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A B S T R A C T
With all the great advances in phase-field modelling combined with continuum mechanics, a detailed accuracy
and convergence analysis about the influence of the diffuse interface upon the dynamic mechanical energy is
still missing. Based on the previous work, i.e. deriving the homogenization scheme on the basis of balance
conditions and embedding the high-order discontinuous Galerkin method into the phase field method, the
influence of the diffuse interface, especially the multiphase/multigrain interface, on the dynamic mechanical
energy is studied by considering the factors, such as the wave types, the material properties, the phase/grain
size, the interface width and the normal vector formula. The numerical results are compared with the sharp-
interface results to show the accuracy and stability, and with the linear homogenization method to demonstrate
the advantages of the proposed scheme. The research work in this paper will build the foundation for the future
simulation of rapid solid phase transformation.
1. Introduction

A large number of natural and manufactured solids are polycrys
talline, e.g. ice, metals, alloys, ceramics, composites, rocks and so on.
The polycrystalline materials are composed of numbers of mesoscopic
phases/grains, which are physically separated by boundaries, i.e. inter
faces. In general, phases/grains in polycrystalline materials can consist
of different components, orientations and different geometrical shapes
and sizes, which in its entirety influences the macroscopic material
properties. Moreover, the nucleation and growth of phases/grains are
driven by various factors, such as the entropy density, the chemical po
tential, the mechanical energy and others. This means that the macro
scopic properties of polycrystalline material are significantly influenced
by the aforementioned factors, through the process of microstructural
evolution. Therefore, it is desirable to develop numerical methods that
are able to comprehensively investigate the individual microstructural
quantities within a multiscale modelling framework, i.e. the mesoscopic
microstructural evolution and the macroscopic material properties.

In order to study the process of microstructural evolution and its
influence on the macroscopic material properties, phase field modelling
has been rapidly developed into a robust numerical tool over the last
decades, based on the fundamental work of Ginzburg and Landau
(1950), Cahn and Hilliard (1958) and Allen and Cahn (1972). By
diffusing the sharp interface with order parameters, the phase field
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method saves the large amount of effort required to trace the interface.
By introducing a vector valued order parameter 𝝓, with multiple com
ponents 𝜙𝛼 representing different phases/grains, the free energy density
varies smoothly across the interface. As a result, the sharp interface
of infinitesimal thickness is approximated by a diffuse interface of
finite thickness. Therefore, the free boundary problem is addressed by
solving the evolution equations of the order parameters, deriving the
driving force according to the bulk energy within the phases/grains
(Moelans et al., 2008; Wang and Li, 2010; Jacqmin, 1999). Mean
while, the motion of the interface is implicitly expressed through the
evolution of order parameters. During the evolution process of the
order parameters, the conservation laws for physical fields such as
energy, momentum and mass are observed. The phase field method has
been combined with various physical fields and has been successfully
applied in the simulation of various microstructural evolution pro
cesses, such as solidification (Nestler et al., 2005; Nestler and Wheeler,
2002; Karma and Rappel, 1998; Folch and Plapp, 2005), precipitation
and dissolution (Chen et al., 2004; Xu and Meakin, 2008), austenitic
decomposition (Militzer, 2011; Yeddu et al., 2012), martensitic trans
formation (Xi and Su, 2021; Mamivand et al., 2013; Artemev et al.,
2000), electric polarization (Zhang and Su, 2022), as well as crack
initiation and propagation (Ambati et al., 2015; Spatschek et al., 2006;
Wilson and Landis, 2016; Henry, 2019).
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Table 1
Nomenclature.

𝑎 (𝝓,𝛁𝝓) Gradient energy density ̃ Local effective density matrix
𝑎𝑖𝑗 (𝑡) Time decomposition of 𝑢𝑖 (𝒙, 𝑡) 𝑴𝜎/𝑴𝜀 Transformation matrix
𝑏𝑖𝑗 (𝑡) Time decomposition of 𝑠𝑖 (𝒙, 𝑡) 𝑀𝛼𝛽 Mobility for 𝛼 − 𝛽 interface
𝑪𝑘 Coefficient matrix 𝑝𝑗 (𝒙) Space decomposition of 𝑢𝑖/𝑠𝑖
𝑫𝑘 Matrix calculated by 𝑮𝑘 and 𝑯𝑘 𝑸 Transformation matrix
𝐸𝑡 Transmitted energy 𝑅𝐾 Stiffness ratio
𝐸𝑟 Reflected energy 𝑅𝜌 Density ratio
 Free energy 𝑅𝑒 Transmission ratio
𝑓𝑑 (𝝓, 𝜺, 𝒗) Dynamic mechanical energy density 𝑠𝑖 (𝒙, 𝑡) Source term to 𝑢𝑖 (𝒙, 𝑡)
𝑓𝜀 (𝝓, 𝜺) Elastic strain energy density 𝑻 𝑆𝜍 Transformation matrix
𝑓𝑣 (𝝓, 𝒗) Kinetic energy density 𝑡 Time
𝑓 𝛼
𝐿

(

𝝈𝑛 , 𝜺̃𝑡
)

Legendre transform of 𝑓 𝛼
𝜀 (𝜺𝛼 ) 𝒖 Stress and velocity vector

𝑓𝑖 (𝒙, 𝑡) Mechanical wave source 𝒗 Material particle velocity
𝑮𝑘 Matrix for the eigenvectors of 𝑪𝑘 𝒗̃ Local material particle velocity
𝑯𝑘 Matrix for the eigenvalues of 𝑪𝑘 𝑤𝑖 (𝒙, 𝑡) Displacement
ℎ𝛼 (𝝓) Interpolation function 𝒙 Global Cartesian coordinate
𝑲 Effective stiffness matrix 𝛾𝛼𝛽 Surface energy
𝑲 Stiffness matrix 𝜺 Elastic strain tensor
𝑲̃ Local stiffness matrix 𝜺̃ Local elastic strain tensor
̂ Stiffness matrix in 𝑓𝐿

(

𝝈𝑛 , 𝜺̃𝑡
)

𝜖 Interface width parameter
̃ Local effective stiffness matrix {𝝃, 𝜼, 𝜻} Local base unit vectors
𝐿 Interface width 𝝈 Stress tensor
 Effective density matrix 𝝈 Local stress tensor
 Density matrix 𝝓 𝑁-tuples order parameters
̂ Local density matrix 𝜔 (𝝓) Potential energy density
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To solve the evolution equations of order parameters, where the
ariational derivative of the density of free energy with respect to order
arameters and their gradients acts as the driving force, the homoge
ization approach is most commonly used in the phase field commu
ity. To obtain a correct profile at the diffuse interface, the homoge
ization methods should ensure that the energy density at the diffuse
nterface varies smoothly and obeys the conservation law (Schneider
t al., 2018; Durga et al., 2013).

For the homogenization of mechanical energy density, the
oigt/Taylor (VT) model (Voigt, 1889) assumes that the strain val

ues are constants across the diffuse interface. The Reuss/Sachs (RS)
model (Reuß, 1929) was established based on the assumption that the
stress values are invariable across the diffuse interface. By making an
analogy between the elastic stress and the generalized chemical poten
tial, the postulate and formula in Steinbach and Apel (2006) resemble
the RS model. The Khachaturyan model (Khachaturian, 1983) adopted
the VT model as the homogenization scheme for the stiffness matrix,
while the RS model adopted the model for the eigenstrain. Ammar et al.
(2009) have made a detailed comparison between these models, in
terms of establishment, derivation and application. Mosler et al. (2014)
proposed a new homogenization approach based on the incremental
energy minimization, where the energy profile is bounded by the VT
and the RS models. Kiefer et al. (2017) compared the convergence rate
of different homogenization models, including VT, RS and rank one
convexification approaches, using numerical examples. By analysing
the interfacial excess contribution to the energy, Durga et al. (2013)
applied the VT model in the direction parallel to the interface, while
applied the Steinbach/Apel model (Steinbach and Apel, 2006) in the
direction normal to the interface. Based on the similar assumptions
for stress and strain components, Schneider et al. (2015) proposed a
sophisticated homogenization model according to the force balance
and Hadamard jump conditions, which is free from the problem of
interfacial excess energy (Schneider et al., 2018). This homogenization
scheme has been successfully applied in elastic deformation (Schneider
et al., 2015), elasto plastic modelling (Herrmann et al., 2018), finite de
formation (Schneider et al., 2017) and Chemo elastic simulation (Amos
et al., 2018). Similarly, Liu et al. (2021) derived the homogenization
cheme for the mechanical wave on the basis of the equilibrium condi
ions at the sharp interface, and the high order discontinuous Galerkin
ethod (Hu et al., 1999; Wilcox et al., 2010; Käser and Dumbser, 2006;

Kronbichler et al., 2016) was embedded into the phase field method to
improve the numerical accuracy.
Fantoni et al. (2020), Fantoni and Bacigalupo (2020) used the
asymptotic homogenization scheme to respectively study the damage
propagation and wave propagation in periodic microstructured materi
als. By coupling the finite element method with the modelling of the
multiphase field, Nakahata et al. (2016) implemented the ultrasonic
simulation for the non destructive testing of polycrystalline structures.
Li et al. (2019) investigated the dynamic interaction between the
defects and the longitudinal sound wave with the phase field model.
However, a detailed accuracy and convergence study about the in
fluence of the homogenization scheme upon the dynamic mechanical
energy has been rarely studied and reported so far, especially the
homogenization scheme at the multiphase/multigrain interface. There
fore, based on the previous work by Liu et al. (2021), a detailed
parameter study of the dynamic mechanical energy will be carried out
in this paper.

