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The trend and spatial spread 
of multisectoral climate extremes 
in CMIP6 models
Oluwafemi E. Adeyeri 1,2, Wen Zhou 3*, Xuan Wang 1, Ruhua Zhang 3, Patrick Laux 4, 
Kazeem A. Ishola 5 & Muhammad Usman 6

Climate change could exacerbate extreme climate events. This study investigated the global and 
continental representations of fourteen multisectoral climate indices during the historical (1979–
2014), near future (2025–2060) and far future (2065–2100) periods under two emission scenarios, in 
eleven Coupled Model Intercomparison Project (CMIP) General Circulation Models (GCM). We ranked 
the GCMs based on five metrics centred on their temporal and spatial performances. Most models 
followed the reference pattern during the historical period. MPI-ESM ranked best in replicating the 
daily precipitation intensity (DPI) in Africa, while CANESM5 GCM ranked first in heatwave index (HI), 
maximum consecutive dry days (MCCD). Across the different continents, MPI-LR GCM performed best 
in replicating the DPI, except in Africa. The model ranks could provide valuable information when 
selecting appropriate GCM ensembles when focusing on climate extremes. A global evaluation of the 
multi-index causal effects for the various indices shows that the dry spell total length (DSTL) was the 
most crucial index modulating the MCCD for all continents. Also, most indices exhibited a positive 
climate change signal from the historical to the future. Therefore, it is crucial to design appropriate 
strategies to strengthen resilience to extreme climatic events while mitigating greenhouse gas 
emissions.

Global climate models (GCMs) are critical for understanding climate change. Still, their coarseness restricts their 
usefulness for creating climate change adaptation and mitigation policies, especially at regional scales where 
climate change impacts are more pronounced1. Over the past two decades, many world regions have experienced 
increased intensity and frequency of extreme climate events. These extreme events have been attributed to climate 
change2–5. Nevertheless, past generations of GCMs predicted a rise in such severe occurrences6–8.

Coupled Model Intercomparison Project Phase 6 (CMIP6)9 provides significant advantages that combine 
representative concentration pathways (RCPs) with shared socioeconomic pathways (SSPs), model advancement, 
and better modelling of synoptic processes8,10–14. However, as these GCMs become more widely available, it is 
critical to continue evaluating their ability to represent extreme climatic events worldwide.

Seneviratne et al.7 reported more heavy rainfall episodes, decreased cold extremes, and increased daily tem-
perature extremes globally. Adeyeri et al.2 observed that warm spell duration and the frequency of warm days 
and nights exhibited statistically significant positive trends over the transboundary Lake Chad Basin. Ge et al.13 
investigated future changes in precipitation extremes over Southeast Asia. Chen et al.15 evaluated and compared 
CMIP6 and Coupled Model Intercomparison Project Phase 5 (CMIP5) model performance in simulating extreme 
seasonal precipitation in the western North Pacific and East Asia. Ridder et al.16 reported future changes in 
return periods for the co-occurrence of heatwaves, drought, extreme winds, and precipitation based on a CMIP6 
multimodel ensemble.

Dike et al.17 evaluated seasonal precipitation extremes using CMIP6 and reported an increase in the severity 
of projected dry spells over Central Asia. Collazo et al.18 considered CMIP6 models’ ability to represent observed 
extreme temperatures and concluded that the chosen models could not simulate cold days trends. Das et al.19 
assessed the impact of climate change on temperature extremes and projected a substantial rise in temperature 
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extremes. Wei et al.20 evaluated 23 CMIP6 models’ ability to simulate extreme climate events over China and 
stated that considerable uncertainties remain in future climate projections. Although there are indications that 
GCMs have significant biases in climate simulations compared to observations21–23, there have been positive 
improvements in the CMIP models24–26. Hence, selecting an appropriate collection of GCMs is critical for the 
improved assessment of climate change impacts.

