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Abstract
We present a novel geometrically nonlinear EAS element with several desirable
features. First, a Petrov–Galerkin ansatz significantly improves the element’s
performance in distorted meshes without loosing the simple strain-driven for-
mat. Second, the recently proposed mixed integration point strategy is employed
to improve the element’s robustness in the Newton–Raphson scheme. Finally
and most importantly, we enhance the spatial displacement gradient instead
of the usually modified deformation gradient. This allows to construct an ele-
ment without the well-known spurious instabilities in compression and tension
as shown numerically and supported by a corresponding hypothesis. All in all,
this leads to a robust, stable, locking-free, and mesh distortion insensitive finite
element successfully applied in a wide range of examples.
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enhanced assumed strain (EAS), hourglassing instabilities, mixed finite elements, mixed
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1 INTRODUCTION

Countless mixed finite elements have been developed throughout the last 50 years with the goal to cure locking and
other defects of low-order finite elements. One of the probably most successful element groups are enhanced assumed
strain (EAS) elements due to their simplicity and strain driven format which allows straightforward implementation of
complex material models. The EAS framework has first been proposed in the early 1990s by Simo and Rifai1 and Simo and
Armero2 for linear and nonlinear problems, respectively, and is a mathematically sound successor of the earlier proposed
incompatible mode models.3,4 Since then, the EAS method has been implemented into several commercial codes and has
not only been successfully applied in solid mechanics2,5-19 but also to model shell structures, diffusion problems and even
fracture problems.20-25 Despite the tremendous effort put in development of EAS elements there are still some open issues.
Pfefferkorn and Betsch26 discuss three of which: robustness in the Newton–Raphson scheme, mesh-distortion sensitivity
and hourglassing instabilities. All three are addressed in this contribution.

The first issue concerns robustness in the Newton–Raphson scheme by which we herein denote two properties: max-
imum size of applicable load steps and number of Newton–Raphson iterations required for convergence.19 In this regard
assumed stress elements are by far superior to both displacement-based elements27,28 and EAS elements.19,29 To improve
robustness of displacement based elements Magisano et al.30 recently proposed the mixed integration point (MIP) method
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2 PFEFFERKORN and BETSCH

in the context of shell problems. It allows to substantially increase the robustness by a simple modification which only
affects the finite element tangent without changing the residual (and therefore the solution). This approach has recently
been extended to EAS elements19 and is also employed in the present contribution in order to improve robustness of the
Petrov–Galerkin EAS approach at hand.

Regarding the second issue, mesh distortion sensitivity, there exists a fundamental publication by MacNeal31 (see also
the preliminary work32) which has in the opinion of the authors not gotten the attention it deserves. In that work Mac-
Neal31 proves (see also Pfefferkorn and Betsch18) that a finite element for linear elasticity with symmetric stiffness matrix
cannot simultaneously satisfy the patch test and be exact for higher order modes for arbitrary meshes. This ultimately
leads to mesh distortion sensitivity of elements with symmetric stiffness matrices. However, MacNeal’s theorem leaves a
“loop-hole”. Elements with an unsymmetric stiffness matrix can simultaneously pass the patch test and be mesh distor-
tion insensitive. Constructing such finite elements is the key idea of the unsymmetric finite element method first proposed
by Rajendran and Liew33 for higher order elements (see also References34-36). That method is based on a Petrov–Galerkin
approach instead of the usual Bubnov–Galerkin ansatz. Essentially, the trial functions of the displacements (actual field)
are approximated with so-called metric shape functions37 (constructed in the physical domain) while the test functions
of the displacement (virtual field) are approximated as usual with parametric shape functions. This approach ultimately
allows to greatly reduce the mesh distortion sensitivity.

A major drawback of all unsymmetric finite elements is of course the increased computational cost. This concerns
especially the factorization of the non-symmetric stiffness matrix. The time required for that step is compared to standard
elements in the work.18 However, the additional effort is, in the opinion of the authors, more than compensated by the
increased coarse mesh accuracy and the reduced mesh distortion sensitivity.

Unfortunately, it is not as straightforward to construct unsymmetric low-order finite elements because a careful choice
of ansatz functions is required for optimal performance.18,38 This led previously to methods with complex ansatz func-
tions that depend on the material model36,38-42 or that require higher order numerical integration.43 Unsymmetric finite
element approaches without these drawbacks have recently been published by Pfefferkorn and Betsch18 in the form of a
Petrov–Galerkin EAS (PG-EAS) framework and by Huang et al.44 on the basis of an incompatible mode approach. Both
elements are developed for linear elasticity and maintain the substantially decreased mesh distortion sensitivity of the
unsymmetric finite element method. Moreover, the approach by Pfefferkorn and Betsch18 is completely locking-free,
enables exact integration of the finite element integrals with standard Gauss quadrature and reduces to the standard EAS
method in case of regular meshes. In this work we straightforwardly apply the unsymmetric PG-EAS approach by Pfef-
ferkorn and Betsch18 to nonlinear problems and show that it has similar beneficial effects. Mesh distortion sensitivity is
greatly reduced even though it is not possible to get analytic results as in the linear elastic case. Furthermore, we propose
a modification of the three volumetric modes required in 3D for a completely locking free element.18 This adjustment
allows to skip the computationally expensive Gram–Schmidt orthogonalization required in aforementioned reference
and is motivated by higher-order analytic solutions of linear elasticity similar to the ones given by Nadler and Rubin.45

The final and probably most important open issue of EAS elements concerns spurious hourglassing instabilities. This
issue was already mentioned in the conclusion of the seminal work on geometrically nonlinear EAS elements by Simo
and Armero2 and has first been thoroughly discussed by Wriggers and Reese46 for hyperelasticity and by de Souza Neto
et al.47 for elasto-plasticity. One of the most successful attempts to remove the instability has been proposed by Korelc and
Wriggers7 (see also Glaser and Armero10,48, who adopted the element for frame invariance). They established that using
the transpose of the originally employed Wilson-modes for the enhanced field removes the instability under compression.
Unfortunately though, this attempt could not cure hourglassing under tension. Other methods to suppress the spurious
behavior use artificial hourglass stabilization with user-defined parameters,10,48,49 hourglass stabilization based on mixed
methods50-52 or combine the EAS method with other mixed elements.53-59 However, none of these alternative approaches
led to the desired result of a completely stable, locking-free element without artificial stabilization. A final avenue fol-
lowed to overcome the hourglassing issue is enhancing different kinematic fields than the originally2 proposed and most
frequently employed enhancement of the deformation gradient (F-enhancement). Unfortunately, both enhancement of
the Green–Lagrange strain (E-Enhancement)11,21,48,51,60-62, which is often employed in shell-structures, and enhancement
of the right stretch tensor (U-enhancement)6,48,63 do not lead to entirely stable formulations.

In the present contribution we add another kinematic field to the list of enhanced fields: the spatial displacement gra-
dient (h-enhancement) as suggested by Schmied64 (PhD-thesis, only available in German). This allows to finally overcome
the issue of hourglassing-instabilities of EAS elements both in tension and compression without loosing other favorable
properties. On top of that, we establish a hypothesis on why h-enhancement is much more stable. It is closely related to
the ad-hoc formulated volume-condition proposed by Nagtegaal and Fox65 which is justified in this work. Essentially, we
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PFEFFERKORN and BETSCH 3

F I G U R E 1 Configurations and kinematics of a deformable body .

suggest that the instabilities of previously developed EAS elements are linked to the well-known checkerboard modes
observed for mixed pressure elements through the eliminated stress field.

In summary, this work introduces a novel PG-EAS element based on h-enhancement which overcomes some of the
most serious issues of existing EAS elements. The presentation starts with essential continuum mechanics and the weak
form in Section 2. The approximations of the various fields with the finite element method are covered in Section 3
where focus is put on the Petrov–Galerkin formulation and the required metric shape functions. Analytic solutions of
higher-order linear elasticity are given in Appendix A and used for the new volumetric enhanced modes in Section 3.2.
Section 4 covers analytic proofs that the element on the one hand meets basic requirements and on the other hand has
interesting features explaining its outstanding performance. The decreased mesh-distortion sensitivity and the increased
numerical stability are discussed in Sections 4.5 and 4.9, respectively. Finally, in-depth elastic and elasto-plastic numer-
ical investigations covering a wide range of benchmarks are described in Section 5 before conclusions are drawn in
Section 6.

2 WEAK FORM

This section covers fundamental continuum mechanic relations in Section 2.1 and introduces the key idea of the novel
EAS framework in Section 2.2. With these basics at hand we then introduce in Section 2.3 the weak form for the new
class of EAS elements.

2.1 Continuum mechanics

We consider as usual the deformation of a body from its reference configuration0 ∈ R3 to a spatial configuration ∈ R3

(see Figure 1).
In this process material points X ∈ 0 are mapped to corresponding spatial points x = 𝛗(X) ∈  by the bijective

deformation map

𝛗 ∈  =
{
𝛗 ∶ 0 → R

3 ||(𝛗)i ∈ H1, det(D𝛗) > 0, 𝛗(X) = 𝛗(X), X ∈ 𝜕
𝜑
0

}
. (1)

Therein, H1 denotes a Sobolev space and 𝜕
𝜑
0 ⊆ 𝜕0 is a part of the body’s boundary 𝜕0 on which the deformation

is prescribed by 𝛗(X). On the remaining part of the boundary 𝜕t0 = 𝜕0 ⧵ 𝜕
𝜑
0 boundary conditions are prescribed in

the form of given traction t. Linearization of the deformation map 𝛗 with respect to the coordinates X determines the
deformation gradient*

F
𝜑
=

𝜕𝛗
𝜕X

= ∇X𝛗, (2)

where we use index (•)
𝜑

to emphasize that the field (•) depends solely on the deformations (this will not necessarily be
the case in subsequent sections). Furthermore,

u(X) = 𝛗(X) − X (3)
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4 PFEFFERKORN and BETSCH

is the displacement of a material point X. Taking the derivative of u with respect to X and x yields the material and spatial
displacement gradient given by

H
𝜑
= 𝜕u

𝜕X
= ∇Xu = F

𝜑
− I, (4a)

h
𝜑
= 𝜕u

𝜕x
= ∇xu = I − F−1

𝜑
, (4b)

respectively. The link of the displacement gradients to the deformation gradient given in (4) can easily be established via
(2) and (3). Moreover, in view of (4), it is straightforward to establish the relations

h = HF−1
, F = (I − h)−1

, (5)

frequently used for the present EAS element. We omit index 𝜑 in the last equation and subsequently whenever a relation
can and will also be used for general and not only purely deformation based fields.

In addition to the kinematic relations presented above, a constitutive law is required to model different material
behavior. A broad class of material models can be written in terms of the Kirchhoff stress as

𝛕̂ = 𝛕̂(F,𝚵), (6)

where 𝚵 denotes the internal variables necessary to describe inelastic behavior. The usual transformation rules

𝛕̂ = ̂PFT = F ̂SFT (7)

relate the constitutive Kirchhoff stress 𝛕̂ to the corresponding first and second Piola-Kirchoff stress tensors denoted by
̂P = ̂P(F,𝚵) and ̂S = ̂S(F,𝚵), respectively.

Remark 1. For a homogeneous hyperelastic material model (6) is fully defined by a strain energy function W and given by

𝛕̂ = 𝜕W
𝜕F

FT = 2F 𝜕W
𝜕C

FT
, (8)

where C = FTF is the right Cauchy-Green tensor.

2.2 EAS kinematics

The key idea of the EAS method is to enhance a kinematic field with an incompatible part. This was first proposed
for geometrically nonlinear problems by Simo and Armero2 who recast the total deformation gradient F in the form
(F-enhancement)

F(𝛗,𝛂) = F
𝜑
(𝛗) + ̃F(𝛗,𝛂). (9)

Thus, the compatible (purely deformation dependent) deformation gradient F
𝜑

(2) is enhanced with the incompatible
part ̃F which contains the additional degrees of freedom 𝛂. However, as mentioned in the introduction, it is also possible
to enhance various other kinematic fields. In the present work we choose to enhance the spatial displacement gradient
(4b) in the same way as (9) such that (h-enhancement)

h(𝛗,𝛂) = h
𝜑
(𝛗) + ̃h(𝛗,𝛂), (10)

where now instead of ̃F in (9) the enhanced spatial displacement gradient ̃h is the independent field. Note that the total
deformation gradient now results from

F(𝛗,𝛂) = (I − h(𝛗,𝛂))−1
, (11)

which is in analogy to (5)2. This idea of enhancing the spatial displacement gradient has to the best knowledge of the
authors only been considered in the PhD-thesis by Schmied,64 which is written in German. In that work it is shown
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PFEFFERKORN and BETSCH 5

numerically that (10) can be used to construct elements without spurious hourglassing in explicit dynamic simulations.
In the present contribution we use (10) in implicit static problems in order to obtain an hourglassing-free EAS element in
both large strain elasticity and elasto-plasticity. Furthermore, we establish a hypothesis why h-enhancement is favorable
in terms of stability (see Section 4.9).

