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With all the great advances in phase-field modelling combined with continuum mechanics, a detailed accuracy
and convergence analysis about the influence of the diffuse interface upon the dynamic mechanical energy is
still missing. Based on the previous work, i.e. deriving the homogenization scheme on the basis of balance
conditions and embedding the high-order discontinuous Galerkin method into the phase field method, the
influence of the diffuse interface, especially the multiphase/multigrain interface, on the dynamic mechanical

energy is studied by considering the factors, such as the wave types, the material properties, the phase/grain
size, the interface width and the normal vector formula. The numerical results are compared with the sharp-
interface results to show the accuracy and stability, and with the linear homogenization method to demonstrate
the advantages of the proposed scheme. The research work in this paper will build the foundation for the future
simulation of rapid solid phase transformation.

1. Introduction

A large number of natural and manufactured solids are polycrys
talline, e.g. ice, metals, alloys, ceramics, composites, rocks and so on.
The polycrystalline materials are composed of numbers of mesoscopic
phases/grains, which are physically separated by boundaries, i.e. inter
faces. In general, phases/grains in polycrystalline materials can consist
of different components, orientations and different geometrical shapes
and sizes, which in its entirety influences the macroscopic material
properties. Moreover, the nucleation and growth of phases/grains are
driven by various factors, such as the entropy density, the chemical po
tential, the mechanical energy and others. This means that the macro
scopic properties of polycrystalline material are significantly influenced
by the aforementioned factors, through the process of microstructural
evolution. Therefore, it is desirable to develop numerical methods that
are able to comprehensively investigate the individual microstructural
quantities within a multiscale modelling framework, i.e. the mesoscopic
microstructural evolution and the macroscopic material properties.

In order to study the process of microstructural evolution and its
influence on the macroscopic material properties, phase field modelling
has been rapidly developed into a robust numerical tool over the last
decades, based on the fundamental work of Ginzburg and Landau
(1950), Cahn and Hilliard (1958) and Allen and Cahn (1972). By
diffusing the sharp interface with order parameters, the phase field

method saves the large amount of effort required to trace the interface.
By introducing a vector valued order parameter ¢, with multiple com
ponents ¢, representing different phases/grains, the free energy density
varies smoothly across the interface. As a result, the sharp interface
of infinitesimal thickness is approximated by a diffuse interface of
finite thickness. Therefore, the free boundary problem is addressed by
solving the evolution equations of the order parameters, deriving the
driving force according to the bulk energy within the phases/grains
(Moelans et al.,, 2008; Wang and Li, 2010; Jacqmin, 1999). Mean
while, the motion of the interface is implicitly expressed through the
evolution of order parameters. During the evolution process of the
order parameters, the conservation laws for physical fields such as
energy, momentum and mass are observed. The phase field method has
been combined with various physical fields and has been successfully
applied in the simulation of various microstructural evolution pro
cesses, such as solidification (Nestler et al., 2005; Nestler and Wheeler,
2002; Karma and Rappel, 1998; Folch and Plapp, 2005), precipitation
and dissolution (Chen et al., 2004; Xu and Meakin, 2008), austenitic
decomposition (Militzer, 2011; Yeddu et al., 2012), martensitic trans
formation (Xi and Su, 2021; Mamivand et al., 2013; Artemev et al.,
2000), electric polarization (Zhang and Su, 2022), as well as crack
initiation and propagation (Ambati et al., 2015; Spatschek et al., 2006;
Wilson and Landis, 2016; Henry, 2019).
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Table 1

Nomenclature.
a(p, V) Gradient energy density M Local effective density matrix
a; (1) Time decomposition of u; (x,1) M,/M, Transformation matrix
by (1) Time decomposition of s, (x,1) M, Mobility for « — g interface
c* Coefficient matrix p; (x) Space decomposition of u,/s;
D Matrix calculated by G* and H* (0] Transformation matrix
E' Transmitted energy Ry Stiffness ratio
E" Reflected energy R, Density ratio
F Free energy R, Transmission ratio
fq (P, e,0) Dynamic mechanical energy density s5; (x,1) Source term to u; (x,1)
fe (. €) Elastic strain energy density TS Transformation matrix
[y ($,v) Kinetic energy density t Time
11 (5,.2) Legendre transform of f7 (") u Stress and velocity vector
fi(x,1) Mechanical wave source v Material particle velocity
G* Matrix for the eigenvectors of C* v Local material particle velocity
H* Matrix for the eigenvalues of C* w; (x,1) Displacement
h, (¢) Interpolation function x Global Cartesian coordinate
K Effective stiffness matrix Yap Surface energy
K Stiffness matrix £ Elastic strain tensor
K Local stiffness matrix 3 Local elastic strain tensor
£ Stiffness matrix in f; (5,.%,) € Interface width parameter
K Local effective stiffness matrix (&1, ¢} Local base unit vectors
L Interface width c Stress tensor
M Effective density matrix G Local stress tensor
M Density matrix ¢ N-tuples order parameters
M Local density matrix o (¢) Potential energy density

To solve the evolution equations of order parameters, where the
variational derivative of the density of free energy with respect to order
parameters and their gradients acts as the driving force, the homoge
nization approach is most commonly used in the phase field commu
nity. To obtain a correct profile at the diffuse interface, the homoge
nization methods should ensure that the energy density at the diffuse
interface varies smoothly and obeys the conservation law (Schneider
et al., 2018; Durga et al., 2013).

For the homogenization of mechanical energy density, the
Voigt/Taylor (VT) model (Voigt, 1889) assumes that the strain val
ues are constants across the diffuse interface. The Reuss/Sachs (RS)
model (Reuf3, 1929) was established based on the assumption that the
stress values are invariable across the diffuse interface. By making an
analogy between the elastic stress and the generalized chemical poten
tial, the postulate and formula in Steinbach and Apel (2006) resemble
the RS model. The Khachaturyan model (Khachaturian, 1983) adopted
the VT model as the homogenization scheme for the stiffness matrix,
while the RS model adopted the model for the eigenstrain. Ammar et al.
(2009) have made a detailed comparison between these models, in
terms of establishment, derivation and application. Mosler et al. (2014)
proposed a new homogenization approach based on the incremental
energy minimization, where the energy profile is bounded by the VT
and the RS models. Kiefer et al. (2017) compared the convergence rate
of different homogenization models, including VT, RS and rank one
convexification approaches, using numerical examples. By analysing
the interfacial excess contribution to the energy, Durga et al. (2013)
applied the VT model in the direction parallel to the interface, while
applied the Steinbach/Apel model (Steinbach and Apel, 2006) in the
direction normal to the interface. Based on the similar assumptions
for stress and strain components, Schneider et al. (2015) proposed a
sophisticated homogenization model according to the force balance
and Hadamard jump conditions, which is free from the problem of
interfacial excess energy (Schneider et al., 2018). This homogenization
scheme has been successfully applied in elastic deformation (Schneider
et al., 2015), elasto plastic modelling (Herrmann et al., 2018), finite de
formation (Schneider et al., 2017) and Chemo elastic simulation (Amos
et al., 2018). Similarly, Liu et al. (2021) derived the homogenization
scheme for the mechanical wave on the basis of the equilibrium condi
tions at the sharp interface, and the high order discontinuous Galerkin
method (Hu et al., 1999; Wilcox et al., 2010; Kiser and Dumbser, 2006;
Kronbichler et al., 2016) was embedded into the phase field method to
improve the numerical accuracy.

