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Abstract
Glass fiber (GF) Sheet Molding Compound (SMC) composites are popular lightweight materials due to their good process-
ability. Hybrid SMCs expand the field of operation, combining the high stiffness of unidirectional carbon fibers (CF) with the 
economic efficiency of GF. Combinations of manufacturing deviations (delamination, varying GF content, CF misorientation) 
occur during the production of hybrid SMCs and impede the mechanical performance of the part. A function-oriented quality 
assurance instead of strict tolerances is proposed. Finite element (FE) simulations are computationally too expensive for an 
assessment within the cycle time. Hence, surrogate models are trained on multiple parameterized FE simulations. The sur-
rogate models shall allow for an individual functional assessment in real-time based on integrated measurement inputs. This 
work focuses on the generation of parametrized FE simulations for measurement inputs and surrogate modeling. Simulations 
and surrogate models show acceptable deviations from tensile tests for multiple combinations of manufacturing deviations. 
The measurement uncertainty of the stiffness prediction is assessed for both the FE simulation and the surrogate models in 
accordance with the Guide to the Expression of Uncertainty in Measurement (GUM).

Keywords Fiber reinforced polymer · Non-destructive testing · In-line measurement · Quality assurance · Surrogate model · 
Finite element simulation

1  Introduction and motivation

Lightweight construction plays an essential role to reduce 
overall  CO2 emissions [1]. Fiber reinforced polymers (FRP) 
combine high mechanical stiffness and strength with lower 
weight compared to metals. Multi-material designs are 
developed to economically tailor the mechanical properties 
to the specific requirements of the part. Sheet Molding Com-
pound (SMC) is the FRP of highest economic importance 
considering production volume in Europe [2]. The usage of 
continuous (Co) and discontinuous (DiCo) fibers in a fiber 
reinforced polymer (CoDiCoFRP) introduces a new hybrid 
material class. Continuous fibers offer better mechanical 
properties while discontinuous fibers improve processabil-
ity [3].

SMC is typically produced on a conveyor belt. Chopped 
glass fibers (GF) are sandwiched between an upper and 
lower layer of thermoset resin. Thus, a mostly planar iso-
tropic fiber orientation distribution (FOD) can be assumed 
for the semi-finished DiCo-SMC. Calendering ensures the 
resin impregnation of all fibers. The material is matured to 
reach an increased viscosity stage, called B-stage or prepreg. 
The same procedure holds to produce unidirectional carbon 
fiber SMC (Co-SMC), except it is not cut and the unidirec-
tional fiber orientation is maintained between the resin lay-
ers. In the co-molding process, a layered structure, consist-
ing of multiple DiCo-SMC layers and patches of Co-SMC, 
is placed in the mold of a hot press and cured [3].

Various manufacturing deviations affect the mechanical 
properties of the CoDiCoFRP [4]. Manufacturing deviations 
are mostly considered as defects and lead to a rejection of 
the part, but could alternatively be considered as individual 
characteristics of the part [5]. However, the significance of 
manufacturing deviations varies with the local performance 
requirements of the part. Manufacturing deviations could 
be allowed if the function of the part is not impeded. Thus, 
manufacturing costs of FRPs could drastically be reduced. 
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An individual part characterization and functional assess-
ment are indispensable to allow manufacturing deviations. 
Multiple in-line measurement techniques are required to 
quantify potential manufacturing deviations within the 
cycle time. The measurement results need to be fed into a 
functional evaluation routine, such as a finite element (FE) 
simulation. However, FE simulations require high computa-
tional effort. Various surrogate models proved to be accurate 
enough for representing FE simulations, while significantly 
reducing computational effort (cf. Sect.  2.3). An individual 
component assessment could be enabled with the help of 
in-line measurements and surrogate models.

2  State of the art

2.1  Effects of defects in fiber reinforced polymers

Voids [3, 5], delaminations [3, 6], fiber misorientations [3, 
4, 6] and deviations of local fiber content [7] are common 
manufacturing deviations of FRPs. Voids and a reduced fiber 
content lead to reduced strength [3, 8] and stiffness [5, 8]. 
Schäferling et al. experimentally investigated the influence 
of various manufacturing deviations in CoDiCoFRP tensile 
tests on the Young’s modulus and the tensile strength [6]. 
Hybrid coupon specimens with delaminations showed only 
a slightly decreased tensile strength. Fiber misorientations 
reduced the stiffness and the tensile strength. No simulative 
approach and no interaction of defects was considered in this 
investigation. Fengler et al. conducted a robustness study 
for CF patch placement while considering the simulated 
stiffness of the part under patch misplacement [4]. Franz 
et al. investigated the influence of fiber misorientations in a 
laminate layup to support the design engineer in tolerancing 
FRP-parts [9, 10]. Kehrer et al. developed a Mori–Tanaka 
homogenization scheme based on orientation average for 
DiCo-SMC, taking into account the FOD and the fiber con-
tent [11].

2.2  Function‑oriented measurement

Weckenmann and Hartmann introduced the term  “function-
oriented measurement” in the context of geometric prod-
uct specification [12, 13]. A mathematical-physical model, 
fed with measurement results, was proposed. This model 
could serve as a “virtual functional gauge” and allowed the 
assessment of multiple measurement results by quantita-
tively predicting the functional ability of the product. Wag-
ner et al. introduced adaptive quality control strategies for 
high-pressure injectors based on FE simulations and in-line 
measurement results [14]. Gauder et al. proposed a func-
tion-oriented evaluation for the acoustic emissions of micro 
gears based on in-line topographical measurements and FE 

simulations [15]. Talreja suggested an acceptance of FRPs 
based on their mechanical performance instead of binary 
acceptance criteria. Thus, the material state (combination of 
defects) needs to be characterized and evaluated by means 
of simulation [5].

