, B, and C. Excitations of the molecular
clusters were computed with the FDE approach at the LT-SOS-ADC(2)-in-
DFT level. Energies of dimers and monomers, monomerI and monomerII ,
were obtained using the LT-SOS-ADC(2) method. All energies are given in
eV.

LT-SOS-ADC(2)

S1 S2 S3 S4 S5

A monomerI 4.004 4.019 4.368 4.464 4.507

monomerII 4.013 4.025 4.374 4.457 4.509

dimer 3.971 3.994 4.001 4.014 4.297

cluster 3.941 3.985 3.998 4.001 4.319

B monomerI 4.018 4.027 4.292 4.362 4.570

monomerII 4.007 4.011 4.540 4.566 4.602

dimer 3.987 4.005 4.016 4.025 4.203

cluster 3.984 3.987 4.005 4.017 4.265

C monomerI 4.006 4.028 4.186 4.306 4.597

monomerII 4.014 4.044 4.383 4.475 4.536

dimer 3.964 4.000 4.019 4.031 4.118

cluster 3.943 3.982 4.007 4.038 4.145
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Table 30: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the sampled clusters A, B, and C. Excitations of the molecular
clusters were computed with the FDE approach at the PNO-ADC(2)-in-
DFT level. Energies of dimers and monomers, monomerI and monomerII ,
were obtained using the PNO-ADC(2) method. All energies are given in eV.

PNO-ADC(2)

S1 S2 S3 S4 S5

A monomerI 3.911 3.915 4.005 4.421 4.461

monomerII 3.917 3.926 4.034 4.473 4.473

dimer 3.846 3.880 3.916 3.925 3.987

cluster 3.989 4.063 4.088 4.092 4.291

B monomerI 3.903 3.942 3.943 4.639 4.646

monomerII 3.902 3.913 4.414 4.656 4.666

dimer 3.865 3.895 3.909 3.942 3.954

cluster 4.043 4.088 4.093 4.118 4.836

C monomerI 3.824 3.923 3.933 4.659 4.660

monomerII 3.910 3.936 4.018 4.336 4.656

dimer 3.757 3.848 3.891 3.912 3.919

cluster 3.928 4.015 4.021 4.083 4.113
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Table 31: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest sin-
glet states of the dimers from sampled clusters A, B, and C. Energies of
dimers and monomers, monomerI and monomerII , were obtained using the
PBE0/GW-BSE method. All energies are given in eV. Oscillator strengths
in parentheses, expressed as multiples of 10-3.

GW -BSE

S1 S2 S3 S4 S5

A monomerI 3.694(112) 3.704(25) 3.991(1036) 4.149(72) 4.151(208)

monomerII 3.698(93) 3.709(43) 4.002(1091) 4.133(142) 4.151(149)

dimer 3.652(70) 3.673(54) 3.730(44) 3.769(69) 3.897(205)

B monomerI 3.713(81) 3.740(69) 3.942(951) 4.143(149) 4.173(134)

monomerII 3.831(93) 3.835(5) 4.290(77) 4.296(209) 4.427(294)

dimer 3.599(49) 3.614(62) 3.619(34) 3.696(70) 3.871(572)

C monomerI 3.652(239) 3.665(20) 3.802(1040) 4.087(8) 4.101(263)

monomerII 3.714(69) 3.731(46) 4.008(1018) 4.155(64) 4.159(220)

dimer 3.592(58) 3.603(69) 3.647(10) 3.666(167) 3.736(272)
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Table 32: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the dimers from sampled clusters A, B, and C. Energies of dimers
and monomers, monomerI and monomerII , were obtained using the CAM-
B3LYP functional. All energies are given in eV. Oscillator strengths in
parentheses, expressed as multiples of 10-3.