Fantoni et al. (2020), Fantoni and Bacigalupo (2020) used the
asymptotic homogenization scheme to respectively study the damage
propagation and wave propagation in periodic microstructured materi
als. By coupling the finite element method with the modelling of the
multiphase field, Nakahata et al. (2016) implemented the ultrasonic
simulation for the non destructive testing of polycrystalline structures.
Li et al. (2019) investigated the dynamic interaction between the
defects and the longitudinal sound wave with the phase field model.
However, a detailed accuracy and convergence study about the in
fluence of the homogenization scheme upon the dynamic mechanical
energy has been rarely studied and reported so far, especially the
homogenization scheme at the multiphase/multigrain interface. There
fore, based on the previous work by Liu et al. (2021), a detailed
parameter study of the dynamic mechanical energy will be carried out
in this paper.

The remaining part of this paper is organized as follows. Based
on the phase field method, the parametrization of phases/grains in
the multiphase/multigrain system will be introduced in Section 2. The
homogenization scheme for mechanical wave is briefly reviewed in
Section 3. Section 4 provides the methods for deriving the vector
normal to the diffuse interface in a multiphase/multigrain system,
which is ambiguous but essential to the homogenization scheme in
Section 3. The definitions for mechanical wave with a strong and weak
discontinuity are introduced in Section 5, and the governing equations
for mechanical wave propagation, as well as the high order numerical
approximation with the Riemann solver, are presented in Section 6.
With the benchmark examples, Section 7 analyses the dynamic mechan
ical energy, considering the aspects of the wave types, the material
properties, the phase/grain size, the interface width and the normal
vector formula, through which numerical accuracy and stability are
maintained. The numerical results are also compared with those from
the linear homogenization method, i.e. the VT model, to demonstrate
the advantages of the proposed scheme. The conclusions are given in
Section 8.

2. Parametrization

For the symbols and equations in this paper, the following con
ventions apply: (1) the scalar variables are written as regular upper
case/lowercase letters, (2) the bold lowercase letters represent vectors,
(3) the bold uppercase letters denote matrices and (4) for the lowercase
Latin subscripts/superscripts in the equations, the index notation and



the Einstein summation convention apply, if no further instructions are
given. The nomenclature is provided in Table 1.

In a multiphase/multigrain model with N phases/grains, the total
free energy F is calculated as (Nestler et al., 2005; Schneider et al.,
2018):

F= /V (ea(d), Vo) + éw(¢)+fd (¢,e,v)+f(,,,)) av. )

With ¢, defined as the volume fraction of ordering state (phase/grain)
a and V as the gradient operator, the N tuplesread ¢ = (¢, ¢, ..., dy)
and V¢ = (Vép;. Vb, ..., Vo ). Supposing that y,,; denotes the surface
energy of the interface between two neighbouring phases/grains « and
p, the gradient energy density a (¢, V¢) is expressed as:

N
a@ V=Y 74 : @

a,f>a

¢av¢ﬂ - ¢/}V¢a

where | - | provides the length of a vector or the absolute value of a
scalar. The potential energy density w(¢) can take the form of either
obstacle or well type (Nestler et al., 2005):

N N
16
O @) == D Tapbuby+ D, Yapsbudbydss (3a)
T ap>a a.p>a,6>p
N N
e D=9 D rapbaby+ D, Vapetady b (3b)
a,f>a a.p>a,6>p

The second term on the right hand side of Eq. (3) can efficiently prevent
the appearance of the artificial third phase in the two phase region.
With £ and v respectively representing the infinitesimal elastic strain
tensor in the Voigt notation and the material particle velocity vector,
f4 (¢, €,v) denotes the dynamic mechanical energy density. f(...) in
Eq. (1) represents the additional energy density contributed by other
physical fields.

The order parameter ¢, (x,1) (@ =1,2,..., N) physically represents
the volume fraction of the phase/grain a at location x = {x;,x,,x3}
and time ¢, which therefore satisfies the following constraint:

N
Yo xn=1  0<¢,xn<l )

Thereby, the multiphase/multigrain model is parametrized by order pa
rameter ¢,, and Fig. 1 is illustrated as an exemplification. Specifically,
¢, = 1 within the regions containing a single phase/grain a, while ¢, =
0 in the domains comprised of a single phase/grain f (f # «). Between
the single phase/grain regions, there are finite thickness interfaces,
across which the order parameters vary continuously and smoothly and
satisfy Eq. (4) in the meantime, as illustrated on the right side in Fig. 1.

The parameter e in Eq. (1) is related to the width of diffuse interface.
According to the study by Selzer et al. (2010), the interface thickness is
in direct proportion to the parameter ¢ for the pure substances. But in
the binary system, the phase diagram plays an important role in deter
mining the interface thickness. When the difference of concentrations
between different phases increases, the influence of parameter ¢ on the
interface width decreases.

In this paper, the entire simulation was implemented with the mul
tifunctional numerical analysis software PACE3D' (Hotzer et al., 2018),
where the whole simulated domain is discretized into numbers of cubic
cells, by an equidistant grid. In the equilibrium state in PACE3D, the
relationship between the interface width L and the parameter ¢ can be
estimated as:

L~25-¢-Ax,, %)

where Ax; = Ax, = Ax; is the side length of each cell.

1 PACE3D (Parallel Algorithms for Crystal Evolution in 3D) is developed by
the research group of Prof. Dr. rer. nat. Britta Nestler, at the Karlsruhe Institute
of Technology and the Karlsruhe University of Applied Sciences.

From the viewpoint of the sharp interface approximation, the in
terface thickness should be “sufficiently small” to approximate the
sharp interface model with the phase field solution. However, from the
viewpoint of numerical stability and applicability, the numerical results
should not depend, or decrease their dependence, on the interface
thickness. In our previous work (Liu et al., 2021), the influence of the
interface width is studied from the aspect of the ratio between the
minimum wavelength and the maximum interface width, in a 1D case
with two different phases. In this paper, the influence of the interface
thickness on the numerical results is analysed in Section 7.3, through
a 2D example with a multiphase/multigrain interface.

By parametrizing the whole domain with order parameters, the for
mula for the dynamic mechanical energy density f, (¢.¢€,v) in Eq. (1)
is expressed as:

N
fa(@ev)=Y FEE" ) hy ($), (6

where [ (¢*,v") is the dynamic mechanical energy density for the
phase/grain «, and the interpolation function h, (¢) is calculated as:

ha ($a)

~ = .
Zy by (dp)
Here, the function 7, (¢,) can take one of the following three different
formats:

hy (@) = )]

¢a
he ($a) =192 (3204 ®
®3 (692 — 15, + 10) .
From Egs. (7) and (8), it is observed that the interpolation function
h, (¢p) satisfies Z;V he(p) = 1 (0<h, (@) < 1), similar to the order
parameter ¢,,.
With the volume fraction ¢, the free boundary problem during the

process of microstructural evolution is therefore solved by simulating
the evolution of order parameters Steinbach and Pezzolla (1999):

N

: 1 oF oF

b (x,)==— Mf,,;(———), ©)
= 0ba Oy

where ¢, = 0d¢,/0t represents the first order partial derivative of

the order parameter ¢,, with respect to time t. M, is the individual
mobility for each a — # interface. With V- as the divergence operator,
the variation of the total energy 6F /¢, is expressed as:

5F (a 9

55 : )(ea<¢,V¢>+ So@)+ Sy BE)+ ().

ob, OV,
(10)

3. Homogenization scheme for mechanical wave

During the process of mechanical wave propagation, the corre
sponding energy density f,(¢,e,v) can be divided into two parts,
i.e. the elastic strain energy density f, (¢,€) and the kinetic energy
density f,(¢,v). As a result, f, (¢,€) and f,(¢,v) are homogenized
separately:

I @0 =3 ra@€)h, $)
fo@v) =3 re@h, ().