2.3 Weak form

2.3.1 Continuous weak form

With the basic continuum mechanic relations at hand we now introduce the weak form of the governing equations for an
element based on h-enhancement (10). It is given by: Find the deformation 𝛗 ∈  , incompatible displacement gradient
̃h ∈  = L2 and independent stress tensor 𝛕 ∈  = L2 such that

∫

0

̃∇s
x𝛿𝛗 ∶ 𝛕̂dV + Gext(𝛿𝛗) = 0, (12a)

∫

0

𝛿
̃h ∶ (𝛕̂ − 𝛕) dV = 0, (12b)

∫

0

𝛿𝛕 ∶ ̃hdV = 0, (12c)

is satisfied for arbitrary test functions 𝛿𝛗 ∈  = {𝛗 ∶ 0 → R3|(𝛗)i ∈ H1,𝛗(X) = 0, X ∈ 𝜕
𝜑
0}, 𝛿

̃h ∈  = L2 and 𝛿𝛕 ∈
 = L2. Here, 𝛿(•) is used for test functions and does not denote variations since (12) can in general not be derived from a
variational functional†. Moreover, 𝛕̂ is the constitutive Kirchoff stress (6) evaluated with F defined via (11) and (10). The
gradient ̃∇s

x(•) is the symmetric part of the spatial gradient

̃∇x(•) = ∇X(•)F−1
𝜑

, (13)

which is closely related to (5)1. Finally, the integrals in (12) are named internal parts of the weak form and Gext(𝛿𝛗)
contains the contributions of the prescribed external body forces b and surface loads t.

Remark 2. It is important to note that, unless the test function 𝛿
̃h has the form 𝛿

̃h = 𝛿
̃HF−1

, 𝛿
̃H ∈ L2 in analogy to

(5)1, the weak form (12) leads in general to an unsymmetric stiffness matrix even without the Petrov–Galerkin approach
introduced in Section 3.64 Unfortunately, choosing 𝛿

̃h = 𝛿
̃HF−1 results in an element which exhibits spurious instabilities.

However, the stiffness matrix is already unsymmetric due to the Petrov–Galerkin approach in Section 3 such that the
unsymmetry imposed by the weak form is not a major issue.

Remark 3. The proposed weak form (12) is by far not the only possibility to develop an EAS framework. For example, the
standard weak form for nonlinear EAS elements with F-enhancement (9) (e.g., References2,10,16) is given by

∫

0

∇X𝛿𝛗 ∶ ̂PdV + Gext(𝛿𝛗) = 0, (14a)

∫

0

𝛿
̃F ∶ ( ̂P − P)dV = 0, (14b)

∫

0

𝛿P ∶ ̃FdV = 0. (14c)

A similar formulation based on enhancement of the Green–Lagrange strains (E-enhancement) is also possible (e.g., Ref-
erences 11,21,48,51,66). The crucial advantage of the weak form (12) based on h is that it allows the construction of elements
without spurious instabilities. Thus, (12) is mainly considered in the sequel. Nevertheless, we also cover elements based
on (14) for comparison with the novel displacement gradient enhanced elements.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7166 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 PFEFFERKORN and BETSCH

2.3.2 Discrete weak form

One particularity of EAS elements regarding the weak form is the assumption of L2-orthogonal discrete‡ test and trial
spaces for the independent stress 𝛕h and incompatible strain ̃hh (see References 1,2 and Section 4.7). In that way the
independent stress field 𝛕h can be completely eliminated from (12) and the only remaining unknowns are 𝛗 ∈  h and
̃hh ∈ h. The discrete version of the weak form (12) is then given by

Gh
𝜑
=
∫


h
0

̃
𝛻

s
x𝛿𝜑

h ∶ 𝝉̂hdV + Gh
ext(𝛿𝜑

h) = 0 ∀ 𝛿𝜑

h ∈ h
,

Gh
𝛼
=
∫


h
0

𝛿
̃hh ∶ 𝝉̂hdV = 0 ∀ 𝛿

̃hh ∈ h
,

(15a)

(15b)

where h, h, h, and h are the discrete ansatz spaces for the various fields which are specified in Section 3.2.

3 FINITE ELEMENT APPROXIMATION

We use very similar ansatz spaces for the present finite element as proposed by Pfefferkorn and Betsch18 for a lin-
ear Petrov–Galerkin EAS (PG-EAS) element. These ansatz spaces are based on three design conditions determined in
aforementioned reference and allow the construction of relatively simple, widely applicable, low-order, unsymmetric
elements with exceptionally high accuracy in case of distorted meshes. However, the present nonlinear framework
requires a few modifications to ensure objectivity and account for the nonlinear kinematics. In this section, we focus
on these specifics and only briefly summarize the ansatz functions discussed at length by Pfefferkorn and Betsch.18

Focus is put on three-dimensional (3D) hexahedral elements which can easily be reduced to two-dimensional (2D)
quadrilaterals.

Moreover, we propose an improved version of the higher order enhanced modes required for 3D problems. A
minor modification based on analytic solutions for linear elasticity given in Appendix A circumvents the need for the
computationally expensive and intricate orthogonalization procedure originally employed in the work.18

3.1 Geometry and skew coordinate frame

The reference geometry Xh,e of a hexahedral finite element Ωe
0 with nodes Xe

i , i = 1, … , 8 is described as usual with the
isoparametric map such that the geometry map and the corresponding Jacobian are given by

Xh,e(𝛏) =
8∑

i=1
Ni(𝛏)Xe

i , Jh,e(𝛏) = 𝜕Xh,e

𝜕𝛏
=

8∑

i=1
Xe

i ⊗ ∇𝛏Ni, (16)

respectively. Therein, Ni are the standard trilinear Lagrangian shape functions and 𝛏 ∈ ̂Ω = [−1,+1]3 denotes the
isoparametric coordinates defined on the reference element ̂Ω.

Another set of coordinates, which is extensively used for the ansatz spaces described in Section 3.2, are the skew
coordinates. They were first proposed by Yuan et al.67 and Wisniewski and Turska68 in the context of assumed stress
elements and are given by

𝛏 =
[

𝜉 𝜂 𝜁

]T
= J−1

0
(
Xh,e − X0

)
, (17)

where

J0 = Jh,e(0), X0 = Xh,e(0) (18)
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PFEFFERKORN and BETSCH 7

are the Jacobian and position defined in (16) evaluated at the element center 𝛏 = 0. An alternative form of the skew
coordinates which directly links them to the isoparametric coordinates is given by Pfefferkorn and Betsch18

𝛏 = 𝛏 +
4∑

A=1
cAHA(𝛏), (19)

and is based on an alternative representation of the shape functions (see e.g., References16,69,70). In the equation above we
use

cA = J−1
0

1
8

8∑

i=1
Xe

i hA
i , (20a)

H1 = 𝜂𝜁, H2 = 𝜉𝜁, H3 = 𝜉𝜂, H4 = 𝜉𝜂𝜁, (20b)

h1 =
[
+1 +1 −1 −1 −1 −1 +1 +1

]T
,

h2 =
[
+1 −1 −1 +1 −1 +1 +1 −1

]T
,

h3 =
[
+1 −1 +1 −1 +1 −1 +1 −1

]T
,

h4=
[
− 1 +1 −1 +1 +1 −1 +1 −1

]T
.

(20c)

The most important properties of the skew coordinate map (17) are its frame-indifference (see Section 4.2) and the fact
that (17) is an affine map of the physical coordinates. These features facilitate the construction of proper ansatz spaces.
More details on the skew coordinate frame can, for example, be found in the work of Pfefferkorn and Betsch.18

3.2 Ansatz spaces

3.2.1 Test function for the deformation

For the ansatz of the test function of the deformation 𝛿𝛗h,e ∈ h we use the standard isoparametric concept such that

𝛿𝛗h,e =
8∑

i=1
Ni𝛿𝛗e

i (21)

is defined in the same way as (16) with the same trilinear Lagrangian shape functions Ni and the nodal weights 𝛿𝛗e
i . For

the discrete spatial gradient of 𝛿𝛗h,e we define

̃∇x𝛿𝛗h,e = ∇X𝛿𝛗h,eF−1
0 , (22)

F0 = Fh,e
𝜑

|||𝜉=0
, (23)

in analogy to (13). Therein, Fh,e
𝜑

denotes the compatible deformation gradient which is subsequently defined in (28) and
F0 is its evaluation at the element center 𝛏 = 0. Employing F0 in (22) ensures consistency with ordinary continuum
mechanics as well as objectivity of the finite element (see Sections 4.1 and 4.2).

3.2.2 Trial function for the deformation

The next field to be discretized is the trial function of the deformation 𝛗h,e ∈  h. Similarly to the approximation of the
test function (21) we use

𝛗h,e =
8∑

i=1
Me

i𝛗
e
i , (24)
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8 PFEFFERKORN and BETSCH

where𝛗e
i are the nodal weights. The only difference to the discretization of the test function (21) is that (24) uses the metric

shape functions Me
i instead of the isoparametric Ni. This alternative set of shape functions is constructed elementwise in

the physical space§ using the skew coordinates (17). For a hexahedral element Ωe
0 the metric shape functions Me

i are a
linear combination of the eight monomials 1, 𝜉, 𝜂, 𝜁 , 𝜉𝜂, 𝜂𝜁 , 𝜁𝜉, 𝜉𝜂𝜁 and given by

[
Me

1 · · · Me
8

]
=
[
1 𝜉 𝜂 · · · 𝜉𝜂𝜁

] (
A𝛏

)−1
, A𝛏 =

⎡
⎢
⎢
⎢
⎣

1 𝜉1 𝜂1 · · · 𝜉1𝜂1𝜁 1

⋮ ⋱ ⋮

1 𝜉8 𝜂8 · · · 𝜉8𝜂8𝜁 8

⎤
⎥
⎥
⎥
⎦

, (25)

where 𝛏e
j are the skew coordinates of the nodes. Relation (25) can be established by enforcing the Kronecker-delta property

Me
i (𝛏

e
j ) = 𝛿ij at all eight nodes.18 Vice versa, evaluating (25) at the nodes yields

⎡
⎢
⎢
⎢
⎣

Me
1(𝛏1) · · · Me

8(𝛏1)
⋮ ⋱ ⋮

Me
1(𝛏8) · · · Me

8(𝛏8)

⎤
⎥
⎥
⎥
⎦

= A𝛏

(
A𝛏

)−1
= I8×8. (26)

The derivatives of the metric shape functions (25) with respect to the skew coordinates can be computed in a straightfor-
ward way from (25) and are given by

[
∇𝛏M

e
1 · · · ∇𝛏M

e
8

]
=
⎡
⎢
⎢
⎢
⎣

0 1 0 0 𝜂 0 𝜁 𝜂𝜁

0 0 1 0 𝜉 𝜁 0 𝜉𝜁

0 0 0 1 0 𝜂 𝜉 𝜉𝜂

⎤
⎥
⎥
⎥
⎦

(
A𝛏

)−1
. (27)

The inverse matrix (A𝛏)
−1 used in both (25) and (27) exists as long as there are no coincident nodes and the element’s

volume does not vanish. Fortunately, the computationally expensive task of evaluating (25) and (27) for every element
has to be conducted only once at problem initialization and the results can be stored for all further Newton iterations and
load steps. This is because the skew coordinates (17) are defined in terms of the constant reference coordinates rather
than the current configuration used, for example, by Li et al.41 Therefore, the increased numerical effort to compute the
metric shape functions is hardly relevant in nonlinear simulations.

Further important properties of the metric shape functions are their frame-indifference and isotropy¶ due to the use
of the skew coordinates. On top of that Me

i are a partition of unity
∑8

i=1Me
i = 1, have by construction the Kronecker-delta

property (26) and, in case of a constant Jacobian Jh,e = J0, the metric shape functions Me
i coincide with their isoparametric

counter parts Ni. Finally and most importantly, their definition in the skew space enables the construction of complete
ansatz functions in the physical space (see Section 3.2.3).

