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containing a copy of the unit cell at each 
lattice point. However, recent advances 
in fabrication technology provide nowa-
days new ways to tackle exactly this 
challenge. In 3D laser printing, the fea-
ture size resolution is reaching the sub-
micrometer and nanometer scales.[1] In 
addition, this technique allows for the 
manufacturing of unit cells composed of 
various materials including organic (syn-
thetic and natural) polymers, inorganic 
materials such as chalcogenide glasses 
and/or metals.[2] Another promising 
class of artificial materials are molecular 
metal-organic frameworks (MOF) and 
their flat relatives, that is, surface MOF 
(SURMOF).[3,4] These materials feature 
nanometer-scale scaffold-like crystalline 
structures formed by organic molecules 
and metallic ions. A variety of geomet-
rical shapes can be fashioned,[5,6] and 

SURMOFs with different lattices can be combined in the 
same functional device.[7]

But the benefits of technological advances can only be fully 
harvested if theoretical tools keep up with the pace. Regardless 
of the fabrication technique, the efficient and accurate simula-
tion of the electromagnetic response of artificial materials is 
crucial for both the interpretation of experimental measure-
ments and for the in silico design of new materials and devices. 
In this context, a particularly useful formalism is the T-matrix 
or transition matrix formalism,[8,9] which, for linear light-matter 
interactions, produces the field scattered off a given object 
under general illumination. When dealing with an infinite 
periodic repetition of a unit cell, the calculation of the lattice 
couplings is very conveniently done[10] using the Ewald summa-
tion method.[11] The T-matrix and Ewald’s method can be com-
bined in numerical codes for computing the electromagnetic 
response of infinitely periodic systems,[12–14] achieving efficien-
cies more than two orders of magnitude better than numerical 
solvers of Maxwell differential equations.[15,16] The calcula-
tions of the T-matrices of molecular unit cells by quantum-
mechanical ab initio methods,[17] in particular time-dependent 
density-functional theory (TD-DFT),[18,19] enable the considera-
tion of systems including slabs of molecular materials such as 
optical planar cavities filled with SURMOFs.[18] Unfortunately, 
Ewald’s method cannot be used for finite arrangements of 
scatterers, such as an object of finite shape made from a 3D 
lattice of unit cells. Many of these objects cannot be handled 
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1. Introduction and Summary

Artificial materials increase our ability to control electromag-
netic fields well beyond what can be achieved with natural 
materials. At optical and infrared frequencies, the fabrication 
of deterministic photonic materials is challenging because 
of the small dimensions of the unit cells needed for mim-
icking the way nature builds materials: as periodic 3D lattices 
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by other T-matrix based methods either, because of the com-
putational cost when the number of unit cells grows beyond 
a few thousands. This then excludes, for example, non-planar 
arrangements of meta-atoms,[20] and finite objects made from 
molecular materials.[5,6] Additionally, the co-existence of slabs 
with different lattice vectors in the same system[7] is also an 
obstacle for Ewald’s summations.

For many years, research based on effective medium theories 
is aiming at alleviating the computational burden by replacing 
the discrete lattice of scatterers by a homogeneous effective 
medium.[21–51] Homogenization theories address the computa-
tion of the material parameters of such an effective medium 
for a given constitutive relation. Then, ideally, the electromag-
netic response of a target object of arbitrary shape made out of 
the actual discrete material should be well approximated using 
the constitutive relations of the effective medium, plus appro-
priate boundary conditions. In this way, much larger finite-
size objects can be considered compared to what is possible 
without homogenization.

Homogenization is a complex endeavor, and its complexity is 
reflected as different kinds of shortcomings in different homog-
enization techniques. Simpler approaches can even have contra-
dicting conditions for their applicability: For example, they often 
require lattice constants much smaller than the wavelength 
and a sufficiently sparse lattice simultaneously. Also, long 
wavelength approximations in the calculation of the response 
of the unit cells and/or the lattice couplings are often made. 
The widely known Clausius–Mosotti relations, for instance, are 
only valid for small inclusion volumes[28] as they do not take the 
multipolar lattice interactions into account. A salient problem 
of some advanced methods is spatial dispersion: the depend-
ence of the set of material parameters on the direction of the 
wavevector of the illumination. This is an important limitation 
since it is then unclear how to use the many-fold instances of 
the effective material parameters in practice, except possibly 
for planar geometries where only a few propagation directions 
are involved. Some homogenization methods are based on 
retrieval, where a reference object made with the actual mate-
rial, typically a slab, is probed with different illuminations. The 
numerically measured response is then fitted, for example, in a 
least-square sense, by the predictions of a homogeneous model 
of the reference object whose material parameters are varied in 
an optimization procedure. While, by design, retrieval methods 
do not suffer from spatial dispersion, a potentially weak point 
is that a reference object is involved from the beginning, and it 
is not immediately obvious that the retrieved material param-
eters can be used for target objects with different shapes. For 
example, machine learning techniques confirm a non-unique-
ness issue[52] showing that, in some cases, the measurements 
can be well approximated by different sets of material param-
eters.[51] Whether all the different sets are valid for different 
objects remains unclear. We are not aware of any homogeniza-
tion technique that is free of all the aforementioned shortcom-
ings. Moreover, most techniques also lack an a priori quality 
control mechanism independent of shape. Without such mech-
anism, assessing the accuracy of the homogeneous model for 
a particular target object would involve the comparison with 
simulations that explicitly consider the discrete lattice, hence 
defeating the purpose of homogenization.

In this article, we introduce a novel homogenization method 
whose starting point is the non-spatially dispersive yet exact 
response of the material, and where the material parameters 
of the constitutive relations are determined from the dipolar 
part of the response without considering any particular shape 
of a target object. The quantification of the difference between 
the exact description and its dipolar part constitutes a built-in 
quality metric that a priori indicates the suitability or unsuit-
ability of using the homogeneous model.