The remaining part of this paper is organized as follows. Based
on the phase field method, the parametrization of phases/grains in
the multiphase/multigrain system will be introduced in Section 2. The
homogenization scheme for mechanical wave is briefly reviewed in
Section 3. Section 4 provides the methods for deriving the vector
normal to the diffuse interface in a multiphase/multigrain system,
which is ambiguous but essential to the homogenization scheme in
Section 3. The definitions for mechanical wave with a strong and weak
discontinuity are introduced in Section 5, and the governing equations
for mechanical wave propagation, as well as the high order numerical
approximation with the Riemann solver, are presented in Section 6.

ith the benchmark examples, Section 7 analyses the dynamic mechan
cal energy, considering the aspects of the wave types, the material
roperties, the phase/grain size, the interface width and the normal
ector formula, through which numerical accuracy and stability are
aintained. The numerical results are also compared with those from

he linear homogenization method, i.e. the VT model, to demonstrate
he advantages of the proposed scheme. The conclusions are given in
ection 8.

. Parametrization

For the symbols and equations in this paper, the following con
entions apply: (1) the scalar variables are written as regular upper
ase/lowercase letters, (2) the bold lowercase letters represent vectors,
3) the bold uppercase letters denote matrices and (4) for the lowercase
atin subscripts/superscripts in the equations, the index notation and
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the Einstein summation convention apply, if no further instructions are
given. The nomenclature is provided in Table 1.

In a multiphase/multigrain model with 𝑁 phases/grains, the total
ree energy  is calculated as (Nestler et al., 2005; Schneider et al.,
018):

= ∫𝑉

(

𝜖𝑎 (𝝓,𝛁𝝓) + 1
𝜖
𝜔 (𝝓) + 𝑓𝑑 (𝝓, 𝜺, 𝒗) + 𝑓 (...)

)

d𝑉 . (1)

With 𝜙𝛼 defined as the volume fraction of ordering state (phase/grain)
𝛼 and ∇ as the gradient operator, the 𝑁 tuples read 𝝓 =

(

𝜙1, 𝜙2,… , 𝜙𝑁
)

and 𝛁𝝓 =
(

∇𝜙1,∇𝜙2,… ,∇𝜙𝑁
)

. Supposing that 𝛾𝛼𝛽 denotes the surface
energy of the interface between two neighbouring phases/grains 𝛼 and
𝛽, the gradient energy density 𝑎 (𝝓,𝛁𝝓) is expressed as:

𝑎 (𝝓,𝛁𝝓) =
𝑁
∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽

|

|

|

𝜙𝛼𝛁𝜙𝛽 − 𝜙𝛽𝛁𝜙𝛼
|

|

|

2
, (2)

where | ⋅ | provides the length of a vector or the absolute value of a
scalar. The potential energy density 𝜔 (𝝓) can take the form of either
obstacle or well type (Nestler et al., 2005):

𝜔𝑜𝑏 (𝝓) =
16
𝜋2

𝑁
∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽𝜙𝛼𝜙𝛽 +

𝑁
∑

𝛼,𝛽>𝛼,𝛿>𝛽
𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿 , (3a)

𝜔𝑤𝑒 (𝝓) = 9
𝑁
∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽𝜙

2
𝛼𝜙

2
𝛽 +

𝑁
∑

𝛼,𝛽>𝛼,𝛿>𝛽
𝛾𝛼𝛽𝛿𝜙

2
𝛼𝜙

2
𝛽𝜙

2
𝛿 . (3b)

The second term on the right hand side of Eq. (3) can efficiently prevent
the appearance of the artificial third phase in the two phase region.
With 𝜺 and 𝒗 respectively representing the infinitesimal elastic strain
tensor in the Voigt notation and the material particle velocity vector,
𝑓𝑑 (𝝓, 𝜺, 𝒗) denotes the dynamic mechanical energy density. 𝑓 (...) in
Eq. (1) represents the additional energy density contributed by other
physical fields.

The order parameter 𝜙𝛼 (𝒙, 𝑡) (𝛼 = 1, 2,… , 𝑁) physically represents
the volume fraction of the phase/grain 𝛼 at location 𝒙 = {𝑥1, 𝑥2, 𝑥3}
and time 𝑡, which therefore satisfies the following constraint:
𝑁
∑

𝛼
𝜙𝛼 (𝒙, 𝑡) = 1, 0 ≤ 𝜙𝛼 (𝒙, 𝑡) ≤ 1. (4)

Thereby, the multiphase/multigrain model is parametrized by order pa
rameter 𝜙𝛼 , and Fig. 1 is illustrated as an exemplification. Specifically,
𝜙𝛼 = 1 within the regions containing a single phase/grain 𝛼, while 𝜙𝛼 =
0 in the domains comprised of a single phase/grain 𝛽 (𝛽 ≠ 𝛼). Between
the single phase/grain regions, there are finite thickness interfaces,
across which the order parameters vary continuously and smoothly and
satisfy Eq. (4) in the meantime, as illustrated on the right side in Fig. 1.

The parameter 𝜖 in Eq. (1) is related to the width of diffuse interface.
According to the study by Selzer et al. (2010), the interface thickness is
in direct proportion to the parameter 𝜖 for the pure substances. But in
the binary system, the phase diagram plays an important role in deter
mining the interface thickness. When the difference of concentrations
between different phases increases, the influence of parameter 𝜖 on the
interface width decreases.

In this paper, the entire simulation was implemented with the mul
tifunctional numerical analysis software PACE3D1 (Hötzer et al., 2018),
where the whole simulated domain is discretized into numbers of cubic
cells, by an equidistant grid. In the equilibrium state in PACE3D, the
relationship between the interface width 𝐿 and the parameter 𝜖 can be
estimated as:

𝐿 ≈ 2.5 ⋅ 𝜖 ⋅ 𝛥𝑥1, (5)

where 𝛥𝑥1 = 𝛥𝑥2 = 𝛥𝑥3 is the side length of each cell.

1 PACE3D (Parallel Algorithms for Crystal Evolution in 3D) is developed by
the research group of Prof. Dr. rer. nat. Britta Nestler, at the Karlsruhe Institute
of Technology and the Karlsruhe University of Applied Sciences.
From the viewpoint of the sharp interface approximation, the in
terface thickness should be ‘‘sufficiently small’’ to approximate the
sharp interface model with the phase field solution. However, from the
viewpoint of numerical stability and applicability, the numerical results
should not depend, or decrease their dependence, on the interface
thickness. In our previous work (Liu et al., 2021), the influence of the
interface width is studied from the aspect of the ratio between the
minimum wavelength and the maximum interface width, in a 1D case
with two different phases. In this paper, the influence of the interface
thickness on the numerical results is analysed in Section 7.3, through
a 2D example with a multiphase/multigrain interface.

By parametrizing the whole domain with order parameters, the for
mula for the dynamic mechanical energy density 𝑓𝑑 (𝝓, 𝜺, 𝒗) in Eq. (1)
is expressed as:

𝑓𝑑 (𝝓, 𝜺, 𝒗) =
𝑁
∑

𝛼
𝑓 𝛼
𝑑 (𝜺𝛼 , 𝒗𝛼)ℎ𝛼 (𝝓) , (6)

where 𝑓 𝛼
𝑑 (𝜺𝛼 , 𝒗𝛼) is the dynamic mechanical energy density for the

phase/grain 𝛼, and the interpolation function ℎ𝛼 (𝝓) is calculated as:

ℎ𝛼 (𝝓) =
ℎ̄𝛼

(

𝜙𝛼
)

∑𝑁
𝛽 ℎ̄𝛽

(

𝜙𝛽
)
. (7)

Here, the function ℎ̄𝛼
(

𝜙𝛼
)

can take one of the following three different
ormats:

̄ 𝛼
(

𝜙𝛼
)

=

⎧

⎪

⎨

⎪

⎩

𝜙𝛼

𝜙2
𝛼
(

3 − 2𝜙𝛼
)

𝜙3
𝛼
(

6𝜙2
𝛼 − 15𝜙𝛼 + 10

)

.

(8)

From Eqs. (7) and (8), it is observed that the interpolation function
ℎ𝛼 (𝝓) satisfies ∑𝑁

𝛼 ℎ𝛼 (𝝓) = 1
(

0 ≤ ℎ𝛼 (𝝓) ≤ 1
)

, similar to the order
arameter 𝜙𝛼 .

With the volume fraction 𝝓, the free boundary problem during the
rocess of microstructural evolution is therefore solved by simulating
he evolution of order parameters Steinbach and Pezzolla (1999):

𝜙̇𝛼 (𝒙, 𝑡) = − 1
𝑁

𝑁
∑

𝛽(𝛽≠𝛼)
𝑀𝛼𝛽

(

𝛿
𝛿𝜙𝛼

− 𝛿
𝛿𝜙𝛽

)

, (9)

here 𝜙̇𝛼 = 𝜕𝜙𝛼∕𝜕𝑡 represents the first order partial derivative of
he order parameter 𝜙𝛼 , with respect to time 𝑡. 𝑀𝛼𝛽 is the individual
obility for each 𝛼 − 𝛽 interface. With ∇⋅ as the divergence operator,

he variation of the total energy 𝛿∕𝛿𝜙𝛼 is expressed as:

𝛿
𝛿𝜙𝛼

=
(

𝜕
𝜕𝜙𝛼

− ∇ ⋅
𝜕

𝜕∇𝜙𝛼

)

(

𝜖𝑎 (𝝓,𝛁𝝓) + 1
𝜖
𝜔 (𝝓) + 𝑓𝑑 (𝝓, 𝜺, 𝒗) + 𝑓 (...)

)

.

(10)

3. Homogenization scheme for mechanical wave

During the process of mechanical wave propagation, the corre
sponding energy density 𝑓𝑑 (𝝓, 𝜺, 𝒗) can be divided into two parts,
i.e. the elastic strain energy density 𝑓𝜀 (𝝓, 𝜺) and the kinetic energy
density 𝑓𝑣 (𝝓, 𝒗). As a result, 𝑓𝜀 (𝝓, 𝜺) and 𝑓𝑣 (𝝓, 𝒗) are homogenized
separately:
{

𝑓𝜀 (𝝓, 𝜺) =
∑𝑁

𝛼 𝑓 𝛼
𝜀 (𝜺𝛼)ℎ𝛼 (𝝓)

𝑓𝑣 (𝝓, 𝒗) =
∑𝑁

𝛼 𝑓 𝛼
𝑣 (𝒗𝛼)ℎ𝛼 (𝝓) .