Even though previous researchers focused on the ability of CMIP models to simulate extreme climate events 
or a particular meteorological variable, none of these studies provides an informed decision on the climate mod-
els’ skill in representing different sector-specific indices. Neither offers a holistic approach that could be useful for 
selecting appropriate GCMs when aiming to represent different climate extremes better. It is worth noting that 
a proper depiction of a global variable’s spatial or temporal climatology by a GCM is not the same as the model’s 
ability to represent climate extremes, especially at regional scales, correctly. Additionally, they do not evaluate 
the multi-index causal effects due to the mutuality of the extreme events. Understanding the causal influence of 
the candidate’s extreme event on the responses of the other extreme occurrences is important.

Therefore, this study focuses on CMIP6 skill in representing multi-index climate extremes for different sec-
tors using eleven CMIP6 models. The sector-specific indices are classified as Health, Agriculture, and Water 
Resources. We subsequently evaluated the multi-index causal effects for fourteen indices as well as the trends 
and climate change signals.

Data and methods
The CMIP6 dataset incorporates different shared socioeconomic pathways (SSPs). This study focuses on 
eleven CMIP6 models (Supplementary Table S1) under two SSP scenarios (SSP 370 and 585) during historical 
(1979–2014), near future (2025–2060), and far future (2065–2100) periods for Africa, Asia, North America, 
South America, Europe, and Oceania. SSP370 is the medium-to-high end of future emissions and temperature 
scenarios27, while SSP585 is the only SSP with emissions sufficient to deliver the 8.5 W/m2 level of forcing in 
2100. Table 1 presents the sector-based indices28.

The reference dataset, W5E529,30, is a daily-resolution observed climate data on a global 0.5° × 0.5° lat-lon 
grid. W5E5 was selected as the reference dataset because it has been used to bias-correct climate models for 
impact studies31. All precipitation outputs were re-gridded using second-order conservative mapping due to 
the significant variability and unequal distribution of precipitation. In contrast, all temperature outputs were 
re-gridded using bilinear interpolation32 to prevent erroneous scale gap effects31. All outputs were re-grided to 
a single 1° × 1° grid.

GCM ranking.  The performance of each GCM was ranked for each climate index during the historical 
period using five different metrics23,33–35; namely, percentage bias, mean absolute error, index of agreement, cor-
relation, and root mean square error. These performance metrics were combined for a universal rank Eqs. (1) 
and (2) in which all metrics were assigned an equal weight35,36.

Table 1.   List of indices. H, HW and AF denote Health, Hydrology and Water Resources, Agricultural and 
Food Security, respectively.

S/N Index Description (unit) Name Sector

1 DTR The mean difference between the daily maximum temperature and the daily minimum temperature 
(Celsius) Daily Temperature Range AF

2 DTRV Mean absolute day-to-day variation in the daily temperature range (Celsius) Daily Temperature Range Variability AF

3 DSF The number of dry periods of n days and more, during which the accumulated or maximal daily 
precipitation amount on a window of n days is under 1.0 mm (days) Dry Spell Frequency HW, AF

4 DSTL Total number of days in dry periods of a minimum length, during which the maximum or accumu-
lated precipitation within a window of the same length is under 1.0 mm (days) Dry Spell Total Length HW, AF

5 ETR The maximum of maximum temperature (TXx) minus the minimum of minimum temperature 
(TNn) for the given time period (Celsius) Extreme Temperature Range AF

6 HWF
The number of heatwaves over a given period. A heatwave is defined as an event where the minimum 
and maximum daily temperature both exceeds specific thresholds over a minimum number of days, 
usually for >  = 3 days (events)

Heat Wave Frequency H, HW, AF

7 HWI Number of days that are part of a heatwave, defined as five or more consecutive days over 27 °C 
(days) Heat Wave Index H, HW, AF

8 HWTL
The total length of heatwaves over a given period. A heatwave is defined as an event where the 
minimum and maximum daily temperature exceeds 22 °C and 30 °C (respectively) over a minimum 
number of days. This is the sum of all days in such events (days)

Heat Wave Total Length H, HW, AF

9 HSF The number of hot spells over a given period. A hot spell is defined as an event where the maximum 
daily temperature exceeds 30 °C over a minimum number of days, usually for >  = 3 days (events) Hot Spell Frequency H, HW, AF

