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1. Introduction

1. Introduction

Frequency combs are optical signals consisting of a multitude of equally spaced fre-
quency lines. The �rst generation of frequency combs was realized in 1998 and is due
to the group of Theodor Hänsch who introduced them as a new approach to measure
the frequency of light with femtosecond laser pulses emitted from a mode-locked laser
[66]. Their discovery initiated research on a wide range of applications. In timekeeping,
they allow a very precise type of atomic clock and with that improvements in satellite
navigation systems [45]. In astronomy, they can be used for detecting exoplanets outside
the solar system [14, 71] and possibly even for measuring the expansion of the universe
[17]. In optical communications, they allow for high speed data transmission [52]. Due
to the huge impact of frequency combs in these and other research �elds, Theodor Hän-
sch and John Hall received both one fourth of the Nobel prize for physics in 2005 �for
their contributions to the development of laser-based precision spectroscopy, including
the optical frequency comb technique� [28, 27]. Although comb sources implemented by
mode-locked lasers are still considered as rather bulky and expensive scienti�c systems
they are still the most common commercially available frequency comb source [24]. For
technical applications it is necessary to reduce the cost, size and energy consumption
of these devices. Also the physical properties of the emitted frequency combs, such as
the covered spectral range of the emitted spectral lines or the comb line spacing (free
spectral range, FSR), can be inappropriate for some applications [63]. A comb gen-
erator with smaller optical length has a larger FSR as needed in systems like optical
telecommunication networks based on wavelength division multiplexing [63]. Therefore,
nonlinear Kerr microresonators with a size down to a few cubic centimeter and a total
power consumption down to 100 mW have become particularly relevant comb sources
[12, 60]. These are photonic structures in which monochromatic light from a separate
pump laser can be converted into a frequency comb through the Kerr-nonlinearity by de-
generate and non-degenerate four-wave mixing [63]. The experimental setup is depicted
in Figure 1 [19].

Figure 1. Generation of Kerr frequency combs. A continuous wave laser emits light
at frequency ωp which is �rst ampli�ed and then coupled into a microresonator where
it is converted into a frequency comb through the Kerr-nonlinearity by degenerate and
non-degenerate four-wave mixing.
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1. Introduction

The frequency ωp of the pump laser is set close to a resonance frequency of the microres-
onator such that light is coupled into one of its resonant modes. Inside the microres-
onator degenerate four-wave mixing converts two photons of the same frequency ωp into
two new photons with frequencies ωp + α and ωp − α. In a next step, non-degenerate
four-wave mixing converts two photons with di�erent frequencies ωp+α and ωp+β into
two di�erent photons with frequencies ωp+γ and ωp+α+β−γ. In this way, a frequency
comb is formed [37]. Varying the power and the frequency of the input pump can lead to
many di�erent forms of Kerr frequency combs due to the complex nonlinear dynamics.
Among these, the stable single-soliton state is most important for applications due to its
smooth spectrum, its large optical bandwidth and the high coherence among all comb
lines [63].

In 2010, Kerr comb dynamics were described mathematically by Chembo and Yu via a
modal expansion approach [8]. They introduced a system of nonlinear coupled ordinary
di�erential equations describing the dynamics of each resonator mode. Indeed, numerical
simulations of this model are in agreement with experiments [7]. This formalism enabled
the understanding of many essential features such as threshold phenomena and the role
of dispersion [8]. However, this modal expansion approach becomes less useful when a
large number of modes is excited since it results in high computational e�ort [8]. By
considering the spatiotemporal slowly varying envelope of the total �eld, Chembo and
Menyuk showed in [6] that under suitable simpli�cations the modal expansion approach
is equivalent to a single PDE, the Lugiato-Lefever equation (LLE), which allows a less
complex numerical and analytical investigation. The LLE is a nonlinear Schrödinger
equation that includes damping, driving and detuning. In dimensionless, normalized
quantities the LLE reads

iaτ = (ζ − i)a− daxx − |a|2a+ if, a 2π-periodic in x. (1.1)