(11)

Therefore, the effective stiffness matrix 𝑲 and the effective density
matrix  are derived to continuously and smoothly interpolate the
elastic strain energy density 𝑓𝜀 (𝝓, 𝜺) and the kinetic energy density
𝑓𝑣 (𝝓, 𝒗), respectively. For the sake of completeness, the derivation
procedure for 𝑲 and  will be briefly reviewed in this section. For

more details, please refer to Liu et al. (2021).
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Fig. 1. Parametrization in a multiphase/multigrain system.
3.1. Effective stiffness matrix

Supposing that the base unit vectors {𝝃, 𝜼, 𝜻} = {
(

𝜉1, 𝜉2, 𝜉3
)𝖳 ,

(

𝜂1, 𝜂2, 𝜂3
)𝖳 ,

(

𝜁1, 𝜁2, 𝜁3
)𝖳} construct the local Cartesian coordinate sys

tem, with 𝝃 as the vector normal to the interface and the superscript 𝖳

as the transpose operator, the local stress tensor in the Voigt notation
𝝈 =

(

𝜎𝜉𝜉 , 𝜎𝜂𝜂 , 𝜎𝜁𝜁 , 𝜎𝜂𝜁 , 𝜎𝜉𝜁 , 𝜎𝜉𝜂
)𝖳 and the local strain tensor in the Voigt

notation 𝜺̃ =
(

𝜀𝜉𝜉 , 𝜀𝜂𝜂 , 𝜀𝜁𝜁 , 𝜀𝜂𝜁 , 𝜀𝜉𝜁 , 𝜀𝜉𝜂
)𝖳 can be respectively divided into

the normal components 𝝈𝑛 =
(

𝜎𝜉𝜉 , 𝜎𝜉𝜁 , 𝜎𝜉𝜂
)𝖳, 𝜺̃𝑛 =

(

𝜀𝜉𝜉 , 𝜀𝜉𝜁 , 𝜀𝜉𝜂
)𝖳 and

he tangential components 𝝈𝑡 =
(

𝜎𝜂𝜂 , 𝜎𝜁𝜁 , 𝜎𝜂𝜁
)𝖳, 𝜺̃𝑡 =

(

𝜀𝜂𝜂 , 𝜀𝜁𝜁 , 𝜀𝜂𝜁
)𝖳.

ccording to the requirements of the force balance and the material
ontinuity, the normal components of the stress tensor 𝝈𝑛 and the
angential components of the strain tensor 𝜺̃𝑡 are continuous across the
nterface (Schneider et al., 2015; Liu et al., 2021).

It is straightforward to obtain the relationship between the lo
cal Voigt notation stress/strain tensor and the global Voigt notation
stress/strain tensor as

(

𝝈𝑛,𝝈𝑡
)𝖳 = 𝑴𝜎𝝈 and

(

𝜺̃𝑛, 𝜺̃𝑡
)𝖳 = 𝑴𝜀𝜺, where the

transformation matrices 𝑴𝜎 and 𝑴𝜀 are defined in Appendix. With
𝑴−1

𝜀 = 𝑴𝖳
𝜎 and 𝝈 = 𝑲𝜺, it is derived for a single phase/grain that:

(

𝝈𝑛
𝝈𝑡

)

= 𝑴𝜎𝑲𝑴𝖳
𝜎 𝜺̃ = 𝑲̃𝜺̃ =

(

𝑲̃
11

𝑲̃
12

𝑲̃
21

𝑲̃
22

)

(

𝜺̃𝑛
𝜺̃𝑡

)

, (12)

where 𝑲 is the 6 × 6 stiffness matrix, 𝑲̃
𝑖𝑗

(𝑖, 𝑗 = 1, 2) is the 3 × 3
submatrix in 𝑲̃ .

According to Eqs. (1), (10) and (11), the variational derivative of
the elastic strain energy is expressed as:

𝛿
(

∫𝑉 𝑓𝜀 (𝝓, 𝜺) d𝑉
)

𝛿𝜙𝛼
=

𝜕𝑓𝜀 (𝝓, 𝜺)
𝜕𝜙𝛼

=
𝜕
(

∑𝑁
𝛽 𝑓 𝛽

𝜀
(

𝜺𝛽
)

ℎ𝛽 (𝝓)
)

𝜕𝜙𝛼

=
𝑁
∑

𝛽
𝑓 𝛽
𝐿
(

𝝈𝑛, 𝜺̃𝑡
)
𝜕ℎ𝛽 (𝝓)
𝜕𝜙𝛼

, (13)

here 𝑓 𝛼
𝐿
(

𝝈𝑛, 𝜺̃𝑡
)

is the Legendre transform of the elastic strain energy
ensity 𝑓 𝛼

𝜀 (𝜺𝛼) = 𝑓 𝛼
𝜀

(

𝑴𝖳
𝜎
(

𝜺̃𝛼𝑛 , 𝜺̃𝑡
)𝖳
)

with respect to 𝜺̃𝛼𝑛 , which is ex
ressed by the continuous components 𝝈𝑛 and 𝜺̃𝑡 as (Schneider et al.,

2018):

𝑓 𝛼
𝐿
(

𝝈𝑛, 𝜺̃𝑡
)

= 1 (

𝝈𝑛, 𝜺̃𝑡
)

̂
𝛼
(

𝝈𝑛
)

, (14)

2 𝜺̃𝑡 i
where ̂
𝛼

is expressed as:

̂
𝛼
=

(

̂
11𝛼

̂
12𝛼

̂
21𝛼

̂
22𝛼

)

=

⎛

⎜

⎜

⎜

⎝

−
(

𝑲̃
11𝛼)−1 (

𝑲̃
11𝛼)−1

𝑲̃
12𝛼

𝑲̃
21𝛼 (

𝑲̃
11𝛼)−1 (

𝑲̃
22𝛼

− 𝑲̃
21𝛼 (

𝑲̃
11𝛼)−1

𝑲̃
12𝛼

)

⎞

⎟

⎟

⎟

⎠

.

(15)

Since 𝝈𝑛 and 𝜺̃𝑡 are continuous across the interface, according to
Eqs. (13) and (14), the elastic strain energy density 𝑓𝜀 (𝝓, 𝜺) is expressed
as:

𝑓𝜀 (𝝓, 𝜺) =
𝑁
∑

𝛼
𝑓 𝛼
𝐿
(

𝝈𝑛, 𝜺̃𝑡
)

ℎ𝛼 (𝝓) =
1
2
(

𝝈𝑛, 𝜺̃𝑡
)

𝑁
∑

𝛼

(

̂
𝛼
ℎ𝛼 (𝝓)

)

(

𝝈𝑛
𝜺̃𝑡

)

= 1
2
(

𝝈𝑛, 𝜺̃𝑡
)

̂
(

𝝈𝑛
𝜺̃𝑡

)

. (16)

From Eq. (16), it is noticed that
(

𝜺̃𝑛,𝝈𝑡
)𝖳 = ̂

(

𝝈𝑛, 𝜺̃𝑡
)𝖳. By trans

forming this relationship back to the form of
(

𝝈𝑛,𝝈𝑡
)𝖳 = ̃

(

𝜺̃𝑛, 𝜺̃𝑡
)𝖳,

the following is obtained:

̃ =

⎛

⎜

⎜

⎜

⎝

−
(

̂
11)−1

−
(

̂
11)−1

̂
12

−̂
21 (

̂
11)−1

̂
22

− ̂
21 (

̂
11)−1

̂
12

⎞

⎟

⎟

⎟

⎠

. (17)

Thus, the effective stiffness matrix 𝑲 is derived from transforming
̃ back to the global Cartesian coordinate system:

𝑲 = 𝑴𝖳
𝜀 ̃𝑴𝜀. (18)

3.2. Effective density matrix

According to the requirement of material continuity, all the ele
ments in the local velocity vector 𝒗̃ = {𝑣𝜉 , 𝑣𝜂 , 𝑣𝜁}𝖳 are continuous across
the interface (Liu et al., 2021). Supposing  = diag

(

11,22,33

)

s the density matrix in the global Cartesian coordinate system, the
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density matrix in the local Cartesian coordinate system, i.e. ̂, is
alculated as:
̂ = 𝑸𝑸𝖳, (19)

where 𝑸 is a transformation matrix, as defined in Appendix.
Based on Eqs. (1), (10) and (11), the variational derivative of the

inetic energy is:

𝛿
(

∫𝑉 𝑓𝑣 (𝝓, 𝒗) d𝑉
)

𝛿𝜙𝛼
=

𝜕𝑓𝑣 (𝝓, 𝒗)
𝜕𝜙𝛼

=
𝜕
(

∑𝑁
𝛽 𝑓 𝛽

𝑣
(

𝒗𝛽
)

ℎ𝛽 (𝝓)
)

𝜕𝜙𝛼

=
𝑁
∑

𝛽
𝑓 𝛽
𝑣
(

𝒗̃
)
𝜕ℎ𝛽 (𝝓)
𝜕𝜙𝛼

. (20)

With 𝒗̃ = 𝑸𝒗, the kinetic energy density 𝑓 𝛼
𝑣 (𝒗𝛼) can be straightfor

wardly transformed into 𝑓 𝛼
𝑣
(

𝒗̃
)

. Therefore, the kinetic energy density
𝑓𝑣 (𝝓, 𝒗) is expressed as:

𝑓𝑣 (𝝓, 𝒗) =
𝑁
∑

𝛼
𝑓 𝛼
𝑣
(

𝒗̃
)

ℎ𝛼 (𝝓) =
1
2
𝒗̃𝖳

𝑁
∑

𝛼

(

̂
𝛼
ℎ𝛼 (𝝓)

)

𝒗̃ = 1
2
𝒗̃𝖳̃𝒗̃. (21)

By transforming ̃ from the local Cartesian coordinate system back
o the global system, the effective density matrix  is expressed as:

= 𝑸𝖳̃𝑸. (22)

It is noticed that the effective stiffness matrix combines the linear
nterpolation (VT model) and the harmonic interpolation (RS model),
hile the effective density matrix only employs the linear interpolation.
y decomposing the interpolation scheme into the VT model and the RS
odel, with the derivation of the strain energy density and the comple
entary strain energy density, the advantage of the effective stiffness
atrix 𝑲 is successfully avoiding the excessive elastic energy, which
as been proven mathematically and numerically by Schneider et al.
2018). The proof procedure for the VT model can be straightforwardly
pplied to the effective density matrix , since linear interpolation is
sed for both of them.