10 DPI Average precipitation over wet days (mm/day) Average Daily Precipitation Intensity HW, AF

11 WDD The total number of days where warm and dry conditions coincide (days) Warm and Dry Days H, HW, AF

12 WSDI Number of days inside spells of a minimum number of consecutive days where the daily maximum 
temperature is above the 90th percentile (days) Warm Spell Duration Index H, HW, AF

13 HWML The maximum length of heatwaves over a given period (days) Heat Wave Maximum Length H, HW, AF

14 MCCD Maximum number of consecutive dry days within the period where precipitation is below 1 mm/day 
(days) Maximum number of consecutive dry days H, HW, AF
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where Ti,j is the error of metric j and particular model i in space and time. All metrics m are added together to 
get the total relative error T∗

i,tot per GCM per index. It should be noted that the index of agreement and correla-
tion were reversed for the procedures min() and max() because the best-performing models should have a total 
relative score closer to zero. Rank 1 is the best-performing model for each index.

Empirical cumulative distribution function (ECDF).  The ECDF is calculated by ordering all the 
unique observations in the data sample and calculating the cumulative probability for each as the number of 
observations less than or equal to a given observation divided by the total number of observations (n).

This is given as37;

where 1X is the indicator of event X. When t is fixed, indicator 1Xi ≤ t is a Bernoulli random variable with 
parameter p = F(t).

F̂n(t) is the unbiased estimator of F(t). The independent, identically distributed real random variables with 
the shared cumulative distribution function F(t) are denoted by Xi(t).

We examined the ability of the GCMs to simulate the monthly climatology of the extreme indices by visually 
inspecting and subjecting the ECDF distributions to Kolmogorov–Smirnov test to understand the distribution 
differences between the reference and the outputs from the GCMs.

Correlation, partial correlation, index of importance and causal effects.  The degree of associa-
tion is a metric that shows how strong the relation between two variables is without considering that a third 
variable may influence both variables. When several factors impact the phenomenon under examination, partial 
correlation becomes extremely important.

However, due to the changing variance and linearity of the extreme events, we used the spearman correlation 
to benchmark the monotonic relationship between the extreme events.

Partial correlation is the correlation of two variables while controlling for a third or more other variables. 
The relationship is said to be partial when two variables are correlated while conditioning the third or several 
other variables38.

The partial correlation is given as:

where ρUVW is the partial correlation of variables U and V conditioned on W, ρUV  is the correlation between 
varaibles U and V, ρUW is the correlation between variables U and W while ρVW is the correlation between 
variables V and W.

For a set of t controlled variables, W is

Statistically significant correlation and partial correlation were examined using the Student’s t-test at a 95%, 
99% and 99.9% confidence level.

Due to the mutuality of these extreme events, we also quantified the causal influence of the candidate’s extreme 
event on the responses of the other extreme occurrences.

Several methods have been proposed to assess this, but the most popular is the permutation of importance, 
based on the random forest algorithm39,40. However, this approach is unsuitable for highly correlated events, as 
it cannot distinguish between an event’s conditional and marginal influence41.

As a result, the Conditional Variable Relevance—also known as the Conditional Permutation Importance 
(CPI)—was used to assess more partial importance in random forests. The CPI is presented as:

For the regression trees in the random forest

(1)T∗
i,j =

Ti,j −min(Ti,j)

max(Ti,j)−min(Ti,j)

(2)T∗
i,tot =

m∑

j=1

T∗
i,j

(3)F̂n(t) =

∑n
i=11Xi ≤ t

n

(4)ρUVW =
ρUV − ρUWρVW√(

1− ρ2UW
)
∗ (1− ρ2VW)

W = {W1,W2, ..,Wt}

(5)R(t) =
∑

i∈β(t)

(
ŷ
(t)
i − yi

)2

∣∣β(t)
∣∣
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For the classification trees in the random forest

where R(t) and R(t)
(k) are the prediction error of tree t in a random forest with predictors p and ntrees of trees 

based on the out-of-bag sample β(t) , respectively, before the permutation of the out-of-bag values of Xk . 
∣∣β(t)

∣∣ is 
the out-of-bag cardinal number sample for tree t, and I() is the indicator function.