The central object of our novel homogenization method is a 
linear operator that provides an exact description of the linear 
interaction of light with the bulk material, that is, with the infi-
nite 3D lattice of scatterers. The linear operator has the form of 
a T-matrix in the multipolar basis, which we call the effective 
T-matrix: Teff . The effective T-matrix is computed using the lat-
tice vectors to obtain the mutual interaction and the T-matrix 
of a single isolated copy of the unit cell, which we will call Tcell.  
All the couplings due to the infinite lattice are incorporated in 
Teff . Such couplings change Tcell into Teff  while, at the same 
time, removing the lattice interactions. In other words, one can 
equivalently describe the response of the material by replacing 
the copies of Tcell interacting with each other with copies of Teff  
which do not interact with each other, that is, they are invis-
ible to each other. The effective T-matrix is an excellent starting 
object for homogenization because it is independent of any 
target object shape, it decouples the unit cells, and is an exact 
description of the interaction of light with the 3D lattice of scat-
terers of the actual material. Importantly, Teff  does not suffer 
from spatial dispersion.

We show that the dipolar part of Teff , which we call Teff
dip and 

has 36 parameters, is bijectively connected with a very common 
6 × 6 model for the constitutive relations of the effective 
medium, which is complemented by the usual (bi-anisotropic) 
boundary conditions, see Section 4.3 of[53]. The contributions of 
higher multipolar orders contained in Teff  are excluded from this 
homogeneous model. This is the only point where our model 
deviates from the exact response. The effective material param-
eters in the given constitutive relations derived in this way:  
i) are completely determined by the kind of 3D lattice and scat-
terers in the unit cell without any influence from the shape of 
any target object; ii) contain all the modifications that the lattice 
causes to the dipoles; and iii) do not suffer from spatial disper-
sion. The material parameters can be used in software packages 
such as COMSOL Multiphysics.[54] A target object made as a 
volumetric patchwork of domains with different discrete mate-
rials can also be considered. When compared to other methods, 
neither retrieval nor fitting procedures are needed, and the 
actual assignment of effective properties is a straightforward 
computation using the T-matrix framework. Within one calcu-
lation, all entries of the effective material tensors are computed.

Even before calculating Teff , the band diagram of the actual 
material is used to judge whether the material can be homog-
enized at all. For example, the homogeneous model is clearly 
inadequate for frequencies that produce diffraction in the lat-
tice, as X-rays produce in most solids. But even before this 
obvious limit, light starts to probe the presence of the lattice 
due to Bragg reflections.

We show that the response of slabs and spheres made of the 
actual discrete material are very accurately approximated by this 
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method if the material can be homogenized at all and the rela-
tive matrix distance between Teff  and Teff

dip is small.
The rest of the paper is organized as follows. The proposed 

homogenization method is explained in Section  2, and Sec-
tions  3 to 5 contain different application examples. In Sec-
tion  3, the material is a cubic lattice of gold spheres that is 
homogenizable in the considered frequency range, and whose 
Teff  and Teff

dip are essentially identical. The results of the homo-
geneous model in a slab and a sphere match very well with the 
corresponding exact solutions that explicitly consider the dis-
crete lattice. In Section 4, the material is a cubic lattice of cut-
plate pairs, which is only homogenizable in the lower part of 
the considered frequency range, and for which the difference 
between Teff  and Teff

dip is two orders of magnitude larger than in 
the previous material, and exhibits a growing trend with the fre-
quency. In this case, the homogeneous model predicts the exact 
results reliably only in the lower part of the considered range 
of frequencies. Section  5 contains the application to a chiral 
SURMOF which features anisotropic chirality. Homogenization 
produces essentially a perfect match with the exact results for 
a slab of the SURMOF. Then, the circular dichroism (CD) of 
an array of spheres made from the molecular material is com-
puted in COMSOL for perpendicular and oblique illumination 

directions. The CD is much larger at oblique incidence. This 
last prediction is possible and trustworthy only because of the 
accurate homogeneous model. Section  6 contains the conclu-
sion and outlook.

2. Homogenization Based on the Effective 
T-Matrix of a Material
Figure 1 is a block diagram of our homogenization method. The 
discrete bulk material is defined by an infinite 3D lattice and a 
unit cell, repeated at each lattice point. The lattice is defined 
by its three lattice vectors. The unit cell is defined by Tcell,  
the T-matrix of the scatterer(s) composing the unit cell. This 
T-matrix relates the electromagnetic fields incident upon an iso-
lated unit cell outside the lattice to the corresponding scattered 
electromagnetic fields. The T-matrix formalism is explained 
in more detail in the Supporting Information. The T-matrix of 
an isolated scatterer can be calculated by methods such as Mie 
theory for spheres, or the finite-element method (FEM)[55,56] 
or the extended boundary conditions method (EBCM)[57] for 
more complicated objects. Most commonly, the multipolar 
basis of vector spherical waves is used to expand the incident 

Adv. Optical Mater. 2022, 2201564

Figure 1.  The blue blocks describe our novel homogenization method that is completely independent of the shape of the final target object in the 
orange block. The starting point is the upper left corner, where we calculate the T-matrix of the unit cell from which the material is made. The unit cell 
can contain molecules and macroscopic scatterers, whose T-matrices are computed with TD-DFT and Maxwell solvers, respectively. Afterward, there 
is a straight flow along the arrows to advance. The blocks with question marks represent two criteria that must be met to ensure accurate results: that 
the light does not feel the discrete lattice, and that, after accounting for all the lattice interactions, the response of a unit cell (TTeff ) is mostly dipolar. 
The dipolar part of TTeff  is bijectively connected to the bi-anisotropic 6 × 6 local constitutive relations model for a homogeneous medium.
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and scattered fields. The size of the T-matrix becomes finite 
by truncating such expansions to some maximum multipolar 
order while ensuring that the contribution of the discarded 
higher orders to the light-matter interaction is negligible. For 
individual molecules or molecular clusters, the T-matrix can be 
obtained using ab initio quantum chemical methods[17] such as 
TD-DFT. The T-matrix unifies the description of light-matter 
interactions for both molecules and macroscopic objects.

After the definition of the actual material, the first question 
to answer is whether the material can be homogenized at all at 
the frequencies of interest. This question is independent of the 
specific homogenization approach. For example, the homoge-
neity assumption clearly breaks down at frequencies that pro-
duce diffraction in the lattice, akin to X-rays in most solids. But 
even before this obvious limit, the material can act as a pho-
tonic crystal due to Bragg reflections in the lattice. For a cubic 
lattice with lattice constant a, diffraction starts at a propaga-
tion constant β = 2π/a, while the first Bragg reflection occurs 
already at the edge of the Brillouin zone at a propagation con-
stant of β  = π/a. We note that β is the propagation constant 
of some fundamental (Bloch) mode propagating in the periodi-
cally structured material.