Here, a(τ, x) represents the optical intracavity �eld as a function of normalized time τ
and angular position x ∈ [0, 2π] within the ring resonator. The detuning parameter ζ
denotes the normalized frequency mismatch between the frequency of the input pump
and the closest resonance frequency of the microresonator. The parameter d quanti�es
the dispersion in the system (the case d < 0 amounts to normal and the case d > 0
to anomalous dispersion) and f represents the normalized power of the input pump.
Stationary solutions of (1.1) are of particular interest due to their invariance in time.
Among these, highly localized states are most important as they feature a broad comb
in the frequency domain. Equation (1.1) admits constant solutions a0 ∈ C which cor-
respond to the case where only the primary mode is excited. Hence, these states do
not form frequency combs themselves but under modulation instability they serve as
starting point for a bifurcation analysis in order to �nd highly localized, stable states.
This has been thoroughly studied, e.g. in [11, 18, 25, 26, 41, 43, 48, 49, 50, 51, 59]. In
[18] the authors presented a heuristic algorithm for detecting the optimal choice of the
detuning o�set ζ leading to the most localized single-soliton. They use the full-width
at half-maximum (FWHM) as quanti�cation of localization, cf. Figure 2. The heuristic
given in [18] relies on numerical path continuation methods. Based on this approach, a
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1. Introduction

quantitative characterization of most localized solitons using the comb bandwidth and
the pump-to-comb power conversion e�ciency as performance metrics was given for
many di�erent values of d and f .

Figure 2. Full-width at half-maximum of a single-peak state, de�ned as di�erence be-
tween the two values where the average of maximum and minimum is attained.

Future progress in applications based on nonlinear Kerr microresonators highly relies
on possibilities to increase the pump-to-comb power conversion e�ciency and the comb
bandwidth. Usually, Kerr frequency combs are generated by using a monochromatic
pump which only excites one single primary mode of the microresonator. However, the
simultaneous pumping of two or more di�erent modes permits us to achieve the Kerr
frequency comb generation with the appealing bene�ts of thresholdless comb generation
in both normal and anomalous dispersion regimes [29, 38], stabilization of the comb
repetition-rate [47], and manipulation of the comb mode spacing [61], which attracted
signi�cant attention in recent years. In the present thesis we theoretically analyze the
dual pumping scheme (two pumped modes) and demonstrate that in the anomalous
dispersion regime d > 0 the pumping of two modes leads to Kerr frequency combs with
both higher pump-to-comb power conversion e�ciency and higher comb bandwidth as
compared with single mode pumping.

In Section 2 we derive the Lugiato-Lefever model for a dual-pumped ring resonator
starting from an adapted modal expansion approach which models the situation with a
second pumped mode [62]. In dimensionless, normalized quantities this modi�ed LLE
reads

iaτ = (ζ − i)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1τ), a 2π-periodic in x. (1.2)

Compared to (1.1) the forcing term now includes a second expression if1e
i(k1x−ν1τ). Here,

k1 ∈ N denotes the di�erence of the mode indices of the two pumped modes and the
parameter f1 describes the normalized power of the second input pump. Since there are
now two pumped modes there are also two detuning parameters denoted by ζ and ζ1
which are taken into account in (1.2) by the parameter ν1 = ζ−ζ1+dk21. At some places
we will also use the notation ζ0 for the �rst detuning ζ.
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1. Introduction

Section 3 is based on the preprint [21] which is joint work with Tobias Jahnke, Michael
Kirn and Wolfgang Reichel. Here, we provide several existence results as well as a
uniqueness result for time-periodic and spatially 2π-periodic traveling wave solutions of
(1.2). We also provide numerical illustrations of our analytical results. The particular
form of the forcing term if0 + if1e

i(k1x−ν1τ) of (1.2) suggests to change into a moving
coordinate variable s = x − ωτ with ω = ν1

k1
and study solutions of (1.2) of the form

a(τ, x) = u(x − ωτ). These traveling wave solutions propagate with speed ω in the
resonator and their pro�le u solves the stationary ODE

−du′′ + iωu′ + (ζ − i)u− |u|2u+ if0 + if1e
ik1s = 0, u 2π-periodic. (1.3)