Returning to (24) the metric shape functions (25) define the discrete trial function of the deformation and allow to
compute corresponding kinematic fields. First, in view of (2), the discrete displacement-based deformation gradient can
now be written as

Fh,e
𝜑

=
8∑

i=1
𝛗e

i ⊗ ∇XMe
i , (28)

where the derivatives of the metric shape functions Me
i with respect to the reference coordinates X can easily be

determined from (27), (17) and the chain rule such that

∇XMe
i = J−T

0 ∇𝛏M
e
i . (29)

Second, with relations (28) and (5) at hand the discrete compatible part hh,e
𝜑

of the displacement gradient (10) can be
written as

hh,e
𝜑

= I −
(

Fh,e
𝜑

)−1
. (30)
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PFEFFERKORN and BETSCH 9

3.2.3 Trial function for the enhanced strain

The enhanced part ̃hh,e ∈ h of the total displacement gradient (10) and the corresponding test function (see Section 3.2.4)
are approximated elementwise which facilitates static condensation of the additional degrees of freedom on element level.
To ensure objectivity and to pass the patch test (see Sections 4.2 and 4.6) we propose the form

̃hh,e = h
h,e
(𝛂e)F−1

0 , (31)

where F0 denotes the compatible deformation gradient Fh,e
𝜑

at the element center 𝛏 = 0 (see (23)) and h
h,e
= h

h,e
1 + h

h,e
2

includes the incompatible degrees of freedom 𝛂e and consists of two parts.
The first set of enhanced ansatz functions is motivated by examining (25) which reveals that the three monomials

m̃e
1 = 𝜉

2
, m̃e

2 = 𝜂

2, and m̃e
3 = 𝜁

2
are missing for a fully quadratic deformation field. However, as shown by Pfefferkorn and

Betsch,18 the functions m̃e
j , j = 1, 2, 3 cannot be used directly in the form of incompatible modes. The modification

̃Me
j = m̃e

j (𝛏) −
8∑

i=1
Me

i (𝛏)m̃
e
j (𝛏i), j = 1, 2, 3 (32)

is necessary to ensure that the incompatible displacements do not contribute to the nodal deformations, that is, ̃Me
j (𝛏i) = 0

holds. Thus, (32) ensures that 𝛗e
i introduced in (24) are actual nodal deformations. Moreover, the modified functions ̃Me

j
coincide with the bubble functions by Wilson et al.3 in case of undistorted meshes.18 Ultimately, (32) can be used in the
sense of incompatible modes for h

h,e
which yields

h
h,e
1 =

3∑

j=1
𝛂e

j ⊗ ∇X ̃Me
j (33)

and has the same structure as the approximation of the deformation gradient in (28). The last equation implies that h
h,e
1

includes three incompatible displacement modes with a total of nine additional degrees of freedom arranged in the vectors
𝛂e

j , j = 1, 2, 3.
The second set of enhanced modes contains three modes and is necessary to avoid a mild form of volumetric

locking.5,18 For the present finite element we use the modes

h
h,e
2 = J−T

0

⎡
⎢
⎢
⎢
⎣

𝛼

e
11𝜉𝜁 + 𝛼

e
12𝜉𝜂 0 0

0 𝛼

e
10𝜂𝜁 + 𝛼

e
12𝜉𝜂 0

0 0 𝛼

e
10𝜂𝜁 + 𝛼

e
11𝜉𝜁

⎤
⎥
⎥
⎥
⎦

J−1
0 , (34)

which are defined in terms of skew coordinates and represent a slight modification of the modes used by Pfefferkorn and
Betsch.18 This modification is inspired by the analytic solutions for linear elastic higher order displacement modes pre-
sented in Appendix A and its major advantage is that it allows to circumvent the need for an orthogonalization procedure
as is further outlined in Section 3.2.4.

3.2.4 Test function for the enhanced strain

The last field which has to be discretized is the test function for the enhanced strain 𝛿
̃hh,e ∈ h. Here we assume the form

𝛿
̃hh,e = F0𝛿h

h,e
FT

0 , (35)

where again the deformation gradient at the element center (23) is employed for objectivity (see Section 4.2). Moreover,
𝛿h

h,e
is given by

𝛿h
h,e
= 1

jh,e J−T
0 𝛿

̂h
h,e

J−1
0 , (36)
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10 PFEFFERKORN and BETSCH

where jh,e = det(Jh,e) and J0 is defined in (18). The last equation includes the transformation from the reference element
̂Ω to the physical configuration Ωe

0 and has the same structure as the test function for the incompatible strain introduced
by Pfefferkorn and Betsch18 (see also Simo and Rifai1). In view of the symmetry of 𝛕̂h,e and the transformations given in
(35) and (36) the skew-symmetric contribution of 𝛿

̂h
h,e

is immaterial in (15b). For the symmetric part we assume the form

𝛿
̂hh,e

v =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜉 0 0 0 0 0 0 0 0 0 𝜉𝜁 − ̂h1
11 𝜉𝜂 − ̂h1

12

0 𝜂 0 0 0 0 0 0 0 𝜂𝜁 − ̂h2
10 0 𝜉𝜂 − ̂h2

12

0 0 𝜁 0 0 0 0 0 0 𝜂𝜁 − ̂h3
10 𝜉𝜁 − ̂h3

11 0
0 0 0 𝜉 𝜂 0 0 0 0 0 0 0
0 0 0 0 0 𝜂 𝜁 0 0 0 0 0
0 0 0 0 0 0 0 𝜉 𝜁 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛼1

𝛼2

⋮

𝛼12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (37a)

̂h2
10 =

1
3
(𝜉c1

1 − 𝜁c1
3), ̂h1

11 =
1
3
(𝜂c2

2 − 𝜁c2
3), ̂h1

12 =
1
3
(𝜁c3

3 − 𝜂c3
2),

̂h3
10 =

1
3
(𝜉c1

1 − 𝜂c1
2), ̂h3

11 =
1
3
(𝜂c2

2 − 𝜉c2
1), ̂h2

12 =
1
3
(𝜁c3

3 − 𝜉c3
1), (37b)

where (•)v denotes vector-matrix notation and ̂hi
j are correction terms which ensure orthogonality with the analytic stress

modes given subsequently in (58). The corrections are computed using components of the vectors cA defined in (20a)
which vanish in case of regular meshes. The modes in the equation above are a modification of the ones proposed by
Pfefferkorn and Betsch18 and motivated by the analytic solutions for linear elasticity presented in Appendix A. Ultimately,
the modification allows to skip the time consuming and intricate orthogonalization procedure employed in the work18

while maintaining the high performance of the element. Thus, using the modified (37) is a valuable improvement of the
element proposed by Pfefferkorn and Betsch.18

3.2.5 Total displacement and deformation gradient

In view of the approximations (30), (31) and the kinematic relations (10), (11) the discrete total deformation and
displacement gradient required to compute the constitutive stress can be written as

hh,e = hh,e
𝜑

+ ̃hh,e
, (38)

Fh,e =
(
I − hh,e)−1

. (39)

3.3 Alternative ansatz spaces

In this section, we present a short outline of alternative approaches for the extension of our previous work18 to the large
deformation regime.

3.3.1 Enhancement of h

The ansatz spaces presented for the element in Section 3.2 are not the only possible choices. For instance, many other
transformations to ensure objectivity in (22), (31), and (35) would be possible. Furthermore, there exist a plethora of other
ansatz functions for enhanced fields such as, for example, the transposed Wilson-modes first proposed by Korelc and
Wriggers.7

However, our numerical experiments suggest that the element described in Section 3.2 has the most favorable behav-
ior. All other tested elements exhibit spurious instabilities, perform worse with mesh distortion or have other serious
drawbacks. In particular, elements which use either Fh,e or (Fh,e)−T instead of F0 in (35) exhibit hourglassing modes simi-
lar to the standard EAS element.2 Replacing F0 with F−T

0 in (35) leads to a form of hourglassing under tension for distorted
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PFEFFERKORN and BETSCH 11

meshes similar to the one observed in the work17 for a special transformation for standard EAS elements. Employing
Fh,e instead of F0 in (22) leads to hourglassing under compression for slender elements. Proceeding similarly by replac-
ing F0 in (22) with Fh,e

𝜑

induces spurious modes under tension in case of instable materials. Finally, using the transposed
Wilson-modes leads to worse performance with mesh distortion and also induces hourglassing under tension if there are
material instabilities.

3.3.2 Enhancement of F

As pointed out in the introduction and Remark 3 other fields than h can be enhanced even though this seems to lead
to less well performing elements and in particular hourglassing instabilities. This section briefly summarizes a possible
PG-EAS discretization for elements based on enhancement of the deformation gradient F (9) and the corresponding weak
form (14).

To that end we first chose a stress field Ph which is L2-orthogonal to the incompatible strain ̃Fh in order to get a
discrete weak form similar to (15). Second, the approximations for the test and trial functions of the deformation are
chosen exactly the same as presented in Section 3.2. Thus, 𝛿𝛗h,e and 𝛗h,e are approximated according to (21) and (24),
respectively. Finally, for the test and trial function of the enhanced deformation gradient suitable choices are

̃Fh,e = Fh,e
𝜑

Fh,e
, (40a)

𝛿
̃Fh,e = (Fh,e)−T

𝛿Fh,e
, (40b)

where in both equations the first factor ensures objectivity and the second contains the actual ansatz functions for the
respective field. In particular, we consider an element that uses the Wilson-modes, that is, (33) and (36), for Fh,e and 𝛿Fh,e,
respectively. Furthermore, we also test an element that uses the transposed Wilson-modes only for Fh,e in the numerical
studies in Section 5.

3.3.3 Enhancement of E

The simplest nonlinear EAS element in terms of finding a suitable discretization is the one based on enhancement of the
Green–Lagrange strain E and its work-conjugate second Piola-Kirchhoff stress S. Since both these fields are defined in
the reference configuration no modifications are necessary for objectivity and it is possible to take the ansatz spaces from
the work18 without adaptions. Unfortunately, these elements suffer from spurious instabilities (see Section 5.6).

3.4 MIP method for increased robustness

One deficiency of EAS elements is their lack of robustness,19 by which we mean the high number of load steps and New-
ton iterations required for convergence in comparison to assumed stress elements. Pfefferkorn et al.19 extend the mixed
integration point (MIP) method proposed by Magisano et al.30 to EAS elements which considerably increases their robust-
ness in many examples. The key idea of that method is to introduce an independent stress tensor Sg at every Gauss point
g = 1, … , ngp. Static condensation of Sg leads then to a modified element stiffness matrix where the constitutive stress in
the geometric parts of the tangent is replaced with the independent stress at the Gauss points.

In the present work we employ the MIP method as presented by Pfefferkorn et al.19 We refer to aforementioned
reference for details on the implementation (see especially Section 5 in Reference 19) and our numerical simulation in
Section 5.5 for the effect of the MIP approach.

4 FEATURES AND PROPERTIES OF H1U/H12

The element proposed in Sections 2 and 3 is named H1U/h12 which stands for a (tri-)linear hexahedral unsymmetric
element (“H1U”), with twelve h-enhanced modes (“h12”). In this section, we prove that H1U/h12 has many interesting
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12 PFEFFERKORN and BETSCH

features which lead to the high performance in numerical simulations covered in Section 5. The most important features
are the improved accuracy in case of distorted meshes discussed in Section 4.5 and the increased stability covered in
Sections 4.8 and 4.9. All properties presented in this section are also verified numerically in Section 5.

4.1 Consistency with ordinary continuum mechanics

In a first step we analyze the mixed weak form (12). To ensure that the proposed weak form is a suitable basis for the
construction of a finite element we have to show that it is consistent with ordinary continuum mechanics. This ensures
that a mixed finite element formulation based on (12) converges to the analytic results with mesh refinement provided
that there are no instabilities, the solution is sufficiently regular and the patch test (see Section 4.6) is fulfilled.

To prove consistency of the weak form (12) it is sufficient to show that it can be reduced to a purely displacement-based
formulation in a continuous (non-discrete) setting. To that end we first obtain from (12c) and the standard localization
argument ̃h = 0. In view of (10), (5), and (6) we then immediately get 𝛕̂ = 𝛕̂

𝜑
meaning that the constitutive stress does

not depend on the additional field ̃h. Inserting this result into (12b) reveals 𝛕 = 𝛕̂
𝜑

. Finally using ̃h = 0 together with (13)
and (7) in (12a) yields

∫

0

̃∇s
x𝛿𝛗 ∶ 𝛕̂dV =

∫

0

∇X𝛿𝛗 ∶ ̂P
𝜑

dV = −Gext(𝛿𝛗), (41)

which is exactly the same as the standard displacement-based weak form. Thus, the weak form postulated in (12) is
consistent with ordinary continuum mechanics and a suitable basis for the novel finite element framework.

4.2 Frame invariance and objectivity

Next we thoroughly show that the discrete weak form (15) and consequently the novel element H1U/h12 is invariant to
a global change of reference coordinates (•)♭ (frame-invariance) and a superimposed rigid body motion (•)♯ (objectivity).
The corresponding transformations are

X♭ = RX + c, (42a)

𝛗♯ = Q𝛗 + d, (42b)

where R, Q ∈ (3) are proper orthogonal tensors and c, d ∈ R3. First, we consider changes of element geometry
described in Section 3.1 due to (42a) and note that transformation (42a) implies nodal coordinate changes according to
Xe,♭

i = RXe
i + c. In view of (16) this means Xh,e,♭ = RXh,e + c and Jh,e,♭ = RJh,e which yields

𝛏♭ = (J♭

0)
−1
(

Xh,e,♭ − X♭

0

)
= J−1

0 R−1R
(
Xh,e − X0

)
= 𝛏 (43)

for the skew coordinates (17). Thus, the skew coordinates are frame-invariant analogous to the isoparametric frame 𝛏♭ = 𝛏
and therefore a suitable basis for the construction of ansatz spaces. Moreover, according to (29),

(∇X(•))♭ =
(

J♭

0

)−T
∇𝛏(•) = R∇X(•), (∇X(•))♭ =

(
J♭

)−T
∇𝛏(•) = R∇X(•), (44)

holds similarly for fields based on skew and isoparametric coordinates. Second, we consider changes of kinematic fields
due to (42). By aid of (5), (42), (44) and 𝛗h,e,♯ = Q𝛗h,e + d the discrete displacement-based deformation gradient (28) and
the corresponding displacement gradient (30) transform according to

Fh,e,♯

𝜑

=
𝜕𝛗h,e,♯

𝜕Xh,e,♭

= QFh,e
𝜑

RT
, (45)

hh,e,♯

𝜑

= I −
(

Fh,e,♯

𝜑

)−1
= I − R

(
I − hh,e

𝜑

)
QT

. (46)
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PFEFFERKORN and BETSCH 13