2.3  Surrogate models of FE simulations

Sinsberg defines surrogate models as a “function that 
behaves similarly to the original function or simulation in 
terms of its input–output relation, but is much faster to eval-
uate” [16]. Artificial Neural Networks (ANN) [17], Deep 
Neural Networks [18], long-short term memory (LSTM) 
models [19], Proper Orthogonal Decomposition [20] and 
Kriging models [4, 10, 21] proved to be successful for surro-
gate modeling FE simulations. A detailed performance study 
of different surrogate model techniques and sampling meth-
ods using a CFRP plate as an example exists [22]. A review 
on surrogate modeling techniques and sources of uncertainty 
is given in Ref. [23]. Surrogate models have so far been 
used primarily in the design phase in the context of FRP 
product development [4, 10]. To the author’s knowledge, 
an individual FRP component evaluation based on in-line 
measurement results does not exist. The authors chose to 
work with ANNs and Kriging models in this work because 
of references for function-oriented measurements [17] and 
the material formulation under investigation [4]. A detailed 
comparison regarding suitability of different surrogate mod-
eling techniques with respect to measurement integration is 
not performed within this work.

2.4  Measurement uncertainty

A standardized procedure for the determination of meas-
urement uncertainties has been defined in the international 
Guide to the Expression of Uncertainty in Measurement 
(GUM) [24]. The expanded uncertainty U (cf. Eq.  (1)) 
describes the level of confidence that the measurement 
results lie within a large fraction of the interval about the 
measurement result:

with the coverage factor k and the combined uncertainty uc.
Supplement 1 of the GUM describes a procedure to 

calculate the measurement uncertainty with the means of 
Monte-Carlo simulations instead of a linearization and a 
Taylor approximation [25]. According to Lord and Wright, 
the uncertainties of FE models can be categorized into four 
groups [26]:

(1) Model’s description of reality is not exact
(2) Model discretization is an inexact approximation

(1)U = k ⋅ uc;
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(3) Uncertainty of model input values
(4) Algebraic solution is not exact

The uncertainty of surrogate models composes of:

(1) Uncertainties of model input values [27, 28]
(2) Model uncertainties based on existing training data [27, 

28]
(3) Systematic model deviation [28, 29]

In this contribution, the Young’s modulus as an output of 
the FE simulations and the surrogate models is considered 
as a measurement itself. Only the model discretization and 
the uncertainty contributions of the input values are taken 
into account for the determination of the uncertainty of the 
FE model, because modeling and solution errors are typi-
cally insignificant [26]. All three sources of uncertainty are 
considered for the surrogate model.

Overall, widening the tolerances could drastically reduce 
the costs for manufacturing FRPs. Considering the presented 
defects as an individual state of the part while evaluating 
their influence on mechanical performance could serve as 
a virtual functional gauge. So far, the combinations of mul-
tiple defects in hybrid FRPs were neither investigated in 
experiments nor in simulations.

3  Approach

3.1  Overview

Figure 1 illustrates the general idea of an individual func-
tion-oriented part assessment. Functional requirements 
determine the part design and its dimensioning. However, 
production processes are not ideal and manufacturing devia-
tions, as described in Sect.  2, occur. In-line measurements 
enable the determination of the individual part condition. 
Integrating those individual measurement results into FE 
simulations, originating from the product design process, 

could allow for an individual assessment based on the real-
ized function. Because of the computational effort, FE simu-
lations do not meet the requirements of an assessment within 
the cycle time. Thus, multiple parametrized FE simulations 
shall be used to train a surrogate model which allows a func-
tional assessment in real-time based on measurement inputs. 
This work focuses on the generation of parametrized FE 
simulations for measurement inputs and surrogate modeling. 
The following subsections describe the detailed approaches 
for the specimen design, the development of the FE model 
including a measurement uncertainty evaluation and the 
training of two different surrogate model approaches [28].

3.2  Tensile test specimens

Multiple plates (458 mm × 458 mm) with varying glass 
fiber mass fraction (FMF) of DiCo-SMC were manufac-
tured. Optionally, a Co-SMC layer (CF) was added in the 
stacking process. The resin of the DiCo-SMC and the Co-
SMC layer is based on an unsaturated polyester polyurethane 
hybrid (UPPH) resin. Glass fiber length was 25.4 mm with 
a fiber diameter of 13.5 µm. Three different B-stage materi-
als with different glass fiber mass contents were considered 
(41, 45 and 50 wt%). A single layer of semi-finished mate-
rial (prepreg) was approximately 1 mm thick. Two layers 
of DiCo-SMC prepreg were stacked. Artificial delamina-
tions, consisting of a 130 µm thick Teflon (PTFE) foil, were 
optionally integrated between the individual Co-SMC lay-
ers. Artificial voids should be integrated by incorporating 
100 mg of the propellant ammonium bicarbonate between 
the two layers of DiCo-SMC. However, the propellant led 
to surface damages and voids which could not be reproduc-
ibly integrated into the specimens. Thus, the integration of 
voids was discarded. A layer of Co-SMC was only placed 
on top of the DiCo-SMC when hybrid SMC plates were 
manufactured. The mold cavity was fully covered to mini-
mize material flow. Thus, the planar isotropic fiber orienta-
tion distribution (FOD) from the prepreg production process 
was maintained. The mold was heated to 145 °C and closed 

Fig. 1  Function-oriented approach for the individual assessment of FRP parts
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with a maximum hydraulic press force of 500 kN. After 
co-molding, coupon specimens with a length of 200 mm, 
a width of 15 mm and a thickness of approximately 2 mm 
were waterjet cut from all plates. 10° and 20° fiber misori-
entations of the Co-SMC layer were realized through the 
waterjet cut. Thus, different tensile specimens with varying 
manufacturing deviations were realized (cf. Table 1). Each 
configuration consisted of at least 15 samples. An exemplary 
specimen is shown in Fig. 2c. The average thickness of every 

configuration was calculated based on three measurements 
per sample [28].