Therefore, the effective stiffness matrix K and the effective density
matrix M are derived to continuously and smoothly interpolate the
elastic strain energy density f, (¢,€) and the kinetic energy density
f» (@, v), respectively. For the sake of completeness, the derivation
procedure for K and M will be briefly reviewed in this section. For
more details, please refer to Liu et al. (2021).

1D



Fig. 1. Parametrization in a multiphase/multigrain system.

3.1. Effective stiffness matrix

Supposing that the base unit vectors {£,7.¢(} = {(51,52,53)T,
(’I1J12JI3)T’ ((1,6_,‘2,§3)T} construct the local Cartesian coordinate sys
tem, with & as the vector normal to the interface and the superscript '
as the transpose operator, the local stress tensor in the Voigt notation
5= (0'55,0',7,,, OrerOpes Ot ogn)T and the local strain tensor in the Voigt
notation & = (£gz, £, €77 & € ef,,)T can be respectively divided into
the normal components &, = (agg,ogg,ogn)T, E# = (egg,egc,egn)T aan
the tangential components &, = (6,,.6::.0,:) > & = (€ Ere:69c) -
According to the requirements of the force balance and the material
continuity, the normal components of the stress tensor &, and the
tangential components of the strain tensor g, are continuous across the
interface (Schneider et al., 2015; Liu et al., 2021).

It is straightforward to obtain the relationship between the lo
cal Voigt notation stress/strain tensor and the global Voigt notation
stress/strain tensor as (E,,,&,)T = Mo and (Z,,,E,)T = M_¢, where the
transformation matrices M, and M, are defined in Appendix. With
M;! = M| and ¢ = Ke, it is derived for a single phase/grain that:

- S ~12\ e
<‘i"> -mxmz-kz=(%, X, (8> , (12)
o, ’ K K &

where K is the 6 x 6 stiffness matrix, I~(U (i,j=1,2) is the 3 x 3
submatrix in K.
According to Egs. (1), (10) and (11), the variational derivative of

the elastic strain energy is expressed as:

5(f, 1.0 ) of, e (T3 (&) @)
¢, T 0, O,
N s . Ohy ()
:;fﬁ(%&) T as)

where /¢ (5,2
density fo(e*) = f* (MT (5.2 N,)T with respect to ), which is ex
pressed by the continuous components &, and g, as (Schneider et al.,
2018):

f}f (E,,,E,) =

%,) is the Legendre transform of the elastic strain energy

3 (3,7) K" <§> : a4

~Aa
where K is expressed as:

El]a Ella
K = ~2la ~22a
K K

I~(Ilnt -1 (Ella _11~(12m (15)

= g (I~(11a)*1 <I~(22a _ g (Irzlla)’l I~(12a> :

Since 6, and g, are continuous across the interface, according to
Egs. (13) and (14), the elastic strain energy density f, (¢, €) is expressed

as:
N 1 N 5
fs(¢’8)=;fz (En!zt) ha(¢) 5 Gn’et ;(n h (¢)) <E,>
U o (5
=2 (an,e,)n<a>. (16)
From Eq. (16), it is noticed that (’E,,,o-,) =K (~,, 3 )T. By trans
forming this relationship back to the form of (5,, ) =K (EH,E,)T,
the following is obtained:
A1y~ A1\l 12
|- (lc ) - (IC g
K= 5l il am oot faiin-l an2 ] an
'y (lc) £ -k (K:) e

Thus, the effective stiffness matrix K is derived from transforming
K back to the global Cartesian coordinate system:

K=MIKM,. (18)
3.2. Effective density matrix

According to the requirement of material continuity, all the ele
ments in the local velocity vector v = {vg, vy ¢ )T are continuous across

the interface (Liu et al., 2021). Supposing M = diag (ﬂ]l,ﬂzz,ﬂ:ﬁ)
is the density matrix in the global Cartesian coordinate system, the



o~

density matrix in the local Cartesian coordinate system, i.e. M, is
calculated as:

M=oMa, a9
where Q is a transformation matrix, as defined in Appendix.

Based on Egs. (1), (10) and (11), the variational derivative of the
kinetic energy is:

5(f, 1,@ 0 V) of, e (5 7 ) m@)
5, T 0, dd,

&y Ohp (@)
=zﬂ:f,{,} (U) W. (20)

With ¥ = Qu, the kinetic energy density /2 (v*) can be straightfor
wardly transformed into f* (¥). Therefore, the Kinetic energy density
[, (@, v) is expressed as:

N N
o (~ 11 —~a ~ Lt~
101 = 15 @) he @ = 57 T (M) 7= 50745, 2D
By transforming M from the local Cartesian coordinate system back
to the global system, the effective density matrix M is expressed as:

M=Q"MO. (22)

It is noticed that the effective stiffness matrix combines the linear
interpolation (VT model) and the harmonic interpolation (RS model),
while the effective density matrix only employs the linear interpolation.
By decomposing the interpolation scheme into the VT model and the RS
model, with the derivation of the strain energy density and the comple
mentary strain energy density, the advantage of the effective stiffness
matrix K is successfully avoiding the excessive elastic energy, which
has been proven mathematically and numerically by Schneider et al.
(2018). The proof procedure for the VT model can be straightforwardly
applied to the effective density matrix M, since linear interpolation is
used for both of them.

4. Normal vector

From the formulas for the effective stiffness matrix K and the
effective density matrix M in Section 3, it can be noticed that the
foundation of the derivation procedure is to determine the normal
vector ¢ for the diffuse interface. For the interface generated by only
two different phases/grains, i.e. « and g, the normal vector £ is unique,
since:

Voo _ Vo 23)

[V | |V¢ﬁ‘
However, when the interface is generated by more phases/grains, such
as a, f, 6, the normal vector & becomes undetermined (Schneider et al.,
2018), because the vectors Vo, / |V, |, V,/ ‘Vq.’),, , Vs / |Vs| are not
always parallel to each other.

From the viewpoint of the obstacle or well type potential energy
density in Eq. (3), the interface can be regarded as the result from the
variation of:

E=

N
My @)= b, (24a)

a,f>a

N
My (@)= Y 6205, (24b)

a,p>a

while from the viewpoint of the material properties, i.e. the effective
stiffness matrix K and the effective density matrix M, the interface is
generated from the variation of:

N Zié,j [[Kij]]aﬁ
a.p>a Z:{lba (Z'ﬁ/ [[Kif]]aﬁ>

M

pr—

T, [, ]
+
Yo (Z?,j [[M[/]]aﬂ)

where [z]]* represents the difference of the parameter z between the

phases/grains a and p, and ... denotes the contribution from other

factors which also play a role in generating the interface. When any

denominator in Eq. (25) is equal to zero, the corresponding fraction

term should be physically recognized as zero. Schneider et al. (2018)

utilized the stiffness matrix and the nonelastic strain to determine M ,,.
As a consequence, the normal vector & can be calculated as:

+ o | bty (25)

VM

E=—" (26)
|V,

where M,, = M,, if considering Eq. (24a), while M,, = M, with

Eq. (25). Egs. (4), (24a) and (25) show that the normal vector & in
Eq. (26) is equivalent to that in Eq. (23), when the diffuse interface is
generated by only two different phases/grains.

Egs. (24) and (25) show that M,, and M, are similar to each other,
in comparison with M. Therefore, M, is selected as a representative
and is compared with M, in this paper. Fig. 2 illustrates an example for
the interface generated by three phases/grains and the corresponding
normal vector &, calculated from Egs. (24a) and (25), respectively.
Here, the stiffness matrices X = fﬁ = Eé, the density matrices
ﬂa = O.Sﬂﬂ = O.lﬁ(> and the parameter ¢ = 5. It is noticed that the
three phases/grains are equally weighted in determining the normal
vector £ in Fig. 2(b), while the phase/grain § plays a dominant role in
Fig. 2(c), since W is greater than Ma and ﬁﬁ.