Therefore, as in ref. [58], we use the band structure of the 
actual material to determine whether the material can be homog-
enized. When the wavenumber obtained from the band structure 
approaches the edge of the Brillouin zone, the onset of a Bragg 
band gap can be clearly seen (e.g., in Figure  5). The presence 
of the band gap will start affecting the response of the material 
already at smaller frequencies by bending the dispersion relation. 
Starting around the point that the second derivative of the disper-
sion relation vanishes, the light is explicitly affected by the lat-
tice, and the results of homogenized models will hence become 
increasingly unreliable. The question of whether homogeniza-
tion is feasible or not can, therefore, be judged by inspecting the 
emerging band structure. The band structure can be calculated 
by solving the eigenvalue equation  of the material with a full-
wave solver such as mpGMM once the T-matrix of the object is 
known and the lattice geometry is fixed.[14]

When homogenization is possible, the response of the actual 
material, Teff , is computed from the 3D lattice and the T-matrix 
of the unit cell, Tcell. One salient feature of Teff  is that it is an 
exact description of the material response as long as enough 
multipolar orders are considered in its calculation. Another 
salient feature is that Teff  does not suffer from spatial disper-
sion. The effect of the lattice is different for different illumina-
tion directions, but it is possible to rigorously obtain a single 
object, Teff , valid for all directions. Before going into the details 
of the calculation, it is beneficial to understand the physical 
meaning of Teff , illustrated in Figure  2: A 3D lattice of scat-
terers described by Tcell, which interact among each other in 
Figure  2a, is rendered equivalent to the same lattice but with 
a different unit cell described by Teff  in Figure  2b. The new 
“objects” are invisible to each other because all the lattice inter-
actions have been included in Teff . Therefore Teff  collects all 
non-local effects into an effectively local description where, as 
seen in Figure 2, the response of a unit cell is independent of 
all other unit cells. Let us now examine the details.

We start by considering Equation (17) of ref. [14], which is 
the expression for an effective T-matrix kT� �( )eff  describing the 

scattering by an object located at the origin of a 2D periodic 
lattice, and including all the lattice couplings. Such an effective 
T-matrix depends on the propagation direction of the incident 
light through the component of the wave vector parallel to the 
lattice plane, ||k . For a 3D lattice, the formula is identical except 
that ||k  is replaced by the total wave vector k :[59]

k RT I T C T
R

k R� ( ) ( )eeff cell
0

(3) i ·

1

cell∑= − −




≠

−

	 (1)

where Tcell is the T-matrix of an isolated unit cell of the lattice. 
The matrix kT� ( )eff  connects a k( ), the multipolar expansion 
coefficients of the original plane wave incident on the unit cell 
located at the origin to p� , the multipolar expansion coefficients 
of the corresponding scattered field

T� � ( ) ( )effpp kk aa kk= 	 (2)

The definition of the multipolar expansion functions, also 
known as multipolar fields or vector spherical harmonics, can 
be found in Equations  (15, S3a–S3d) of ref.  [14]. The RC ( )(3) −  
matrices in Equation  (1) represent the electromagnetic cou-
pling between the origin and the R  lattice point, and their ele-
ments are the translation coefficients for vector spherical waves 
(see e.g., Equations  (S6a–S7) of ref.  [14]). The infinite sum 

RC
R

k R( )e
0

(3) i ·∑ −
≠

 over all the lattice points except for the origin 

is computed with Ewald’s summation method.[11,14,60] The sum 
represents the total electromagnetic coupling between the unit 
cell in R 0=  and all the other unit cells in the infinite 3D lattice. 
The computation of the coupling is exact up to the fact that a 
maximum allowed multipolar order must be selected. We note 
that, in contrast to approaches that use the quasi-static approxi-
mation, see ref. [45], for instance, the coefficients in RC ( )(3) −  
are exact, depend on the wavenumber k, and take the spatial 
oscillations of the fields into account. Note that in ref. [61] 
multiple scattering between particles having exact higher-order 
polarizabilities is described which is equivalent to expressing 
the interaction via higher-order T-matrices. Further, note that 

Adv. Optical Mater. 2022, 2201564

Figure 2.  Two equivalent descriptions of light-matter interaction in a 3D 
lattice of identical scatterers, where an excitation aakk  produces a response 
ppkk� . a) Interacting scatterers in a lattice represented by their individual 
T-matrices cellT . b) Scatterers in a lattice represented by their effective 
T-matrix effT . Every scatterer has the same effT , which incorporates all 
the lattice interactions. As a result, the scatterers represented by effT  are 
invisible to each other. The effective T-matrix is an excellent starting point 
for homogenization.
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we discuss in this article the illumination of the lattice with 
plane waves. The response to more complicated illuminations 
can then be obtained by the corresponding linear superposition 
of plane wave responses. In ref. [62], the multipolar expansion 
of various structured optical fields and their interaction with 
particles is described.

The kT� ( )eff  matrix in Equation (2) has an important disad-
vantage regarding its use as the starting point for homogeni-
zation: It is only appropriate for a particular field, namely a 
plane wave with momentum k . Therefore, kT� ( )eff  should not 
be used for any other incident direction. This can be appreci-
ated from the fact that the 3D lattice “looks differently when 
looked at from different directions,” which impacts the lat-
tice sums through the k Rei ·  factor. If kT� ( )eff  is used to derive 
material parameters, those would depend on the directions of 
k . Such dependence is sometimes called spatial dispersion. It 
is then unclear how to use the many-fold instances of mate-
rial parameters, except possibly for planar slabs where only 
a few plane wave directions are involved. Fortunately, this 
problem can be solved rigorously.