3.3  Experimental procedure

The tensile tests were carried out on a ZwickRoell Zmart.
Pro universal testing machine with a load cell capacity of 
200 kN. The clamping length was 50 mm on each side 
of the specimen. Specimens were preloaded up to 100 N. 
Afterwards, they were loaded with a nominal loading rate 
of 1 mm/min until failure. Young’s modulus was determined 
using a least squares method in a strain range between 0.05 
and 0.25% [30]. Tensile strength was determined by an 
abrupt load drop of 8 MPa. Only specimens that failed in 
sufficient distance from the clamping area were considered. 
At least five specimens were taken for the evaluation of ten-
sile strength for each specimen configuration [28].

3.4  Finite element simulation

The commercial software Abaqus FEA from Dassault Sys-
tèmes was used to parametrically model the hybrid speci-
men including potential manufacturing deviations. The 
DiCo- and Co-SMC were represented by two distinguished, 
perfectly bonded, parts. Solid elements for the DiCo-SMC 
and continuum shell elements for the Co-SMC layer were 
used. Isotropic material behavior was assumed both for 
the glass fiber and the resin. Void content was analytically 
integrated into the resin [31]. A Mori–Tanaka homogeniza-
tion based on orientation average (planar isotropic FOD) 
and fiber content was performed for calculating the linear 
elastic material properties of the DiCo-SMC [11]. Five 
different regions for assigning local variations of the glass 
fiber content were defined. The Co-SMC layer was modeled 

Table 1  Different configurations of tensile specimen with manufac-
turing deviations including specimen thickness [28]

Configu-
ration no.

Con-
figuration 
name

Prepreg 
fiber 
mass 
content 
(wt%)

Orienta-
tion of 
co-SMC 
layer (°)

Delami-
nation 
size (mm 
× mm)

Average 
thickness 
[standard 
deviation] 
(mm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

41
41.M10
41.M20
41.0
41.0.M10
41.20
41.20.

M20
41.10
45.M10
45.20
50
50.M20
50.0
50.0.M20
50.20
50.20.

M20

41
41
41
41
41
41
41
41
45
45
50
50
50
50
50
50

–
–
–
0
0
20
20
10
–
20
–
–
0
0
20
20

–
10 × 15
20 × 15
–
10 × 15
–
20 × 15
–
10 × 15
–
–
20 × 15
–
20 × 15
–
20 × 15

1.76 [0.03]
1.90 [0.03]
1.89 [0.03]
2.26 [0.02]
2.09 [0.02]
2.22 [0.02]
2.14 [0.04]
2.19 [0.04]
2.32 [0.02]
2.36 [0.02]
2.49 [0.02]
2.49 [0.03]
2.55 [0.06]
2.61 [0.04]
2.73 [0.05]
2.14 [0.06]

Fig. 2  a Specimen in tensile testing machine; b Local regions for varying GF regions and integrated delamination in DiCo-SMC; c Stress distri-
bution and enhanced twisting of the specimen in the presence of CF patch misorientation
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using five independent material parameters, describing a 
transverse isotropy. Engineering constants were used in 
Abaqus. The Extended Finite Element Method (XFEM) was 
used to model delaminations in the DiCo-SMC. The initial 
delamination was modeled as a shell and placed within the 
solid elements of DiCo-SMC. The five regions of varying 
GF content and an integrated delamination are visualized in 
Fig. 2b. A maximum principal stress criterion was chosen. 
The maximum principal stress was determined with a least 
squares method for different fiber contents. Critical energy 
release rates were used in a Benzeggagh-Kenane (BK) law 
for a single scalar fracture criterion. The critical release 
energy was experimentally determined in a double cantile-
ver beam (DCB) test [28]. Failure in the Co-SMC layer was 
modeled using a publicly available Abaqus user subroutine 
of the Puck criterion [32].

The tensile specimen was FE modeled with an over-
all length of 120 mm and a width of 15 mm. 10 mm were 
reserved as a clamping area at each side. Thus, the lengths 
of the region of interest are both 100 mm in the simula-
tions and experiments. The DiCo-SMC model thickness was 
individually adjusted according to the averaged measured 
specimen thickness. The patch thickness was kept constant 
at its nominal thickness of 0.3 mm. The end edge of each 
clamping area was tied to a reference point (cf. Fig. 2b). 
One reference point was fixed, whereas the second reference 
point was subjected to a longitudinal force of 1500 N. Ele-
ment side length was 0.77 mm (7500 elements in the ROI). 
A discretization study showed no significant further increase 
of strain energy after 3350 elements in the ROI [28]. The 
used material parameters are given in Table 8.

3.5  Measurement uncertainty of the FE model

The function-oriented evaluation of measurement results 
directly depends on the trustworthiness of the FE model. 
Thus, the measurement uncertainty of the Young’s modulus 
according to the FE simulation shall be evaluated according 
to Eq. (2)

An iterative approach for the calculation of the uncer-
tainty based on the input parameters u2

Sim,I
 was chosen, 

described in the next paragraph. uSim,D represents the sys-
tematic deviation between the used discretization in the 
simulation study and a finer reference simulation according 
to the available computation power. The systematic model 
deviation (bias) bSim is given by the root mean squared error 
(RMSE), cf. Eq. (3) [29]. The mean experimental results y 
was used to calculate a relative metric, in accordance with 
the coefficient of variation, cf. Eq. (4).