ŷ
(t)
i  is the function f (t)(xi) , which is the random forest prediction of the out-of-bag observation i before 

permutation. xp(i)k is the ith Xk observation after permutation.
The forest permutation of importance PI(k) is the average overall tree-wise permutation PI(t)(k).

where PI(t)(k) = R(t)
(k) = R(t)

In the CPI, out-of-bag values of one predictor X(k) are conditionally permuted on other predictors Z(−k).
The extreme events are subjected to CPI following Debeer and Strobl40, while the causality assumptions are 

presented by van der Laan42.

Climate change signals in extreme events.  For risk management purposes, climate projections should 
include a wide range of feasible spectrums of anticipated future climate change36. The climate change signals 
(CCS) in extreme events were calculated as the difference between (i) the far future and the historical period, (ii) 
the near future and the historical period, and (iii) the far future and the near future.

Trends and significance.  Spatial plots based on robustness and significance criteria are presented for all 
indices’ historical and future assessments. Following Haensler et al.43, this study considers a signal robust if 66% 
of the models agree. Statistically significant trends and climate change signals were examined using the Student’s 
t-test at a 95% confidence level35. The trend in the climate extreme events was calculated based on the Mann–
Kendall trend test, while the trend’s magnitude was estimated using Sen’s slope35,44–46.

Results
Spatial spread climatology.  The climatology was computed for all indices for the historical period. For 
instance, the climatology of extreme temperature range (ETR) ranged from 2 to 47 °C (Supplementary Fig. S1), 
with the tropics having the smallest range. BCC replicated the spatial spread, with slight overestimation over 
Russia and underestimation around the Brazilian and West African coasts. Additionally, other models had vary-
ing degrees of overestimation or underestimation. Generally, the range increased away from the equator in the 
Northern and Southern Hemispheres. This pattern is visible in all models. The departure of the models from 
the reference is presented in Fig. 1. Most models had evident cold biases in the Southern Hemisphere. However, 
some models, e.g., BCC, performed well in North America, Greenland, West Africa, and some parts of Russia. 
The hot bias was highest in CANESM5, with ETR values as high as 23 °C in Greenland and China. MPI-ESM, 
MPI-LR, and NORESM2 all recorded cold tendencies over entire continents. The spatial spread for other indices 
is presented in the supplementary file (Supplementary Fig. S2 to S9).

Regional ECDF.  Taking the ETR as an example, Supplementary Fig. S10 shows the distribution of the ECDF 
on the continental scale. Over Africa, four models (CANESM5, BCC, UKESM, and INM) reasonably replicated 
the reference ETR (Supplementary Fig. 10a, Table 2). However, based on the Kolmogorov–Smirnov statistics 
(Table 2), INM showed the lowest distribution distance (0.14), although with a P-value lesser than 0.05. This 
means INM performed best in capturing the ECDF distribution. However, the P-value suggested that INM 
distribution was not the same as the reference distribution. MIROC6 overestimated this by up to 5 °C. At the 
same time, IPSL, MPI-LR, MPI-ESM, and NORESM2 underestimated the distribution by up to 7 °C. Over Asia, 

(6)R
(t)
(k) =

∑

i∈β(t)

(
ŷ
(t)
i(k) − yi

)2

∣∣β(t)
∣∣

(7)R(t) =
∑

i∈β(t)

I
(
ŷ
(t)
i �= yi

)

∣∣β(t)
∣∣

(8)R
(t)
(k) =

∑

i∈β(t)

I
(
ŷ
(t)
i(k) �= yi

)

∣∣β(t)
∣∣

ŷ
(t)
i(k) = f (t)(xi(k))

xi(k) = (xi1, . . . , xik−1,xp(i)k,xik+1, . . . , xip)

PI(k) =

∑ntree
t=1 PI

(t)
(k)

ntree
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there was no outright distinction in the distribution by the models. Nonetheless, MIROC6 was close to the refer-
ence with a Kolmogorov–Smirnov statistic of 0.15. Over South America, no model could replicate the reference 
distribution well, although BCC performed better than the other models. The Kolmogorov–Smirnov statistics 
is 0.48. All models behaved differently in capturing the ECDF of different indices and for separate continents.