. Normal vector

From the formulas for the effective stiffness matrix 𝑲 and the
ffective density matrix  in Section 3, it can be noticed that the
oundation of the derivation procedure is to determine the normal
ector 𝝃 for the diffuse interface. For the interface generated by only
wo different phases/grains, i.e. 𝛼 and 𝛽, the normal vector 𝝃 is unique,

since:

𝝃 ≡
∇𝜙𝛼
|

|

∇𝜙𝛼
|

|

≡ −
∇𝜙𝛽
|

|

|

∇𝜙𝛽
|

|

|

. (23)

However, when the interface is generated by more phases/grains, such
as 𝛼, 𝛽, 𝛿, the normal vector 𝝃 becomes undetermined (Schneider et al.,
2018), because the vectors ∇𝜙𝛼∕ ||∇𝜙𝛼

|

|

, ∇𝜙𝛽∕
|

|

|

∇𝜙𝛽
|

|

|

, ∇𝜙𝛿∕ ||∇𝜙𝛿
|

|

are not
lways parallel to each other.

From the viewpoint of the obstacle or well type potential energy
ensity in Eq. (3), the interface can be regarded as the result from the
ariation of:

𝑀𝑜𝑏 (𝝓) =
𝑁
∑

𝛼,𝛽>𝛼
𝜙𝛼𝜙𝛽 , (24a)

𝑤𝑒 (𝝓) =
𝑁
∑

𝛼,𝛽>𝛼
𝜙2
𝛼𝜙

2
𝛽 , (24b)

hile from the viewpoint of the material properties, i.e. the effective
tiffness matrix 𝑲 and the effective density matrix , the interface is
enerated from the variation of:

𝑝𝑟 =
𝑁
∑

𝛼,𝛽>𝛼

⎛

⎜

⎜

⎜

∑6
𝑖,𝑗
[[

𝐾𝑖𝑗
]]𝛼𝛽

∑𝑁
(

∑6 [[

𝐾𝑖𝑗
]]𝛼𝛽

)

⎝

𝛼,𝛽>𝛼 𝑖,𝑗
+

∑3
𝑖,𝑗
[[

𝑖𝑗
]]𝛼𝛽

∑𝑁
𝛼,𝛽>𝛼

(

∑3
𝑖,𝑗
[[

𝑖𝑗
]]𝛼𝛽

) +⋯

⎞

⎟

⎟

⎟

⎠

𝜙𝛼𝜙𝛽 , (25)

here [[𝑧]]𝛼𝛽 represents the difference of the parameter 𝑧 between the
hases/grains 𝛼 and 𝛽, and ... denotes the contribution from other
actors which also play a role in generating the interface. When any
enominator in Eq. (25) is equal to zero, the corresponding fraction
erm should be physically recognized as zero. Schneider et al. (2018)
tilized the stiffness matrix and the nonelastic strain to determine 𝑀𝑝𝑟.

As a consequence, the normal vector 𝝃 can be calculated as:

=
∇𝑀𝑔𝑒
|

|

|

∇𝑀𝑔𝑒
|

|

|

, (26)

where 𝑀𝑔𝑒 = 𝑀𝑜𝑏 if considering Eq. (24a), while 𝑀𝑔𝑒 = 𝑀𝑝𝑟 with
Eq. (25). Eqs. (4), (24a) and (25) show that the normal vector 𝝃 in
q. (26) is equivalent to that in Eq. (23), when the diffuse interface is

generated by only two different phases/grains.
Eqs. (24) and (25) show that 𝑀𝑜𝑏 and 𝑀𝑤𝑒 are similar to each other,

n comparison with 𝑀𝑝𝑟. Therefore, 𝑀𝑜𝑏 is selected as a representative
nd is compared with 𝑀𝑝𝑟 in this paper. Fig. 2 illustrates an example for
he interface generated by three phases/grains and the corresponding
ormal vector 𝝃, calculated from Eqs. (24a) and (25), respectively.
ere, the stiffness matrices 𝑲

𝛼
= 𝑲

𝛽
= 𝑲

𝛿
, the density matrices


𝛼
= 0.5

𝛽
= 0.1

𝛿
and the parameter 𝜖 = 5. It is noticed that the

three phases/grains are equally weighted in determining the normal
vector 𝝃 in Fig. 2(b), while the phase/grain 𝛿 plays a dominant role in
Fig. 2(c), since 

𝛿
is greater than 

𝛼
and 

𝛽
.

5. Mechanical wave

According to the continuity property of the mechanical wave, it can
be divided into two different types, i.e. the Type I wave with strong
discontinuity and the Type II with weak discontinuity (Liu et al., 2021;
Wang, 2011). With 𝒘 = {𝑤1, 𝑤2, 𝑤3}𝖳 as the displacement field and 𝛺
s the whole simulated domain, the Type I wave is defined as:

efinition 1. ∀𝜀 > 0,∃𝛿𝑖 > 0,∀𝒙 ∈ 𝛺 ∶ |

|

𝒙 − 𝒙0|| < 𝛿𝑖 ⟹

𝑤𝑖 (𝒙, 𝑡) −𝑤𝑖
(

𝒙0, 𝑡
)

|

|

|

< 𝜀
(

𝑖 = 1, 2, 3; 𝒙0 ∈ 𝛺; 𝑡 > 0
)

.

Definition 1 means that the displacement field 𝒘 of the Type I
ave is continuous within the whole domain 𝛺, which is also essential

o satisfy the requirement of material continuity. On the basis of
efinition 1 and with further constraints, the definition of the Type

I wave is given as:

efinition 2. ∀𝜀 > 0,∃𝛿1𝑖𝑗 , 𝛿2𝑖 > 0 ∶

(1) ∀𝑥 ∈ 𝛺𝛼 , ‖𝑥 − 𝑥0‖2 < 𝛿1𝑖𝑗 ⟹

|

|

|

|

|

𝜕𝑤𝑖(𝑥,𝑡)
𝜕𝑥𝑗

− 𝜕𝑤𝑖(𝑥,𝑡)
𝜕𝑥𝑗

|

|

|

|𝑥=𝑥0

|

|

|

|

|

< 𝜀,

(2) ∀𝑡 > 0, |𝑡 − 𝑡0| < 𝛿2𝑖 ⟹
|

|

|

|

𝜕𝑤𝑖(𝑥𝑥,𝑡)
𝜕𝑡 − 𝜕𝑤𝑖(𝑥𝑥,𝑡)

𝜕𝑡
|

|

|𝑡=𝑡0

|

|

|

|

< 𝜀, (𝑖, 𝑗 =

1, 2, 3; 𝑥𝑥, 𝑥𝑥0 ∈ 𝛺𝛼 , 𝑡, 𝑡0 > 0),

here 𝛺𝛼 refers to the domain containing only the phase/grain 𝛼.
Definition 2 demonstrates that both the first order spatial and temporal
derivations of the displacement field 𝒘 are continuous within the
domain 𝛺𝛼 . Fig. 3 exemplifies a waveform for the Type I and the Type
II wave.

6. Solver for mechanical wave propagation

Originated from the wave equation:

𝑤̈𝑖 (𝒙, 𝑡) =
1𝜎𝑖𝑗,𝑗 (𝒙, 𝑡) + 𝑓𝑖 (𝒙, 𝑡) (𝑖, 𝑗 = 1, 2, 3) , (27)

𝜌



Fig. 2. (a) An example for the interface generated in a three-phase/grain region, (b) and (c): normal vector representation for the domain within the central square, according to
Eq. (24a) and Eq. (25), respectively.

Fig. 3. The examples for the (a) Type I and (b) Type II wave (𝑡𝑠 and 𝑡𝑒 respectively represent the beginning and the end of the incident wave).
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and the constitutive equation:

𝜎𝑖 (𝒙, 𝑡) = 𝐾𝑖𝑗𝜀𝑗 (𝒙, 𝑡) (𝑖, 𝑗 = 1, 2,… , 6) , (28)

he governing equations for mechanical wave propagation can be ex
ressed in the form of stress and velocity (LeVeque et al., 2002):

̇ 𝑖 (𝒙, 𝑡) = 𝐶𝑘
𝑖𝑗𝑢𝑗,𝑘 (𝒙, 𝑡) + 𝑠𝑖 (𝒙, 𝑡) (𝑖, 𝑗 = 1, 2,… , 9; 𝑘 = 1, 2, 3) , (29)

here 𝑤̈𝑖 = 𝜕2𝑤𝑖∕𝜕𝑡2 and 𝜎𝑖𝑗,𝑗 = 𝜕𝜎𝑖𝑗∕𝜕𝑥𝑗 respectively are the second
rder temporal derivation of the displacement 𝑤𝑖 (𝒙, 𝑡) and the first
rder spatial derivation of the stress 𝜎𝑖𝑗 (𝒙, 𝑡). 𝜌 denotes the density of

materials, and 𝑓𝑖 (𝒙, 𝑡) represents the mechanical wave source. 𝜎𝑖 is the
𝑖th element in the Voigt notation stress tensor 𝝈 =

(

𝜎11, 𝜎22, 𝜎33, 𝜎23,
𝜎13, 𝜎12

)𝖳, while 𝜀𝑗 denotes the 𝑗th element in the Voigt notation strain
tensor 𝜺 =

(

𝜀11, 𝜀22, 𝜀33, 𝜀23, 𝜀13, 𝜀12
)𝖳. 𝑢𝑖 (𝒙, 𝑡) represents the 𝑖th element

in the vector 𝒖 =
(

𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12, 𝑣1, 𝑣2, 𝑣3
)𝖳, where 𝒗 =

(

𝑣1, 𝑣2, 𝑣3
)

is the material particle velocity vector. 𝐶𝑘
𝑖𝑗 is the element

in the 𝑖th row and the 𝑗th column of the coefficient matrix 𝑪𝑘, which
is provided in Appendix. 𝑠𝑖 (𝒙, 𝑡) denotes the mechanical wave source
corresponding to 𝑢𝑖 (𝒙, 𝑡).