The physical ideas behind our solution to such problem 
can be stated as follows. Let us assume that we decompose 
the scattered field p

~
 in Equation  (2) into plane waves. Then, 

Equation  (2) can be seen as providing one of the columns of 
a T-matrix in the plane wave basis Teff

pw : The system is excited 
by a plane wave and produces scattered plane waves. Now, the 
entire Teff

pw  can be obtained by scanning the direction of k .  
Once this is done, Teff

pw  can be changed from the plane wave 
basis to the multipolar basis to obtain Teff , an effective T-matrix 
in the multipolar basis that is: i) valid for all k  directions and ii) 
not explicitly dependent on the k  direction. The Methods Sec-
tion contains an analytical derivation that formalizes these ideas 
into formulas for the computation of Teff . Besides that analyt-
ical approach, the matrix Teff  can also be computed by adapting 
the procedure introduced in ref. [55]. First, a finite number of 
points on the k�  sphere, that is, on the sphere of directions of k ,  
is selected. A particularly useful method for selecting equally-
spaced points on a sphere can be found in ref. [63]. Then, the 

kT
~

( )eff  matrices corresponding to each k�  are computed, and 
Equation (2) is used two times for each k� , one for each of the 
two possible polarization handedness of an incident plane wave 
with momentum k . Then, the coefficients of all the incident 
plane waves a ak k�, ,1 K , and their corresponding expansions of 
the scattered waves p p

k k
, ,

1 K�� � , are collected in the following 
matrix equation

p p a aT
k k k k( , , ) ( , , )eff

1 1K K� �� � = 	 (3)

from where Teff  can be obtained. The number of points in 
the directions sphere should be much larger than the size of 
Teff . The key aspect of Equation (3) is that it imposes that Teff  
shall respond to an incident plane wave with a specific propaga-
tion direction k�  as kT ( )eff�  responds. As Figure S4, Supporting 
Information, shows, the Teff  obtained from Equation (3), which 
we use in the examples contained in this article, is essentially 
identical to the Teff  obtained from the direct implementation of 
the analytical formulas in the Methods Section.

With Teff  at hand, the next step is to choose a homogeneous 
model for the effective medium and then use Teff  for extracting 

the parameters of the model. In this work, we choose the linear 
6 × 6 local bi-anisotropic model, where the constitutive rela-
tions connecting the electric displacement D  and magnetic flux 
density B  to the E  and H  fields in the effective homogeneous 
medium read in frequency domain (see e.g., Equation (1.51) in 
ref. [64])

( )
( )

( ) i ( )

i ( ) ( )

( )
( )

eff eff 0 0

eff 0 0 eff

D
B

E
H

ω
ω

ε ω κ ω ε
γ ω ε ω

ω
ω







=

















µ

µ µ
	(4)

where ( )effε ω  is the tensorial permittivity, ( )eff ωµ  the tensorial 
permeability, and the ( )effκ ω  and ( )effγ ω  tensors describe the 
coupling between the electric and magnetic fields. Such consti-
tutive relations are the most general local and linear constitu-
tive relations. Reciprocal materials such as the ones that we will 
consider in this article meet eff eff

Tγ κ= − .[64]

The model in Equation (4) with its corresponding boundary 
conditions is very commonly used and has full or partial sup-
port in popular Maxwell solvers. For example, it can be imple-
mented in COMSOL Multiphysics,[54] which supports the full 
6×6 model. In MEEP,[65] the anisotropic magneto-electric cou-
plings are restricted to have a particular structure, and CST[66] 
supports anisotropy in the electric–electric and magnetic–mag-
netic tensors but not in the magneto-electric ones.

The Methods Section contains the derivation that bijectively 
connects the 6×6 effective constitutive matrix in Equation (4), to 
the dipolar part of Teff , which we denote by Teff

dip and also has 36 
parameters. Formally, Teff

dip can be seen as the result of zeroing 
out all the entries of Teff  except those relating incident dipolar 
fields with scattered dipolar fields. The connection reads:

i

i

0
0 ,

eff eff 0 0

eff 0 0 eff

h 3

h 3
6 1 eff

dip
1

2 eff
dipI

I I T L T

ε κ ε
γ ε

ε ( )[ ] [ ]











=







+ − ⋅ ×
−

µ
µ µ

µ n n qs qs

	 (5)

where L  is a depolarization tensor, and we have dropped the 
explicit ω-dependence for the benefit of a more concise nota-
tion. See Equation  (17) in Methods Section for the definitions 
of the elements in Equation (5), including the functions s1[ ·, ·]  
and s2[ · ].

The term that contains L  represents the depolarization of 
a lattice of non-interactive scatterers. This is different in other 
methods,[27,37] where the depolarization is due to the interaction 
between the scatterers.

It is important to note that Teff
dip contains contributions from 

the dipolar and the non-dipolar parts of the T-matrix of the 
isolated scatterer Tcell. The latter contributions originate from 
multipolar couplings in the lattice and can be very significant 
in dense lattices even for electromagnetically small objects (see 
Figure 3c).

The local non-spatially dispersive material parameters con-
tain all the modifications that the non-local lattice interactions 
produce to the dipolar response. The frequency-dependent for-
mulation accommodates any existing temporal dispersion.

Crucially, the bijective connection in Equation (5) provides a 
criterion to check the suitability of the homogeneous material 

Adv. Optical Mater. 2022, 2201564
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model assumed in Equation (4): The non-dipolar terms in Teff  
must be negligible. This can be quantified with the following 
formula:

Tr

2 Tr Tr
eff

eff
dip

eff

†

eff
dip

eff

eff
dip †

eff
dip

eff
†

eff

T
T T T T

T T T T
τ

{ }
( )

( ) ( )
{ } { }

( ) =
− −

+
	 (6)

where T( ) [0,1]effτ ∈ , T( ) 0effτ =  implies T Teff eff
dip= , and † denotes 

transpose conjugate. To calculate T( )effτ , Teff
dip consists of the 

effective dipolar part in the upper-left corner and otherwise of 
entries equal to zero so that the dimensions of Teff

dip and Teff  are 
the same. We note that Tr{ }†A A  is the square root of the sum 
of the squared absolute value of each individual entry of the 
matrix A, which is the expression of the Hilbert–Schmidt norm 
of A. A very small T( ) 0effτ →  is needed to ensure the suitability 
of Equation (4).

While the second block in Figure  1 determines whether 
the actual material is at all homogenizable, T( ) 0effτ →  indi-
cates that the particular model in Equation (4) is sufficient for 
obtaining accurate results in the end.

We emphasize that the shape of a target object never enters 
the computation of Teff , Teff

dip, or the computation of the effec-
tive material parameters in the constitutive relations. This is in 
sharp contrast to retrieval homogenization approaches, where 
the effective material parameters are obtained by fitting the 
response of a reference object made from the actual material. 
Here, only the bulk material is considered, and all properties 
are derived from it.