5. Mechanical wave

According to the continuity property of the mechanical wave, it can
be divided into two different types, i.e. the Type I wave with strong
discontinuity and the Type II with weak discontinuity (Liu et al., 2021;
Wang, 2011). With w = {wy, w,,w;}T as the displacement field and 2
as the whole simulated domain, the Type I wave is defined as:

Definition 1. Ve > 0,35, > 0.Vx € 2 : |x-x)| < §; =
w; (x,1) —w; (xo,t)) <e€ (i= 1,2,3; xg € Q; t>0).

Definition 1 means that the displacement field w of the Type I
wave is continuous within the whole domain £, which is also essential
to satisfy the requirement of material continuity. On the basis of
Definition 1 and with further constraints, the definition of the Type
II wave is given as:

Definition 2. Ve >0,36;;,6, >0 :

(1) Vx € 2, lIx = xoll, < 6y, = Zoen) _ ilel) <e,
a i 0x; ox; _
X—XO
Q) V> 0,[t—to] < 5, = |Zud _ duxn) <e ()=
or o =1,

1,2,3; x,xp eﬁa, t,tg > 0),

where Q, refers to the domain containing only the phase/grain a.
Definition 2 demonstrates that both the first order spatial and temporal
derivations of the displacement field w are continuous within the
domain Q,. Fig. 3 exemplifies a waveform for the Type I and the Type
IT wave.

6. Solver for mechanical wave propagation

Originated from the wave equation:

Wy (x,1) = %a,.j,, G0+ fi (0 (hj=1,23), @27
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Fig. 2. (a) An example for the interface generated in a three-phase/grain region, (b) and (c): normal vector representation for the domain within the central square, according to
Eq. (24a) and Eq. (25), respectively.

max
max
()
=
<
> ©
15 =
z g 0
= % tg Time t te
=
0
B Time t te min
(a) (b)

Fig. 3. The examples for the (a) Type I and (b) Type II wave (¢, and ¢, respectively represent the beginning and the end of the incident wave).



and the constitutive equation:

o (.0 =Ky, (1) (i.j=12,...,6), (28)

the governing equations for mechanical wave propagation can be ex
pressed in the form of stress and velocity (LeVeque et al.,, 2002):

i (x,1) = c{;.uj,k e, +s; (1) (,j=1,2,...,9 k=1,2,3), (29)

where ; = 0w, /0> and o,; ; = d0;;/0x; respectively are the second
order temporal derivation of the displacement w; (x,) and the first
order spatial derivation of the stress o;; (x,1). p denotes the density of
materials, and f; (x, 1) represents the mechanical wave source. o; is the
ith element in the Voigt notation stress tensor ¢ = (o), 05,033,023,
013, alz)T, while ¢; denotes the jth element in the Voigt notation strain
tensor € = (e“,522,533,523,513,512)T. u; (x,1) represents the ith element
in the vector u = (o}),02.033,623,013.015, 01, Uy, U3)T, where v =
(v1, vy, v3) is the material particle velocity vector. CX is the element
in the ith row and the jth column of the coefficient matrix C¥, which
is provided in Appendix. s; (x,) denotes the mechanical wave source
corresponding to u; (x,1).

For each cubic cell ¢, a vector u¢ is assigned and approximated by
a series of orthogonal polynomials:

uf(x,z):afj(z)pj(x) (j=12,....N,). (30)

Here the unknown af. (t) is dependent on the time 7, and N, =
(g+1(g+2)(qg+3)/6, with g as the highest polynomial degree in
Eq. (30). The polynomial p; (x) is orthogonal, by satisfying the follow
ing constraint:

(j 1= jz)

1
. . dv. =
/Vg Pj, (x)pjz (x) dV, {0 (Jl + jz) .

where V_ represents the volume of the cell ¢.
According to Taylor’s theorem, the mechanical wave source sf (x,1)
can also be approximated by a series of orthogonal polynomials:

(31)

s (x,1) = b}, (0 p; (%), (32)

where bf. (¢) is calculated from the Taylor series of the mechanical wave
source s; (x,?) and the polynomial series p; (x).

On the basis of Egs. (30), (31) and (32), the weak form of Eq. (29)
can be constructed as:

/ i (x,1) py (%) dV§=CI_’;_§ / u]g.,k(x,t)pl (x) dV+ / 55 (x,1) py (x) dV,
V§ VC V§

(33)

for the cell ¢.

According to the product rule of the derivation, the divergence
theorem, the upwind Riemann solver and the forward finite difference
approximation, the solution for Eq. (33) is (Liu et al., 2021; Kédser and
Dumbser, 2006):

1 S, k k

< — S 3 < <

a5, (1 + An) =dj, (t)+Az<§/S T;; (ij_Djm)
<

X (ng)’l as ) ps (x) p; (x) ng+
S

mr rs

1 k¢ k¢ s\—1 s N
E/S Tfjg (ij + Djm) (T g)mr a.s" (1) py (%) py (%) ds.—
¢

o /V a5,y (1) Py (1) P (%) AV, + by (’)>

[

(34)

where At is the timestep for the temporal discretization, and S, repre
sents the surface of the cell ¢. T denotes the transformation matrix,
which is defined in the Appendix with the vector £ normal to the

Table 2
The normalized material properties for the phase/grain f.

Property R/,’( RZ
Fixed density 0.1 0.5 1 2 10 1
Fixed stiffness 1 0.1 0.5 1 2 10

< .
surface S.. a,fg refers to the unknown of the cell which shares the

surface S, with the cell ¢. The matrix D*¢ is calculated as:

-1
mj’

ke _ k¢ yrks ( ~ke
Dij _Gi/ H/m (G )

(35)
where the Einstein summation convention does not apply to the super
script k. The matrix H* = diag (|hy|, |y, ..., |hel), with h; (i =1,2,
...,9) as the eigenvalue of the matrix C* and h; < h;, (i; <i,). The
matrix G*¢ = (81.8.---,89), and the vector g; (i=1,2,...,9) is the
right eigenvector of the matrix C*¢, corresponding to the eigenvalue
h;.

By substituting Eq. (34) into Eq. (30), the stress and velocity fields
can be obtained. With the effective stiffness matrix K and the effective
density matrix M, the strain and momentum fields can be derived.
Thus, the elastic strain energy density f,, the kinetic energy density f,
and the dynamic mechanical energy density f,; can be easily calculated.
Based on the initial state of the displacement field and the integration
of the velocity field over time, the displacement field occurring during
the process of the numerical simulation can be obtained.

7. Numerical simulation

In this section, the dynamic mechanical energy is analysed for
the Types I and II wave. In Sections 7.1 and 7.2, parameter studies
are carried out considering the stiffness matrix, the density and the
phase/grain size. A detailed comparison between Egs. (24a) and (25)
is presented in Section 7.3. In Sections 7.1 and 7.3, the numerical
results are also compared with those from the linear homogenization
method, i.e. the VT model. For all numerical examples in this section,
the polynomial degree ¢ in Eq. (30) is fixed as 3.