For each cubic cell 𝜍, a vector 𝒖𝜍 is assigned and approximated by
a series of orthogonal polynomials:

𝑢𝜍𝑖 (𝒙, 𝑡) = 𝑎𝜍𝑖𝑗 (𝑡) 𝑝𝑗 (𝒙)
(

𝑗 = 1, 2,… , 𝑁𝑞
)

. (30)

Here the unknown 𝑎𝜍𝑖𝑗 (𝑡) is dependent on the time 𝑡, and 𝑁𝑞 =
(𝑞 + 1) (𝑞 + 2) (𝑞 + 3) ∕6, with 𝑞 as the highest polynomial degree in
Eq. (30). The polynomial 𝑝𝑗 (𝒙) is orthogonal, by satisfying the follow
ing constraint:

∫𝑉𝜍
𝑝𝑗1 (𝒙) 𝑝𝑗2 (𝒙) d𝑉𝜍 =

{

1
(

𝑗1 = 𝑗2
)

0
(

𝑗1 ≠ 𝑗2
)

,
(31)

where 𝑉𝜍 represents the volume of the cell 𝜍.
According to Taylor’s theorem, the mechanical wave source 𝑠𝜍𝑖 (𝒙, 𝑡)

can also be approximated by a series of orthogonal polynomials:

𝑠𝜍𝑖 (𝒙, 𝑡) = 𝑏𝜍𝑖𝑗 (𝑡) 𝑝𝑗 (𝒙) , (32)

where 𝑏𝜍𝑖𝑗 (𝑡) is calculated from the Taylor series of the mechanical wave
source 𝑠𝜍𝑖 (𝒙, 𝑡) and the polynomial series 𝑝𝑗 (𝒙).

On the basis of Eqs. (30), (31) and (32), the weak form of Eq. (29)
can be constructed as:

∫𝑉𝜍
𝑢̇𝜍𝑖 (𝒙, 𝑡) 𝑝𝑙 (𝒙) d𝑉𝜍 = 𝐶𝑘𝜍

𝑖𝑗 ∫𝑉𝜍
𝑢𝜍𝑗,𝑘 (𝒙, 𝑡) 𝑝𝑙 (𝒙) d𝑉𝜍+∫𝑉𝜍

𝑠𝜍𝑖 (𝒙, 𝑡) 𝑝𝑙 (𝒙) d𝑉𝜍 ,

(33)

for the cell 𝜍.
According to the product rule of the derivation, the divergence

theorem, the upwind Riemann solver and the forward finite difference
approximation, the solution for Eq. (33) is (Liu et al., 2021; Käser and
Dumbser, 2006):

𝑎𝜍𝑖𝑙 (𝑡 + 𝛥𝑡) =𝑎𝜍𝑖𝑙 (𝑡) + 𝛥𝑡

(

1
2 ∫𝑆𝜍

𝑇
𝑆𝜍
𝑖𝑗

(

𝐶𝑘𝜍
𝑗𝑚 −𝐷𝑘𝜍

𝑗𝑚

)

×
(

𝑇 𝑆𝜍
)−1
𝑚𝑟 𝑎

𝜍
𝑟𝑠 (𝑡) 𝑝𝑠 (𝒙) 𝑝𝑙 (𝒙) d𝑆𝜍+

1
2 ∫𝑆𝜍

𝑇
𝑆𝜍
𝑖𝑗

(

𝐶𝑘𝜍
𝑗𝑚 +𝐷𝑘𝜍

𝑗𝑚

)

(

𝑇 𝑆𝜍
)−1
𝑚𝑟 𝑎

𝜍𝑆𝜍
𝑟𝑠 (𝑡) 𝑝𝑠 (𝒙) 𝑝𝑙 (𝒙) d𝑆𝜍−

𝐶𝑘𝜍
𝑖𝑗 ∫𝑉𝜍

𝑎𝜍𝑗𝑚 (𝑡) 𝑝𝑚 (𝒙) 𝑝𝑙,𝑘 (𝒙) d𝑉𝜍 + 𝑏𝜍𝑖𝑙 (𝑡)

)

,

(34)

where 𝛥𝑡 is the timestep for the temporal discretization, and 𝑆𝜍 repre
sents the surface of the cell 𝜍. 𝑻 𝑆𝜍 denotes the transformation matrix,

which is defined in the Appendix with the vector 𝝃 normal to the i
Table 2
The normalized material properties for the phase/grain 𝛽.

Property 𝑅𝛽
𝐾 𝑅𝛽

𝜌

Fixed density 0.1 0.5 1 2 10 1
Fixed stiffness 1 0.1 0.5 1 2 10

surface 𝑆𝜍 . 𝑎
𝜍𝑆𝜍
𝑟𝑠 refers to the unknown of the cell which shares the

surface 𝑆𝜍 with the cell 𝜍. The matrix 𝑫𝑘𝜍 is calculated as:

𝐷𝑘𝜍
𝑖𝑗 = 𝐺𝑘𝜍

𝑖𝑙 𝐻
𝑘𝜍
𝑙𝑚

(

𝐺𝑘𝜍)−1
𝑚𝑗 , (35)

where the Einstein summation convention does not apply to the super
script 𝑘. The matrix 𝑯𝑘𝜍 = 𝑑𝑖𝑎𝑔

(

|ℎ1|, |ℎ2|,… , |ℎ9|
)

, with ℎ𝑖 (𝑖 = 1, 2,
… , 9) as the eigenvalue of the matrix 𝑪𝑘𝜍 and ℎ𝑖1 ≤ ℎ𝑖2

(

𝑖1 < 𝑖2
)

. The
matrix 𝑮𝑘𝜍 =

(

𝒈1, 𝒈2,… , 𝒈9
)

, and the vector 𝒈𝑖 (𝑖 = 1, 2,… , 9) is the
right eigenvector of the matrix 𝑪𝑘𝜍 , corresponding to the eigenvalue
ℎ𝑖.

By substituting Eq. (34) into Eq. (30), the stress and velocity fields
can be obtained. With the effective stiffness matrix 𝑲 and the effective
density matrix , the strain and momentum fields can be derived.
Thus, the elastic strain energy density 𝑓𝜀, the kinetic energy density 𝑓𝑣
and the dynamic mechanical energy density 𝑓𝑑 can be easily calculated.
Based on the initial state of the displacement field and the integration
of the velocity field over time, the displacement field occurring during
the process of the numerical simulation can be obtained.

7. Numerical simulation

In this section, the dynamic mechanical energy is analysed for
the Types I and II wave. In Sections 7.1 and 7.2, parameter studies
are carried out considering the stiffness matrix, the density and the
phase/grain size. A detailed comparison between Eqs. (24a) and (25)
s presented in Section 7.3. In Sections 7.1 and 7.3, the numerical
esults are also compared with those from the linear homogenization
ethod, i.e. the VT model. For all numerical examples in this section,

he polynomial degree 𝑞 in Eq. (30) is fixed as 3.

.1. Influence of stiffness and density

A numerical example containing two phases/grains, i.e. 𝛼 and 𝛽,
s demonstrated in Fig. 4. The simulated domain with the dimension
f 1 μm × 200 μm × 100 μm is discretized into 20000 cells, each of
hich is 1 μm × 1 μm × 1 μm. In this subsection, the radius of the
phase/grain is fixed as 10 μm, which occupies 1.57% of the total

olume. The origin of the global Cartesian coordinate system is located
t the left bottom back corner of the simulated domain, with the 𝑥2
xis pointing to the right side and 𝑥3 to the top side. Fig. 4 can
e treated as a 2D example, with the surfaces normal to 𝑥2 and 𝑥3
s free boundaries. The one cycle Types I and II incident wave with
he frequency of 50 MHz are applied at the centre of the bottom
oundary, i.e. upon the area [(0, 100, 0) , (1, 101, 0)]. The stress amplitude
s designed as |𝜎|max = 100 MPa. For the convenience of analysis, the
tiffness and the density for each phase/grain are designed proportional
o those for the phase/grain 𝛼. For instance, the stiffness and density
or the phase/grain 𝛽 are:

𝑲
𝛽
= 𝑅𝛽

𝐾 𝑲
𝛼
, 

𝛽
= 𝑅𝛽

𝜌 
𝛼
, (36)

where 𝑅𝛽
𝐾 and 𝑅𝛽

𝜌 respectively are the stiffness ratio and the density
ratio for the phase/grain 𝛽. In this subsection, the material properties
for the phase/grain 𝛽 are listed in Table 2. For the cases with a fixed
density ratio, i.e. 𝑅𝛽

𝜌 = 1, the stiffness ratio 𝑅𝛽
𝐾 ranges from 0.1 to 10.

For the other cases, the stiffness ratio 𝑅𝛽
𝐾 = 1, while the density ratio

aries from 0.1 to 10.
The numerical example in Fig. 4 is firstly simulated with a sharp

nterface between the phases/grains 𝛼 and 𝛽, whose results provide
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Fig. 4. A numerical example with one inner phase/grain.
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a benchmark to analyse the numerical results from the corresponding
diffuse interface case.