GCM performance and ranking.  Figure 2 shows the multi-index continental GCM ranks. Over Africa 
(Fig.  2a; Supplementary Table  S2), MPI-ESM performed best in replicating the daily precipitation intensity 
(DPI), while BCC performed worst (ranked 11th). For ETR, four models (CANESM5, BCC, UKESM, and 
INM), as observed in the ECDF earlier, ranked best in Africa. Over Asia, CANESM5 ranked first in heatwave 
index (HWI), maximum consecutive dry days (MCCD), daily temperature range (DTR), and dry spell total 
length (DSTL). In contrast, BCC ranked first in heatwave maximum length (HWML), hot spell maximum 
length (HSML), and DTRV. As observed by the ECDF of ETR over Asia, MIROC6 was the best-performing 
model in ETR. Over Europe and North America, IPSL ranked first in replicating the observed warm and dry 
days (WDD). In contrast, MPI-LR ranked first in reproducing the reference DPI over South America and Oce-
ania, respectively. Notably, the hot spell frequency (HSF) and heat wave frequency (HWF) were well replicated 
by all CMIP6 models, as the error margin was between 2 to − 3 days/decade for all models.

Correlation and partial correlation.  Figure 3 shows the multi-index correlation and partial correlation 
plot for the reference on the continental scale. For instance, in Africa, the HSML was strongly positively cor-
related with heatwave frequency (HWF) (88%), HWI (87%), HWML (90%), and heatwave total length (HWTL) 
(90%), all at the 95% confidence level (upper diagonal). However, this is different when considering partial 
correlation. The partial correlation plot (lower diagonal) shows that the HSML was positively correlated with 
heatwave frequency (HWF) (21%), HWI (59%), and HWML (27%), while negatively correlated with HWTL 
(− 18%), all at the 95% confidence level. The same pattern was observed in Asia and Oceania. The partial correla-
tion values and directions differed in North America, South America, and Europe. The analysis was repeated for 
the ensemble-mean of the CMIP6 (Supplementary Fig. S11). Generally, the reference and model ensemble-mean 
have similar correlation and partial correlation patterns, albeit with differing magnitudes.

Causality and importance.  Figure 4 presents the CPI results for the reference data. Over the entire conti-
nent, HWTL was greatly influenced by the hot spell maximum length (HSML) and HWF. There was no universal 
pattern of causality for ETR, as the importance-modulating index varied with the continent. In Africa, HWTL, 
DTRV, and HSML were the most influential indices for ETR, while in Asia, HWI, DTR, and DTRV were the 
most significant. In contrast, DTRV and DTR were the most influential indices in Europe. HWTL and HWF 
greatly influenced changes in the pattern of HSML on all continents, while DSTL was the most crucial index 
modulating the MCCD for all continents. Supplementary Fig. S12 to S18 show the CPI of other extreme indices 
over the entire continent. Additionally, there was general agreement between the index of importance observed 
in the reference and the multimodel ensemble-mean.

Trends and CMIP6 trend consistency.  As a case study, Fig. 5 shows the trends in ETR for reference and 
the CMIP6 models during the historical period. For reference, there were some statistically significant nega-
tive trends in ETR in some parts of North America and Asia, with values between − 4.1 and − 0.3 °C/decade. 
However, there was a typical positive trend of ETR in Africa and South America, though some parts were not 
statistically significant. Moreover, the CMIP6 models could not capture the significant trends in the reference. 
They also exhibited some underestimations, particularly in South America, and overestimations in Greenland. 
Except for IPSL and CNRM, most models showed a general warm bias over North America and northern Asia 

Table 2.   Kolmogorov–Smirnov statistics for ECDF comparison. Bold values represent the lowest distance 
(high similarity to reference). High P-values show that the reference and CMIP6 model distribution are 
identical.