The methodology and its limits are illustrated in the next 
sections with slabs, spheres, and arrays of spheres made from 
different materials. In particular, the applicability to molecular 
materials is demonstrated for a SURMOF featuring anisotropic 
chirality. The examples show the value of the two homogeni-
zation criteria, which determine whether a particular material 
is homogenizable with Equation  (17) at a particular frequency: 
When the two homogenization criteria are simultaneously sat-
isfied, the electromagnetic response of a target object made 
from the actual material can, independently of the shape of 
the object, be computed very precisely using the constitutive 
relations in Equation (17). Crucially, both criteria can be tested 
before any simulation of the target object.

3. Gold Spheres in a Cubic Lattice

As a first example, we consider gold spheres of 1  nm radius 
arranged in a cubic lattice with lattice constant a  = 2.05 nm. 
The surrounding host medium has a relative permittivity of 
εr,h = 2.25.[67]

The material parameters of gold are taken from ref. [68]. All 
multipoles up to the N  = 5 multipolar order are included in 
the calculations. The material is chosen as an example where 
homogenization is certainly feasible. First, the T-matrix of 
a single sphere is calculated with Mie theory. Next, the band 
structure is calculated by solving the eigenvalue equation of the 
3D structure with the full-wave solver mpGMM.[14] Results are 
shown in Figure 3a,b, concerning the real and imaginary part 
of the propagation constant for a propagation direction along 

one of the principal axes. One observes that the band structure 
never approaches the edge of the Brillouin zone, where Bragg 
reflection would occur: The material is homogenizable, and Teff  
is then computed.

Figure 3c shows the ratio between the amplitude of the elec-
tric dipolar entry of Teff  and the corresponding value for the iso-
lated sphere in Tcell. Even though the response of an individual 
sphere is described by an electric dipolar polarizability to very 
good approximation (N  = 1), the lattice interactions involving 
up to the N  = 5 multipolar order modify the electric dipolar 
polarizability of the individual sphere significantly. In some fre-
quencies, the amplitude of the electric dipolar entry of Teff  is 
more than twice the corresponding value for the isolated sphere 
in Tcell. The Supporting Information contains an extended dis-
cussion regarding the impact of the choice of N. For the small 
distance between the particles chosen here, evanescent fields 
strongly overlap close to plasmon resonances, which signifi-
cantly modifies the resonance due to mode hybridization.[69] 
Figure S1, Supporting Information, shows that such modifica-
tions are very much smaller when N = 1: It is hence very impor-
tant to incorporate higher multipolar orders in the calculation 
of Teff . Since such lattice-induced effects affect the dipolar 
part of Teff , they also impact the effective permittivity shown 
in Figure  3d, where we observe a very pronounced resonance 
close to 800 nm. A much less pronounced resonance is also vis-
ible close to 600 nm. We do not show the permeability as there 
is no notable magnetic resonance in this frequency range. The 
permeability is, however, included for calculating the responses 
of the slab and the sphere shown below. Figure S1, Supporting 
Information, shows that T( ) 8 10eff

5τ < × −  in the whole frequency 
range, meaning that Teff  is very much dominated by its dipolar 
part. We expect accurate results from the homogenized models 
of target objects of general shape.

We now study a particular geometry: a slab with a thickness of 
2.15 mm, corresponding to 220 layers of gold spheres. The well-
known Fresnel equations and standard boundary conditions are 
used to obtain the reflection coefficient for the slab using the 
effective material parameters. The obtained reflection coeffi-
cients are compared to the exact solutions for a slab made from 
the actual lattice of gold spheres, which are calculated with the 
full-waver solver mpGMM.[14] Due to the high absorption and 
large thickness, the transmission of the slab is zero. The illu-
mination is a transverse magnetic (TM)-polarized plane wave 
with a wave vector in the XZ-plane, k [sin( ),0,cos( )]inc

T� θ θ= .  
Two cases are considered: normal incidence (θ  = 0°) in 
Figure 3e, and oblique incidence with θ = 75° in Figure 3f. For 
normal incidence, TM polarization means a polarization along 
the negative x-direction. For oblique incidence, the polarization 
is correspondingly rotated (see e.g., Equation (2.62) in ref. [70]).

As the material is effectively isotropic, the xx-components of 
the effective permittivity and permeability are used to calculate 
the response of the effective slab. However, indeed, all the other 
components on the diagonal of the material tensors would be 
identical. We observe that, as expected, the results obtained with 
mpGMM agree very well with the results calculated with the 
effective parameters. Note that the distance between the parti-
cles is so small in the material described above that electron 
spill-out and tunneling can occur. These quantum-mechanical 
effects are not incorporated into the effective T-matrix as this 

Adv. Optical Mater. 2022, 2201564
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example has an illustrative purpose that shows how the homog-
enization approach works. We note that the T-matrix formalism 
is not adequate when non-negligible electronic currents flow 
across the smallest spheres surrounding the scatterers.[8,72]

We now consider a target object with a different shape. The 
same discrete gold-spheres-in-cubic-lattice material is used to 
form a cluster with an approximately spherical shape of radius 
Reff = 8a = 16.4 nm (Figure 4a, inset in Figure 4b). In Figure 4b, 
we compare the scattering cross sections calculated in two dif-
ferent ways: using CELES[71] for computing the exact solution 
for the cluster (see Methods Section), and using Mie theory for 
a homogeneous effective sphere of radius Reff with the effec-
tive material parameters obtained with Teff

dip. We observe that 
the scattering cross sections agree well, confirming the expec-
tation that the effective material parameters can be used inde-
pendently of the shape of the target object. The resonance we 

see corresponds to a localized plasmon-polariton excited in the 
sphere at the wavelength where the effective permittivity in 
very good approximation satisfies the Fröhlich condition. The 
differences observed in Figure 4b can be attributed to the fact 
that the cluster does not have a perfect spherical shape. We also 
note that, in order to apply any homogenization technique, a 
cluster should have a sufficiently large number of unit cells, 
and some inaccuracies could also originate from having a finite 
number of spheres in the cluster.