(2)uc,Sim =

√
u2
Sim,I

+ u2
Sim,D

+ b2
Sim

.

Initially, a screening experiment was conducted, in 
which all considered input parameters of the hybrid SMC 
(cf. Table 9) were increased by one standard uncertainty. 
One factor at a time was varied. Input factors leading to 
a minor deviation of 0.5% or less from the simulated ref-
erence Young’s modulus were discarded. Afterwards, the 
remaining parameters were subjected to a Latin Hypercube 
sampling (LHS) for generating varying realizations of the 
same specimen configuration according to the probability 
distribution of the different input parameters. The function 
lhs() within the Python package pyDOE was used for gen-
erating the LHS. FE simulations were conducted for every 
specimen composition, leading to different stiffness outputs 
from the multiple FE simulations (110 to 140 simulations 
per specimen composition) [28]. The mean and the standard 
variation were calculated for every configuration based on 
the distributed values (cf. Sect.  4.2).

3.6  Kriging surrogate model

The randomly occurring manufacturing deviations represent 
individual part characteristics collected in the feature vector 
� (set of manufacturing deviations), which are to be quan-
tified using in-line measurements in later stages. Running 
individual, computational expensive FE simulations is not 
feasible while adhering to the cycle time. Thus, the surro-
gate model should enable a quick evaluation of measurement 
results and replace computational expensive simulations. 
A Kriging model was chosen in this contribution as one 
approach, because it allows the evaluation of the local error 
estimate produced by the model. Thus, the most promis-
ing training data in terms of reducing the model uncertainty 
shall be generated in subsequent FE simulations, further 
described in Sect.  3.6.1. The Python package SMT: Sur-
rogate Modeling Toolbox was used in this contribution [33].

3.6.1  Generation of training data

Training data within the whole experimental space was 
needed for the generation of the surrogate model. The 
optional presence of patches and delaminations were consid-
ered as binary states of the specimen. Thus, four independ-
ent experimental designs were chosen for the four essen-
tial specimen compositions (DiCo-SMC, DiCo-SMC with 
delamination, hybrid SMC, hybrid SMC with delamination). 

(3)bSim =

�∑T

t=1
(y − ŷSim)

2

T
.

(4)CVRMSE =
RMSE

y
.
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LHS was chosen to effectively cover the experimental space. 
The input parameters dependent on the specimen composi-
tion and their value domain are given in Table 2 [28].

The output values y were independently generated for the 
four essential specimen compositions (cf. Eq. (5)), based 
on the FE simulations. An individual Kriging model was 
trained for every row. Equation (5) displays row-wise the 
output values for the four essential specimen compositions, 
with the Young’s modulus Ê , the Puck damage criteria f̂E0 , 
f̂E0 , and f̂E [34] in the Co-SMC, and the stress exposure f̂E,0 
to f̂E,4 in the 5 different regions of the DiCo-SMC [28].

Training the Kriging model by an initially fixed num-
ber of generated values using LHS has the advantage of an 
even distribution of training data in the experimental space. 
Nevertheless, regions with a high model uncertainty occur. 
Thus, an iterative training approach was chosen to make 
use of the inherent uncertainty information of the Kriging 
model. Multiple rounds of consecutive training data, each 
round consisting of 80 additional data points (20 per speci-
men composition), were generated based on a search for the 
regions with the highest variances. The regions for the newly 
generated FE data were determined by regions with highest 
variances. However, a full factorial design for evaluating and 
assessing the current Kriging model would lead to an exces-
sive runtime. Thus, a grid search based on a LHS with 5000 
configurations was chosen for evaluating the variances of the 
current Kriging model. The regularized squared variances 

(5)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ê

Ê

−

−

−

−

−

−

f̂E,0
f̂E,0

f̂E,1
f̂E,1

f̂E,2
f̂E,2

f̂E,3
f̂E,3

f̂E,4
f̂E,4

Ê

Ê

f̂E0
f̂E0

f̂E1
f̂E1

f̂E
f̂E

f̂E,0
f̂E,0

f̂E,1
f̂E,1

f̂E,2
f̂E,2

f̂E,3
f̂E,3

f̂E,4
f̂E,4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ySMC

ySMC+Delamination

yHSMC

yHSMC+Delamination

⎤

⎥

⎥

⎥

⎥

⎥

⎦

of all output values of an essential specimen composition i 
are summed up according to Eq. (6) to find twenty configu-
rations for each surrogate model composition (cf. Eq. (5)) 
that offer the largest improvement potential. This procedure 
was repeated until no further significant improvements were 
observed [28].

Additionally, a direct approach with evenly distributed 
training data within the experimental space was taken for 
reference. Its size was chosen to be the size after conver-
gence (810 specimen configurations) [28].