Continents BCC CANESM5 CNRM INM IPSL MIROC6 MPI_ESM MPI_LR MRI NORESM2 UKESM

Africa
Statistics 0.33 0.37 0.45 0.14 0.53 0.32 0.45 0.57 0.7 0.59 0.17

P-value 4.50E−06 2.00E−02 1.00E−18 8.40E−11 1.00E−19 1.00E−E−20 1.00E−20 1.00E−17 1.00E−20 1.00E−14 2.00E−04

Asia
Statistics 0.25 0.43 0.27 0.35 0.34 0.2 0.5 0.56 0.37 0.62 0.2

P-value 2.90E−12 1.00E−19 1.60E−14 1.00E−20 1.00E−20 7.98E−08 1.00E−17 1.00E−20 1.00E−14 1.00E−19 7.90E−08

North America
Statistics 0.19 0.3 0.31 0.17 0.4 0.15 0.47 0.51 0.35 0.52 0.25

P-value 2.51E−07 1.00E−14 1.00E−19 4.48E−06 1.00E−19 6.00E−05 1.00E−19 1.00E−20 1.00E−17 1.00E−20 2.92E−12

South America
Statistics 0.48 0.70 0.72 0.74 0.98 0.61 0.99 0.99 0.95 0.94 0.99

P-value 1.00E−19 1.60E−14 1.00E−20 1.00E−20 1.00E−20 1.00E−17 1.00E−20 1.60E−14 1.00E−20 1.00E−20 1.00E−20

Europe
Statistics 0.33 0.36 0.45 0.14 0.53 0.32 0.45 0.57 0.70 0.59 0.17

P-value 1.00E−17 1.00E−20 1.00E−14 1.00E−19 1.00E−19 1.00E−20 1.00E−20 1.00E−17 1.00E−14 1.00E−19 1.00E−17

Oceania
Statistics 0.48 0.39 0.65 0.57 0.94 0.26 0.69 0.69 0.30 0.94 0.37

P-value 1.00E−20 1.00E−20 1.00E−20 1.00E−17 1.00E−19 1.38E−13 1.00E−19 1.00E−20 1.00E−20 1.00E−17 1.00E−20
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(Supplementary Fig. S19). Furthermore, there was a characteristic cold bias in South America, Africa, and Oce-
ania. The range of the model trend biases was between − 3.4 and 4.7 °C/decade.

There was a consistent negative trend of DTR over most parts of West and North Africa, southern Europe, and 
Central Asia, with agreement by all eleven models (Fig. 6). The positive DTRV trend consistency was prominent 
mainly between latitudes 15° N and 35° N; and longitudes 25° W and 60° E, while an apparent negative trend 
was observed over Europe, northern Australia, and western Canada, with agreement by at least nine models. 
The consistent positive trend of HTWL was particularly noticeable in West and North Africa, most parts of 
Australia, and South America.

Projection and change signal.  Taking ETR as a case study, Fig. 7 shows the CCS in trends between the 
historical, near future (NF), and far future (FF) for both SSP 370 and 585 using the CMIP6 ensemble-mean. 
Although there were some significant negative trends of ETR in some parts of North America and some signifi-
cant positive trends in some parts of South America, the ensemble-mean generally replicated the spatial trend 
in other parts of the world during the historical period, although with different magnitudes and significance. 
In most cases, most parts of the tropics witnessed a positive trend of ETR during the historical period. The FF 
under SSP 370 witnessed a significant widespread negative trend in Europe and Alaska. Similarly, other parts of 
the world mainly had positive trends. The trend values varied between − 4.9 and 3.5 °C/decade.