CAM-B3LYP

S1 S2 S3 S4 S5

A monomerI 4.147(1072) 4.222(25) 4.235(43) 4.563(3) 4.640(27)

monomerII 4.157(1089) 4.231(44) 4.245(51) 4.572(1) 4.642(91)

dimer 4.097(133) 4.161(1319) 4.209(260) 4.220(133) 4.226(47)

B monomerI 4.082(1016) 4.237(3) 4.254(23) 4.404(2) 4.573(17)

monomerII 4.207(128) 4.215(23) 4.587(703) 4.644(80) 4.655(236)

dimer 4.035(723) 4.197(96) 4.209(46) 4.245(21) 4.256(33)

C monomerI 3.983(1233) 4.224(7) 4.234(13) 4.500(0) 4.530(13)

monomerII 4.170(1078) 4.228(12) 4.256(3) 4.563(3) 4.642(48)

dimer 3.941(624) 4.127(1357) 4.183(16) 4.220(5) 4.236(16)
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Table 33: Vertical excitation energies, Sn (n=1, 2, 3, 4, 5), of the five lowest singlet
states of the dimers from sampled clusters A, B, and C. Energies of dimers
and monomers, monomerI and monomerII , were obtained using LC-TD-
DFT. All energies are given in eV. Oscillator strengths in parentheses,
expressed as multiples of 10-3.

LC-TD-DFTB

S1 S2 S3 S4 S5

A monomerI 3.893(935) 4.033(8) 4.180(150) 4.373(24) 4.381(13)

monomerII 3.887(973) 4.036(7) 4.180(149) 4.368(22) 4.379(24)

dimer 3.851(51) 3.907(1605) 4.026(33) 4.039(4) 4.168(8)

B monomerI 3.859(906) 4.043(13) 4.134(12) 4.218(41) 4.375(26)

monomerII 4.004(395) 4.036(4) 4.379(19) 4.381(22) 4.466(559)

dimer 3.841(748) 4.005(379) 4.026(5) 4.046(7) 4.131(0)

C monomerI 3.795(1144) 4.030(18) 4.145(52) 4.368(36) 4.374(9)

monomerII 3.917(914) 4.056(21) 4.184(128) 4.379(25) 4.394(1)

dimer 3.765(530) 3.905(1314) 4.018(13) 4.059(16) 4.139(22)
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(a) Dimer A (b) Dimer B

(c) Dimer C

Figure 32: PNO-ADC(2) singlet vertical excitation energies of dimers A, B, and C.
Plots in green refer to the embedded dimer computed at the PNO-ADC(2)
level within the FDE framework. Dimer plots, in blue, refer to the dimer
in absence of surrounding molecules. Monoi+ii, in pink, correspond to the
combined and re-ordered excitation energies of the monomers, computed
individually in the gas-phase.
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A.2 Excitonic couplings of CBP dimers

A.2.1 Excitonic couplings of sampled dimers: comparison of MD and DFT

geometries

Table 34: Excitonic couplings, in meV, computed for the unrelaxed MD,
and relaxed DFT geometries of dimers D-H. Excitation energies
are given in Appendix A.1.2 and A.1.3.

GW -BSE CAM-B3LYP

MD DFT MD DFT

Dimer Jnm Jnm,ab Jnm Jnm,ab Jnm Jnm,ab Jnm Jnm,ab

D 50 49 13 12 54 * 88 83

E 2 * 22 22 110 * 43 44

F 55 48 23 23 23 19 54 55

G 7 * 23 22 46 28 65 65

H 35 * 12 11 54 36 63 62
* ∆ωnm < ∆ωab in Eq. (88).
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A.2.2 Excitonic couplings of dimers at the centre of CBP clusters with and

without environment

Table 35: PNO-ADC(2) and TD-LC-DFTB excitonic couplings, Jnm,ab in meV of
dimers A, B, and C. PNO-ADC(2) couplings of the clusters are also included.
Corresponding excitation energies are given in Appendix A.1.4.

TD-LC-DFTB PNO-ADC(2)

A dimer 28 17

cluster - 37

B dimer 39 15

cluster - 22

C dimer 34 15

cluster - 8

Table 36: GW-BSE and TD-DFT excitonic couplings computed for dimers A, B and
C. Couplings were calculated with the non-symmetric, Jnm,ab, dimer formula
(Eq. 88). Values are given in meV. Excitation energies are given in Appendix
section A.1.4.