Furthermore, under the assumption that the incompatible degrees of freedom in (33) and (34) transform via 𝛂e,♯

j =
R𝛂e

j , j = 1, 2, 3 and 𝛼

e,♯

k = 𝛼

e
k, k = 10, 11, 12, respectively, the transformation of the enhanced part of the displacement

gradient (31) is given by

̃hh,e,♯ = h
h,e,♯

(
F♯

0

)−1
= Rh

h,e
RTRF−1

0 QT = R ̃hh,eQT
. (47)

Combining transformations (46) and (47) with (38) and (39) yields the transformation for the total deformation gradient

Fh,e,♯ =
(

I − hh,e,♯

𝜑

− ̃hh,e,♯

)−1
=
(

R
(

I − hh,e
𝜑

− ̃hh,e
)

QT
)−1

= QFh,eRT
, (48)

which is the same as (45) and in particular the correct transformation for a deformation gradient (see e.g., Ogden71).
This is only possible because of F0 included in (31) which ensures proper transformation of the enhanced displacement
gradient. Third, for a proper isotropic elastic material (48) implies that the constitutive Kirchhoff stress tensor transforms
according to

𝛕̂(Fh,e,♯) = 𝛕̂(QFh,eRT) = 𝛕̂(QFh,e) = Q𝛕̂(Fh,e)QT
, (49)

where the second equality holds because of isotropy and the third is due to material objectivity (see e.g., Haupt72 Chapter
7.2 and 7.3). Now, the only expressions in (15) whose transformations have not been established are the test functions.
According to (21), (22), (35), and (36) we obtain

(
̃∇𝛿𝛗h,e)♯ = ∇X𝛿𝛗h,e,♯

(
F♯

0

)−1
= Q∇X𝛿𝛗h,eRTR(F0)−1QT = Q ̃∇𝛿𝛗h,eQT

, (50)

𝛿
̃hh,e,♯ = F♯

0
1

jh,e,♯

(
J♯

0

)−T
𝛿

̂h
h,e,♯

(
J♯

0

)−1(
F♯

0

)T
= Q𝛿

̃hh,eQT (51)

by considering the transformations 𝛿𝛗h,e,♯ = Q𝛿𝛗h,e + d and 𝛿h
h,e,♯

= 𝛿h
h,e

. In the last two equations the correct transfor-
mation is possible due to the proper use of F0 and J0 in (22), (35), and (36), respectively.

Finally, substituting (49), (50), and (51) into the internal parts of (15) yields

Gh,e,♯

int,𝜑 = ∫
Ωe,♯

0

(
̃∇s

x𝛿𝛗h,e)♯ ∶ 𝛕̂h,e,♯dV ♯ =
∫

Ωe
0

(
̃∇s

x𝛿𝛗h,e) ∶ 𝛕̂h,edV = Gh,e
int,𝜑, (52a)

Gh,e,♯

𝛼

=
∫

Ωe,♯

0

𝛿
̃hh,e,♯ ∶ 𝛕̂h,e,♯dV ♯ =

∫

Ωe
0

𝛿
̃hh,e ∶ 𝛕̂h,edV = Gh,e

𝛼

, (52b)

which establishes the frame-invariance and objectivity of the novel element H1U/h12 provided that the external loads
transform appropriately. Numerical verifications of this proof can be found in Sections 5.1.2 and 5.1.3.

4.3 Isotropy and path independence

Two further crucial properties for any finite element are isotropy, implying invariance to node numbering, and
path-independence in the case of elastic materials.

Isotropy of H1U/h12 can easily be verified by observing that there are no preferred directions in the ansatz spaces cho-
sen in Section 3.2. Thus, H1U/h12 is invariant to node numbering which is shown numerically in Section 5.1.2. Examples
for anisotropic finite elements are the unsymmetric displacement-based element by Ooi et al.35,36 and the EAS element
proposed by Korelc et al.14 The former is anisotropic because the rotation of the local element coordinates relies only on
a subset of nodes and the second is anisotropic because the volumetric enhanced modes have preferred directions.

Another crucial property is path independence, that is, that the element does not depend on the deformation history in
case of a path-independent material model. As most elements, the current H1U/h12 is path-independent since all ansatz

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7166 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 PFEFFERKORN and BETSCH

functions are defined with respect to the reference configuration. If they depend on the current configuration the element
is likely to be path-dependent (e.g., the elements by Li et al.41,42).

4.4 Linearized element

In this section, the novel element H1U/h12 is linearized and it is shown that its linearization coincides with the highly
accurate element proposed by Pfefferkorn and Betsch.18 The only difference concerns the improved volumetric enhanced
modes (34) and (37). Thus, all features of that element such as the much increased coarse mesh accuracy, equivalence
to standard EAS elements in case of regular meshes, exact numerical integration of the stiffness matrix by standard
Gauss quadrature and, most importantly, the exact solution of many bending problems (see also Section 4.5) carry over
to H1U/h12 in case of small deformations.

The weak form (15) is a functional f ∶ (𝛗,𝛂) → f (𝛗,𝛂) of the deformations 𝛗 and enhanced degrees of freedom 𝛂. Its
linearization in the reference configuration (𝛗,𝛂) = (X, 0) is given by

Lin0f = f (X, 0) + Δ0f , Δ0f = d
d𝜀

f (X + 𝜀Δ𝛗, 𝜀Δ𝛂)|||𝜀=0
, (53)

where Δ𝛗, Δ𝛂 are increments of the deformation 𝛗 and enhanced degrees of freedom 𝛂, respectively. These incre-
ments are discretized in the same way as 𝛗 and 𝛂 in (21), (33), and (34). Moreover, operator Δ0(•) in (53) denotes the
Gateaux-derivative of (•) with respect to the increments Δ𝛗, Δ𝛂 evaluated in the reference configuration.

With (30), (28), (31), (33) and relation ΔA−1 = −A−1ΔAA−1, which holds for the linearization of a arbitrary tensors
A,73 it is then straightforward to obtain

Δ0hh,e
𝜑

= I−1Δ0Fh,e
𝜑

I−1 = ∇XΔ𝛗h,e
, (54a)

Δ0 ̃hh,e = Δ0h
h,e

I + 0Δ0F−1
0 = h

h,e
(Δ𝛂h,e) = h

h,e
Δ𝛂, (54b)

for the compatible and incompatible part of the discrete displacement gradient hh,e, respectively. With this information
at hand, linearization of the total deformation gradient (39) yields

Δ0Fh,e = ∇XΔ𝛗h,e + h
h,e
Δ𝛂. (55)

Furthermore, linearizing the constitutive stresses (6) under the assumption of an elastic material and by aid of (55)
determines

Δ0𝛕̂h,e = ĉh,e(I) ∶ Δ0

(
Fh,e(Fh,e)T

)
= ̂Clin ∶

(
∇s

XΔ𝛗
h,e + sym(h

h,e
Δ𝛂)

)
, (56)

where sym(h
h,e
Δ𝛂) denotes the symmetric part of h

h,e
Δ𝛂 and ĉh,e(Fh,e) is the constitutive spatial elasticity tensor with the

corresponding linear elasticity tensor ̂Clin = ĉh,e(I). Finally, with the auxiliary results above, the linearization (53) of the
weak form (15) is given by

Lin0Gh
𝜑
=
∫


h
0

∇s
X𝛿𝛗h ∶ ̂Clin ∶

(
∇s

XΔ𝛗
h + sym(h

h,e
Δ𝛂)

)
dV − Gh

ext(𝛿𝛗
h) = 0, (57a)

Lin0Gh
𝛼
=
∫


h
0

𝛿h
h
∶ ̂Clin ∶

(
∇s

XΔ𝛗
h + sym(h

h,e
Δ𝛂)

)
dV = 0, (57b)

which is the same as the weak form of the standard linear elastic EAS element. Furthermore, the approximation of the
fields in Section 3.2 is, apart from the two minor modifications (34) and (37), taken directly from the work of Pfefferkorn
and Betsch.18 Thus, the only differences of the linearized H1U/h12 in comparison to the linear elastic element in afore-
mentioned reference are (34) and (37). The linearization of the corresponding 2D element is even exactly the same as the
element proposed in the work.18
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PFEFFERKORN and BETSCH 15

4.5 Insensitivity to mesh distortion

This section covers the design conditions established by Pfefferkorn and Betsch18 which allow to construct elements with
optimal or close to optimal performance regardless of mesh distortion. To that end we first briefly repeat the linear elastic
case from Reference 18 and then generalize the concept to nonlinear problems.

4.5.1 Linear elasticity

For linear elasticity the investigations by MacNeal18,31 show that an element with N degrees of freedom can at best be exact
for N displacement modes provided that its stiffness matrix is unsymmetric. In case of a PG-EAS framework Pfefferkorn
and Betsch18 examined the weak form (57) and obtained three design conditions required to get an exact finite element
solution for a specific displacement mode regardless of mesh distortion. The design conditions are:18

C1 The test functions for the displacement 𝛿uh have to fulfill the inter-element continuity. This ensures that nodal
equilibrium is fulfilled and that the correct solutions for a single element can be generalized to larger patches of
elements.

C2 The ansatz spaces for the displacement uh,e and incompatible strain 𝛆̃h,e must be chosen such that resulting 𝛔̂h,e

includes the analytic stress 𝛔∗ under the premise of nodally exact displacements.
C3 The test function of the incompatible strain 𝛿𝛆̃h,e must be L2-orthogonal to the analytic stress 𝛔∗. This condition is

an extension of the patch test condition for EAS elements originally proposed by Simo and Rifai.1

These conditions can be used to construct an optimal or close to optimal finite element by choosing a proper set of N
analytic modes for which the element is then designed to be exact.18

Similar to the work of Pfefferkorn and Betsch18 we use the stress modes usually employed for assumed stress
elements68,74,75 as analytic modes. They are defined in terms of skew coordinates (17) and given by

𝝈
∗ = J0𝝈̄

∗JT
0 , (58a)

𝝈̄
∗
v ( ̄𝝃) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 𝜂̄
̄
𝜁 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 ̄
𝜁

̄
𝜉 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 ̄
𝜉 𝜂̄ 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 ̄
𝜁 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 ̄
𝜉 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 𝜂̄

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽1

𝛽2

⋮

𝛽15

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (58b)

where (•)v denotes a vector notation of the corresponding tensor quantity. Compared to the modes given in the work,18

(58b) does not include the bilinear stress modes which are of subordinate importance and incompatible as pointed out
in aforementioned reference. The major advantage of skipping the higher order stress modes is that it allows to straight-
forwardly construct the L2-orthogonal enhanced strain field given in (37). Thus, Condition C3 can be fulfilled without
tedious orthogonalization procedure. Furthermore, (58) still includes the patch-test (𝛽1 to 𝛽6), bending (𝛽7 to 𝛽12) and
torsion modes (𝛽13 to 𝛽15) crucial for many engineering problems (see Jabareen and Rubin76).

Fortunately, element H1U/h12 fulfills all three design Conditions C1 to C3 for the 15 modes (58) in linear elasticity
without further modification. This can be concluded from the fact that the linearization of H1U/h12 coincides with the
element proposed by Pfefferkorn and Betsch18 (see Section 4.4) and the fact that the latter element is specifically designed
to fulfill the design conditions for (58). Thus, H1U/h12 is exact for (58) in linear elasticity.

4.5.2 Nonlinear problems

Unfortunately, it is hardly possible to find similar design conditions and analytic modes in the nonlinear case due to
several reasons. First, analytic solutions for nonlinear higher order displacement modes scarcely exist. In special cases
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16 PFEFFERKORN and BETSCH

where analytic solutions can be found as, for example, for a bending problem (see Ogden71 Chapter 5.2.4) the solutions
are intricate and include non-polynomial functions. However, using such non-polynomial functions for ansatz spaces
is no good idea since this prohibits construction of complete spaces. Moreover, due to the Gauss quadrature, there is,
for example, no difference between a suitable cosine function and the corresponding quadratic polynomial ansatz. This
means that using such a function has no effect unless undesirable higher order numerical integration is employed. The
second difficulty in finding analytic modes for nonlinear problems concerns the plethora of different material models.
Even in case of hyperelasticity many models exist77 which makes it almost impossible to fulfill the design conditions for
arbitrary material models.

Therefore, we consider a different approach in the present work:

• The element is designed such that it is exact for the rigid body and patch test modes (i.e., 𝛽1–𝛽6 in (58)) regardless
of magnitude of the deformation. This is a standard requirement|| for finite elements and corresponding proofs for
H1U/h12 are given in Sections 4.2 and 4.6, respectively.

• For the bending and torsion modes (i.e., 𝛽7–𝛽15 in (58)) exact solutions for the full nonlinear problem are in general not
possible due to the reasons listed above. Instead we chose to fulfill the design Conditions C1 to C3 for these modes only
for small (linearized) deformations. Fortunately, in view of the linearization in Section 4.5.1 H1U/h12 automatically
meets this relaxed form of the design condition for nonlinear bending and torsion modes. Therefore, even though we
cannot expect exact solutions in large deformation problems, results will still be improved compared to the standard
Bubnov–Galerkin approach, at least for small deformations. In fact, the numerical results in Sections 5.2 to 5.4 show
that the accuracy is greatly increased even for highly nonlinear bending.