3.6.2  Generation of test data

Three different test sets were generated. A first test set P1 
was generated using LHS to evaluate the performance over 
the whole value domains (cf. Table 2). LHS ensured an even 
distribution in the parameter space. Its size was 20% of the 
training set for each specimen composition. FE simulations 
were run for each test data point and compared to the Krig-
ing prediction for each entry in the matrix of Eq. (2). A 
second test set (virtual experiments, P2) was generated using 
FE simulations based on the experimental configurations (cf. 
Table 1) to evaluate the performance of the Kriging model. 
The maximum max

[
U4,U5,U6, f̂E,0, f̂E,1, f̂E,2, f̂E,3, f̂E,4

]
 was 

used for each configuration to calculate the tensile strength 
using the reciprocal stress exposure (stretch factor). Thirdly, 
the results were compared to the physical experiments P3, 

(6)S2
i
= S2

E,i
+

6∑
k=4

S2
Uk,i

+

4∑
k=0

S2
Mk,i

Table 2  Considered input 
parameters and their value 
domain for the four essential 
specimen compositions [28]

DiCo-SMC DiCo-SMC 
and delamina-
tion

Hybrid SMC Hybrid SMC 
and delamina-
tion

Value domain

FMC0 X X X X [30, 55] wt%
FMC1 X X X X [30, 55] wt%
FMC2 X X X X [30, 55] wt%
FMC3 X X X X [30, 55] wt%
FMC4 X X X X [30, 55] wt%
Thickness of SMC X X X X [1.75, 2.5] mm
Porosity0 X X X X [0, 5] vol%
Porosity1 X X X X [0, 5] vol%
Porosity2 X X X X [0, 5] vol%
Porosity3 X X X X [0, 5] vol%
Porosity4 X X X X [0, 5] vol%
CF Angular deviation X X [0, 20] °
Delamination length X X [5, 50] mm
Position of delamination X X [− 25, 25] mm
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allowing a direct assessment of the suitability for a real-
world application [28].

3.7  Artificial neural network

An artificial neural network (ANN) was chosen as a second 
approach in this contribution, because it allows a vector-
valued input and deals with binary conditions, such as the 
presence of a patch or a delamination. Thus, the complexity 
of the surrogate model itself is drastically reduced from the 
user’s perspective. A fully connected multilayer perceptron 
was built using tensorflow’s keras. Each of the 21 input neu-
rons represented one parameter of the input file for the FE 
simulation. Three hidden layers, each built of 18 neurons, 
were chosen based on best model performance among dif-
ferent network configurations in a trial and error process. 
The output layer consisted of 9 neurons, like the rows of the 
matrix in Eq. (2) [28].

3.7.1  Generation of training and test data

The training dataset of the Kriging model was also used for 
the training process of the ANN. The dataset was randomly 
split into 80% training data and 20% development data as 
a measure for the loss function. The mean squared error 
(MSE) was used as a metric for the loss function. The ANN 
was trained in 1500 epochs with a batch size of 50. Early 
stopping was initiated when no significant improvements 
were observed in 20 consecutive epochs to prevent overfit-
ting. Adam was utilized as optimization algorithm. The same 
three test sets were used to evaluate the performance of the 
ANN [28].

3.8  Measurement uncertainty of the surrogate 
models

Overall, the combined uncertainty of a surrogate model uc,SM 
is calculated as given in Eq. (7). Correlations of individual 
terms are neglected.

3.8.1  Standard uncertainty due to input quantities

The same quantities as in the measurement uncertainty 
analysis of the FE simulation were considered again (cf. 
Table 9). The evaluation of the surrogate models was sig-
nificantly faster compared to the FE simulation. Hence, a 
screening was omitted. q = {1,… ,Q} different combinations 

(7)uc,SM =

√
u2
SM,I

+ u2
SM,T

+ b2

of realized input variables for each configuration from the 
test data set P were drawn according to their probability 
density function (PDF) and propagated through the surrogate 
models. The variable Q was 10 times the number of input 
variables and depended on the specimen composition (cf. 
Table 2). Hence, a normal distribution based on uncertain 
input quantities was obtained for each of the C configura-
tions in the test data set. The mean value was calculated and 
led to uSM,I [28].

3.8.2  Standard uncertainty due to model training

The influence of variability in training data on an ANN can 
be determined based on repeated realizations of slightly dif-
ferent ANNs, an ANN committee with random changes in 
training data [27]. The training data set TL , generated by 
LHS, was enlarged by 10% of its original size using Monte 
Carlo method (MCM) for generating the substitutional set 
TM . Then, R = 100 combinations of different training data 
sets were drawn from the overall available set. The size for 
each training set remained the same as in the original one 
TL . The test sets P were propagated through the ANN com-
mittee, leading to normally distributed function predictions 
for the C different configurations. Hence, the ANN training 
uncertainty was determined according to Eq. (8). The overall 
procedure is visualized in Fig. 6.

For the Kriging model, the respective uncertainty was 
determined based on the local model variances at G = 5000 
randomly generated test points (cf. Sect. 3.6.1) and subse-
quently averaged [28]:

3.8.3  Surrogate model bias

The difference between the scalar function prediction 
(Young’s modulus) of the surrogate model ŷSM and the test 
set ŷtest was assessed by the RMSE as follows [28]:

(8)uSM,T ,ANN =
1

C

C∑
i=1

uSM,T ,i

(9)uSM,T ,Kriging =
1

G

G∑
i=1

uSM,T ,i

(10)
b
Pi
= RMSE

�
Pi

�
=

����∑Ki

k=1

�
ŷtest,i,k − ŷSM,i,k

�2
Ki

,

for

�
i = {1;2;3}

ŷtest,i = {ŷSim,P1
;̂ySim,P2

.̂y
P3
}
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4  Results

4.1  Experimental results and FE simulations

Experimental results and simulations for the Young’s modu-
lus are given in Fig. 3. FE simulations show an overall RMSE 
of 1.34 GPa (coefficient of variation: CVRMSE = 7.8% ). The 
simulation systematically overestimated the Young’s modu-
lus for configurations with 50 wt% FMF. This behavior indi-
cates an insufficient impregnation of fibers for these high 
FMFs when compared to configurations with 41 and 45 wt%. 
These configurations showed a significantly lower RMSE of 
0.65 GPa ( CVRMSE = 3.8% ) compared to the configurations 
11 to 16 ( RMSE = 1.88 GPa, CVRMSE = 10.8%)). Overall, it 
can be concluded that the FE model predicted the stiffness 
well for the first 10 configurations [28].