Jnm,ab [meV]

GW-BSE CAM-B3LYP

Cluster A dimer 10 31

Cluster B dimer 0* 52

Cluster C dimer 0* 0*

* ∆Emn < ∆Eab in Eq. 88.
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A.3 Structural parameters of unrelaxed MD and relaxed DFT geometries of sampled
dimers

A.3 Structural parameters of unrelaxed MD and relaxed DFT

geometries of sampled dimers

Table 37: Bond lengths, CBZ-Ph, Ph-Ph, and Ph-CBZ, of unrelaxed MD and relaxed
DFT geometries of the dimers at the centre of clusters A, B, and C sampled
from a CBP slab. Details on the geometry optimization are given in Section
5.1.1. Reference distances obtained from gas-phase geometry optimizations
(Section 3.2): rcbz-ph=rph-cbz=1.41, rph-ph=1.47. Distances are given in Å.

monomerI monomerII

CBZ-Ph Ph-Ph Ph-CBZ CBZ-Ph Ph-Ph Ph-CBZ

dimer A MD 1.36 1.47 1.39 1.37 1.55 1.37

DFT 1.42 1.48 1.42 1.42 1.48 1.42

dimer B MD 1.38 1.51 1.35 1.37 1.50 1.34

DFT 1.43 1.49 1.42 1.42 1.49 1.42

dimer C MD 1.38 1.50 1.37 1.39 1.50 1.35

DFT 1.42 1.48 1.42 1.42 1.48 1.42

125



A Appendix

Ta
bl
e
38

:M
ai
n
to
rs
io
n
an

gl
es
,i
n
de
gr
ee
s,
an

d
bo

nd
di
st
an

ce
s,
in

Å
,o

ft
he

un
re
la
xe
d
M
D

an
d
re
la
xe
d
D
FT

di
m
er

D
-H

.P
ar
am

et
er
s

ar
e
gi
ve
n
fo
r
ea
ch

m
on

om
er
i
an

d
ii
.R

ef
er
en
ce

pa
ra
m
et
er
s
ta
ke
n
fr
om

th
e
gl
ob

al
m
in
im

um
R

1
(c
f.
Se
c.