By comparing with the total mechanical energy at the end of load
ing, i.e. at 𝑡 = 20 ns, the numerical error for a period of 60 ns, after the
end of loading, is presented in Fig. 5. It is observed that the error for the

ype II wave is less than 0.3%, which is negligible. However, the error
or the Type I wave converges to the values around 7.5%. Therefore,
t can be concluded that the numerical error in the Type I wave case
s mainly caused by its property of strong discontinuity, as defined in
efinition 1 and shown in Fig. 3(a). It is impossible for the numerical

results to exactly reproduce the sharp jump of the waveform. When
approximating the Type I wave with high order polynomials, there are
fluctuations at the beginning and end of the waveform (Liu et al.,
2021), where the sharp jump exists. As a result, the total mechanical
energy becomes greater than the exact value. During the process of
wave propagation, transmission and reflection, the mechanical energy
disperses, which results in a lower fluctuation amplitude and a decrease
of total mechanical energy. Gradually, the total mechanical energy
tends to be constant, as illustrated in Figs. 5(a) and 5(b).

In Fig. 5, it is also noticed that the numerical errors for different
tiffness/density ratios deviate differently from the case with 𝑅𝛽

𝐾 =
𝑅𝛽
𝜌 = 1, i.e. the red curves in Fig. 5. For the case with the Type I
ave, i.e. Figs. 5(a) and 5(b), the deviation is mainly caused due to

wo different reasons. For the cases with 𝑅𝛽
𝐾 = 10 and 𝑅𝛽

𝜌 = 0.1, the
ave propagation velocity in the phase/grain 𝛼 is the lowest. As a

onsequence, the numerical error converges at a slower rate, compared
ith other cases. For the cases with 𝑅𝛽

𝜌 = 10 and with 𝑅𝛽
𝜌 = 2, the

eflected wave energy, which is caused by the interface between the
hases/grains 𝛼 and 𝛽, arrives at the bottom boundary before the end
f loading. At this time, the reflected stress is pressure, and the loading
orce is in the positive direction of the 𝑥3 axis. Since the total stress at
he loading boundary is kept as a pressure of 100 MPa, the mechanical
nergy flowing into the simulated domain is decreased. Therefore, the
ercentage of the non physical excess energy, which is contributed by
he mathematical fluctuation at the sharp jump, increases. As a result,
he corresponding numerical error in figure 5(b) converges to a greater
alue. For the case with the Type II wave, i.e. Figs. 5(c) and 5(d),
lmost all cases converge to a small value around 0.2%, because the
tress/velocity waveform is continuous. However, the error tends to be
maller when 𝑅𝛽

𝐾 = 10 or 𝑅𝛽
𝜌 = 0.1, since the wave propagation velocity

n phase/grain 𝛼 is smallest under this condition.
The percentage of mechanical energy within the phase/grain 𝛼 is

lotted in Fig. 6. For the convenience of analysis, the transmission ratio
 b
f the mechanical energy under the condition of 𝑅𝛽
𝐾 or 𝑅𝛽

𝜌 , i.e. 𝑅𝑒𝐾
𝑅𝛽
𝐾

or

𝑅𝑒𝜌
𝑅𝛽
𝜌
, is defined as:

𝑅𝑒𝐾
𝑅𝛽
𝐾

=
𝐸𝑡
𝑅𝛽
𝐾

𝐸𝑡
𝑅𝛽
𝐾

+ 𝐸𝑟
𝑅𝛽
𝐾

, 𝑅𝑒𝜌
𝑅𝛽
𝜌
=

𝐸𝑡
𝑅𝛽
𝜌

𝐸𝑡
𝑅𝛽
𝜌
+ 𝐸𝑟

𝑅𝛽
𝜌

, (37)

where 𝐸𝑡
𝑅𝛽
𝐾

and 𝐸𝑟
𝑅𝛽
𝐾

respectively represent the transmitted energy
and the reflected energy, when the mechanical energy flows from
the phase/grain 𝛼 to the phase/grain 𝛽, under the condition of 𝑅𝛽

𝐾 .
A similar definition applies to 𝐸𝑡

𝑅𝛽
𝜌

and 𝐸𝑟
𝑅𝛽
𝜌
. Since the geometrical

condition is fixed in this example, it is not difficult to obtain that
𝑅𝑒𝐾
1 > 𝑅𝑒𝐾

0.5 > 𝑅𝑒𝐾
0.1 and 𝑅𝑒𝐾

1 > 𝑅𝑒𝐾
2 > 𝑅𝑒𝐾

10 when 𝑅𝛽
𝜌 is fixed as 1, and

that 𝑅𝑒𝜌
1 > 𝑅𝑒𝜌

0.5 > 𝑅𝑒𝜌
0.1 and 𝑅𝑒𝜌

1 > 𝑅𝑒𝜌
2 > 𝑅𝑒𝜌

10 when 𝑅𝛽
𝐾 = 1 holds.

For both the Types I and II wave in Fig. 6, it can be observed that
the energy percentage for 𝑅𝛽

𝐾 = 1, 2, 10 and 𝑅𝛽
𝜌 = 0.1, 0.5, 1 satisfies

he aforementioned inequation about the transmission ratio. For the
ther cases, the wave propagation velocity within the phase/grain 𝛽
s assigned with a smaller value. Specifically, 𝑉 𝛽𝐾

0.1 < 𝑉 𝛽𝐾
0.5 < 𝑉 𝛽𝐾

1 =
𝛽𝐾
2 = 𝑉 𝛽𝐾

10 and 𝑉 𝛽𝜌
10 < 𝑉 𝛽𝜌

2 < 𝑉 𝛽𝜌
1 = 𝑉 𝛽𝜌

0.5 = 𝑉 𝛽𝜌
0.1 , supposing that 𝑉 𝛽𝑏

𝑎
enotes the 𝑃 /𝑆 wave (primary/secondary wave) propagation velocity
nder the condition of 𝑅𝛽

𝑏 = 𝑎. Therefore, more mechanical energy can
e preserved within the phase/grain 𝛽, before it is transmitted into the
hase/grain 𝛼 through the upper half interface. As a result, the energy
ercentage within the phase/grain 𝛼 becomes smaller. It is also noticed
hat the energy percentage for the case of 𝑅𝛽

𝜌 = 10, i.e. the green curves
n Figs. 6(b) and 6(d), decreases more compared to the other cases. This
s also due to the reason that the total mechanical energy, specifically
he energy within the phase/grain 𝛼, decreases, similar to the cases
𝛽
𝜌 = 10 and 𝑅𝛽

𝜌 = 2 in Fig. 5(b). This decrease is enlarged in Fig. 6(d),
ecause an energy crest is transmitted from the phase/grain 𝛼 into the
hase/grain 𝛽.

Then, the sharp interface is replaced by a diffuse interface with
= 5, and the numerical results from the diffuse interface case are

ompared with those from the sharp interface case. The numerical
rrors of the total mechanical energy and of the energy percentage
or the phase/grain 𝛼 are respectively illustrated in Figs. 7 and 8. It
s observed that the numerical errors for all cases are less than 3%. For
ost cases, the error converges to the value of less than 0.5%.

In Fig. 7, the error is mainly generated before the end of loading,
.e. 𝑡 ≤ 20 ns, after which the error tends to be stable. Therefore, it can
e concluded that the error is caused by a wider interface, which leads



Fig. 5. The numerical error of the total mechanical energy for the case with a sharp interface.

Fig. 6. The percentage of mechanical energy within the phase/grain 𝛼, for the case with a sharp interface.
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Fig. 7. The numerical error of the total mechanical energy caused by replacing the sharp interface with a diffuse interface.
to an earlier energy reflection. Since the reflected energy arrives at the
loading boundary earlier, the influence of the loading condition upon
the total mechanical energy is enhanced. This influence disappears after
the end of loading, i.e. 𝑡 > 20 ns. The difference of the errors in Fig. 7
is caused by the difference of the total energy, of the reflected energy
density, of the wave propagation velocity in the phase/grain 𝛼, of the
reflected stress and of the waveform.

In Fig. 8, the numerical error fluctuates more frequently than in
Fig. 7. This is due to the frequent wave transmission and reflection
at the interface. For an incident wave, the wave reflection begins
earlier and ends later in the diffuse interface case. This is also observed
in Liu et al. (2021). After an incident wave completely passes through
the diffuse interface, the energy percentage within each phase/grain
becomes the same as in the sharp interface case. In this example, the
mechanical wave passes through the interface frequently, since the
interface is a circle. As a result, the fluctuation of the numerical error
exists all the time in Fig. 8. However, the error is negligible overall, as
it is less than 0.5% in most cases.

For the Type I wave with 𝑅𝛽
𝜌 = 10 at 𝑡 = 60 ns and the Type II wave

with 𝑅𝛽
𝐾 = 0.1 at 𝑡 = 40 ns, the energy density from the diffuse interface

case is compared with the sharp interface case, as illustrated in Fig. 9.
enerally, the numerical results from the diffuse and sharp interface
ases agree well with each other for both wave types. Moreover, the
nergy density is smoothly diffused at the interface in Figs. 9(a) and
(c).

With the stiffness ratio varying from 0.1 to 10, the homogenization
cheme for the effective stiffness matrix in Section 3.1 is compared
ith the linear homogenization method, i.e. the VT model, through

he difference of the numerical errors, as illustrated in Fig. 10. The
rror difference is equal to 𝐸𝑙 − 𝐸𝑝, with 𝐸𝑙 and 𝐸𝑝 respectively
epresenting the error of the linear homogenization scheme and of the
roposed homogenization scheme. Therefore, when the error difference

s positive, the proposed homogenization method performs better, and
vice versa. Figs. 10(a) and 10(c) respectively demonstrate the error
difference for the total mechanical energy with the Types I and II wave,
while Figs. 10(b) and 10(d) respectively show the percentages of the
positive/negative error difference for the mechanical energy within the
phase/grain 𝛼. It is observed that the proposed homogenization scheme
generally performs better than the linear homogenization method.