4.6 Patch test

In this section, we show that H1U/h12 passes the patch test, that is, it is capable of correctly representing states of constant
stress. This is an important requirement for any finite element and ensures, among other things, convergence with mesh
refinement.81 We consider a homogeneous deformation𝛗ho = FhoX + cho with constant deformation gradient∇X𝛗 = Fho
and constant vector cho. To prove satisfaction of the patch test we now show that 𝛗h,e = 𝛗ho is a solution** of the numeric
problem (15).

First, we obtain from the homogeneous deformation 𝛗h,e = 𝛗ho, (28) and (23) that Fh,e
𝜑

= F0 = Fho since the ansatz for
the trial function of the deformations (24) includes complete linear polynomials in the physical space. This follows from
the affine map (17) and (25). Second, the non-constant†† fields (33) and (34) imply ̃hh,e = 0. Consequently, (39) and (6)
determine

Fh,e = Fho ⇒ 𝛕̂(Fh,e) = 𝛕̂ho, (59)

where 𝛕̂ho is the constant Kirchhoff stress corresponding to Fho. These results in combination with the approximations
(35) and (36) allow to recast the second equation of the weak form (15b) in the form

∫

Ωe
0

1
jh,e F0J−T

0 𝛿
̂h

h,e
J−1

0 F0jh,ed ̂Ω = 0 ⇔
∫

̂Ω

𝛿
̂h

h,e
d ̂Ω = 0, (60)

which is satisfied exactly by (37). Moreover, with the first Piola Kirchhoff stress tensor ̂Pho = 𝛕̂hoF−T
ho the first equation of

the weak form (15a) can be written as

∫


h
0

̃∇s
x𝛿𝛗h ∶ 𝛕̂hodV + Gh

ext(𝛿𝛗
h) = 0 ⇔

∫


h
0

∇X𝛿𝛗h ∶ PhodV + Gh
ext(𝛿𝛗

h) = 0, (61)

which is the same as for a isoparametric displacement-based finite element well-known to pass the patch test.81 Thus,
H1U/h12 fulfills the patch test since both equations of (15) are exactly satisfied for 𝛗h,e = 𝛗ho. This result is confirmed
numerically in Section 5.1.1.
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PFEFFERKORN and BETSCH 17

4.7 L2-orthogonal discrete stress

As usual for EAS elements the discrete independent stresses 𝛿𝛕h,e ∈ h and 𝛕h,e ∈  h have been eliminated from the
weak form in Section 2.3.2 via assumed L2-orthogonality between the stress and enhanced strain field. In this section,
we present suitable ansatz spaces for the stress which actually fulfill the assumed orthogonality. These functions enable
variationally consistent stress recovery during post processing and play a crucial role in Sections 4.8 and 4.9. Suitable
stress approximations are given by

𝛿𝛕h,e = 1
jh,e F0J0𝛿𝛕h,eJT

0 FT
0 ∈ h

, (62a)

𝛕h,e = F−T
0 J0𝛕h,eJT

0 F−1
0 ∈  h

, (62b)

where jh,e = det(Jh,e) and F0, J0 are given in (23) and (18), respectively. By choosing 𝛕h,e = 𝛔∗ given in (58) the independent
stress 𝛕h,e can immediately be eliminated from (12b). This can easily be verified with (62b), (35), (36) and the fact that

∫

Ωe
0

𝛿
̃hh,e ∶ 𝛕h,edV =

∫

̂Ω

𝛿
̂h

h,e
∶ 𝛔∗d ̂Ω = 0 (63)

holds regardless of element geometry as consequence of the particular choice (36) (see also the design Condition C3
in Section 4.5.1). A similar procedure can also be applied for the test function of the independent stress in (12c).
Here we choose 𝛿𝛕h,e = 𝛿𝛔∗ where 𝛿𝛔∗ has the same form as 𝛔∗ given in (58) but uses the isoparametric coordinates
𝛏 instead of the skew 𝛏. Unfortunately, the resulting 𝛿𝛕h,e is only automatically L2-orthogonal to ̃hh,e given in (31) in
case of regular meshes‡‡. However, for distorted geometries a Gram–Schmidt orthogonalization procedure similar to
the one proposed by Pfefferkorn and Betsch18 allows to straightforwardly construct an orthogonal 𝛿𝛕h,e field. Thus, the
test function 𝛿𝛕h,e can always be eliminated from (12c) which concludes the proof that suitable L2-orthogonal stress
approximations exist.

4.8 L2-orthogonality to constant pressure

Nagtegaal and Fox65 proposed the ad hoc condition that small changes of the enhanced field may not contribute to volume
changes. They suggest that this condition should be added to the standard requirements on enhanced fields since they
suppose it improves stability of EAS elements. Alternatively, the volume condition can also be obtained by requiring that
the test function for the enhanced field is L2-orthogonal to a piecewise constant pressure field.64,65 We substantiate the
claim of increased stability and discuss its connection to the L2-orthogonality to a piecewise constant pressure field in
Section 4.9.

Here, we present, motivated by the discussion in Section 4.9, a slightly modified version of the condition proposed
by Nagtegaal and Fox65. Instead of requiring orthogonality to a piecewise constant constitutive pressure field we con-
sider L2-orthogonality between the enhanced fields 𝛿

̃hh,e, ̃hh,e and independent Kirchhoff stress64 of the form 𝛿𝛕h,e
p =

(jh,e)−1
𝛿ph,e

0 I and 𝛕h,e
p = ph,e

0 I where 𝛿ph,e
0 , ph,e

0 are piecewise (elementwise) constant§§. The L2-orthogonality conditions can
now be written as

∫

Ωe
0

𝛿
̃hh,e ∶ ph,e

0 IdV = 0, (64a)

∫

Ωe
0

1
jh,e 𝛿ph,e

0 I ∶ ̃hh,edV = 0. (64b)

Since the stress 𝛕h,e
p ∈  h and  h includes constant modes (see Section 4.7), condition (64a) is automatically fulfilled due

to the L2-orthogonality described in Section 4.7. Unfortunately, pressure fields 𝛿𝛕h,e
p are in general not part ofh due to the

orthogonalization procedure required in case of distorted meshes. However, (64b) holds automatically in case of regular
meshes and seems to be important at least in this relaxed sense.
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18 PFEFFERKORN and BETSCH

Remark 4. For comparison, considering an F-enhanced EAS element, (14) and the transformation Ph,e
p = 𝛕h,e

p (Fh,e)−T

yields

∫

Ωe
0

𝛿
̃Fh,e ∶ Ph,e

p dV = 0 ⇔
∫

Ωe
0

tr
(

𝛿
̃Fh,e(Fh,e)−1

)
dV = 0 (65a)

instead of (64a). This is a nonlinear condition which cannot easily be fulfilled for arbitrary deformation gradients Fh,e.65

A possibility is choosing 𝛿
̃Fh,e = 𝛿

̃hh,eFh,e for the test function of the enhanced deformation gradient. Unfortunately, this
is not enough to get a stable finite element as our numerical experiments confirmed. Apparently, it would be necessary
to simultaneously fulfill

∫

Ωe
0

𝛿𝛕h,e
p (Fh,e)−T ∶ ̃Fh,edV = 0 ⇔

∫

Ωe
0

tr
(

̃Fh,e(Fh,e)−1
)

dV = 0 (65b)

at least for regular meshes. The last equation corresponds to (64b) and in contrast to (65a) it seems hardly pos-
sible to find suitable ansatz functions for ̃Fh,e such that (65b) is satisfied for all Fh,e since both ̃Fh,e and Fh,e

depend on ̃Fh,e.

4.9 Stability

The last but not least property of the novel finite element we discuss is its stability. In particular we are concerned with
hourglassing-instabilities from which almost all EAS elements suffer. To the best knowledge of the authors the only exemp-
tion is the element for explicit dynamics proposed in the PhD-thesis of Schmied64 which is based on h-enhancement
similarly to H1U/h12.

The numerical investigations in Section 5 (especially Sections 5.6 to 5.9) cover many cases in which other EAS ele-
ments and mixed approaches famously exhibit hourglassing instabilities. The newly proposed element H1U/h12 passes
all these tests without any problems which strongly suggests its improved stability. Yet, it is of course no mathematically
sound proof which is beyond the scope of the present contribution. However, we suggest:

Hypothesis 1. Satisfaction of the piecewise constant pressure orthogonality conditions (64) is a necessary condition for
stability.

We back our claim by recalling that in the very first publication on geometrically linear EAS elements Simo and Rifai1

already observed spurious oscillations of the variationally consistent pressure field. Later, Reddy and Simo82 provided a
mathematical proof revealing that the independent stress field of EAS elements exhibits checkerboard modes similar to
the Q1/P0 element. These instable modes exist due to a violation of the inf-sup condition which is thoroughly covered by
Boffi et al.83 and for EAS elements in References 82,84. Fortunately, in case of the standard linear elastic EAS element,1
the checkerboard modes are confined to the independent stress. The displacements as well as the enhanced strains are
unaffected (see Lamichane et al.84 and Djoko et al.85). Thus, by either employing L2-smoothing of the independent stress1

or by using the constitutive stress for post-processed results, the instable checkerboard modes do not affect linear EAS
elements in practical simulations.

Returning now to nonlinear EAS elements we observe from (65) that the enhanced field is coupled with piecewise
constant pressure (checkerboard modes) in case of F-enhancement. Our suggestion is that this leads to instabilities from
the independent stress field being transferred to the enhanced field and ultimately the well-known hourglassing first
observed by Wriggers and Reese.46 The coupling between enhanced fields and checkerboard modes can be avoided with
h-enhancement since it is simple to satisfy (64). In particular, H1U/h12 fulfills (64) at least for regular meshes. Thus, the
enhanced field is decoupled from independent constant pressure and instabilities cannot be transmitted from the stress
to the strain field. We believe that this explains the increased stability of H1U/h12.

Remark 5. Unfortunately, satisfaction of Hypothesis 1 is not sufficient. For example, if Fh,e is used instead of F0 in (22)
we observe instabilities (only) for rectangular element shapes in the one element stability analysis (see Section 5.6) even
though the element still satisfies (64).
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PFEFFERKORN and BETSCH 19

5 NUMERICAL INVESTIGATIONS

This section covers extensive numerical studies to assess the performance of the newly proposed element H1U/h12
(Q1U/h4)¶¶ and compare it to existing elements. The numerical examples cover a wide range of features including
mesh distortion sensitivity, robustness and stability in hyperelastic as well as elasto-plastic simulations. Focus is put on
three-dimensional hexahedral elements. However, results can at least qualitatively be transferred to two-dimensional
plane-strain problems if not mentioned otherwise.

5.1 Element types

The (standard) Bubnov–Galerkin finite elements used in our numerical investigations for comparison with H1U/h12
are:−−−−

• H1/E9 (Q1/E4): Standard EAS element by Simo and Armero2 with the classical nine (four in 2D) Wilson-modes and
F-enhancement.

• HA1/E12T (QA1/E4T): Standard EAS element using the transposed Wilson-modes to avoid the instability under
compression and three additional volumetric enhanced modes. Additionally, a modification of the gradient of the
compatible shape functions and a special nine point (five in 2D) Gauss quadrature rule are used. The element is
implemented as described by Pfefferkorn and Betsch16 and closely related to the improved EAS version by Simo et al.5

• H1/P0 (Q1/P0): Mixed pressure element by Simo et al.80 based on a Hu–Washizu functional with elementwise constant
pressure field.

• H1/P0E6T (Q1/P0E2T): Combination of H1/P0 and H1/E9T which was proposed by Armero54 for 2D plane strain
problems (Q1/P0E2T). A 3D extension (H1/P0E6T) has recently been proposed by Hille et al.59

• H1/S18 (Q1/S5): Assumed stress element as proposed by Pian and Sumihara74 and Pian and Tong86 for linear elasticity
in 2D and 3D, respectively. An extension to nonlinear problems can, for example, be found in the work of Viebahn
et al.29 However, we use the inverse stress strain relation for a Neo-Hookean material model proposed by Pfefferkorn
et al.19 instead of the numeric procedure in aforementioned reference.

We also consider other Petrov–Galerkin enhanced assumed strain (PG-EAS) elements in addition to H1U/h12. All of
which use the same set of ansatz functions (see Section 3.2) and differ only in the type of enhancement and required
transformations for objectivity. In particular we investigate:

• H1U/E12 (Q1U/E4): E-enhancement (see Section 3.3.3).
• H1U/F12 (Q1U/F4) and H1U/F12T (Q1U/E4T): F-enhancement as described in Section 2.3, Remark 3 and

Section 3.3.2. H1U/F12T uses the transposed Wilson-modes (i.e., the transpose of (33)) only for the trial function of
the enhancement.

5.2 Material models

For the hyperelastic simulations we consider a Neo-Hookean (NH) and Ogden (OG) material. The former is chosen as
standard material model and the latter allows to deliberately construct a material with an instability under tension. Such
instabilities induce hourglassing for some elements which is thoroughly covered in Sections 5.6 and 5.7. The strain-energy
functions of the two hyperelastic material models are given by

WNH =
𝜇

2
(
tr(FTF) − 3

)
+ 𝜆

2
ln2(J) − 𝜇 ln(J), (66a)

WOG =
np∑

j=1

3∑

i=1

𝜇p

𝛼p

(
𝜆

𝛼p

i − 1
)
+ 𝜅𝛽

−2 (
𝛽 ln(J) + J−𝛽 − 1

)
, (66b)

where J = det F is the determinant of the deformation gradient (39) and 𝜆i = J−
1
3 𝜆i, i = 1, 2, 3 are the deviatoric parts of

the principal stretches 𝜆i. Furthermore, 𝜆, 𝜇, and 𝜅 are the two Lamé-constants and the bulk modulus and 𝛽, 𝛼p, 𝜇p, np
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20 PFEFFERKORN and BETSCH

T A B L E 1 Overview of the material models employed for the various benchmarks.