4. Cut-Plate Pairs in a Cubic Lattice

In order for us to explore the limits of the homogenization 
method, we now consider a more extreme photonic material 
made from cylindrically-shaped cut-plate pairs with a radius of 

Adv. Optical Mater. 2022, 2201564

Figure 3.  Band structure for a) real and b) imaginary parts kz of a 3D lattice of gold spheres (inset) with a radius of 1 nm arranged in a cubic lattice 
with a lattice constant of a =2.05 nm. The bands are bent due to an electric dipolar resonance far away from the edge of the Brillouin zone so that the 
material can be homogenized. c) Ratio between the electric dipolar entry of the TTeff  of the material and the same T-matrix entry of the isolated sphere. 
d) Effective permittivity of the lattice structure obtained with Equation (5). Transverse magnetic (TM) reflection coefficient for e) normal incidence and 
d) for an oblique incidence of a 2.15 mm thick slab, corresponding to 220 layers of gold spheres. For oblique incidence, the direction of the wave vector is 
k̂ [sin( ),0,cos( )]inc

Tθ θ=  with θ = 75°. We observe in both cases that there is a perfect agreement between the results obtained with the effective param-
eters and the exact results for the actual non-homogeneous slab made from the lattice of gold spheres calculated with the full-waver solver mpGMM.
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R = 90 nm and a cubic lattice constant of a = 200 nm, embedded 
in vacuum. The cut-plate pairs consist of two gold layers with 
a thickness of dAu  = 30 nm separated by an insulator with a 
thickness of dIns = 5 nm and made from a material with an iso-
tropic, nondispersive dielectric characterized by εr,Ins = 2.25.[73]  
The material parameters of gold are taken from ref. [74]. The 
T-matrix of a cut-plate pair is calculated with JCMsuite.[56,75] In 
Figure  5a,b, the band structure of the material is shown. We 
observe a band gap between 300 and 550  THz in which no 
propagation occurs. This Bragg gap is caused by reflection at 
the edge of the Brillouin zone.

At ≈175 THz, far away from the edge of the Brillouin zone, 
a resonance occurs, bending the dispersion relation. This reso-
nance can be related to a multipolar resonance. In the range of 
this resonance, the influence of the Bragg gap and higher reso-
nances can be neglected. Starting approximately at 200  THz, 
the influence of the multipole resonance vanishes. For frequen-
cies higher than the turning point of the band at ≈240 THz, the 
influence of the Bragg gap bends the dispersion bands, and 
homogenization becomes unreliable. This is marked by the 
gray shading in the figures.

In ref. [73], it is shown that the single cut-plate pair has a 
magnetic dipole resonance at low frequencies and an elec-
tric dipole resonance at high frequencies. In Figure  5c,d, we 
observe, indeed, a distinct resonance on the magnetic perme-
ability for a frequency below the 240  THz limit. Above such 
limit, we observe a resonance of the electric permittivity and an 
additional resonance of the magnetic permeability due to the 
electric quadrupole coupling to the magnetic dipole.[76] The first 
N = 7 multipolar orders were included in the calculations of Teff .  
The T( )effτ  metric of Equation (6) is shown in Figure 5f, where 
we see that T( )effτ  is more than two orders of magnitude higher 
than in the previous example, including a peak value of 0.045 
in the homogenizable frequency range, and an increasing trend 
toward a very large peak well beyond the 240 THz limit.

In the following, we consider a slab of nine layers of the cut-
plate pairs in the z-direction. For the homogeneous model, we 

take 1800 nm as the thickness of the slab in the z-direction. 
The transmission and reflection coefficients of the non-
homogeneous slab for normal incidence are calculated with 
mpGMM, and those for the homogeneous slab are calculated 
with the effective parameters from Equation (17).

As the principal axes of the material coincide with the Carte-
sian axes, the light propagates along the z-axis, and the material 
is the same in x- and y-direction, we use the xx-component of 
both the permittivity and permeability to calculate the response of 
the effective homogeneous slab. Figure 5e,f contains the results.

We observe that when both criteria are satisfied, the results 
from the homogeneous slab match very well those of the dis-
crete structure. Both results show the pronounced effect of the 
magnetic dipole resonance around 175 THz. The results start to 
disagree after 200 THz due to the influence of the Bragg reso-
nance. We also see in Figure 2a, that from 200 THz on the dis-
persion relation calculated with the effective parameters differs 
from the band structure calculated with mpGMM. Additional 
simulations in the Supporting Information show that all these 
observations are also valid for the case of oblique illumination.

5. A Bi-Anisotropic and Chiral Molecular Material

We now demonstrate the wide range of applicability of our 
homogenization method by considering a material from a com-
pletely different class: a Zn-L-camphoric acid-dabco SURMOF, 
which has a chiral bi-anisotropic structure. The SURMOF con-
sists of the chiral L-camphoric acid linker molecules, which 
build a layer together with Zn paddle wheels (Figure 6a). The 
layers forming the SURMOF are connected by dabco pillar 
linkers. The band diagrams in Figure  S3, Supporting Infor-
mation, show that the molecular material is homogenizable 
in the considered frequency range. The T-matrix of the unit 
cell is computed using TD-DFT.[18] The lattice constants are in  
x- and y-direction a1  = a2  = 2.079 nm, and in z-direction  
a3 = 1.922 nm. At optical frequencies, only the dipolar response 
needs to be considered because the unit cells have sizes 
with linear dimensions of the order of 2  nm. The criterion 

T( ) 0effτ →  is always satisfied.
In the homogeneous model of Equation (4), effκ  is responsible 

for the chiro-optical effects such as circular dichroism (CD), that 
is, the differential absorption of left- and right-hand polarized 
light. Figure  6b shows the real and imaginary parts of effκ . We 
observe that they are different along the directions of the different 
lattice vectors of the structure, which implies that effκ  is aniso-
tropic in this material. We focus on the circular dichroism and, 
therefore, on the chirality. The permittivity and permeability are 
not shown as they are of minor importance in this context. As the 
material is reciprocal, eff eff

Tγ κ= − ,[64] and, therefore, one can addi-
tionally describe magneto-electric coupling solely with effκ .

