KIT | KIT-Bibliothek | Impressum | Datenschutz

High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites

Sarkar, Abhishek 1; Wang, Di ORCID iD icon 1,2; Kante, Mohana V. 1; Eiselt, Luis; Trouillet, Vanessa 2,3; Iankevich, Gleb 1,4; Zhao, Zhibo 1; Bhattacharya, Subramshu S.; Hahn, Horst 1,4; Kruk, Robert 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
4 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd$_{0.25}$La$_{0.25}$Nd$_{0.25}$Sm$_{0.25}$)$_{1-x}$Sr$_x$MnO$_3$ (x = 0–0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states—insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic—coexisting or/and competing as a result of hole doping and multi-cation complexity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000153788
Veröffentlicht am 16.12.2022
Originalveröffentlichung
DOI: 10.1002/adma.202207436
Scopus
Zitationen: 15
Dimensions
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 12.01.2023
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000153788
HGF-Programm 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Weitere HGF-Programme 43.35.03 (POF IV, LK 01) Structural and Functional Behavior of Solid State Systems
Erschienen in Advanced Materials
Verlag John Wiley and Sons
Band 35
Heft 2
Seiten Art.-Nr.: 2207436
Vorab online veröffentlicht am 16.11.2022
Schlagwörter colossal magnetoresistance, high entropy oxides, magneto-electronic phase separation, metal-insulator transitions, strongly correlated electron systems; 2022-028-031379 FIB TEM XPS
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page