7.1. Influence of stiffness and density

A numerical example containing two phases/grains, i.e. « and p,
is demonstrated in Fig. 4. The simulated domain with the dimension
of 1 pm X 200 pm x 100 pm is discretized into 20000 cells, each of
which is 1 pm x 1 pm x 1 pm. In this subsection, the radius of the
p phase/grain is fixed as 10 pm, which occupies 1.57% of the total
volume. The origin of the global Cartesian coordinate system is located
at the left bottom back corner of the simulated domain, with the x,
axis pointing to the right side and x; to the top side. Fig. 4 can
be treated as a 2D example, with the surfaces normal to x, and x;
as free boundaries. The one cycle Types I and II incident wave with
the frequency of 50 MHz are applied at the centre of the bottom
boundary, i.e. upon the area [(0, 100, 0), (1, 101, 0)]. The stress amplitude
is designed as |o|nh,x = 100 MPa. For the convenience of analysis, the
stiffness and the density for each phase/grain are designed proportional
to those for the phase/grain a. For instance, the stiffness and density
for the phase/grain f are:

¥ =R X", M=r M, 36)
where R’;( and Rﬁ respectively are the stiffness ratio and the density
ratio for the phase/grain f. In this subsection, the material properties
for the phase/grain g are listed in Table 2. For the cases with a fixed
density ratio, i.e. Rg = 1, the stiffness ratio R[;( ranges from 0.1 to 10.
For the other cases, the stiffness ratio RZ = 1, while the density ratio
varies from 0.1 to 10.

The numerical example in Fig. 4 is firstly simulated with a sharp
interface between the phases/grains a« and f, whose results provide
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Fig. 4. A numerical example with one inner phase/grain.

a benchmark to analyse the numerical results from the corresponding
diffuse interface case.

By comparing with the total mechanical energy at the end of load
ing, i.e. at 7 = 20 ns, the numerical error for a period of 60 ns, after the
end of loading, is presented in Fig. 5. It is observed that the error for the
Type II wave is less than 0.3%, which is negligible. However, the error
for the Type I wave converges to the values around 7.5%. Therefore,
it can be concluded that the numerical error in the Type I wave case
is mainly caused by its property of strong discontinuity, as defined in
Definition 1 and shown in Fig. 3(a). It is impossible for the numerical
results to exactly reproduce the sharp jump of the waveform. When
approximating the Type I wave with high order polynomials, there are
fluctuations at the beginning and end of the waveform (Liu et al.,
2021), where the sharp jump exists. As a result, the total mechanical
energy becomes greater than the exact value. During the process of
wave propagation, transmission and reflection, the mechanical energy
disperses, which results in a lower fluctuation amplitude and a decrease
of total mechanical energy. Gradually, the total mechanical energy
tends to be constant, as illustrated in Figs. 5(a) and 5(b).

In Fig. 5, it is also noticed that the numerical errors for different
stiffness/density ratios deviate differently from the case with Rﬁ =
R/’j = 1, i.e. the red curves in Fig. 5. For the case with the Type I
wave, i.e. Figs. 5(a) and 5(b), the deviation is mainly caused due to
two different reasons. For the cases with Ri = 10 and Rfi = 0.1, the
wave propagation velocity in the phase/grain a is the lowest. As a
consequence, the numerical error converges at a slower rate, compared
with other cases. For the cases with R’; = 10 and with Rg = 2, the
reflected wave energy, which is caused by the interface between the
phases/grains « and g, arrives at the bottom boundary before the end
of loading. At this time, the reflected stress is pressure, and the loading
force is in the positive direction of the x5 axis. Since the total stress at
the loading boundary is kept as a pressure of 100 MPa, the mechanical
energy flowing into the simulated domain is decreased. Therefore, the
percentage of the non physical excess energy, which is contributed by
the mathematical fluctuation at the sharp jump, increases. As a result,
the corresponding numerical error in figure 5(b) converges to a greater
value. For the case with the Type II wave, i.e. Figs. 5(c) and 5(d),
almost all cases converge to a small value around 0.2%, because the
stress/velocity waveform is continuous. However, the error tends to be
smaller when Rf( =10 or R/’f = 0.1, since the wave propagation velocity
in phase/grain « is smallest under this condition.

The percentage of mechanical energy within the phase/grain « is
plotted in Fig. 6. For the convenience of analysis, the transmission ratio

of the mechanical energy under the condition of Rf( or Rff, ie. R;’; or
K
R?_, is defined as:
R

E, E,
R R
K
R = O G7)
Ry E' 4 E R E +E,
RK RK Rﬂ Rﬂ

where E'  and E’, respectively represent the transmitted energy
R R

and the reflected erll(ergy, when the mechanical energy flows from
the phase/grain « to the phase/grain g, under the condition of R’;(.
A similar definition applies to E;ﬁ and E; ;- Since the geometrical

condition is fixed in this examplef it is nof difficult to obtain that
Ri’( > R8§ > Rgf and RTK > R;K > RT(’)( when R’; is fixed as 1, and
that R” > R, > R/ and R’ > R > R} when Rf( = 1 holds.
For both the Types I and II wave in Fig. 6, it can be observed that
the energy percentage for R’lj< = 1,2,10 and Rg = 0.1,0.5,1 satisfies
the aforementioned inequation about the transmission ratio. For the
other cases, the wave propagation velocity within the phase/grain p
is assigned with a smaller value. Specifically, VoﬂlK < VOﬂSK < Vlﬁ K =
VzﬁK = VI%K and V]If)" < Vzﬁ” < V]ﬂ" = I/;)ﬂg’ = Voﬂf , supposing that V%
denotes the P/S wave (primary/secondary wave) propagation velocity
under the condition of Rg = a. Therefore, more mechanical energy can
be preserved within the phase/grain g, before it is transmitted into the
phase/grain a through the upper half interface. As a result, the energy
percentage within the phase/grain « becomes smaller. It is also noticed
that the energy percentage for the case of Rf,i =10, i.e. the green curves
in Figs. 6(b) and 6(d), decreases more compared to the other cases. This
is also due to the reason that the total mechanical energy, specifically
the energy within the phase/grain a, decreases, similar to the cases
R,’j =10 and Rl/j =2 in Fig. 5(b). This decrease is enlarged in Fig. 6(d),
because an energy crest is transmitted from the phase/grain « into the
phase/grain f.

Then, the sharp interface is replaced by a diffuse interface with
e = 5, and the numerical results from the diffuse interface case are
compared with those from the sharp interface case. The numerical
errors of the total mechanical energy and of the energy percentage
for the phase/grain a are respectively illustrated in Figs. 7 and 8. It
is observed that the numerical errors for all cases are less than 3%. For
most cases, the error converges to the value of less than 0.5%.

In Fig. 7, the error is mainly generated before the end of loading,
i.e. t <20 ns, after which the error tends to be stable. Therefore, it can
be concluded that the error is caused by a wider interface, which leads
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Fig. 7. The numerical error of the total mechanical energy caused by replacing the sharp interface with a diffuse interface.

to an earlier energy reflection. Since the reflected energy arrives at the
loading boundary earlier, the influence of the loading condition upon
the total mechanical energy is enhanced. This influence disappears after
the end of loading, i.e. # > 20 ns. The difference of the errors in Fig. 7
is caused by the difference of the total energy, of the reflected energy
density, of the wave propagation velocity in the phase/grain a, of the
reflected stress and of the waveform.

In Fig. 8, the numerical error fluctuates more frequently than in
Fig. 7. This is due to the frequent wave transmission and reflection
at the interface. For an incident wave, the wave reflection begins
earlier and ends later in the diffuse interface case. This is also observed
in Liu et al. (2021). After an incident wave completely passes through
the diffuse interface, the energy percentage within each phase/grain
becomes the same as in the sharp interface case. In this example, the
mechanical wave passes through the interface frequently, since the
interface is a circle. As a result, the fluctuation of the numerical error
exists all the time in Fig. 8. However, the error is negligible overall, as
it is less than 0.5% in most cases.

For the Type I wave with Rg =10 at ¢t = 60 ns and the Type II wave
with Rf( = 0.1 at t = 40 ns, the energy density from the diffuse interface
case is compared with the sharp interface case, as illustrated in Fig. 9.
Generally, the numerical results from the diffuse and sharp interface
cases agree well with each other for both wave types. Moreover, the
energy density is smoothly diffused at the interface in Figs. 9(a) and
9(c).