We further explored the climate change signal in the trends for the different periods.
The CCS between the historical and SSP 370 NF showed a rise in the trend of ETR from the historical to SSP 

370 NF periods in Europe, with a magnitude between 1.0 and 4.0 °C/decade. However, there was a general drop 
in this trend for most parts of Canada and some parts of Russia. Moreover, most parts of the world experienced 
an increasing trend from the historical to SSP 370 NF. In reverse, the CCS between the historical and SSP 585 
NF revealed that most areas of Canada that were previously accustomed to negative trends were reversed to 
positive. In contrast, the once positive trend in the USA under SSP 370 NF became negative. China also had a 
more intense positive trend during this period. A further look into the CCS between SSP 370 NF and SSP 370 
FF shows a significant deepening in the trend of ETR over most parts of Europe, with magnitudes of between 
− 2.1 and − 5.0 °C/decade. At the same time, some other areas like north-eastern Canada had a significant rise 
in the trend by up to 4 °C. Supplementary Fig. S20 shows the result of the same experiment considering DTR.

Figure 8 shows the yearly and total cumulative heatwave index (HWI). Africa had the highest days of HWI. 
The reference series values ranged from 149 (in 1983) to 171 days/year (in 2012). However, the highest days in 
the historical CMIP6 ensemble-mean varied from 120 to 130 days/year. The highest days of HWI for the entire 
period of study manifested during the far future under SSP 585, with 181 days/year from 2098 to 2100. Never-
theless, comparing the reference with the historical simulations showed an underestimation of HWI days for all 
continents. The total cumulative HWI index showed Africa having more than 6000 days of HWI during the far 
future under SSP 370 and 585, while Asia maintained a value of 2000 days under the same SSPs.

Zonal and meridional cross‑section ETR.  Zonal and meridional cross-sections were used to under-
stand further the influence of land, sea, and latitude differences on ETR (Fig.  9). Over Africa, there was an 
apparent increase of ETR away from the equator and the coast. However, high ETR was visible in desert regions, 
specifically between 20 and 30°N (Sahara Desert) and between 25 and 32°S (Kalahari Desert). More importantly, 
the ETR was highest in the Kalahari Desert for all years due to cooler (freezing) nights than in the Sahara Desert. 
Furthermore, the ETR decreased toward the Mediterranean due to the ocean’s high specific heat capacity. ETR 
was highest in regions with a dense landmass and reduced toward the ocean due to the land’s low specific heat 
capacity compared to the ocean.

ETR was lowest over scattered landscapes (− 10° N to 10° N) in Asia and increased with denser landmass 
(Fig. 9c). Meridionally, ETR was highest in mountainous regions due to the ability of these regions to warm and 
cool faster than the surrounding regions. ETR also decreased toward the Pacific Ocean. Generally, ETR ranged 
between 3.0 and 72.0 °C for the displayed continents.

Additionally, there were cold biases in most CMIP6 models along the tropics (Fig. 10). However, NORESM2 
reasonably captured the low ETR along the equator and a few degrees away from the equator. IPSL and INM 
underestimated the low ETR along the equator by 5 to 20 °C. In contrast, MPI-LR, MPI-ESM, CANESM5, and 
BCC captured the high ETR north of 50°N reasonably well. The models, overall, mirrored the reference patterns. 
The ETR reduced as it approached the Arctic due to ice, increased as it advanced toward the Mediterranean, and 
declined as it approached the equator. The broad range was between 1.0 and 73.0 °C.

Discussion and conclusion
In this study, we explored the potentials of eleven GCMs participating in CMIP6 project in representing fourteen 
climate extreme indices that are useful for different sectors, including health, agriculture and water resources. 
Understanding of climate model skills, multi-index causal effects and global climate change signals of extremes 
is limited, but is key in reinforcing well-informed decisions in the various sectors.

For the selected models, individual CMIP6 GCM results often varied significantly between regions and 
models. For example, the top-performing GCM in simulating the reference DPI tended to exhibit consistently 
strong performance across continents, whereas the best-performing model in simulating DTSL differed among 
continents.

Additionally, there were observable biases in the climatology of various indices. The distribution of the 
ECDF supported these inconsistencies. Notably, all models behaved differently in capturing the ECDF of dif-
ferent indices and for different continents. These inconsistencies could be attributed to the various land surface 
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schemes and simulation of features such as vegetation36 and orography47, unrealistic large-scale variability35,48, 
and contrasting internal variability between climate models and observations23,49.