The experimental results for tensile strength are com-
pared with the simulated results in Fig. 7. Acceptable results 
were only obtained for configurations of pure DiCo-SMC 
or for high Co-SMC misorientations of 20° (specimen no. 
1, 7, 8). The nominal longitudinal tensile strength of the 
Co-SMC caused an overestimation of the hybrid material 
composition (cf. configuration 41.0). Here, a single layer 
Co-SMC (0.3 mm thickness) was used in contrast to the 
experimental investigation of the material properties of 
a Co-SMC specimen (1 mm thickness, [35]). Comparing 
configurations 41.20 and 41.20.M20 (specimen no. 7 and 
8), the failure was well described. The delamination caused 

a bulging of the specimen (cf. Fig. 2c), locally increasing 
the stress distribution and leading to an earlier failure. The 
longitudinal tensile strength had a minor influence on failure 
due to the misorientation of the Co-SMC patch. The exist-
ing deviations in tensile strength between experiment and 
simulation for pure DiCo-SMC (41) and DiCo-SMC plus 
delamination (41.M10) indicate that further micromechani-
cal effects exist, which are not correctly represented by a 
solely geometric integration of delamination into a homog-
enized DiCo-SMC material [28]. The bias is summarized 
for both Young’s modulus and tensile strength in Table 3.

4.2  Measurement uncertainty of the FE model

Five representative specimen configurations were considered 
for the measurement uncertainty analysis. Specimen con-
figurations with different nominal glass FMF and different 
combinations of patch orientation and delamination were 
chosen. The screening analysis (one factor at a time) showed 
that nine input parameters could be neglected based on their 
relative significance below 0.5%. Hence, six to eight param-
eters remained, dependent on the configuration (cf. Table 4).

The influence of voids was not relevant if the CF patch 
was mostly loaded in fiber direction. Accordingly, standard 
uncertainties of measured CF patch orientation were not rel-
evant when loaded in fiber direction. The generated realiza-
tions of simulations based on varying input parameters led 
to normal distributed results for the Young’s modulus. The 

Fig. 3  Experimental and 
simulated Young’s modulus for 
CoDiCo-SMC tensile specimen; 
error bars indicate one standard 
deviation; configuration no. in 
parenthesis; according to Ref. 
[28]

Table 3  Systematic deviations 
(bias) of the FE simulation for 
CoDiCo-SMC tensile specimen; 
CV

RMSE
 given in percentage [26]

Included configurations 
for calculation of

No. 1 to 16 No. 1 to 10 No. 11 to 16

E (GPa) R (MPa) E (GPa) R (MPa) E (GPa) R (MPa)

RMSE 1.34 50.2 0.65 34.3 1.88 64.2
CV

RMSE
(%) 7.8 33.8 3.8 22.9 10.8 44.3
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input parameters were sampled according to their probabil-
ity distributions using LHS. Realizations of the uncertain 
Young’s modulus including the fitted normal distribution 
are exemplarily shown in Fig. 4a for configuration 41.0.M10. 
The Young’s modulus lies with approximately 95% confi-
dence within the highlighted area. Simulated standard 
uncertainties are of similar size as the experimental standard 
deviations. Experimental and simulated standard uncertain-
ties decrease with increasing CF misorientation for the same 
GF content (cf. Fig. 4b). The systematic deviation from the 
respective reference simulation with the smallest mesh pos-
sible (30,000 FE elements) was for all configurations below 
5.3 MPa [28]. The overall uncertainty budget is given in 
Table 5, with the bias b given generally as the RMSE of the 
configuration with 41 and 45 wt% FMF (cf. Table 3).

4.3  Surrogate modeling of FE simulation

Table 6 shows the RMSE and the respective coefficient of 
variation of the surrogate models compared to test data, 
based on LHS generated FE simulations (P1), the virtual 

experiments (FE simulations of different specimen configu-
rations, P2) and the real experiments (P3). Additionally, the 
configurations no. 1 to 10 of the physical experiments were 
considered in P3*.

When comparing P1 and P2, the Kriging model pre-
dicted both the Young’s modulus and the tensile strength 
slightly better than the ANN. In test set P2, only three dis-
tinct FMF in DiCo-SMC were contained. Hence, the covered 
parameter space was limited. Considering physical experi-
ments (P3), the bias substantially increased. However, the 

Table 4  Remaining input parameters for LHS based on their influence in the screening analysis (highlighted in gray), [28]

Relative influence of one standard deviation on Young’s modulus for 
configuration:Input parameter

41.0.M10 41.10.M20 41.20.M20 45.0.M20 45.10.M20
ΦGF 2,2% 2,7% 3,7% 2,3% 2,8%
ΦVoid -0,3% -0,4% -0,6% -0,3% -0,4%
EGF 1,3% 1,6% 2,1% 1,5% 1,7%
EUPPH,SMC 2,7% 3,4% 4,8% 2,6% 3,3%
ΦCF 6,4% 5,6% 4,2% 6,1% 5,4%
E1,CF 2,7% 2,2% 1,2% 2,6% 2,1%
Patch thickness 6,5% 5,2% 2,9% 6,2% 4,9%
Patch orientation -0,2% -2,5% -3,0% -0,1% -2,3%