Benchmark Section Material models

Patch test 5.1.1 NH, EP

Frame invariance 5.1.2 NH

Objectivity 5.1.3 NH, EP

Eigenvalues 5.1.4 NH

Mesh distortion 5.2 NH

Roll-up 5.3 NH

Cook’s membrane 5.4 NH

Thin circular ring 5.5 NH

One element stability 5.6 OG

Large mesh stability 5.7 OG

Necking plane strain 5.8 EP

Necking circular bar 5.9 EP

Note: Neo-Hookean (NH), Ogden (OG), and elasto-plastic (EP) material model.

are further material constants specified in the respective examples. The eigenvalue decomposition required for the Ogden
material is carried out using a numerical eigenvalue and eigenvector computation and proper treatment of duplicate
eigenvalues for the material tangent (see e.g., References 73,87).

In addition to the hyperelastic material, we consider the eigenvalue based elasto-plastic (EP) material model proposed
by Simo.88 It contains the multiplicative elasto-plastic split, nonlinear isotropic hardening, the von Mises yield condition
and a Hencky elastic law. The same eigenvalue routine as described for the Ogden model is used. This material is a
standard model in finite element technology5,17,54,66 and employed with the standard material parameters 𝜇 = 80.1938,
𝜅 = 164.206, 𝜎Y0 = 0.45, 𝜎Y∞ = 0.715, 𝛿 = 16.93, and H = 0.12924.1,2,5,10,14,17,54,88,89 For all elasto-plastic simulations we
use the line-search algorithm described by Bonet and Wood87 to stabilize the Newton–Raphson scheme. Hyperelastic
simulations do not employ the line-search algorithm.

Table 1 gives an overview of the material models used for the numerical examples in this section.

5.3 Stress recovery

All stress results shown in the present work are computed using a L2-smoothing procedure to project the stress from the
Gauss points to the nodes. It is given by

nel∑

e=1
𝜏i
∫Ωe

NiNjdV𝜎j =
nel∑

e=1
𝜏i
∫Ωe

Ni𝜎̂dV , ∀𝜏i ∈ R, (67)

where Ni are the standard Lagrangian shape functions, 𝜎j the stress at node j and 𝜎̂ the constitutive stress (for H1/S18
we use the independent stress). Usually, we plot results for the von Mises stress. However, (67) can be used for any stress
component.

5.4 Basic tests

In this section, we briefly summarize results of some fundamental numerical tests for H1U/h12. Full descriptions of the
tests’ setup and thresholds to verify if the test is passed can be found in the references mentioned below.

5.4.1 Patch test

We conduct the numerical patch test exactly as described by Pfefferkorn and Betsch.16-18 Element H1U/h12 passes the test
for elastic and elasto-plastic material as expected from the analytic investigation in Section 4.6. See Figure 2 for a stress
plot computed with the novel finite element.
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PFEFFERKORN and BETSCH 21

F I G U R E 2 Von Mises stress distribution for the patch test with distorted mesh (left). Geometry and boundary conditions for the
isotropy and invariance test (middle) and the objectivity test (right).

5.4.2 Frame invariance and isotropy

H1U/h12 also passes the frame invariance and isotropy benchmark which is fully described in the work of Pfefferkorn
and Betsch.18 Figure 2 shows the single finite element used to check the two properties. Corresponding analytic proofs
that the element passes this numerical test are presented in Sections 4.2 and 4.3.

5.4.3 Objectivity

Another basic test concerns the objectivity of H1U/h12 which is investigated by examining the effect of superimposed
rigid body motions on a beam-like structure (see Figure 2). A full description of the test is given in Reference 17. The only
difference in this work is the use of distorted elements (s = h∕2) as shown in Figure 2 to ensure that the metric ansatz
functions do not coincide with the standard ansatz functions. Furthermore, as described by Pfefferkorn and Betsch,17 the
test also covers path independence. Again, element H1U/h12 passes both tests for elastic and plastic materials which is
inline with Sections 4.2 and 4.3.

5.4.4 Eigenvalue analysis

A final simple numerical benchmark concerns the eigenvalue analysis of a single (regular or distorted) finite element in
the reference configuration which can be used to determine whether or not the element is prone to volumetric locking.
Refer to Pfefferkorn and Betsch16-18 for a full description of this benchmark. In this test H1U/h12 exhibits the correct dis-
tribution of eigenvalues with only one “locking” mode regardless of mesh distortion. However, as analogously discovered
for the corresponding linear elastic element,18 H1U/h12 exhibits two eigenvalue pairs with non-negligible complex part.
Fortunately, this does not seem to have negative effects on the elements performance as our extensive numerical studies
show.

5.5 Mesh distortion test

The first benchmark for features beyond basic requirements concerns mesh distortion sensitivity. To that end we
consider a 3D version16,18 of the standard 2D test.1,12,14,22,49,90,91 The beam like structure shown in Figure 3 has the
dimensions l × b × h = 10 × 1 × 2 and is meshed with only two elements. Distortion is applied on two nodes via param-
eter s as shown in Figure 3. Fixed boundary conditions u(X = 0, Y , Z) = 0, v(X = 0, Y = 0, Z) = 0 and w(X = 0, Y , Z =
0) = 0 apply on the left end (X = 0) while the other end is subjected to a bending moment M = 20 applied in the
form of a traction boundary condition. It is given by 𝜎(Z) = 30 (1 − Z) and modeled as dead load. We choose the
Neo-Hookean material model with parameters 𝜇 = 600 and 𝜆 = 600 for this test which corresponds to E = 1500 and
𝜈 = 0.25.
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22 PFEFFERKORN and BETSCH

F I G U R E 3 Mesh distortion test. Setup (left) and deformed configuration for s = 3 (right). Deformed configuration computed with
H1U/h12.

F I G U R E 4 Results of the mesh distortion test. Normalized top edge displacement 𝛿 plotted over distortion s.

The setup is chosen such, that the analytic solution in linear elasticity is u = 1.76 However, for the nonlinear problem
we use uref = 0.96897 computed with a fine regular mesh of 40 × 8 × 4 HA1/E12 elements as reference solution. Displace-
ment u denotes the mean value of the displacement in Z-direction of the two nodes at the top edge on the right face (see
Figure 3) which is normalized with uref. Figure 4 shows the resulting 𝛿 = u∕uref for several elements.

Element H1/S18 exhibits the best performance of the standard elements with almost the correct displacement (|𝛿 −
1| < 1%) for no distortion and the least deterioration with mesh distortion. H1/P0E6T behaves far too soft in case of no
distortion. In fact there is a “optimal” distortion for which the element is exact, which explains the great performance of
that element in the Cook’s membrane example in Section 5.4.

The novel PG-EAS elements perform far better than any of the standard elements. After all, they are specifically
crafted to be exact in linear elastic bending problems (see Section 4.5) which also greatly improves their accuracy in this
nonlinear test. However, results are not as accurate as in the linear elastic case and there are, as expected (see Section 4.5.2),
small deviations from the optimal result 𝛿 = 1. Of the tested PG-EAS elements the newly proposed H1U/h12 is the most
accurate with |𝛿 − 1| < 2.1% for all distortions. The other PG-EAS elements are slightly less accurate but still outperform
all standard Bubnov-Galerkin finite elements.

Remark 6. Interestingly, none of the PG-EAS elements converges in the Newton–Raphson scheme regardless of number
of load steps for the two special meshes proposed by Pfefferkorn and Betsch.18 There seems to be some sort of instability
which might be associated with horizontal displacements observed due to the combination of non-symmetric Dirichlet
boundary conditions and mesh distortion. If either a regular or finer mesh is considered, the solution converges as usual.

5.6 Roll-up

Our next example concerns the classical roll-up of a beam to show that the novel approach also improves the element’s
behavior in distorted meshes for considerable bending. Similar to the previous example we study a beam-like structure
with dimensions L = 10, b = 2, and t = 0.5 which is subjected to a bending moment

M = 2𝜋EI
L

(
1 − 2

3
𝜋

2t2

L2

)
, I = bt3

12
(68)
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PFEFFERKORN and BETSCH 23

F I G U R E 5 Roll-up of a beam. Reference 0 and deformed configuration for HA1/E12T and H1U/h12 for a regular (left) and distorted
(right) mesh. Thick dashed and solid line show beginning and end of the beam with H1U/h12 and the distorted mesh (right).

F I G U R E 6 Setup of the Cook’s membrane test (left) and deformed configuration with von Mises stress distribution computed with
16 × 16 × 2 H1U/h12 elements (right). The colors are capped at 0.65𝜎v,max = 354 to avoid domination of the stress singularity in the plot.

applied on the right end in the form of a linearly distributed follower load. Thus, it stays normal to the deformed surface
and is scaled with the deformed area (see e.g., Wriggers69 Ch. 4.2.5). The moment (68) is taken from the work of Müller
and Bischoff92 and accounts for the rather thick beam in contrast to the usually used M = 2𝜋EI∕L which is only valid for
thin beams. Dirichlet boundary conditions u(X = 0, Y , Z) = 0, v(X = 0, Y = 0, Z) = 0 and w(X = 0, Y , Z = 0) = 0 apply on
the left end and we consider a regular and distorted mesh with 20 elements as shown in Figure 5. The material parameters
of the Neo-Hookean model are chosen to 𝜇 = 500 and 𝜆 = 0 which correspond to E = 1000 and 𝜈 = 0.

Figure 5 shows the final configuration computed with HA1/E12T and H1U/h12. The former is only capable of (almost)
correctly depicting the roll-up into a circular shape in case of a regular mesh and is well off the desired shape in case of
distortion. However, the newly proposed H1U/h12 is able to give good results for both meshes with only slightly too soft
behavior due to the distortion. Thus, it can be concluded, that the Petrov–Galerkin approach improves performance not
only for “moderate” bending (see Section 5.2) but also in case of much larger curvatures.

5.7 Cook’s membrane

The classical Cook’s membrane example1,2,4,10,16-18,54,57,58 covers convergence of displacements and stresses with mesh
refinement as well as coarse mesh accuracy. Figure 6 shows the tapered trapezoidal specimen which is clamped on the left
side (u(X = 0, Y , Z) = 0) and subjected to a constant shear force 𝜏 = 100 in y-direction. Again, we use the Neo-Hookean
material with the parameters chosen to 𝜆 = 8.2669 ⋅ 104 and 𝜇 = 756.00 (corresponding to a nearly incompressible mate-
rial with E = 2261.2 and 𝜈 = 0.4955). A mesh with two elements in direction of thickness and nel = {2, 4, 8, 16} elements
in the other two directions completes the setup.

Figure 7 shows the displacement u of the top right corner in Y -direction and the stress 𝜎 at the midpoint of the
lower surface (see Figure 6) for increasingly fine meshes. H1/P0E6T exhibits seemingly the best results of the standard
elements. However, as shown in Section 5.2 it is too soft in bending dominated problems with moderate distortion. Thus,
the good results of H1/P0E6T in this test are due to the “correct distortion” of the mesh. H1/S18 is the next best standard
element and shows especially fast stress convergence which even competes with the results of the Petrov–Galerkin finite
elements.
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24 PFEFFERKORN and BETSCH

F I G U R E 7 Results of the Cook’s membrane benchmark. Convergence of the displacement u (left) and stress 𝜎 (right) with mesh
refinement.

F I G U R E 8 Geometry for thin circular ring (left) and deformed configuration computed with 2 × 6 × 30 H1/S18 (middle) and H1U/h12
(right) elements.

All unsymmetric elements exhibit fairly similar results with an odd kink for very coarse meshes. The novel H1U/h12
exhibits fast convergence of the displacements and only marginally slower convergence of the stresses in comparison to
H1/S18. All in all, the newly proposed element gives accurate results in this test as well.

5.8 Thin circular ring

In this section, we conduct the thin circular ring example14,19,93 shown in Figure 8 to examine the element’s robust-
ness in the Newton–Raphson scheme. We characterize robustness by the size of applicable load steps and number of
Newton–Raphson iterations required for convergence.19 Robustness is naturally highly influenced by the settings for the
Newton–Raphson scheme. We choose a convergence criterion based on the norm of the residual ||R|| < 10−8 and assert
failure of the Newton–Raphson scheme if either ||R|| > 1014 or more than 20 iterations are necessary for convergence
within one load step. Figure 8 shows the slit circular ring with dimensions ri = 6, ro = 10 and t = 0.03. Boundary condi-
tions u(0, 0, 0) = 0, v(X , Z, Y = 0) = 0 and w(X , Y = 0, Z = 0) = 0 apply at face F1 and face F2 is subjected to a dead load
q = 6.67 in Z-direction. To complete the setup, we consider the Neo-Hookean material model with 𝜇 = 10.5 ⋅ 103 and
𝜆 = 0.