Nevertheless, previous studies50–52 showed that CMIP GCMs struggled to capture daily temperature minima 
and maxima. Yet, understanding extreme temperature events is critical since many earth system processes are 
influenced by the maximum and lowest temperatures as well as the mean temperature36,52.

The performance of GCM in simulating precipitation extremes also varied widely across the globe. However, it 
is essential to note that the highest biases were recorded immediately north and south of the equator, particularly 
for DSTL. The signal of these biases varied among the different models, suggesting the inability of the models to 
correctly resolve important biophysical features such as solar radiation, vegetation, and cloud features, especially 
at daily scales53,54 or other synoptic-scale system interactions55. In contrast to Srivastava et al.56, who reported 
that UKESM was one of the best-performing models in the US for precipitation simulation, we found that IPSL 
performed best in simulating MCCD for both Africa and North America, while MPI-ESM and MPI-LR per-
formed best in simulating DPI in Africa and North America, respectively. Across all continents, IPSL performed 
best for MCCD, while MPI-LR performed best for DPI. Remarkably, the MPI model family performed best in 
capturing the DPI across the six continents. This may have been produced from model inter-dependence36,56,57.

Despite the different biases associated with the various models, the correlation and partial correlation pat-
terns were similar for the reference and model ensemble-mean, although with different magnitudes. Also, the 
causal impact for different indices varied. More precisely, the causal impact for ETR did not follow a universal 
pattern since the important modulating index differed depending on the continent. Furthermore, the multimodel 
ensemble-mean and the significant index agreed with the reference.

There was a mix of trends for the various specific indices for each location. Despite a rise in both maximum 
and minimum temperatures, the significant negative trends of DTR suggested quicker warming of the minimum 
temperature2.

Nonetheless, these results have some practical implications for decision-makers in different sectors. Due 
to changes in land cover, land use, and the resources employed in urban centres, cities have greater surface 
temperatures than rural areas (urban heat island phenomenon53,58–60). Additionally, urban heat island impacts 
lengthen the duration of heat events during heatwaves61; however, this behaviour is different for the various 
atmospheric circulation regions. For example, we could not observe increased heatwave total length in most 
urban areas in the mid-latitudes. Yet, the reverse is for urban areas in the tropics. This demonstrates that rather 
than urban heat islands, large-scale meteorological conditions62, significantly impact the length of the duration 
of heatwaves in midlatitude.

The consequences of drought on water demand and supply by natural systems and people, on the other 
hand, will be amplified as the climate warms63,64. Furthermore, rising temperatures worsen heavy precipitation 
by increasing atmospheric moisture, promoting the precipitation event through moisture convergence at low 
altitudes65,66 and increasing evapotranspiration rates arid areas46. This will lead to more intense hydrometeorologi-
cal situations, such as floods and droughts5 and significantly impact the amount and quality of available water as 
well as river discharge timing and amplitude67. As a result, humans, society and natural systems are at risk67,68.

Therefore, it is crucial to design appropriate strategies to strengthen resilience to extreme climatic events 
while also mitigating further GHG emissions. However, optimal adaptation/mitigation strategies for climate 
change could be hampered by incorrect information from the poor representation of climatic events in data sets.

Beyond the specifics of this research, future work could investigate extreme historical events with additional 
reference datasets, bias-corrected or downscaled CMIP6 datasets, especially for extreme precipitation events. 
Additionally, more CMIP6 models could be utilized.

Data availability
CMIP6 data are publicly available through the Earth System Grid Federation at: http://​esgf.​llnl.​gov/. The W5E5 
reference dataset is distributed by the GFZ Data Services and can be downloaded at https://​doi.​org/​10.​5880/​pik.​
2019.​023. The derived data generated for the study are available from the corresponding author on reasonable 
request.

Code availability
All analyses and figure were drawn in the R version 4.1.2 Platform69 (https://​www.R-​proje​ct.​org) and Python 
version 3.970 (https://​www.​python.​org/).
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