7.2. Influence of phase/grain size

In this subsection, the numerical example in Fig. 4 is re simulated
with the Type II wave. According to the material properties, the nu
merical results can be categorized into two groups. In the first group,
𝑅𝛽
𝐾 = 0.2 and 𝑅𝛽

𝜌 = 1, while 𝑅𝛽
𝐾 = 1 and 𝑅𝛽

𝜌 = 5 in the second group. In
each group, the radius of the phase/grain 𝛽 ranges from 5 to 20.

The interface is firstly designed as a sharp interface, similar to
Section 7.1. In Fig. 11, the numerical error of the total mechanical
energy is illustrated for a period of 60 ns after the end of loading. For
all cases, the error is around 0.25%, which is negligible. The percentage
of mechanical energy within the phase/grain 𝛼 is shown in Fig. 12. It
is observed that the energy percentage decreases, when the radius of
the phase/grain 𝛽 increases. For each case in Fig. 12(a), the energy
percentage is less than the corresponding case in Fig. 12(b), because
the loading force is tension, when the reflected energy, which results
from the interface between the phases/grains 𝛼 and 𝛽, arrives at the
loading boundary. For 𝑅𝛽

𝐾 = 0.2, the reflected stress is pressure, while
for 𝑅𝛽

𝜌 = 5, it is tension. Since the total stress at the loading boundary
is kept as a sinusoid, the total mechanical energy flowing into the
simulated domain, specifically into the phase/grain 𝛼, becomes greater
for 𝑅𝛽

𝐾 = 0.2 and lower for 𝑅𝛽
𝜌 = 5, in comparison with the case

𝑅𝛽
𝐾 = 𝑅𝛽

𝜌 = 1. As a result, the energy percentage within the phase/grain
𝛼 is lower in Fig. 12(a) and higher in 12(b).

For the case with a diffuse interface, the total mechanical energy

and the energy percentage within the phase/grain 𝛼 are compared with



𝑡

Fig. 8. The difference of the energy percentage within the phase/grain 𝛼, between the cases with a sharp interface and a diffuse interface.
Fig. 9. The mechanical energy density for (a) and (b): the density ratio 𝑅𝛽
𝜌 = 10 and time 𝑡 = 60 ns with the Type I wave, for (c) and (d): the stiffness ratio 𝑅𝛽

𝐾 = 0.1 and time
= 40 ns with the Type II wave (unit: 10E + 04 J/m3).
those from the sharp interface case, as shown in Figs. 13 and 14. In
general, as the radius of the phase/grain 𝛽 increases, the numerical
error increases as well. However, it is less than 2% for almost all cases.
In Fig. 13, the error is mainly generated before the end of loading. This
means that the error is also caused by an earlier wave reflection at the

diffuse interface, similar to Fig. 7. When the radius of phase/grain 𝛽
increases, the reflected energy increases, which leads to a larger error in
Fig. 13. However, since the total stress at the loading boundary is fixed
as 100 MPa, the error tends to converge when increasing the radius.
In Fig. 14, the fluctuation phenomenon is similar to Fig. 8. When the
radius increases, the domain for the diffuse interface becomes larger,
which results in a greater error fluctuation.



Fig. 10. Error comparison between the proposed homogenization scheme and the linear homogenization scheme for the effective stiffness matrix. For (a) and (c): error difference
for the total mechanical energy, for (b) and (d): percentages of the positive/negative error difference for the mechanical energy within the phase/grain 𝛼 (unit: %).

Fig. 11. The numerical error of the total mechanical energy, when the inner phase/grain has different radii and a sharp interface.

Fig. 12. The percentage of mechanical energy within the phase/grain 𝛼, when the inner phase/grain has different radii and a sharp interface.
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Fig. 13. The numerical error of the total mechanical energy, caused by replacing the sharp interface with a diffuse interface, when the inner phase/grain has different radii.
Fig. 14. The numerical error of the energy percentage within the phase/grain 𝛼, caused by replacing the sharp interface with a diffuse interface, when the inner phase/grain has
ifferent radii.
Fig. 15. The mechanical energy density for (a) and (b): the radius of the inner phase/grain is 20 μm, the stiffness ratio 𝑅𝛽
𝐾 = 0.2 and time 𝑡 = 70 ns, for (c) and (d): the radius

of the inner phase/grain is 10 μm, the density ratio 𝑅𝛽
𝜌 = 5 and time 𝑡 = 80 ns (unit: 10𝐸 + 04 J/m3).
i
t

For a radius of 20 μm (𝑅𝛽
𝐾 = 0.2, at 𝑡 = 70 ns) and for a radius

f 10 μm (𝑅𝛽
𝜌 = 5, at 𝑡 = 80 ns), the mechanical energy density from
he diffuse interface case is compared to the sharp interface case, as s
llustrated in Fig. 15. It is observed that the numerical results from these
wo cases agree well with each other, and that the energy density is

moothly diffused at the interface in Figs. 15(a) and 15(c).



Fig. 16. The error of the mechanical energy for each phase/grain and the whole simulated domain, when loading with the Type I wave (left figures: 𝑅𝛽
𝐾 = 0.5 and 𝑅𝛿

𝐾 = 0.1, right
figures: 𝑅𝛽

𝜌 = 2 and 𝑅𝛿
𝜌 = 10).
7.3. Multiphase/multigrain interface

The numerical example in Fig. 2 is studied as a representative
section of a multiphase/multigrain domain. The domain size, the cell
size, the origin of the global Cartesian coordinate system and the
boundary conditions are the same with Section 7.1, except that the
frequency of the incident wave is 20 MHz. According to the material
properties, the simulation can be categorized into two groups, as listed
in Table 3. In the first group, 𝑅𝛽

𝐾 = 0.5, 𝑅𝛿
𝐾 = 0.1 and 𝑅𝛽

𝜌 = 𝑅𝛿
𝜌 = 1,

while 𝑅𝛽
𝜌 = 2, 𝑅𝛿

𝜌 = 10 and 𝑅𝛽
𝐾 = 𝑅𝛿

𝐾 = 1 in the second group.
For each group, both Types I and II of loading are applied and the
wave responses are analysed. The parameter 𝜖 varies from 1 to 15



Fig. 17. The error of the mechanical energy for each phase/grain and the whole simulated domain, when loading with the Type II wave (left figures: 𝑅𝛽
𝐾 = 0.5 and 𝑅𝛿

𝐾 = 0.1,
right figures: 𝑅𝛽

𝜌 = 2 and 𝑅𝛿
𝜌 = 10).
to determine the influence of the interface width on the numerical
results. Here, Eq. (5) applies for the relationship between the interface
width and the parameter 𝜖. Moreover, the normal vector derived from
Eqs. (24a) and (25), i.e. 𝑀 and 𝑀 , is used respectively.
𝑜𝑏 𝑝𝑟
The numerical results from the diffuse interface case are compared
with those from the sharp interface case. The errors of the total me
chanical energy for each phase/grain and the whole simulated domain
are respectively presented in Fig. 16 for Type I and in Fig. 17 for Type
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Fig. 18. The mechanical energy density for (a) and (b): 𝑅𝛽
𝐾 = 0.5, 𝑅𝛿

𝐾 = 0.1 and 𝑡 = 20 ns with Type I wave, for (c) and (d): 𝑅𝛽
𝜌 = 2, 𝑅𝛿

𝜌 = 10 and 𝑡 = 60 ns with Type II wave
unit: 10E + 04 J/m3).
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Table 3
Simulation setup for the numerical example in Fig. 2.

Group 𝑅𝐾 𝑅𝜌 Wave type 𝜖 𝑀𝑔𝑒

𝛽 𝛿 𝛽 𝛿

1 0.5 0.1 1 1 I & II 1 5 10 15 𝑀𝑜𝑏
𝑀𝑝𝑟

2 1 1 2 10 I & II 1 5 10 15 𝑀𝑜𝑏
𝑀𝑝𝑟

II wave propagation. In Fig. 16(d), the error is calculated by comparing
he results from the diffuse interface case with the sharp interface case,
hile in Fig. 17(d), the total mechanical energy is compared with the

value at the end of loading. Generally, the error increases along with
the increase of the parameter 𝜖, or the interface width. But it is less than
4% for most cases. During the numerical simulation with the phase field
method, the parameter 𝜖 is usually designed as approximately 5. This

eans that the diffuse interface contains around 13 cells in the normal
irection. For almost all cases in Figs. 16 and 17, the corresponding

error is less than 2%. For 𝑅𝛽
𝜌 = 2 and 𝑅𝛿

𝜌 = 10, comparing the numerical
results from 𝑀𝑜𝑏 and 𝑀𝑝𝑟, they are almost identical to each other,
when the parameter 𝜖 is fixed. But they are different for 𝑅𝛽

𝐾 = 0.5 and
𝛿
𝐾 = 0.1, because the effective stiffness is dependent on the normal
ector 𝝃, as derived in Section 3.1. In Eqs. (19) and (22), the matrix

𝑸 is also derived based on the normal vector 𝝃. But the density matrix
̂

𝛼
is a scalar matrix, since the density is isotropic. The transformation

in Eqs. (19) and (22) is implemented for an easy understanding of the
erivation precondition and procedure (Liu et al., 2021). Therefore, the
ffective density is independent on the normal vector 𝝃. In the case of
𝛽
𝐾 = 0.5 and 𝑅𝛿

𝐾 = 0.1, the numerical error for 𝑀𝑜𝑏 is generally less
han 𝑀𝑝𝑟. When increasing the parameter 𝜖, the difference becomes
reater.