3.
2)
:r

1-
2=

r
3-
4=

1.
41

Å
,r
1-
2=

1.
47

Å
;D

ih
ed
ra
la

ng
le
s
1-
2=

3-
4=
−
53

.9
,2

-3
=

+
36

.4

m
on

om
er

I
m
on

om
er

II

D
ih

.
an

g.
a

B
on

d
d
is

t.
b

C
B

Z
an

g.
c

D
ih

.
an

g.
a

B
on

d
d
is

t.
b

C
B

Z
an

g.
c

D
im

er
1-
2

2-
3

3-
4

1-
2

2-
3

3-
4

1-
2

3-
4

1-
2

2-
3

3-
4

1-
2

2-
3

3-
4

1-
2

3-
4

D
M
D

-5
0.
3

3.
6

68
.5

1.
39

1.
48

1.
39

17
4.
4

16
1.
3

46
.9

11
.4

-4
8.
3

1.
35

1.
55

1.
35

17
6.
4

17
6.
3

D
F
T

-4
9.
7

24
.3

44
.9

1.
41

1.
46

1.
41

17
3.
2

17
5.
8

52
.1

26
.2

-5
3.
9

1.
42

1.
47

1.
42

17
8.
9

17
7.
3

E
M
D

-8
2.
5

-2
5.
6

-5
7.
0

1.
34

1.
52

1.
37

17
7.
4

15
9.
0

10
6.
1

-3
2.
0

49
.3

1.
36

1.
52

1.
33

16
5.
5

15
8.
2

D
F
T

-3
7.
4

-4
0.
9

-4
1.
0

1.
41

1.
46

1.
41

17
6.
5

17
5.
6

-5
7.
6

13
9.
3

47
.8

1.
42

1.
46

1.
41

17
7.
0

17
7.
9

F
M
D

49
.3

22
.9

79
.8

1.
38

1.
49

1.
39

17
6.
6

16
4.
7

-4
9.
5

-2
9.
0

66
.4

1.
42

1.
55

1.
36

17
5.
1

17
7.
3

D
F
T

52
.2

40
.2

54
.8

1.
42

1.
48

1.
42

17
9.
2

17
3.
6

-4
8.
8

-2
9.
8

57
.5

1.
41

1.
47

1.
41

17
9.
8

17
2.
0

G
M
D

-5
2.
8

-2
5.
0

55
.6

1.
42

1.
46

1.
42

17
7.
0

17
3.
2

53
.7

14
.5

-3
2.
8

1.
33

1.
48

1.
37

16
9.
3

15
1.
9

D
F
T

-3
7.
3

-3
1.
6

48
.7

1.
41

1.
48

1.
41

17
8.
8

17
8.
2

45
.8

32
.8

-5
8.
1

1.
42

1.
48

1.
42

17
3.
2

17
5.
9

H
M
D

-5
9.
3

8.
8

-6
0.
0

1.
37

1.
49

1.
41

17
5.
3

17
3.
0

-5
5.
0

-2
8.
1

-3
9.
8

1.
38

1.
49

1.
33

17
4.
7

17
2.
0

D
F
T

-6
1.
8

21
.1

-5
1.
5

1.
42

1.
47

1.
41

17
8.
8

17
8.
6

-5
0.
9

-3
4.
8

-4
4.
7

1.
42

1.
47

1.
41

17
8.
6

17
3.
1

a
D
ih
ed

ra
la

ng
le

b
B
on

d
di
st
an

ce
c
C
ar
ba

zo
le

an
gl
e

126



Bibliography

[1] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001,
90, 5048–5051.

[2] F. Laquai, Y. S. Park, J. J. Kim, T. Basché, Macromol. Rapid Comm. 2009,
30, 1203–1231.

[3] S. Scholz, D. Kondakov, B. Lüssem, K. Leo, Chem. Rev. 2015, 115, 8449–8503.

[4] Q. Wang, B. Sun, H. Aziz, Adv. Funct. Mater. 2014, 24, 2975–2985.

[5] R. Gedam, N. T. Kalyani, S. Dhoble in Energy Materials, (Eds.: S. Dhoble,
N. Kalyani, B. Vengadaesvaran, A. Kariem Arof), Elsevier, 2021, pp. 3–26.

[6] P. Strohriegl, D. Wagner, P. Schrögel, S. T. Hoffmann, A. Köhler, U. Heine-
meyer, I. Münster in SPIE Proceedings, Vol. 8829, (Eds.: F. So, C. Adachi),
International Society for Optics and Photonics, 2013, p. 882906.

[7] S. A. Bagnich, A. Rudnick, P. Schroegel, P. Strohriegl, A. Köhler, Philos. Trans.
Royal Soc. A 2015, 373, 20140446.

[8] Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 2011, 40, 2943–2970.

[9] H. Yu, Y. Zhang, Y. J. Cho, H. Aziz, ACS Appl. Mater. Interfaces 2017, 9,
14145–14152.

[10] J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen,
J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen,
H. Y. Chen, Chem. Mater. 2009, 21, 2565–2567.

[11] D. Jacquemin, D. Escudero, Chem. Sci. 2017, 8, 7844–7850.

[12] W. Song, J. Y. Lee, T. Kim, Y. Lee, H. Jeong, Adv. Polym. Sci. 2018, 57,
158–164.

[13] D. Y. Kondakov, W. C. Lenhart, W. F. Nichols, J. Appl. Phys. 2007, 101,
024512.

[14] D. Y. Kondakov, T. D. Pawlik, W. F. Nichols, W. C. Lenhart, J. Soc. Inf.
Disp. 2008, 16, 37.

127



Bibliography

[15] Q. Wang, H. Aziz, Adv. Polym. Sci. 2015, 26, 464–470.

[16] Y. Zhang, H. Aziz, ACS Appl. Mater. Interfaces 2017, 9, 636–643.

[17] T. Setzer, P. Friederich, V. Meded, W. Wenzel, C. Lennartz, A. Dreuw,
ChemPhysChem 2018, 19, 2961–2966.

[18] Y. Zhang, H. Aziz, ACS Appl. Mater. Interfaces 2016, 8, 14088–14095.

[19] W. Song, J. Y. Lee, Adv. Opt. Mater. 2017, 5, 1600901.