With the stiffness ratio varying from 0.1 to 10, the homogenization
scheme for the effective stiffness matrix in Section 3.1 is compared
with the linear homogenization method, i.e. the VT model, through
the difference of the numerical errors, as illustrated in Fig. 10. The
error difference is equal to E, — E,, with E, and E, respectively
representing the error of the linear homogenization scheme and of the
proposed homogenization scheme. Therefore, when the error difference
is positive, the proposed homogenization method performs better, and

vice versa. Figs. 10(a) and 10(c) respectively demonstrate the error
difference for the total mechanical energy with the Types I and II wave,
while Figs. 10(b) and 10(d) respectively show the percentages of the
positive/negative error difference for the mechanical energy within the
phase/grain a. It is observed that the proposed homogenization scheme
generally performs better than the linear homogenization method.

7.2. Influence of phase/grain size

In this subsection, the numerical example in Fig. 4 is re simulated
with the Type II wave. According to the material properties, the nu
merical results can be categorized into two groups. In the first group,
Ri =0.2 and Rf =1, while Rl;< =1 and R/‘j =5 in the second group. In
each group, the radius of the phase/grain f ranges from 5 to 20.

The interface is firstly designed as a sharp interface, similar to
Section 7.1. In Fig. 11, the numerical error of the total mechanical
energy is illustrated for a period of 60 ns after the end of loading. For
all cases, the error is around 0.25%, which is negligible. The percentage
of mechanical energy within the phase/grain « is shown in Fig. 12. It
is observed that the energy percentage decreases, when the radius of
the phase/grain f increases. For each case in Fig. 12(a), the energy
percentage is less than the corresponding case in Fig. 12(b), because
the loading force is tension, when the reflected energy, which results
from the interface between the phases/grains a and f, arrives at the
loading boundary. For Ri = 0.2, the reflected stress is pressure, while
for Rﬁ =5, it is tension. Since the total stress at the loading boundary
is kept as a sinusoid, the total mechanical energy flowing into the
simulated domain, specifically into the phase/grain a, becomes greater
for R’j( = 0.2 and lower for Rg = 5, in comparison with the case
Ri = Rg = 1. As a result, the energy percentage within the phase/grain
«a is lower in Fig. 12(a) and higher in 12(b).

For the case with a diffuse interface, the total mechanical energy
and the energy percentage within the phase/grain a are compared with
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those from the sharp interface case, as shown in Figs. 13 and 14. In increases, the reflected energy increases, which leads to a larger error in
general, as the radius of the phase/grain f# increases, the numerical Fig. 13. However, since the total stress at the loading boundary is fixed
error increases as well. However, it is less than 2% for almost all cases. as 100 MPa, the error tends to converge when increasing the radius.
In Fig. 13, the error is mainly generated before the end of loading. This In Fig. 14, the fluctuation phenomenon is similar to Fig. 8. When the
means that the error is also caused by an earlier wave reflection at the radius increases, the domain for the diffuse interface becomes larger,

diffuse interface, similar to Fig. 7. When the radius of phase/grain f which results in a greater error fluctuation.
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For a radius of 20 pm (Rg( = 0.2, at t+ = 70 ns) and for a radius
of 10 pm (Rg = 5, at t = 80 ns), the mechanical energy density from
the diffuse interface case is compared to the sharp interface case, as

illustrated in Fig. 15. It is observed that the numerical results from these
two cases agree well with each other, and that the energy density is
smoothly diffused at the interface in Figs. 15(a) and 15(c).
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7.3. Multiphase/multigrain interface

The numerical example in Fig. 2 is studied as a representative
section of a multiphase/multigrain domain. The domain size, the cell
size, the origin of the global Cartesian coordinate system and the
boundary conditions are the same with Section 7.1, except that the

frequency of the incident wave is 20 MHz. According to the material
properties, the simulation can be categorized into two groups, as listed
in Table 3. In the first group, R‘I;( =0.5, Ri = 0.1 and Rg = Ri =1,
while Rfj =2, R} = 10 and R’;( = R® = 1 in the second group.
For each group, both Types I and II of loading are applied and the
wave responses are analysed. The parameter e varies from 1 to 15
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Fig. 17. The error of the mechanical energy for each phase/grain and the whole simulated domain, when loading with the Type II wave (left figures: Rf( = 0.5 and Rﬁ( =0.1,
right figures: R =2 and RS =10).

to determine the influence of the interface width on the numerical The numerical results from the diffuse interface case are compared
results. Here, Eq. (5) applies for the relationship between the interface with those from the sharp interface case. The errors of the total me
width and the parameter ¢. Moreover, the normal vector derived from chanical energy for each phase/grain and the whole simulated domain
Egs. (24a) and (25), i.e. M,, and M, is used respectively. are respectively presented in Fig. 16 for Type I and in Fig. 17 for Type
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Table 3
Simulation setup for the numerical example in Fig. 2.
Group Ry R, Wave type € M,
B 5 B 5
1 05 01 1 1 &1 1 5 10 15 Mo
M,
2 1 1 2 10 I1&II 1 5 10 15 My,
M

II wave propagation. In Fig. 16(d), the error is calculated by comparing
the results from the diffuse interface case with the sharp interface case,
while in Fig. 17(d), the total mechanical energy is compared with the
value at the end of loading. Generally, the error increases along with
the increase of the parameter ¢, or the interface width. But it is less than
4% for most cases. During the numerical simulation with the phase field
method, the parameter ¢ is usually designed as approximately 5. This
means that the diffuse interface contains around 13 cells in the normal
direction. For almost all cases in Figs. 16 and 17, the corresponding
error is less than 2%. For Rg =2and Rf, = 10, comparing the numerical
results from M,, and M,,, they are almost identical to each other,
when the parameter e is fixed. But they are different for Rf( =0.5 and
R‘i( = 0.1, because the effective stiffness is dependent on the normal
vector &, as derived in Section 3.1. In Egs. (19) and (22), the matrix
Q Ls also derived based on the normal vector &. But the density matrix
M is a scalar matrix, since the density is isotropic. The transformation
in Egs. (19) and (22) is implemented for an easy understanding of the
derivation precondition and procedure (Liu et al., 2021). Therefore, the
effective density is independent on the normal vector &. In the case of
Rf( = 0.5 and R‘;( = 0.1, the numerical error for M, is generally less
than M,,. When increasing the parameter e, the difference becomes
greater.

For € = 10, the energy density from the diffuse and sharp interface
cases is presented in Figs. 18 and 19. In Figs. 18(a) and 18(c), the area
between the parallel red lines is the diffuse interface. For the purpose of
comparison, the red lines are also plotted in Figs. 18(b) and 18(d). It is
noticed that the energy density is successfully diffused within the two
and multi phase/grain interface, and that the energy density within
the single phase/grain domain agrees well with the sharp interface
case. This can also be observed in Fig. 19. For the normal vector &
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with Type I wave, for (c¢) and (d): Rf =2, Ri =10 and ¢ = 60 ns with Type II wave

respectively derived from M,, and M,,, the energy density maps in
Fig. 19(b) are almost identical, while they are different in Fig. 19(a),
since the effective stiffness is dependent on the normal vector £. This
coincides with the observation from Figs. 16 and 17. In Fig. 19(a), the
energy density is equally weighted by the phases/grains «, # and 6,
when the normal vector & is derived from M,,, while the phase/grain
6 plays a dominant role when & is from M,,. This is similar to the
difference between Figs. 2(b) and 2(c).