Fig. 4  Simulated and experi-
mental uncertainties of Young’s 
modulus for CoDiCo-SMC 
tensile specimen; error bars 
indicate one standard deviation 
[28]

Table 5  Uncertainty budget for FE simulation of Young’s modulus of 
CoDiCo-SMC tensile [28]

41.0.M10 41.10.M20 41.20.M20 45.0.M20 45.10.M20

uSim,I 2016 1695 1326 2051 1601
uSim,D 5.3 0.3 1 3.2 0.1
|b| 646
uc,Sim 2117 1813 1475 2151 1727
USim 4234 3627 2951 4301 3453
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relative deviation is similar to the one of the FE simulation 
(cf. Table 3). Since the FE simulation could not correctly 
describe the behavior of the specimens with an excessively 
high fiber content, this is inevitably to be expected for the 
surrogate models trained on these FE simulations, too. 
Therefore, the comparison was made to P3*, that consists 
of data from physical experiments of the specimens with 41 
and 45 wt% FMF. Particularly the systematic deviation of 
the Young’s modulus is significantly lower. The systematic 
deviation of the tensile strength is also lower in this test set 
but remains at a higher level. Nonetheless, the computational 
expense for the functional evaluation is drastically reduced 
by using surrogate models. A single FE simulation lasted 
57 s on a system based with 3.3 GHz clock speed (Intel Core 
i5-6600). The same configuration was evaluated using the 
surrogate models in less than 0.01 s.

Using an overall sum of training data (810 in total), the 
iterative training approach is compared to a direct train-
ing, both for ANN and Kriging model (cf. Fig. 5). The final 
sum of training data was determined based on an assumed 
convergence of the Young’s modulus. In each iteration, the 
ANN and the Kriging model were trained on the same train-
ing data. The ANN model performance was initially inferior 
compared to the reference ANN model trained on more data, 
both for Young’s modulus and tensile strength. More train-
ing data was needed for the higher degrees of freedom in 
the ANN. This behavior was not observed for the Kriging 
model. Interestingly, the initial model performed already 
about 1% better than the reference in predicting Young’s 
modulus. However, a repeated, second direct training led to 
comparable results for the direct Kriging model approach 
(CVRMSE = 2.1% for Young’s modulus and 4.7% for tensile 
strength). Here, the Kriging model improves only slightly 
using iterative training. A initial convergence is assumed. 
For this simple load case, no additional use by iterative train-
ing can be determined. However, investigations in Ref. [28] 
for a more complex load case in a flexural specimen showed 
advantages [28].

4.4  Measurement uncertainty of the surrogate 
models

Table 7 gives the overall uncertainty budget for the Young’s 
modulus, using a coverage factor k = 2 . Generally, the 
uncertainties of the models resulting from training and input 
variables hold for all test data sets. It is noteworthy that the 
uncertainty of the Kriging model based on training data is 

Table 6  Systematic deviations (bias) of the surrogate models for 
CoDiCo-SMC tensile specimen [28]

Kriging model ANN

E (GPa) R (MPa) E (GPa) R (MPa)

RMSE (P1) 0.20 6.63 0.32 8.86
CVRMSE (P1) (%) 1.2 4.8 1.9 6.5
RMSE (P2) 0.10 26.00 0.42 30.04
CVRMSE (P2) (%) 0.5 13.9 2.4 16.1
RMSE (P3) 1.37 35.88 1.00 21.4
CVRMSE (P3) (%) 8.0 24.1 5.8 27.2
RMSE (P3*) 0.65 24.99 0.47 23.10
CVRMSE (P3*) (%) 3.8 16.7 2.8 15.4

Fig. 5  Evolution of surrogate 
model bias based on iterative 
(it) training data generation for 
tensile specimen for Young’s 
modulus and tensile strength 
[28]
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comparably low. Hence, a lower overall uncertainty results 
for the Kriging model due to the significantly lower contri-
butions of the Kriging model terms uSM,I and uSM,T com-
pared to the terms of the ANN. The model-related uncer-
tainties contribute significantly to the overall uncertainty in 
both cases [28]

5  Conclusion and outlook

The local stress state highly influences the impact of delami-
nations on the tensile strength. CF misorientations lead to 
shear stresses in the tensile specimen. The combination of 
delamination and CF misorientations (specimen 41.20 and 
41.20.M20 as well as 50.20 and 50.20.M20) significantly 
reduces the tensile strength in both experiments and simula-
tions. This result of interacting defects stresses the impor-
tance of a function-oriented in-line defect assessment for the 
cost-efficient production of FRPs [28].

Parametrized FE simulations were conducted to analyze 
the influence of the manufacturing deviations. A measure-
ment uncertainty analysis of the calculated Young’s modulus 
showed that the fiber fraction and the thickness of the CF 
patch are of high relevance. Thus, they should be measured 
in addition to the patch orientation, the glass fiber fraction 
and potential delaminations to reduce the overall material 
uncertainty. Generally, the uncertainty of the FE simulations 
based on input parameters matched the experimental uncer-
tainty. The expanded uncertainty of the FE simulation is 
approximately 20% of the expected specimen stiffness [28].

Two different surrogate models were trained based on 
parametrized FE simulations. The Kriging model performed 
better in predicting Young’s modulus and tensile strength. It 
is to be highlighted that adequate simulations are required 
to build reliable surrogate models with low bias as simula-
tions serve for surrogate model training. Being trained on 
simulations, surrogate model results follow the FE simulated 
experiments and not the experiments. The outliers of speci-
men 13 and 14 in Fig. 7 can be explained by the fact that 
the high analytical stiffness expectations of the simulations 

(high FMF and Co-SMC) are located at the edge of the 
training data and are no longer correctly represented in the 
surrogate model. The surrogate model could probably not 
adjust appropriately. A remedy could be to further increase 
analytical FMF but this was not seen as relevant because of 
lacking technical relevance (poor fiber impregnation).