[20] S. Kim, H. J. Bae, S. Park, W. Kim, J. Kim, J. S. Kim, Y. Jung, S. Sul, S. G.
Ihn, C. Noh, S. Kim, Y. You, Nat. Commun. 2018, 9, 1–11.

[21] S. Inanlou, R. Cortés-Mejía, A. D. Özdemir, S. Höfener, W. Klopper, W.
Wenzel, W. Xie, M. Elstner, Phys. Chem. Chem. Phys. 2022, 24, 4576–4587.

[22] A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009–4037.

[23] P. F. Loos, A. Scemama, D. Jacquemin, J. Phys. Chem. Lett. 2020, 11, 2374–
2383.

[24] M. Huix-Rotllant, N. Ferré, M. Barbatti in Quantum Chemistry and Dynamics
of Excited States, John Wiley & Sons, Ltd, 2020, Chapter 2, pp. 13–46.

[25] A. Dreuw, J. L. Weisman, M. Head-Gordon, J. Chem. Phys. 2003, 119, 2943–
2946.

[26] A. Dreuw, M. Head-Gordon, J. Am. Chem. Soc. 2004, 126, 4007–4016.

[27] T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, F. Wang, J. Mol. Struct.:
THEOCHEM 2009, 914, 106–109.

[28] M. E. Casida, J. Mol. Struct.: THEOCHEM 2009, 914, 3–18.

[29] X. Blase, C. Attaccalite, Appl. Phys. Lett. 2011, 99, 171909.

[30] I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. Lett. 2012, 109, 167801.

[31] X. Gui, C. Holzer, W. Klopper, J. Chem. Theory. Comput. 2018, 14, 2127–
2136.

[32] M. Sparta, F. Neese, Chem Soc Rev 2014, 43, 5032–5041.

[33] S. A. Bagnich, S. Athanasopoulos, A. Rudnick, P. Schroegel, I. Bauer, N. C.
Greenham, P. Strohriegl, A. Köhler, J. Phys. Chem. C 2015, 119, 2380–2387.

[34] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory,
Wiley, 2001.

128



Bibliography

[35] F. Jensen, Introduction to computational chemistry, John Wiley & Sons, 2007,
p. 599.

[36] D. P. Tew, W. Klopper, T. Helgaker, J. Comput. Chem. 2007, 28, 1307–1320.

[37] E. Lewars, Computational Chemistry: Introduction to the Theory and Applica-
tions of Molecular and Quantum Mechanics, Springer Netherlands, 2010.

[38] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover Publications, 1996.

[39] R. J. Bartlett, J. F. Stanton in Reviews in Computational Chemistry, John
Wiley & Sons, Ltd, 1994, Chapter 2, pp. 65–169.

[40] M. Head-Gordon, R. J. Rico, M. Oumi, T. J. Lee, Chem. Phys. Lett. 1994,
219, 21–29.

[41] S. Grimme in Reviews in Computational Chemistry, Vol. 20, Wiley-VCH, 2004,
pp. 153–218.

[42] A. Dreuw, M. Wormit, WIREs Comput. Mol. Sci. 2015, 5, 82–95.

[43] J. Schirmer, Phys. Rev. A 1982, 26, 2395.

[44] A. B. Trofimov, I. L. Krivdina, J. Weller, J. Schirmer, Chem. Phys. 2006, 329,
1–10.

[45] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618–622.

[46] J. Schirmer, A. B. Trofimov, J. Chem. Phys. 2004, 120, 11449.

[47] H. Li, R. Nieman, A. J. Aquino, H. Lischka, S. Tretiak, J. Chem. Theory.
Comput. 2014, 10, 3280–3289.

[48] C. M. Krauter, M. Pernpointner, A. Dreuw, J. Chem. Phys. 2013, 138, 044107.

[49] Y. Jung, R. C. Lochan, A. D. Dutoi, M. Head-Gordon, J. Chem. Phys. 2004,
121, 9793.

[50] N. O. Winter, C. Hättig, J. Chem. Phys. 2011, 134, 184101.

[51] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864–B871.

[52] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133–A1138.

[53] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997–1000.

[54] C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applica-
tions, Oxford University Press, 2012.