The converged displacement wP of point P in Z-direction computed with a very fine mesh with 8 × 24 × 120 elements
is wP ≈ 10.265 for both H1/S18 and H1U/h12. However, Figure 8 shows the deformed configuration for the coarser mesh
with 2 × 6 × 30 elements for H1/S18 with wP = 9.741 and H1U/h12 with wP = 7.978, respectively. Therefore, both behave
too stiff and the different displacements make comparison regarding robustness difficult. In order to get a “fair” compar-
ison of the element’s robustness we only consider a mesh with 4 × 12 × 60 elements for which the displacements wP (see
Table 2) are similar.

Table 2 also lists the required number of load steps nsteps and total number of Newton–Raphson iterations nNR
for various element types. H1/S18 exhibits the most favorable behavior with only one required load step and seven
Newton–Raphson iterations. This is inline with the results of Magisano et al.28 and Pfefferkorn et al.19 who observed
the high robustness of assumed stress elements in many examples. All EAS elements require many more load steps
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PFEFFERKORN and BETSCH 25

T A B L E 2 Results of the thin circular ring test.

Element type req. nsteps Total nNR wP

H1/S18 1 7 10.235

HA1/E12T 5 80 9.970

HA1/E12T-MIP 2 14 9.970

H1U/E12 8 106 10.286

H1U/F12 8 107 10.292

H1U/F12T 7 96 10.224

H1U/h12 6 90 10.200

H1U/h12-MIP 2 16 10.200

F I G U R E 9 Geometry for the stability test (left) and 2D hourglass modes computed for 𝜆1 = 0.75 (right, solid line). The deformed state
is depicted in both figures with dotted lines.

and iterations. However, this can be greatly improved with the MIP method briefly described in Section 3.4 and intro-
duced for EAS elements by Pfefferkorn et al.19 For the novel H1U/h12 the MIP method allows to reduce nNR by a factor
of ≈ 5.6.

5.9 One element stability analysis

The next two tests concern the stability of the finite elements and are used to determine if elements are prone to hour-
glassing. To that end we first consider the unconstrained one element stability test proposed by Glaser and Armero54

which has recently been extended to 3D problems by Pfefferkorn and Betsch.17 The advantage of the unconstrained com-
pared to the constrained test proposed by Wriggers and Reese46 is that it can also be used to examine hourglassing due to
material instabilities.

We consider the Ogden material model (66b) with 𝛽 = 2, 𝜅 = 105 + 20∕3, np = 1, 𝛼1 = 0.5, 𝜇1 = 80 which corresponds
to 𝜇 = 20 and 𝜆 = 105 in linear theory. Note that the material parameters are deliberately chosen such that a material insta-
bility under tension occurs at 𝜆

crit
1 ≈ 3 and 𝜆

crit
1 ≈ 1.75 for the first and second Piola-Kirchhoff stress, respectively.10 This

instability is similar to the one of the elasto-plastic material model which is well-known10,14,17,54 to trigger hourglassing.
However, the Ogden model yields more distinct results which is why it is employed here.

The test is performed on a single element (see Figure 9) with reference configuration Ωe
0 = [−r,+r] × [−1,+1] ×

[−1,+1] where r governs the element’s aspect ratio. Usually, it is not necessary to consider initially rectangular
geometries with r ≠ 1 since Armero54 showed that different aspect ratios only change when|||| and not if instabil-
ities occur. However, this is not necessarily true for some of the unsymmetric finite elements which is discussed
below.

The homogeneous deformation state shown in Figure 9 is associated with a diagonal deformation gradient of the form
F = diag([𝜆1, 𝜆2, 𝜆3]). Therein, 𝜆i, i = 1, 2, 3 are the principal stretches associated with the principal axes which coincide
with coordinate system shown in Figure 9. Furthermore, choosing a specific 𝜆1 allows to compute the other principal
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26 PFEFFERKORN and BETSCH

stretches from the material model and the boundary conditions. In case of a 2D plane strain problem we have 𝜆3 = 1 and
𝜆2 can be computed from 𝜏2 = 0. Similarly, in 3D uniaxial tension 𝜆2 = 𝜆3 can be determined from 𝜏2 = 𝜏3 = 0.

This analytic solution can then be imposed on the finite element in order to compute the corresponding stiffness matrix
Ke of the element. Furthermore, the hourglass eigenvectors of Ke arranged row-wise in matrix Phour can be determined
in closed form for this example. In 2D plane strain they are always given by

Phour =
1
4

[
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1

]

. (69)

Unfortunately, no equivalently simple structure exists for the 3D problem. Nevertheless, it is possible to find the eigen-
vectors in closed form with the procedure described by Pfefferkorn and Betsch17 for symmetric elements. Interestingly,
the approach can also be used for most of PG-EAS elements since their stiffness matrix is symmetric for the present load
state and regular mesh. However, in case of H1U/h12 Ke looses its symmetry and the method has to be modified. The
eigenvectors are then given by17

Phour =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 U1 0 1 0 0 0 0 0 0 0 0
0 U2 0 1 0 0 0 0 0 0 0 0
0 0 U1 0 0 0 1 0 0 0 0 0
0 0 U2 0 0 0 1 0 0 0 0 0

V1 0 0 0 1 0 0 0 1 0 0 0
V2 0 0 0 1 0 0 0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
8

⎡
⎢
⎢
⎢
⎣

h1 ⊙ I
⋮

h4 ⊙ I

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Hhour

, (70)

where I is the identity matrix, hi are the hourglass vectors given in (20c) and “⊙” denotes the Kronecker product.94

Furthermore, Ui and Vi, i = 1, 2 can directly be computed from the components of the sparse17 matrix ke = [kij] =
HhourKe

H
T
hour and are given by

U1,2 = −
p1

2
±

√
p2

1

4
+ 1, p1 =

k44 − k22

k24
, (71)

V1,2 = −
p2

2
±

√
p2

2

4
+ 2 k15

k51
, p2 =

k55 − k11 + k59

k51
. (72)

Thus, the only difference to the method proposed by Pfefferkorn and Betsch17 is that it considers the only unsymmetric
entry k15 ≠ k51 of ke. Figures 9 and 10 show the computed eigenmodes in 3D for 𝜆1 = 0.75. Ultimately, the hourglass
eigenvectors can be used to evaluate

diag([𝜔hour
i ]) = (Phour)−TKe(Phour)T, (73)

which yields a diagonal matrix*** with the eigenvalues 𝜔

hour
i . If any negative hourglass eigenvalues occur the element is

likely to be prone to hourglassing. Whether or not hourglass modes actually occur can then be verified with the simulation
described in Section 5.7.

Figure 11 shows the hourglass eigenvalues 𝜔

hour
i for several 2D elements in dependence of 𝜆1. The F-enhanced PG-EAS

Q1U/F4 and Q1U/E4 both coincide with Q1/S5 and are therefore not included in the plots. These three elements all
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PFEFFERKORN and BETSCH 27

F I G U R E 10 Eigenmodes in 3D with non-constant strain field (solid line) of H1U/h12 for the deformation state 𝜆1 = 0.75 (dotted).
Computed using the Ogden material model.

F I G U R E 11 Results of the 2D one element stability analysis. Left: Eigenvalues 𝜔

hour
1 (dashed) and 𝜔

hour
2 (solid) for various elements

with r = 1. Right: Eigenvalues 𝜔

hour
i of Q1U/h4 for various r.

exhibit the well-known instability of 𝜔

hour
2 (solid line) under compression (𝜆1 < 1 implies compression) first discovered

for EAS elements by Wriggers and Reese46 (see also Viebahn et al.29 for assumed stress elements). All other elements
exhibit no negative eigenvalues under compression and are therefore not prone to hourglassing.

In case of tension (𝜆1 > 1) instabilities can be observed due to the material instability. In fact, the only EAS element
without zero eigenvalue is the newly proposed Q1U/h4. Interestingly, the zeros of the other elements occur at 𝜆1 ≈ 1.75
and 𝜆1 ≈ 3 which coincides with instability points of the Ogden material. This supports the claim that the material insta-
bilities transfer to the hourglass modes and cause the hourglassing patterns.10 Hourglass mode 𝜔

hour
1 (dashed line) also

becomes negative for some finite elements under tension but not for Q1U/h4.
The second plot of Figure 11 shows the hourglassing eigenvalues of Q1U/h4 with various element aspect ratios r. As

mentioned above, some unsymmetric finite elements exhibit instabilities for rectangular elements even if they are stable
for the quadratic element. This is, for example, the case if Fh,e is used instead of F0 in (22). Fortunately, Q1U/h4 does not
suffer from such defects.

Figure 12 shows results of the 3D one element stability test for the elements H1/P06T, H1U/F12, and H1U/h12.
The eigenmodes 3, 9, and 10 are not included in the plots since they are duplicates††† of 2, 7, and 8, respectively.
Almost all elements (not only the plotted) exhibit an instability for mode 12. The only exemption is the newly pro-
posed H1U/h12 which is an interesting result even if mode 12 does usually not lead to global hourglassing patterns
since it is incompatible to neighboring elements.17 The most important modes 5–8, which are usually responsible for
hourglassing, are highlighted with continuous lines in the plots. As expected, H1U/F12 exhibits instabilities both in
compression (modes 5 and 6) and tension (mode 6). The instability of H1/P0E6T under compression in mode 6 does
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28 PFEFFERKORN and BETSCH

F I G U R E 12 Results of the 3D one element stability analysis for r = 1. Hourglass eigenvalues for the Ogden material and H1/P0E6T
(left), H1U/F12 (middle), and H1U/h12 (right).

F I G U R E 13 Setup and mesh of the large mesh stability analysis. Setup of 2D test with distorted mesh (left), setup for the 3D test
(middle), and 3D distorted mesh (right).

not seem to play any role in hourglassing problems. However, mode 8, which becomes “slightly” instable under ten-
sion, likely explains the hourglassing of H1/P0E6T observed in the elasto-plastic simulation shown in Section 5.9.
Furthermore, the too soft bending behavior of H1/P0E6T (see Section 5.2) is resembled by the comparably soft behav-
ior (low eigenvalue) of mode 7. The 3D results described for H1/P0E6T and H1U/F12 are inline with the observation
by Hille et al.59 for the elasto-plastic material. Both elements show hourglassing in such simulations. In contrast
to that, the novel element H1U/h12 does not suffer from any instabilities in this test. While this is not enough
to immediately conclude that H1U/h12 is completely stable (there could e.g., be hourglassing in combination with
neighboring elements), the simulations presented in the next sections further support the much improved stability
of H1U/h12.

5.10 Large mesh stability analysis

In addition to the one element stability analysis in Section 5.6, we present a test on larger FE-meshes in this section. We
focus on a 2D problem which is discussed in depth in the work of Bieber et al.62 and particularly interesting since there
exists an analytic solution71,95 of the considered diffuse bifurcation problem.

The 2D version of the test is performed on the rectangular‡‡‡ block shown in Figure 13 with dimensions L1 = 25 and
L2 = 50. The block is supported on the lower and top edge by the boundary conditions given in Figure 13 and is meshed
with a regular or distorted mesh with 12 × 24 elements. The distortion is applied by randomly shifting all coordinates
|Xi − Xi| ≠ Li∕2, where Xi is the block’s center by Δi ∈ [−0.5, 0.5] such that the surface is maintained. In order to also
cover instabilities under tension the Ogden material (66b) is considered with the parameters 𝛽 = 2, 𝜅 = 3.333 ⋅ 103, np = 1,
𝛼1 = 0.5 and 𝜇1 = 1.379 ⋅ 103 (corresponding to E = 1000 and 𝜈 = 0.45) which are chosen such that a material instability
arises (cf. Section 5.6).
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PFEFFERKORN and BETSCH 29

F I G U R E 14 Results of the 2D large mesh stability analysis. Typical spurious modes for Q1/E4 under compression and QA1/E4T under
tension (tension modes rotated by 90◦ and scaled in Y -direction by factor 4).

The actual stability analysis is performed by gradually de-/increasing the principal stretch in Y -direction by initially
Δ𝜆 = −0.01 and Δ𝜆 = +0.04 in tension and compression, respectively. During that process the eigenvalues with low-
est magnitude and the corresponding eigenvectors𝚽 are computed numerically and tracked throughout the simulation
which can be achieved by associating the current eigenvectors with the corresponding eigenvectors from the previous
load step. The step width Δ𝜆 is automatically adapted to ensure that the correct eigenmodes are associated with each
other. Whenever an eigenvalue changes its sign we start an extended system solver.69 The especially taylored version used
here solves

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛗h − 𝛗ana(𝜆)
Kred𝚽 + 𝛼𝚽
||𝚽||2 − 1

0.5𝛼

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (74)

for the unknowns 𝛗h, 𝚽, 𝛼, 𝜆 which accurately determines the instability point with zero-eigenvalue and correspond-
ing eigenmode 𝚽 as well as the critical stretch 𝜆. In the equation above Kred is the stiffness matrix where Dirichlet
boundary conditions have been eliminated, 𝛗ana the analytic solution of the homogeneous problem (see Section 5.6)
and 𝛼 is a regularization parameter which iterates to zero and is used to avoid ill-conditioning of the tangential matrix
of (74). To compute the derivative of the stiffness matrix K required for the Newton-scheme we employ the numer-
ical tangent procedure proposed by Wriggers and Simo.96 The entire process is repeated until four instabilities have
been found.

