

Experimental plans to validate the He-II based payload cooling

Xhesika Koroveshi, Piero Rapagnani Valentina Mangano, Steffen Grohmann

28-30 September 2022 GWD Vac'22 (Elba)

He-II based payload cooling for ET-LF

Cooling via He-II suspension tube

He supply capillaries:

L. Busch (KIT, 2021)

- Cryogenic supply box → Payload (i.e. suspension capillary) connection
- Length ~ 10-20 m → cryogenic supply box away from cryostat tower to reduce vibration input

X. Koroveshi (2022) - Feasibility of He-II suspensions based on thermal noise modelling

Status of He-II suspension concept

Experimental validation of concept

Experimental setup requirements

Mechanical losses in suspensions (theoretical):

$$\Phi_{\text{fiber}}(\omega) = \Phi_{\text{bulk}} + \Phi_{\text{thermoelastic}}(\omega) + \Phi_{\text{surface}} + (\Phi_{\text{clamping}})$$

- Quality factor (Q) measurements define the actual losses
 - Ring-down method as measurement concept
 - Identification of the specific contributions to the total measured Q_{tot} is non-trivial:
 - Sensitive measurements → Step-by-step complexity increase of measurements

Possible stages of experimental validation

- Q-Measurements of suspension:
 - I. As a simple suspension rod (room-temperature & cryogenic)
 - II. As an empty suspension tube (room-temperature & cryogenic)
 - III. As a He-II-filled suspension tube

Q-Measurements stages

I. Rod

- Comparison with literature data
- Various materials
- Influence of *T* and tension on *Q*

II. Empty tube

- Surface effects crucial (machining of tube)
- Identification of tube's modes
- Influence of T and tension on modes & Q

III. He-II-filled tube

Open questions:

- $\dot{M}_{\rm He-II}$ = 0, but investigation whether noise transmission in He-II as in metals/crystals?
- He-II effect on Q, extra/no dissipation?
- Influence of supply capillary ↔ suspension tube interface on Q?

Q-Measurement experimental setup

Q-Measurement Cryostat

Properties:

- Mechanical design
 - Same cryostat (test stand) for Stages I-III
 - At RT
 - Cryogenic
 - Bottom-to-top design to facilitate He-II experiments (Stage III)

Q-Measurement Cryostat

Instruments

- Excitation/sensing :
 - Combination: PZCs (contact) and contactless concept
 - Excitation of the flexural mode of the tube

Q-Measurement experiments - Stage I

Karlsruhe Institute of Technology

- Bulk suspension tube (RT)
 - Measurements without and with load (300-400 kg)
 - o Determination of load's effect on dissipation

Bulk suspension tube (cryogenic)

Measurements without and with load

Q-Measurement experiments - Stage II

- Hollow suspension tube (RT)
 - Determination of hollow tube's effect
 - Measurements without/with load

- Hollow suspension tube (cryogenic)
 - o Determination of temperature's effect
 - Measurements without/with load

Q-Measurement experiments - Stage III

- He-II-filled suspension tube
 - o Effect of He-II and of the clamping of He-II supply path

He-II-filled suspension tube

Load end temperature and effect of tension on dissipation

Additional vibration measurements

Prospects

Cryogenic payload experiments

Cryogenic payload experiments for investigating:

- Thermal behaviour (instationary & stationary)
- Cooling Interface to He infrastructure
- Thermal noise behaviour
- System control concepts (actuation+sensing)

Conclusions

- 1) Q-Measurements of suspension
 - I. As a simple suspension rod (room-temperature & cryogenic)
 - II. As an empty suspension tube (room-temperature & cryogenic)
 - III. As a He-II-filled suspension tube
- 2) Cryogenic payload experiments for investigating:
 - Thermal behaviour (instationary & stationary)
 - Cooling Interface to He infrastructure
 - Thermal noise behaviour
 - System control concepts (actuation+sensing)
 - **.** . . .

Thank you for your attention

 ∇

xhesika.koroveshi@kit.edu