[55] S. Hirata, M. Head-Gordon, Chem Phys Lett 1999, 314, 291–299.

129



Bibliography

[56] N. S. Hill, M. L. Coote in Annual Reports in Computational Chemistry, (Ed.:
D. A. Dixon), Annual Reports in Computational Chemistry, Elsevier, 2019,
pp. 203–285.

[57] S. Kümmel, Adv. Energy. Mater. 2017, 7, 1700440.

[58] M. E. Casida, F. Gutierrez, J. Guan, F.-X. Gadea, D. Salahub, J.-P. Daudey,
J. Chem. Phys. 2000, 113, 7062.

[59] M. J. Peach, M. J. Williamson, D. J. Tozer, J Chem Theory Comput 2011, 7,
3578–3585.

[60] M. J. Peach, N. Warner, D. J. Tozer, Mol Phys 2013, 111, 1271–1274.

[61] K. Krause, W. Klopper, J. Comput. Chem. 2017, 38, 383–388.

[62] D. Golze, M. Dvorak, P. Rinke, Front. Chem. 2019, 7, 377.

[63] F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 1998, 61, 237–312.

[64] G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 2002, 74, 601–659.

[65] L. Hedin, Phys. Rev. 1965, 139, A796–A823.

[66] X. Blase, I. Duchemin, D. Jacquemin, P. F. Loos, J. Phys. Chem. Lett. 2020,
11, 7371–7382.

[67] S. Höfener, J. Comput. Chem. 2014, 35, 1716–1724.

[68] S. Höfener, A. S. P. Gomes, L. Visscher, J. Chem. Phys. 2013, 139, 104106.

[69] A. S. P. Gomes, C. R. Jacob, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem.
2012, 108, 222–277.

[70] J. Neugebauer, Phys. Rep. 2010, 489, 1–87.

[71] S. Höfener, A. S. P. Gomes, L. Visscher, J. Chem. Phys. 2012, 136, 044104.

[72] J. Neugebauer, J. Chem. Phys. 2007, 126, 134116.

[73] TURBOMOLE V7.4 2019, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since
2007. http://www.turbomole.com.

130



Bibliography

[74] S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank,
Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg,
B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. M. Khah, S. K. Khani,
T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport,
K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew,
C. V. Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu, J. Chem.
Phys. 2020, 152, 184107.

[75] O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346–354.

[76] M. Von Arnim, R. Ahlrichs, J. Comput. Chem. 1998, 19, 1746–1757.

[77] J. P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 1996, 77, 3865–3868.

[78] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.

[79] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[80] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett.
1995, 242, 652–660.

[81] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997,
97, 119–124.

[82] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[83] P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2004, 384,
103–107.

[84] C. Holzer, W. Klopper, J. Chem. Phys. 2019, 150, 204116.

[85] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454–464.

[86] R. Bauernschmitt, M. Häser, O. Treutler, R. Ahlrichs, Chem. Phys. Lett. 1997,
264, 573–578.

[87] F. Furche, D. Rappoport in Computational Photochemistry, (Ed.: M. Olivucci),
Elsevier Science, Oxford, 2005, Chapter 3, pp. 93–128.

[88] F. Furche, R. Ahlrichs, J. Chem. Phys. 2002, 117, 7433–7447.

[89] D. Rappoport, F. Furche, J. Chem. Phys. 2005, 122, 064105.

[90] M. J. Van Setten, F. Weigend, F. Evers, J. Chem. Theory. Comput. 2013, 9,
232–246.

[91] S. T. Hoffmann, P. Schrögel, M. Rothmann, R. Q. Albuquerque, P. Strohriegl,
A. Köhler, J. Phys. Chem. B 2011, 115, 414–421.

131



Bibliography

[92] M. Kühn, F. Weigend, J. Chem. Phys. 2014, 141, DOI 10.1063/1.4902013.

[93] I. G. Hill, A. Kahn, J. Appl. Phys. 1998, 84, 5583–5586.

[94] Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, Z. H. Lu, J.
Appl. Phys. 2010, 108, 024510.

[95] E. Louis, E. San-Fabián, M. A. Díaz-García, G. Chiappe, J. A. Vergés, J. Phys.
Chem. Lett. 2017, 8, 2445–2449.