We first consider a slab with a thickness of 77 nm. Inserting 
the effective material parameters into COMSOL, we compute, 
for normal incidence, the absorption spectrum for a left-handed 
circularly polarized plane wave and the circular dichroism of 

the film. We define the circular dichroism as CD
2

=
−+ −A A

, 

where A+ and A− are the absorption of left-handed and right-
handed circularly polarized plane waves, respectively. We 

Adv. Optical Mater. 2022, 2201564

Figure 4.  An object of approximately spherical shape is made from the 
cubic lattice of gold spheres analyzed in Figure 3. Figure 4a is an equato-
rial cross-cut of the arrangement. The black line is a circle with a radius of  
Reff = 8a = 16.4 nm. In (b), the cross-section of the scattered plane waves is 
shown for both the cluster and an effective sphere with Reff whose response 
is obtained with the effective material parameters derived from TTeff

dip . The inci-
dent plane wave is linearly polarized. The exact scattering cross-section for 
the cluster is computed with CELES.[71] Despite some differences because 
the cluster does not have a perfect spherical shape, the cross section cal-
culated for the cluster agrees well with the one calculated with the effective 
material parameters. This confirms the expectation that the effective mate-
rial parameters can be used independently of the shape of the target object.
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observe in Figure 6c that the results obtained with the homo-
geneous model match perfectly those obtained with mpGMM, 
which explicitly considers the discrete SURMOF lattice.[18]

The second example is a planar array of spheres embedded 
in vacuum. The spheres are made from the SURMOF mate-
rial, have a radius of R = 72 nm, and are arranged in a square 
lattice with constant a  = 162 nm. In Figure  6d, the CD calcu-
lated with COMSOL is displayed for normal incidence and 
oblique incidence at 70°. We observe that the circular dichroism 
is much more pronounced for oblique incidence. This predic-
tion is only possible and trustworthy due to the confidence that 
can be placed in the effective material parameters when the 
two homogenization criteria are met. This example illustrates 
the use of the constitutive relations in generic Maxwell solvers, 
allowing the simulation of target objects of general shape. 
Moreover, planar systems containing different lattices[7] can 

now be efficiently simulated by codes that combine the T-matrix 
and Ewald summation methods. The simulation is possible 
once all the lattices, or all but one of them are homogenized.

We highlight that the T-matrices of the unit cells of molec-
ular materials, and hence ultimately the material parameters, 
are obtained from ab initio quantum-chemical computational 
methods,[17] such as TD-DFT.

6. Conclusion and Outlook

We have introduced a method for homogenizing artificial mate-
rials made by 3D lattices of electromagnetic scatterers. The 
starting point for homogenization is the non-spatially disper-
sive yet exact response of the discrete material, including all lat-
tice interactions. The material parameters of the homogeneous 

Adv. Optical Mater. 2022, 2201564

Figure 5.  a,b) Band structure of a 3D lattice made from cut-plate pairs calculated with mpGMM for real and imaginary kz together with the dispersion 

relation k
f

c
µz xx xx

2

0
r,eff , r,eff ,

π ε=  obtained from the effective homogenized material parameters. A band gap appears between 300 and 550 THz due 

to Bragg reflection at the edge of the Brillouin zone. This bends the dispersion bands from approximately 240 THz on, which is marked by the gray 
shade indicating that the light-matter interaction in the actual material can then not be reliably modeled by a homogeneous medium. c) Permeability 
and d) permittivity of the material computed with the effective T-matrix. Absolute value of the e) transmission, and f) reflection coefficients of a slab 
under normal incidence. The dark blue lines correspond to the exact solution of nine layers of the cut-plate pairs stacked in the z-direction. The light 
blue lines correspond to the solution of a homogeneous slab assuming a thickness of 1800 nm.
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effective medium are determined from the dipolar part of such 
exact response without involving any particular shape of a 
target object. This truncation to dipolar order is the only physi-
cally significant approximation in the method. The resulting  
bi-anisotropic constitutive relations and boundary conditions 
are the ones implemented in standard Maxwell solvers. We 
have shown that, independently of the shape of the target 
objects, the electromagnetic response of finite objects made 
from the actual 3D lattice of scatterers is very well predicted 
by the corresponding effective homogeneous models, pro-
vided that two criteria are met. One is that light should not 
experience any explicit lattice effects such as Bragg resonances. 
This criterion can be assessed using the band structure of 
the discrete material and determines whether the material is 
homogenizable at all, independently of the homogenization 
method. The other criterion is that the difference between the 
exact description of the discrete material and its dipolar part 
should be small. Both tests are independent of the shape of 
any target object.

We are confident that the method will be helpful for the 
computer-aided design of photonic devices containing arti-
ficial materials and for interpreting experimental meas-
urements. In particular, the method is suitable for objects 
fabricated by 3D laser printing, and/or containing structured 
molecular materials.

A plausible extension of the method would include the 
quadrupolar orders of the exact response in the homoge-
neous model, thereby extending the range of applicability 

to materials that are homogenizable in principle, but where 
the contribution of orders higher than the dipole cannot 
be neglected.

7. Methods
Analytical Derivation of TTeff : Let us fix the wavenumber = ·k k k  and 

remove it from the notation. Let T�̂ ( ˆ)eff k  be the operator corresponding 
to the k -dependent effective T-matrix in Equation (1) so that 

T� � � � �
� � �

� � �∑λ λ λ=
λ

λˆ ( ˆ)| ˆ, ( ˆ, )| , ,eff
, ,

, , j m
j m

j m
k k p k � (7)

where λ| ˆ,k  represents an incident plane wave with well-defined 
polarization handedness (helicity) λ = ±1 and propagation direction k̂ ,  
and � � � � λλ( ˆ, ), ,j mp k  are the coefficients of the far-field scattered wave 
expanded in vector spherical harmonics � � �λ| , ,j m . In |j, m, λ〉, j  = 1 
corresponds to the dipolar order, j = 2 to the quadrupolar order, etc. …, 
and m = −j, …, j is the angular momentum of the spherical wave along 
the z-axis. Furthermore, let

∫ ∫λ β λ θ θ ϕ β λ= ∫ =λ
π

π

π
λ

−

| , , d ˆ ( ˆ)| ˆ, d sin d ( ˆ)| ˆ,, ,

0

ˆ ˆ ˆ
, ,j m j m j mk k k k kk k k � (8)

be the expansion of a vector spherical wave |j, m, λ〉 in plane waves 
λ| ˆ,k , where θ = arccos( / )ˆ k kzk , and ϕ = arctan( , )ˆ k ky xk .
The expansion coefficients β λ( ˆ), ,j m k  are defined as

β
γ
π θ θ λ θ θ= + ∂

∂








λ

+( ˆ)
4 i sin

(cos ) (cos ), , ,
1 ˆ

ˆ
ˆ

ˆ
m P Pj m j m

j m
j

m
jk

k
k

k
k � (9)

Adv. Optical Mater. 2022, 2201564

Figure 6.  In a Zn-L-camphoric acid-dabco SURMOF, a) the T-matrix of the individual isolated cell is computed using TD-DFT. b) Real and imaginary 
parts of the effective chirality. We observe that the chirality is anisotropic. c) Comparison of the absorption of an incident left-circularly polarized plane 
wave and the circular dichroism of a 77 nm thick slab computed with the effective material parameters, and directly with mpGMM which considers 
the discrete lattice explicitly.[18] The two results match perfectly. d) Circular dichroism of a planar array of spheres made from the SURMOF material for 
normal and oblique incidence. The spheres have a radius R = 72 nm and the lattice constant of the square lattice is a = 162 nm.
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with, see Equations  (S3c) and (S3d), Supporting Information from 
ref. [14],

γ π= + −
+ +i

2 1
4

( )!
( 1)( )!,

j j m
j j j mj m � (10)

and θ(cos )ˆPm
j

k
 are the associated Legendre polynomials.