Similar to Section 7.1, with the parameter ¢ ranging from 1 to 15,
the homogenization scheme for the effective stiffness matrix in Sec
tion 3.1 is compared with the linear homogenization method, i.e. the
VT model, through the difference of the numerical errors, as illustrated
in Fig. 20. In Fig. 20(a), the positive and negative error differences
for the mechanical energy within the phase/grain a are respectively
integrated with time ¢. In Figs. 20(b) and 20(c), the positive/negative
error differences for the mechanical energy within the phases/grains f
and 6 are averaged with the time 7. Furthermore, in Fig. 20(d), the error
difference for the total mechanical energy is plotted against the time 7.
The conclusion from Fig. 20 is the same with Section 7.1. Generally,
the proposed homogenization scheme performs better than the linear
homogenization method.

8. Conclusions

Based on the previous work in Liu et al. (2021), a detailed accuracy
and convergence study on the dynamic mechanical energy in two and
multi phase/grain systems is implemented in this paper. Factors such as
the wave types, the material properties, the phase/grain size, the inter
face width and the normal vector formula at the multiphase/multigrain
interface are considered, and a detailed error discussion is provided.

The numerical results from the diffuse interface case are com
pared with those from the sharp interface case to verify the numerical
accuracy and stability of the proposed scheme. Generally, the numer
ical errors between these two cases are less than 3%. The numerical
solver is robust and stable, which can be applied to a wide range
of stiffness/density ratios, phase/grain sizes and interface widths. The
numerical results from the Type II wave propagation with weak discon
tinuity are more accurate and stable than those from the Type I with
strong discontinuity, which is consistent with the observation in Liu
et al. (2021). The energy conservation law is well recovered, especially
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Fig. 20. Error comparison between the proposed homogenization scheme and the linear homogenization scheme for the effective stiffness matrix. (a), (b) and (c) respectively

illustrate the error differences for the mechanical energy within the phases/grains «, f and é for 80 ns with 47 = 0.1 ns (unit: %), while (d) illustrates the error difference for the
total mechanical energy.
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Box I.
for the Type II mechanical load. The energy density is successfully Appendix

diffused across the interface. In comparison with the effective density,
the effective stiffness is more sensitive to the formula of the normal
vector. Overall, however, the difference generated by the different
normal vector formulas is negligible. Within the multiphase/multigrain
interface domain, the influence of the normal vector formulas upon the
mechanical energy density can be observed for the case with different
stiffness ratios. To be specific, the energy density is equally weighted
within the multiphase/multigrain interface domain in Eq. (24a), while
the phase/grain with a high stiffness value dominates the energy dis
tribution in Eq. (25). This coincides with the directions of the normal
vectors within the multiphase/multigrain interface domain. For the
case with different density ratios, however, there is no difference for
the energy density within the multiphase/multigrain interface domain.
The numerical results are also compared with those from the linear
homogenization method, i.e. the VT model. It is observed that the pro
posed homogenization scheme in Section 3 generally performs better
than the linear homogenization method.

Overall, the numerical analysis in this paper builds a solid foun
dation for the further simulation of mechanical wave associated phase
transformation, such as the martensitic transformation Eckner et al.
(2016), Kashchenko et al. (2010a,b), Kashchenko (2006).

Furthermore, the established phase field model including the me
chanical wave can be applied to computationally quantify phase/grain
distributions in composite materials, such as fibre reinforced polymers,
or to detect microcracks in a non destructive way in future research.
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The transformation matrices M,, M, and Q are composed of the
local base unit vectors {&,7,¢} as follows:

& &S &4 &Hé ST IStS)
2880 258 250 &HG+E&O G +E80 §6 +EE
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4 & 4

According to the wave equation and the constitutive equation, the
coefficient matrix C* is expressed as:
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0 0 0 0 O 0 Ky O 0
0 0 0 0 O 0 Ky O 0
0 0 0 0 O 0 0 0 0
cl_|0 000 o 0 0 0 Kss (A.4)
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1
o 00 0 0 ? 0 0 0
0 0 0 0 (1) g O 0
0 00 0 5= 0 0 0
0 0 0 0 0 0 0 Ky, O
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0 0 0 0 0 0 0 0 Ky
c2-lo 0o 0o o o o 0 0 0 (A5)
0 0 0 0 0 0 Kg O 0 '
1
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0 5o O (1) 0 0 0 0
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00 0 0 0 0 o0 0 K
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w2 do 00 0 0 0 Kss O 0 (A6)
00 0 0 0.0 o0 0 0 ’
1
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The transformation matrix T¢ is expressed by the local base unit
vectors {&,7,¢} as Eq. (A.7) given in Box I.

References

Allen, S.M., Cahn, J.W., 1972. Ground state structures in ordered binary alloys with
second neighbor interactions. Acta Metall. 20 (3), 423-433.

Ambati, M., Gerasimov, T., De Lorenzis, L., 2015. Phase-field modeling of ductile
fracture. Comput. Mech. 55 (5), 1017-1040.

Ammar, K., Appolaire, B., Cailletaud, G., Forest, S., 2009. Combining phase field
approach and homogenization methods for modelling phase transformation in
elastoplastic media. Eur. J. Comput. Mech./Revue Européenne de Mécanique
Numérique 18 (5-6), 485-523.

Amos, P.K., Schoof, E., Schneider, D., Nestler, B., 2018. Chemo-elastic phase-field
simulation of the cooperative growth of mutually-accommodating widmanstétten
plates. J. Alloys Compd. 767, 1141-1154.

Artemev, A., Wang, Y., Khachaturyan, A., 2000. Three-dimensional phase field model
and simulation of martensitic transformation in multilayer systems under applied
stresses. Acta Mater. 48 (10), 2503-2518.

Cahn, J.W., Hilliard, J.E., 1958. Free energy of a nonuniform system. I. Interfacial free
energy. J. Chem. Phys. 28 (2), 258-267.

Chen, Q., Ma, N., Wu, K., Wang, Y., 2004. Quantitative phase field modeling of
diffusion-controlled precipitate growth and dissolution in Ti-Al-V. Scr. Mater. 50
(4), 471-476.

Durga, A., Wollants, P., Moelans, N., 2013. Evaluation of interfacial excess contributions
in different phase-field models for elastically inhomogeneous systems. Modelling
Simulation Mater. Sci. Eng. 21 (5), 055018.

Eckner, R., Kriiger, L., Ullrich, C., Rafaja, D., Schlothauer, T., Heide, G., 2016.
Microstructure and mechanical properties after shock wave loading of cast CrMnNi
TRIP steel. Metall. Mater. Trans. A 47 (10), 4922-4932.

Fantoni, F., Bacigalupo, A., 2020. Wave propagation modeling in periodic elasto-
thermo-diffusive materials via multifield asymptotic homogenization. Int. J. Solids
Struct. 196, 99-128.

Fantoni, F., Bacigalupo, A., Paggi, M., Reinoso, J., 2020. A phase field approach for
damage propagation in periodic microstructured materials. Int. J. Fract. 223 (1),
53-76.

Folch, R., Plapp, M., 2005. Quantitative phase-field modeling of two-phase growth.
Phys. Rev. E 72 (1), 011602.

Ginzburg, V.L., Landau, L.D., 1950. On the theory of superconductivity. Zh. Eksp. Teor.
Fiz. 20, 1064.

Henry, H., 2019. Limitations of the modelling of crack propagating through hetero-
geneous material using a phase field approach. Theor. Appl. Fract. Mech. 104,
102384.

Herrmann, C., Schoof, E., Schneider, D., Schwab, F., Reiter, A., Selzer, M., Nestler, B.,
2018. Multiphase-field model of small strain elasto-plasticity according to the
mechanical jump conditions. Comput. Mech. 62 (6), 1399-1412.