Figure 14 shows the first two modes of Q1/E4 under compression and QA1/E4T under tension, respectively. These
elements exhibit typical spurious (hourglassing) modes which occur similarly for all standard and PG-EAS elements
which do not employ h-enhancement. In particular, Q1/E4, Q1/S5, Q1U/E4, and Q1U/F4 exhibit instabilities under com-
pression and tension while QA1/E4T, Q1/P0E2T, and Q1U/F4T show no instabilities in the first four eigenmodes under
compression but become unstable under tension due to the material instability. The only standard finite element, that
works well in this test, is Q1/P0 which yields similar results as Q1U/h4 described below. These results are inline with
Section 5.6.

The first two eigenmodes obtained with Q1U/h4 and corresponding analytically computed physical instabilities are
shown in Figure 15. The analytic solution has first been proposed by Ogden71 and is summarized well by Triantafyl-
lidis et al.95 We also refer to Bieber et al.62 for in depth discussions and comparison of the analytical results to many
standard finite element models. The numerical results of Q1U/h4 depicted in Figure 15 clearly show that Q1U/h4
performs extremely well in this test. It reproduces the analytic results in terms of both the mode shapes and level
of stretch at which the eigenmodes occur with high accuracy. The same holds also for the third mode (not shown)
with the exemption of the third compression mode in combination with the distorted mesh. Only the fourth mode
shape differs from the analytic result. Most importantly, no spurious modes have been observed for Q1U/h4 in all
four modes.

For the 3D version of this test we study a cube with edge length of 50 and the boundary conditions shown in Figure 13.
Similar to the 2D case we employ both a regular mesh with 12 × 12 × 12 elements and a distorted mesh obtained by
randomly shifting the nodes by Δi ∈ [−1, 1] (the same amount as in the 2D case in relation to the element size). The
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30 PFEFFERKORN and BETSCH

F I G U R E 15 First two eigenmodes and corresponding critical stretches 𝜆

(•)
i for the 2D large mesh stability analysis computed with

Q1U/h4 for a regular (𝜆

regu
i , top row) and distorted mesh (𝜆

dist
i , middle row) are compared to the analytic solution (𝜆

ana
i , bottom row). All

modes in tension are rotated by 90◦ and scaled in the Y -direction by factor 4.

resulting eigenmodes computed with H1U/h12 are shown in Figure 16. Again, there are no spurious modes similar to
the 2D case. Furthermore, the mode shapes as well as the critical stretches differ only slightly for the two meshes which
highlights once more the mesh distortion insensitivity of the Petrov–Galerkin approach.

5.11 Necking of a plane strain elasto-plastic plate

The final two examples in this work are elasto-plastic necking simulations which are well-known59 to trigger hour-
glassing for standard elements. First we consider a plate subjected to plane strain conditions2,10,14,47,54,89 with length
2L = 53.334, width 2R = 12.826 and thickness t = 1. Only one fourth (see Figure 17) has to be modeled due to
symmetry and is meshed with 20 × 10 × 1 elements. Boundary conditions u(X = 0, X , Z) = 0, v(X , Y = 0, Z) = 0 and
w(X , Y , Z) = 0 ensure symmetry and the plane strain state, respectively. Load is applied at the top edge in the form
of prescribed displacements ū = 7 applied within 200 load steps§§§. Furthermore, a geometric imperfection in the
form of a linear reduction of the width to R = 6.343 ensures that necking initiates at the lower boundary (Y = 0).
Figure 17 shows the initial geometry, boundary conditions, mesh with refinement in the lower fifth and a typical load
displacement curve.

Results of the test are shown in Figure 18 which depicts a deformed configuration computed with different finite
elements at ū = 5.6. It is clearly visible that H1/E9 shows severe hourglassing. HA1/E12T’s spurious mode is less pro-
nounced due to the special nine point integration yet it can still be seen especially along the left edge. If the standard
Gauss quadrature was employed the hourglassing patterns would be similar to H1/E9. PG-EAS elements based on F-
and E-enhancement do not converge in this test and show severe hourglassing before the Newton–Raphson scheme fails.
Only the mixed pressure EAS element H1/P0E6T and the newly proposed h-enhanced H1U/h12 are hourglassing-free.
Especially the latter result is very interesting. To the best knowledge of the authors this is the first EAS element to be
hourglassing-free in this test.
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PFEFFERKORN and BETSCH 31

F I G U R E 16 First two eigenmodes and corresponding critical stretches 𝜆

(•)
i for the 3D large mesh stability analysis computed with

H1U/h12 for a regular (𝜆

regu
i , top row) and distorted mesh (𝜆

dist
i , bottom row). Modes in tension are scaled in the Z-direction by factor 4.

F I G U R E 17 Setup of the plane strain elasto-plastic plate example (left) and load displacement curve computed with H1U/h12 (right).

5.12 Necking of a elasto-plastic circular bar

The final benchmark in this work concerns the necking of an elasto-plastic circular bar.2,5,14,17,19,88 Similar to the pre-
vious simulation we consider a cylindric specimen with length 2L = 53.334 and radius R = 6.413 of which only one
eight is considered due to symmetry. Figure 19 shows the undeformed geometry and the mesh which consists of two
parts with 480 elements each. Symmetry boundary conditions u = 0, v = 0, w = 0 apply on the surfaces X = 0, Y = 0,
Z = 0, respectively, and load is applied by prescribed displacement u = ū on the surface X = L. Again, the radius is
linearly reduced to R = 6.343 to initiate necking at X = 0. The final state ū = 7 is reached within 30 load steps¶¶¶ of
which half is used up to a displacement of ū = 5.6 and the other half is used to cover the more demanding range
up to ū = 7.0.

Figure 19 shows the load displacement curves for several finite elements. Element H1/P0 is taken as reference solu-
tion since it coincides well with experimental data.97 Apart from H1/P0E6T the curves are pretty much the same up to
ū ≈ 5.6 with a maximum load of Fmax = 77.65 ± 0.1%. Afterwards, there are slight differences with H1U/h12 exhibiting
the best agreement with H1/P0. Figure 20 shows the final configuration for ū = 7.0 computed with various elements.
Only H1/P0E6T exhibits spurious hourglassing modes. Thus, to the best knowledge of the authors, H1U/h12 is the only
low-order locking-free finite element to be hourglassing-free in both the plane strain (see Section 5.8) and circular bar
elasto-plastic necking simulation.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7166 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



32 PFEFFERKORN and BETSCH

F I G U R E 18 Results of the plane strain elasto-plastic plate test. Deformed configuration with distribution of accumulated plastic strain
for prescribed displacement ū = 5.6.

F I G U R E 19 Setup of the elasto-plastic circular bar example (left) and load displacement curve for various elements (right).

F I G U R E 20 Results of circular bar necking test. Deformed configuration with distribution of accumulated plastic strain for prescribed
displacement ū = 7.0.

6 CONCLUSION

The present contribution introduced a novel Petrov–Galerkin EAS element for large deformation solid mechanics. It is
based on the recently published linear elastic framework by the authors18 and enhancement of the spatial displacement
gradient.64 The resulting element has many favorable properties. Besides the standard requirements such as satisfaction of
the patch test, objectivity and being locking-free it exhibits two outstanding features. First, the Petrov–Galerkin approach
makes the finite element much less sensitive to mesh distortion. This is of great value in practical simulations since it
could reduce the effort needed to mesh complex geometries. Second, the finite element is free from spurious modes in all
typically critical examples known to trigger hourglassing for existing finite elements. In fact it is to the best knowledge of
the authors the only locking-free low-order mixed finite element to be free from hourglassing under compression, tension
and for elasto-plastic simulations. Moreover, we postulated a hypothesis on why instabilities arise for all previously pro-
posed EAS elements and other related mixed methods. We supposed that the transmission of well-known checkerboard
modes to the enhanced modes is at the core of the problem and showed that the newly proposed approach circumvents
the issue.

Two further novelties in the present work concern a slight modification of the higher order enhanced modes and
the MIP-method first used for Petrov–Galerkin elements in this contribution. The former reduced the numerical effort
to get the ansatz functions and the latter increased robustness of the approach in the Newton–Raphson scheme. Finally,
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PFEFFERKORN and BETSCH 33

we tested the novel element in a plethora of examples and showed that it outperforms the standard elements used for
comparison.

Future work could first focus on tackling the spurious behavior in the mesh distortion test for non-standard meshes
mentioned in Remark 6. Furthermore, despite the progress made with the MIP method, it would be interesting to further
increase the element’s robustness to achieve the same performance as assumed stress elements in that regard. Naturally,
it would also be valuable to find a proof for the hypothesis on stability of the element. However, we believe that it would
be of the utmost interest to apply the methods developed herein to shell elements.
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ENDNOTES
∗Here and subsequently we frequently omit arguments of functions in favor of a more concise notation.
†The same holds for example, also for the EAS element by Glaser and Armero10 due to the transformation needed for objectivity.
‡Here and subsequently we use superscript (•)h to denote finite element discretizations.
§Shape functions constructed in the physical space are in general termed metric shape functions.37

¶Invariance to node numbering, see Section 4.2.
||For various types of nonlinear mixed elements which meet this requirement see, for example, References 2,5,10,29,78-80.
∗∗It is not necessarily the only solution due to possible instabilities but it suffices to show that 𝛗h,e = 𝛗ho is a solution to prove that the patch

test is fulfilled.
††See also Simo and Rifai’s1 design imperative for EAS elements on non-overlapping ansatz spaces of the actual displacement and the enhanced

field.
‡‡For regular meshes with constant Jacobian Jh,e = J0 the fields are automatically orthogonal. Otherwise, the correction for no nodal

contribution of the enhanced modes in (33) and the bilinear modes in (34) induce a non-orthogonality.
§§The volumetric-deviatoric split of a Cauchy stress tensor 𝛔 = dev(𝛔) − ph,eI and the transformation 𝛕 = det(F)𝛔 imply that ph,e

0 is directly
related to piecewise constant “physical” pressure ph,e. This holds because det(F) is also piecewise constant due to the fact that the pressure
is usually a function of det(F) alone.

¶¶Element names in parentheses denote corresponding 2D elements.
||||See also Sussmann and Bathe15 who show that instabilities can even occur for small deformations if the element’s aspect ratio is high.
∗∗∗If the matrix is truly diagonal can be used to check if the test is performed correctly and verify that Phour are actually eigenvectors of Ke.
†††Figure 10 indicates this since the corresponding modes are merely a rotation of each other around the x-axis.
‡‡‡The rectangular shape makes it easier to compute the exact instability points since the (physical) modes do not all appear at almost the same

load level.62
§§§This large number of load steps is necessary to capture the hourglass behavior. Elements that do not exhibit spurious modes converge much

faster. In particular, the novel H1U/h12 requires 28 load steps.
¶¶¶Only element H1/P0E6T requires a total of 50 load steps due to the hourglassing patterns.
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APPENDIX A. HIGHER ORDER INCOMPATIBLE MODES

In this appendix we cover analytic solutions for higher order displacement modes in isotropic linear elasticity. These
solutions inspire the modified higher order enhanced modes employed in Sections 3.2.3 and 3.2.4. The benefit of these
modes is that they allow to circumvent the tedious orthogonalization required for the element by Pfefferkorn and Betsch.18

Nadler and Rubin45 propose a set of higher order displacement modes and use it to design their Cosserat point element.
Here we consider similar displacement modes of the form

u =
⎡
⎢
⎢
⎢
⎣

xyz
0
0

⎤
⎥
⎥
⎥
⎦

+ 𝜈

6

⎡
⎢
⎢
⎢
⎣

0
− 3y2z + z3

− 3yz2 + y3

⎤
⎥
⎥
⎥
⎦

, (A1)

where x = [x, y, z]T are physical coordinates and 𝜈 is the Poisson’s ratio. The standard relations yield the corresponding
strain and stress field given by

𝛆 = 1
2

⎡
⎢
⎢
⎢
⎣

2yz xz xy
xz 0 0
xy 0 0

⎤
⎥
⎥
⎥
⎦

− 𝜈

⎡
⎢
⎢
⎢
⎣

0 0 0
0 yz 0
0 0 yz

⎤
⎥
⎥
⎥
⎦

, 𝛔 = 𝜇

⎡
⎢
⎢
⎢
⎣

2yz(𝜈 + 1) xz xy
xz 0 0
xy 0 0

⎤
⎥
⎥
⎥
⎦

, (A2)

which have a particularly simple form in comparison to the modes proposed by Nadler and Rubin.45 Since the ansatz
for the displacement already contains the trilinear term xyz (see Section 3.2.2), only the second part of (A1) has to be
added in the sense of incompatible modes. Thus, the enhanced field of the higher order enhanced modes should have
the form of the second matrix in (A2) which inspired the fields in (34) and (37). Figure A1 shows the respective parts of
the displacement field given in (A1). Unfortunately, (A1) cannot directly be transferred to the skew coordinate frame in
case of distorted meshes. However, it seems that using (34) and (36) yields good results even in distorted meshes, that is,
when the skew frame is not orthogonal.

F I G U R E A1 Trilinear (left), enhanced (middle), and total (right) displacement field (A1) scaled with 0.5, 2.0, and 0.5, respectively.
Computed with 𝜈 = 0.3 for a block 0 = [−1,+1]3 (thick black line).
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