[96] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.

[97] J. D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.

[98] D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.

[99] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136–9148.

[100] E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2017, 147, 034112.

[101] E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth,
S. Grimme, J. Chem. Phys. 2019, 150, 154122.

[102] M. Häser, R. Ahlrichs, J Comput Chem 1989, 10, 104–111.

[103] F. Weigend, J Comput Chem 2008, 29, 167–175.

[104] P. Plessow, F. Weigend, J Comput Chem 2012, 33, 810–816.

[105] C. Holzer, J. Chem. Phys. 2020, 153, DOI 10.1063/5.0022755.

[106] C. Hättig, Adv Quantum Chem 2005, 50, 37–60.

[107] C. Hättig, F. Weigend, J. Chem. Phys. 2000, 113, 5154.

[108] C. Hättig, A. Hellweg, A. Köhn, Phys Chem Chem Phys 2006, 8, 1159–1169.

[109] A. Hellweg, D. Rappoport, Phys Chem Chem Phys 2015, 17, 1010–1017.

[110] N. O. Winter, C. Hättig, Chem Phys 2012, 401, 217–227.

[111] G. Schmitz, B. Helmich, C. Hättig, Mol Phys 2013, 111, 2463–2476.

[112] B. Helmich, C. Hättig, J. Chem. Phys. 2013, 139, 084114.

[113] C. Hättig, D. P. Tew, B. Helmich, J. Chem. Phys. 2012, 136, 204105.

132

http://dx.doi.org/10.1063/1.4902013
http://dx.doi.org/10.1063/5.0022755


Bibliography

[114] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C.
Cevallos, M. Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner,
T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk,
T. Kubar, I. S. Lee, V. Lutsker, R. J. Maurr, S. K. Min, I. Mitchell, C. Negre,
T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P.
Persson, J. Rezác, C. G. Sánchez, M. Sternberg, Stöhr, F. Stuckenberg, A.
Tkatchenko, V. W.-z. Yu, T. Frauenheim, J. Chem. Phys. 2020, 152, 124101.

[115] N. Schieschke, B. M. Bold, P. M. Dohmen, D. Wehl, M. Hoffmann, A. Dreuw,
M. Elstner, S. Höfener, J. Comput. Chem. 2021, DOI 10.1002/jcc.26552.

[116] S. Laricchia, E. Fabiano, F. D. Sala, J. Chem. Phys. 2010, 133, 164111.

[117] S. Laricchia, E. Fabiano, L. A. Constantin, F. D. Sala, J Chem Theory Comput
2011, 7, 2439–2451.

[118] L. A. Constantin, E. Fabiano, S. Laricchia, F. D. Sala, Phys Rev Lett 2011,
106, 186406.

[119] K. A. Kistler, F. C. Spano, S. Matsika, J. Phys. Chem. B 2013, 117, 2032–
2044.

133

http://dx.doi.org/10.1002/jcc.26552




Acronyms and Abbreviations

GW-BSE Bethe-Salpeter equation based on the GW approximation to Green’s single-
particle function

J Excitonic coupling

ADC(2) Algebraic-diagrammatic construction to second order

BPh Biphenyl

BSE Bethe-Salpeter equation

CBP 4,4’-bis(carbazol-9-yl)biphenyl

CBZ Carbazole

CIS(D) Configuration interaction with singles and perturbative doubles

CT Charge transfer

DFT Density Functional Theory

evGW Eigenvalue-only self consistent GW method

FDE Frozen Density Embedding

HF Hartree-Fock theory

HOMO Highest Occupied Molecular Orbital

IE Ionization energy

LT-SOS Laplace-transformed scaled opposite-spin

LUMO Lowest Occupied Molecular Orbital

MAD Mean absolute deviation

MD Molecuar dynamics

MRD Mean relative difference

OLED Organic light emitting diode

Ph Phenyl

PhOLED Phosphorescent organic light emitting diode
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PNO-ADC2 Pair natural orbital based ADC(2)

QP Quasiparticle

TD-DFT Time-Dependent Density Functional Theory

TD-LC-DFTB Time-Dependent Long-range Corrected Density Functional based Tight
Binding
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