Hotzer, J., Reiter, A., Hierl, H., Steinmetz, P., Selzer, M., Nestler, B., 2018. The parallel
multi-physics phase-field framework Pace3D. J. Comput. Sci. 26, 1-12.

Hu, F.Q., Hussaini, M., Rasetarinera, P., 1999. An analysis of the discontinuous Galerkin
method for wave propagation problems. J. Comput. Phys. 151 (2), 921-946.
Jacqmin, D., 1999. Calculation of two-phase Navier-Stokes flows using phase-field

modeling. J. Comput. Phys. 155 (1), 96-127.

Karma, A., Rappel, W.-J., 1998. Quantitative phase-field modeling of dendritic growth
in two and three dimensions. Phys. Rev. E 57 (4), 4323.

Késer, M., Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkin method
for elastic waves on unstructured meshes—I. The two-dimensional isotropic case
with external source terms. Geophys. J. Int. 166 (2), 855-877.

Kashchenko, M., 2006. The wave model of martensite growth for the FCC-BCC
transformation of iron-based alloys. arXiv preprint Cond-Mat/0601569.

Kashchenko, M., Chashchina, V., Vikharev, S., 2010a. Dynamic model of the formation
of twinned martensite crystals: I. Control wave process and the removal of
degeneracy in twin-boundary orientation. Phys. Met. Metallogr. 110 (3), 200-209.

Kashchenko, M., Chashchina, V., Vikharev, S., 2010b. Dynamic model of the formation
of twinned martensite crystals: II. Pretransition states and relationships between
the volumes of the twin components. Phys. Met. Metallogr. 110 (4), 305-317.

Khachaturian, A., 1983. Theory of Structural Transformations in Solids. John Wiley and
Sons, New York, NY.

Kiefer, B., Furlan, T., Mosler, J., 2017. A numerical convergence study regarding
homogenization assumptions in phase field modeling. Internat. J. Numer. Methods
Engrg. 112 (9), 1097-1128.

Kronbichler, M., Schoeder, S., Miiller, C., Wall, W.A., 2016. Comparison of implicit
and explicit hybridizable discontinuous Galerkin methods for the acoustic wave
equation. Internat. J. Numer. Methods Engrg. 106 (9), 712-739.

LeVeque, R.J., et al., 2002. Finite Volume Methods for Hyperbolic Problems. Vol. 31,
Cambridge University Press.

Li, Y., Hu, S., Henager Jr., C.H.,, 2019. Microstructure-based model of nonlinear
ultrasonic response in materials with distributed defects. J. Appl. Phys. 125 (14),
145108.

Liu, X., Schneider, D., Daubner, S., Nestler, B., 2021. Simulating mechanical wave
propagation within the framework of phase-field modelling. Comput. Methods Appl.
Mech. Engrg. 381, 113842.

Mamivand, M., Zaeem, M.A., El Kadiri, H., 2013. A review on phase field modeling of
martensitic phase transformation. Comput. Mater. Sci. 77, 304-311.

Militzer, M., 2011. Phase field modeling of microstructure evolution in steels. Curr.
Opin. Solid State Mater. Sci. 15 (3), 106-115.

Moelans, N., Blanpain, B., Wollants, P., 2008. An introduction to phase-field modeling
of microstructure evolution. CALPHAD 32 (2), 268-294.

Mosler, J., Shchyglo, O., Hojjat, H.M., 2014. A novel homogenization method for phase
field approaches based on partial rank-one relaxation. J. Mech. Phys. Solids 68,
251-266.

Nakahata, K., Sugahara, H., Barth, M., Kohler, B., Schubert, F., 2016. Three dimensional
image-based simulation of ultrasonic wave propagation in polycrystalline metal
using phase-field modeling. Ultrasonics 67, 18-29.

Nestler, B., Garcke, H., Stinner, B., 2005. Multicomponent alloy solidification:
phase-field modeling and simulations. Phys. Rev. E 71 (4), 041609.

Nestler, B., Wheeler, A.A., 2002. Phase-field modeling of multi-phase solidification.
Comput. Phys. Comm. 147 (1-2), 230-233.

ReuB, A., 1929. Berechnung der flieBgrenze von mischkristallen auf grund der
plastizitdtsbedingung fiir einkristalle. ZAMM Z. Angew. Math. Mech. 9 (1), 49-58.

Schneider, D., Schoof, E., Tschukin, O., Reiter, A., Herrmann, C., Schwab, F.,
Selzer, M., Nestler, B., 2018. Small strain multiphase-field model accounting for
configurational forces and mechanical jump conditions. Comput. Mech. 61 (3),
277-295.

Schneider, D., Schwab, F., Schoof, E., Reiter, A., Herrmann, C., Selzer, M., Bohlke, T.,
Nestler, B., 2017. On the stress calculation within phase-field approaches: a model
for finite deformations. Comput. Mech. 60 (2), 203-217.

Schneider, D., Tschukin, O., Choudhury, A., Selzer, M., Bohlke, T., Nestler, B., 2015.
Phase-field elasticity model based on mechanical jump conditions. Comput. Mech.
55 (5), 887-901.

Selzer, M., Nestler, B., Danilov, D., 2010. Influence of the phase diagram on the diffuse
interface thickness and on the microstructure formation in a phase-field model for
binary alloy. Math. Comput. Simulation 80 (7), 1428-1437.

Spatschek, R., Hartmann, M., Brener, E., Miiller-Krumbhaar, H., Kassner, K., 2006.
Phase field modeling of fast crack propagation. Phys. Rev. Lett. 96 (1), 015502.

Steinbach, I., Apel, M., 2006. Multi phase field model for solid state transformation
with elastic strain. Physica D 217 (2), 153-160.

Steinbach, 1., Pezzolla, F., 1999. A generalized field method for multiphase
transformations using interface fields. Physica D 134 (4), 385-393.

Voigt, W., 1889. Uber die Beziehung zwischen den beiden Elasticititsconstanten
isotroper Korper. Ann. Phys. 274 (12), 573-587.

Wang, L., 2011. Foundations of Stress Waves. Elsevier.

Wang, Y., Li, J., 2010. Phase field modeling of defects and deformation. Acta Mater.
58 (4), 1212-1235.

Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O., 2010. A high-order discontinuous
Galerkin method for wave propagation through coupled elastic-acoustic media. J.
Comput. Phys. 229 (24), 9373-9396.

Wilson, Z.A., Landis, C.M., 2016. Phase-field modeling of hydraulic fracture. J. Mech.
Phys. Solids 96, 264-290.

Xi, S., Su, Y., 2021. A phase field study of the grain-size effect on the thermomechanical
behavior of polycrystalline NiTi thin films. Acta Mech. 232 (11), 4545-4566.

Xu, Z., Meakin, P., 2008. Phase-field modeling of solute precipitation and dissolution.
J. Chem. Phys. 129 (1), 014705.

Yeddu, H.K., Malik, A., Agren, J., Amberg, G., Borgenstam, A., 2012. Three-dimensional
phase-field modeling of martensitic microstructure evolution in steels. Acta Mater.
60 (4), 1538-1547.

Zhang, M.-R., Su, Y., 2022. The negative dielectric permittivity of polycrystalline barium
titanate nanofilms under high-strength kHz-AC fields. Int. J. Solids Struct. 254,
111939.



	Phase-field modelling of mechanical wave propagation in polycrystalline materials: Validation study
	Introduction
	Parametrization
	Homogenization scheme for mechanical wave
	Effective stiffness matrix
	Effective density matrix

	Normal vector
	Mechanical wave
	Solver for mechanical wave propagation
	Numerical simulation
	Influence of stiffness and density
	Influence of phase/grain size
	Multiphase/multigrain interface

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix
	References