Generally, it is expected that the performance of the ANN 
would further improve with more training data. Surprisingly, 
the Kriging model reacted less sensitively to uncertain input 
variables than the FE models, leading to uncertainties lower 
than expected ( uSim,I compared to uSM,I ). Two influencing 
factors need to be considered in further investigations. First, 
uncertainties in material parameters were not further con-
sidered in the surrogate models to limit the training effort. 
Second, the training sets for the surrogate models were 
directly created from the global value domains, leading to 
comparatively large special distances between two respective 
training points. Consequently, the trained surrogate models 
may not correctly represent the influences of local varia-
tions due to uncertain input quantities in closer distances 
to a training point. The LHS generated global training data 
could be extended by material parameters and additionally 
adding local statistical fluctuations of the measured input 
quantities for training configuration. However, the training 
costs would be increased significantly [28].

In further steps, the strength prediction of the surrogate 
models needs to be revised. The FE simulations themselves, 
serving as training data, should be improved. Material 
parameters for the Co-SMC should be reviewed and more 
advanced damage models for the DiCo-SMC [36] could be 
used. Real measurements of the manufacturing deviations, 
based on thermography, industrial imaging, and Terahertz 
spectroscopy, can be integrated to demonstrate the in-line 
measurement approach [28]. A more complex load case shall 
be investigated.

Appendix

See Appendix Tables 8 and 9; Figs. 6 and 7.   

Table 7  Uncertainty budget 
for surrogate modeled Young’s 
modulus of CoDiCo-SMC 
tensile specimen (MPa) [28]

Kriging model ANN

P1 P2 P3 P3* P1 P2 P3 P3*

uSM,I 684 1161
uSM,T 98 1908
|b| 200 95 1374 647 321 420 1001 473
uc,SM 719 697 1538 947 2118 2334 2505 2344
USM 1439 1394 3079 1893 4637 4668 5009 4688
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Table 8  Material parameters used for FE simulation [28]

Parameter Symbol Value Unit

Glass fiber diameter dGF 13.5 µm
Glass fiber length lGF 25.4 mm
Glass fiber Young’s modulus EGF 73 GPa
Glass fiber Poisson’s ratio νGF 0.22 –
Nominal glass fiber content ΦGF 41 wt%
UPPH resin Young’s modulus EUPPH 3.06 GPa
UPPH resin Poisson’s ratio νUPPH 0.3 –
Maximum principal stress GF-UPPH (41 wt%) RGF-UPPH,41 130 MPa
Maximum principal stress GF-UPPH (45 wt%) RGF-UPPH,45 154 MPa
Maximum principal stress GF-UPPH (50 wt%) RGF-UPPH,50 165 MPa
CF-UPPH Young’s modulus 0° E∥ 110.1 GPa
CF-UPPH Young’s modulus 90° E⊥ 8.3 GPa
CF-UPPH shear modulus (⊥∥) G⊥∥ 3.77 GPa
CF-UPPH shear modulus (⊥⊥) G⊥⊥ 2.19 GPa
CF-UPPH Poisson’s ratio (⊥∥) ν⊥∥ 0.27 –
CF-UPPH shear modulus (⊥⊥) ν⊥⊥ 0.33 GPa
CF-UPPH fiber content ΦCF 48 vol%
CF-UPPH longitudinal tensile strength R∥

(+) 1424 MPa
CF-UPPH longitudinal compression strength R∥

(−) 567 MPa
CF-UPPH transverse tensile strength R⊥

(+) 34 MPa
CF-UPPH transverse compression strength R⊥

(−) 163 MPa
CF-UPPH shear strength R⊥∥ 79 MPa
Puck inclination parameter (⊥∥ +) p⊥∥ (+) 0.35 –
Puck inclination parameter (⊥∥-) p⊥∥ (-) 0.3 –
Puck inclination parameter (⊥⊥ +) p⊥⊥(+) 0.3 –
Puck inclination parameter (⊥⊥-) p⊥⊥(-) 0.3 –
Parameter for Puck weakening factor M 0.5 –
Parameter for Puck weakening factor S 0.5 –

Table 9  Input parameters and standard uncertainties, in-line measur-
able parameters in bold [28]

Input parameter Distribution Nominal value Standard 
uncer-
tainty

Stiffness of DiCo-SMC
 GF volume content 

(wt%)
Normal 41 2.25

 Porosity (vol%) Uniform 2 1.16
  EGF (GPa) Uniform 73 3.8
 νGF Uniform 0.22 0.01
  EUPPH (GPa) Uniform 3.06 0.68
 νUPPH Uniform 0.3 0.01

Stiffness of Co-SMC
 CF volume content 

(vol%)
Normal 48 2.5

  ECF,∥ (GPa) Uniform 230 10.1
  ECF,⊥ (GPa) Uniform 28 2.9
  GCF,⊥∥ (GPa) Uniform 50 2.9
 νCF Uniform 0.23 0.01

Delamination properties
 Delamination length 

(mm)
Uniform 20 2.89

 x-coordinate of delami-
nation center (mm)

Uniform 0 2.89

Co-SMC patch properties
 Patch thickness (mm) Normal 0.31 0.04
 Patch orientation (°) Uniform 0 1.16

Fig. 6  Determination of the standard uncertainty due to model training data for an artificial neural network [27, 28]
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