For 𝜖 = 10, the energy density from the diffuse and sharp interface
ases is presented in Figs. 18 and 19. In Figs. 18(a) and 18(c), the area
etween the parallel red lines is the diffuse interface. For the purpose of
omparison, the red lines are also plotted in Figs. 18(b) and 18(d). It is
oticed that the energy density is successfully diffused within the two
nd multi phase/grain interface, and that the energy density within
he single phase/grain domain agrees well with the sharp interface

ase. This can also be observed in Fig. 19. For the normal vector 𝝃 e
espectively derived from 𝑀𝑜𝑏 and 𝑀𝑝𝑟, the energy density maps in
ig. 19(b) are almost identical, while they are different in Fig. 19(a),
ince the effective stiffness is dependent on the normal vector 𝝃. This
oincides with the observation from Figs. 16 and 17. In Fig. 19(a), the
nergy density is equally weighted by the phases/grains 𝛼, 𝛽 and 𝛿,
hen the normal vector 𝝃 is derived from 𝑀𝑜𝑏, while the phase/grain
plays a dominant role when 𝝃 is from 𝑀𝑝𝑟. This is similar to the

ifference between Figs. 2(b) and 2(c).
Similar to Section 7.1, with the parameter 𝜖 ranging from 1 to 15,

he homogenization scheme for the effective stiffness matrix in Sec
ion 3.1 is compared with the linear homogenization method, i.e. the
T model, through the difference of the numerical errors, as illustrated

n Fig. 20. In Fig. 20(a), the positive and negative error differences
or the mechanical energy within the phase/grain 𝛼 are respectively
ntegrated with time 𝑡. In Figs. 20(b) and 20(c), the positive/negative
rror differences for the mechanical energy within the phases/grains 𝛽
nd 𝛿 are averaged with the time 𝑡. Furthermore, in Fig. 20(d), the error
ifference for the total mechanical energy is plotted against the time 𝑡.

The conclusion from Fig. 20 is the same with Section 7.1. Generally,
he proposed homogenization scheme performs better than the linear
omogenization method.

. Conclusions

Based on the previous work in Liu et al. (2021), a detailed accuracy
nd convergence study on the dynamic mechanical energy in two and
ulti phase/grain systems is implemented in this paper. Factors such as

he wave types, the material properties, the phase/grain size, the inter
ace width and the normal vector formula at the multiphase/multigrain
nterface are considered, and a detailed error discussion is provided.

The numerical results from the diffuse interface case are com
ared with those from the sharp interface case to verify the numerical
ccuracy and stability of the proposed scheme. Generally, the numer
cal errors between these two cases are less than 3%. The numerical
olver is robust and stable, which can be applied to a wide range
f stiffness/density ratios, phase/grain sizes and interface widths. The
umerical results from the Type II wave propagation with weak discon
inuity are more accurate and stable than those from the Type I with
trong discontinuity, which is consistent with the observation in Liu

t al. (2021). The energy conservation law is well recovered, especially



Fig. 19. The mechanical energy density for the Type II wave at 𝑡 = 20ns (unit: 10E + 04 J/m3).

Fig. 20. Error comparison between the proposed homogenization scheme and the linear homogenization scheme for the effective stiffness matrix. (a), (b) and (c) respectively
illustrate the error differences for the mechanical energy within the phases/grains 𝛼, 𝛽 and 𝛿 for 80 ns with 𝛥𝑡 = 0.1 ns (unit: %), while (d) illustrates the error difference for the
total mechanical energy.
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𝑻 𝑆𝜍 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜉1𝜉1 𝜂1𝜂1 𝜁1𝜁1 2𝜂1𝜁1 2𝜉1𝜁1 2𝜉1𝜂1 0 0 0
𝜉2𝜉2 𝜂2𝜂2 𝜁2𝜁2 2𝜂2𝜁2 2𝜉2𝜁2 2𝜉2𝜂2 0 0 0
𝜉3𝜉3 𝜂3𝜂3 𝜁3𝜁3 2𝜂3𝜁3 2𝜉3𝜁3 2𝜉3𝜂3 0 0 0
𝜉2𝜉3 𝜂2𝜂3 𝜁2𝜁3 𝜂2𝜁3 + 𝜂3𝜁2 𝜉2𝜁3 + 𝜉3𝜁2 𝜉2𝜂3 + 𝜉3𝜂2 0 0 0
𝜉1𝜉3 𝜂1𝜂3 𝜁1𝜁3 𝜂1𝜁3 + 𝜂3𝜁1 𝜉1𝜁3 + 𝜉3𝜁1 𝜉1𝜂3 + 𝜉3𝜂1 0 0 0
𝜉1𝜉2 𝜂1𝜂2 𝜁1𝜁2 𝜂1𝜁2 + 𝜂2𝜁1 𝜉1𝜁2 + 𝜉2𝜁1 𝜉1𝜂2 + 𝜉2𝜂1 0 0 0
0 0 0 0 0 0 𝜉1 𝜂1 𝜁1
0 0 0 0 0 0 𝜉2 𝜂2 𝜁2
0 0 0 0 0 0 𝜉3 𝜂3 𝜁3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.7)

Box I.
𝑪

or the Type II mechanical load. The energy density is successfully
iffused across the interface. In comparison with the effective density,
he effective stiffness is more sensitive to the formula of the normal
ector. Overall, however, the difference generated by the different
ormal vector formulas is negligible. Within the multiphase/multigrain
nterface domain, the influence of the normal vector formulas upon the
echanical energy density can be observed for the case with different

tiffness ratios. To be specific, the energy density is equally weighted
ithin the multiphase/multigrain interface domain in Eq. (24a), while

he phase/grain with a high stiffness value dominates the energy dis
ribution in Eq. (25). This coincides with the directions of the normal
ectors within the multiphase/multigrain interface domain. For the
ase with different density ratios, however, there is no difference for
he energy density within the multiphase/multigrain interface domain.
he numerical results are also compared with those from the linear
omogenization method, i.e. the VT model. It is observed that the pro
osed homogenization scheme in Section 3 generally performs better
han the linear homogenization method.

Overall, the numerical analysis in this paper builds a solid foun
ation for the further simulation of mechanical wave associated phase
ransformation, such as the martensitic transformation Eckner et al.
2016), Kashchenko et al. (2010a,b), Kashchenko (2006).

Furthermore, the established phase field model including the me
hanical wave can be applied to computationally quantify phase/grain
istributions in composite materials, such as fibre reinforced polymers,
r to detect microcracks in a non destructive way in future research.
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Appendix

The transformation matrices 𝑴𝜀, 𝑴𝜎 and 𝑸 are composed of the
local base unit vectors {𝝃, 𝜼, 𝜻} as follows:

𝑴𝜀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜉1𝜉1 𝜉2𝜉2 𝜉3𝜉3 𝜉2𝜉3 𝜉1𝜉3 𝜉1𝜉2
2𝜉1𝜁1 2𝜉2𝜁2 2𝜉3𝜁3 𝜉2𝜁3 + 𝜉3𝜁2 𝜉1𝜁3 + 𝜉3𝜁1 𝜉1𝜁2 + 𝜉2𝜁1
2𝜉1𝜂1 2𝜉2𝜂2 2𝜉3𝜂3 𝜉2𝜂3 + 𝜉3𝜂2 𝜉1𝜂3 + 𝜉3𝜂1 𝜉1𝜂2 + 𝜉2𝜂1
𝜂1𝜂1 𝜂2𝜂2 𝜂3𝜂3 𝜂2𝜂3 𝜂1𝜂3 𝜂1𝜂2
𝜁1𝜁1 𝜁2𝜁2 𝜁3𝜁3 𝜁2𝜁3 𝜁1𝜁3 𝜁1𝜁2
2𝜂1𝜁1 2𝜂2𝜁2 2𝜂3𝜁3 𝜂2𝜁3 + 𝜂3𝜁2 𝜂1𝜁3 + 𝜂3𝜁1 𝜂1𝜁2 + 𝜂2𝜁1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.1)

𝑴𝜎 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜉1𝜉1 𝜉2𝜉2 𝜉3𝜉3 2𝜉2𝜉3 2𝜉1𝜉3 2𝜉1𝜉2
𝜉1𝜁1 𝜉2𝜁2 𝜉3𝜁3 𝜉2𝜁3 + 𝜉3𝜁2 𝜉1𝜁3 + 𝜉3𝜁1 𝜉1𝜁2 + 𝜉2𝜁1
𝜉1𝜂1 𝜉2𝜂2 𝜉3𝜂3 𝜉2𝜂3 + 𝜉3𝜂2 𝜉1𝜂3 + 𝜉3𝜂1 𝜉1𝜂2 + 𝜉2𝜂1
𝜂1𝜂1 𝜂2𝜂2 𝜂3𝜂3 2𝜂2𝜂3 2𝜂1𝜂3 2𝜂1𝜂2
𝜁1𝜁1 𝜁2𝜁2 𝜁3𝜁3 2𝜁2𝜁3 2𝜁1𝜁3 2𝜁1𝜁2
𝜂1𝜁1 𝜂2𝜁2 𝜂3𝜁3 𝜂2𝜁3 + 𝜂3𝜁2 𝜂1𝜁3 + 𝜂3𝜁1 𝜂1𝜁2 + 𝜂2𝜁1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.2)

𝑸 =
⎛

⎜

⎜

⎝

𝜉1 𝜉2 𝜉3
𝜂1 𝜂2 𝜂3
𝜁1 𝜁2 𝜁3

⎞

⎟

⎟

⎠

(A.3)

According to the wave equation and the constitutive equation, the
coefficient matrix 𝑪𝑘 is expressed as:

𝑪1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 𝐾11 0 0
0 0 0 0 0 0 𝐾21 0 0
0 0 0 0 0 0 𝐾31 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝐾55
0 0 0 0 0 0 0 𝐾66 0
1

11
0 0 0 0 0 0 0 0

0 0 0 0 0 1
22

0 0 0

0 0 0 0 1
33

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

0 0 0 0 0 0 0 𝐾12 0
0 0 0 0 0 0 0 𝐾22 0
0 0 0 0 0 0 0 𝐾32 0
0 0 0 0 0 0 0 0 𝐾44
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝐾66 0 0
0 0 0 0 0 1

11
0 0 0

0 1
22

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟
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⎝ 33 ⎠
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The transformation matrix 𝑻 𝑆𝜍 is expressed by the local base unit
ectors {𝝃, 𝜼, 𝜻} as Eq. (A.7) given in Box I.
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