Then, the matrix elements of the direction-independent effective 
T-matrix in the multipolar basis TTeff , can be derived as

T�

� � �

�

� � � � �

� � �

� � �
� � �
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λ λ β λ λ

β λ λ λ
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= ∫

= ∫

λ

λ

λ λ

λ λ

pp

TT, , | | , , d ( ) , , | ˆ ( )| ,

d ( ) ( , ) , , | , ,

d ( ) ( , )

eff
, ,

, ,

, , , ,

, , , ,

m j j m m j

m j j m

j m
eff

j m

j m j m

j m j m

k k k k

k k k

k k kp

� (11)

where the first equality follows from Equation (8) and the key imposition 
that TTeff  should respond to an incident plane wave with a specific 
propagation direction k̂  as �TT ( )eff k  responds. The second follows from 
Equation  (7), and the third from the orthonormality of the multipolar 
fields � � � � � �λ λ δ δ δ= λ λ, , | , , , , ,m j j m j j m m .

The result in the last line of Equation (11) features an integral over the 
sphere of k̂ -directions. In practice, a finite number of directions must 
be selected, and � λλ( ˆ, ), ,j mp k  computed for each direction. A particularly 
useful method for selecting equally-spaced points on a sphere, which 
transforms the integral into a Riemann sum of equally weighted 
terms can be found in ref. [63]. It is shown in Figure  S4, Supporting 
Information, for the examples of cut-plate pairs that the normalized 
difference between the effective T-matrices calculated with Equations (3) 
and (11) is negligibly small.

Deriving Effective Material Parameters from effT : We consider scatterers 
in a periodic lattice, surrounded by an achiral non-magnetic host 
medium with permittivity εh = εr,hε0 and permeability µh = µ0. Here, ε0 
and µ0 are the vacuum permittivity and permeability, respectively. In the 
following, the frequency ω of the incident wave is omitted as argument. 
All quantities besides purely geometric factors are, however, frequency-
dependent, and exp (− iωt) factors are suppressed from the notation.

Externally applied electric extE  and magnetic extH  fields induce 
effective electric eff ,eP  and magnetic polarizations eff ,mP  in a scatterer in 
the lattice. It is assumed, without loss of generality, that this scatterer 
is placed at the origin of the 3D lattice. The effective polarizations of 
the scatterer are determined from the effective T-matrix (TTeff ) of the 
lattice. Restricting the consideration to TTeff

dip , the dipolar part of TTeff , the 
polarizations can be written as


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h
2
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, 1,1

ext
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nq
Z

Z Z

j j j j

j j j j

P

P

E

H
� (12)

where n is the concentration of the scatterers per unit cell, ε= /h 0 hZ µ  

the wave impedance of the host medium, π= −i6

h h h
3q

c Z k
,[17] ε= 1/h h 0c µ  

is the speed of light in the host medium, and kh the wave number in 
the host medium. The νν′

′=TTeff , ,cart
, 1,1j j  are block matrices building TTeff

dip  in the 
Cartesian basis:

≡















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′= ′=

′= ′=
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, 1,1
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, 1,1
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, 1,1
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, 1,1

j j j j

j j j j
� (13)

The change from the effective dipolar T-matrix in the basis of vector 
spherical waves of well-defined helicity to the electric/magnetic basis in 
Cartesian coordinates is achieved via simple matrix multiplications (see 
Equation (6) in ref. [17]).

The internal fields in a unit volume in the homogenized lattice are 
therefore a sum of the incident and the depolarization fields
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h
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µ

E
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E

H

P

P
� (14)

where LL  is the depolarization matrix, which depends on the geometrical 
shape of the unit volume. The latter has the same shape as the unit cell 
which it has to fill. For a cube, =LL II(1/3) 3, if TTeff

dip  and the polarizations are 
considered at the origin of the lattice. For a cuboid, a formula for LL  can 
be found in refs. [77, 78].

In frequency domain, the common bi-anisotropic constitutive 
relations relating the electric displacement D  and magnetic flux density 
B  to the fields inside a material consisting of the lattice read

ε κ ε

γ ε


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 =
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� (15)

where εeff  is the effective tensorial permittivity, µeff  the permeability, and 
κ eff  and γ eff  describe the coupling between the electric and magnetic 
fields. We aim at relating the effective material parameters to the 
effective polarizations and to the TTeff

dip .
The electric displacement and the magnetic flux density can be 

expressed via the electric and magnetic polarizations eff ,eP  and eff ,mP  of 
the lattice as
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P
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Equations  (12), (14), and (16) can be used to obtain an expression 
of ( ,D B ) as a function of TTeff

dip  and ( ,E H ) by inserting the implication 
of Equation  (14) for the externally applied fields into Equation  (12), 
and substituting the polarizations in Equation  (16) with the resulting 
expressions. Comparison of the result with Equation  (15) gave the 
material parameters
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The depolarization tensor LL  in Equation  (17) describes the 
depolarization of a unit cell by the external fields but not the interaction 
between the scatterers inside the lattice. Such interaction is already 
incorporated in TTeff . In particular, the lattice interactions modify  
the dipolar terms in TTeff

dip  and hence the effective material parameters.
Using CELES for Computing the Scattering Cross-Section  of a Cluster 

of Scatterers: Cross-sections  for the scattered waves can be computed 
using the software CELES[71] as:

∑π
=

2 | |
sca

ˆ ˆ
2

sca,h
2

sca scaC
E

k
k k

� (18)
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where ˆ
sca

Ek  are the scattered field amplitudes computed with CELES, 
ksca,h is the absolute value of the wave vector of the scattered plane 
waves in the surrounding medium, and ˆ

scak  is the propagation direction 
of the scattered plane waves.
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