Since the speci�c form of the forcing term is not essential for many of our results we
choose a slightly more general approach in Section 3 and consider

−du′′ + iωu′ + (ζ − i)u− |u|2u+ if(s) = 0, u 2π-periodic, (1.4)

where
f(s) = f0 + f1e(s)

with a 2π-periodic (not necessarily continuous) function e : R → C and f0, f1 ∈ R. Our
main results on the existence of solutions to (1.4) consist of

� Theorem 3.1 which is based on a-priori bounds and ensures the existence of a
solution of (1.4) in the general case where f1 does not need to vanish,

� Theorem 3.6 and Corollary 3.8 which describe how a constant solution of (1.4) for
f1 = 0 can be continued into the regime f1 ̸= 0 and which also describe nonlocal
properties of this continuation,

� Theorem 3.9 and Corollary 3.10 which show how a non-constant solution from the
case f1 = 0 can be continued to f1 ̸= 0 and which again also describe nonlocal
properties of this continuation.

In Figure 3 we visualize how a constant solution of (1.3) for f1 = 0 can be continued
into the regime f1 ̸= 0. The parameter choices are ω = 1, d = −0.1, f0 = 2 and k1 = 1.
The black curve represents the trivial solution curve of (1.3) for f1 = 0 and f0 = 2, and
the colored branches show the continuations of selected points on that curve into the f1-
direction. One can observe that some of these continuations seem to be unbounded while
others form closed loops. This will be described analytically in Theorem 3.6 using some
kind of global implicit function theorem. In Figure 4 we visualize how a non-constant
solution of (1.3) for f1 = 0 can be continued into the regime f1 ̸= 0. Here the parameter
choices are ω = 0, d = −0.1, f0 = 2 and k1 = 1. Since ω = 0, this time we �nd additional
primary and secondary bifurcation branches (colored in grey and brown) for f1 = 0
which consist of non-constant solutions. For ζ ∈ {3, 3.3, 3.6, 3.9} one can observe that
continuations into the f1-direction also happens from those non-constant solutions. This
will be described analytically in Theorem 3.9 using the Crandall-Rabinowitz Theorem of
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1. Introduction

Figure 3. Colored branches show continuations of selected constant solutions into the
f1-direction. The parameter choices are ω = 1, d = −0.1, f0 = 2 and k1 = 1.

bifurcation from a simple eigenvalue. Appendix B listed in Section 3.8 is not part of the
preprint and contains results on a-priori bounds and uniqueness that are tailor-made for
the original two mode equation (1.3). In fact, the generalized forcing term used in (1.4)
enforced some estimates in Section 3 which can be avoided in case of equation (1.3).
The results presented in Appendix B recover for f1 = 0 those stated in [41] for the one
mode equation.

Figure 4. Grey and brown branches for f1 = 0 are bifurcation branches. Other colored
branches show continuations of constant and non-constant solutions into the f1-direction.
The parameter choices are ω = 0, d = −0.1, f0 = 2 and k1 = 1.
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1. Introduction

Section 4 consists of the preprint [22]. This preprint is joint work with Christian
Koos, Huanfa Peng and Wolfgang Reichel. Here, we theoretically demonstrate that the
quality of Kerr frequency combs in resonators with anomalous group-velocity dispersion
d > 0 can be signi�cantly improved by pumping two resonator modes instead of only a
single one. The main outcome of our study was found using numerical path continuation
methods, and can be summarized as follows:

(1) We show that pumping two modes is advantageous to pumping only one mode.

(2) We present heuristic insights for �nding the optimal detuning parameters that
provide the most localized 1-soliton states.

(3) We determined the optimal power distribution between the two pumped modes. It
is given by a symmetrical distribution where 50% of the power is pumped into each
mode, and it simultaneously optimizes all performance metrics (comb bandwidth,
full-width at half-maximum, and pump-to-comb power conversion e�ciency). Also
the two detuning o�sets between pump and nearest resonant mode are then equal.

(4) Under optimal power distribution we determined trends of the performance metrics
w.r.t. varying dispersion and normalized total input power.

In Figure 5 we illustrate the simultaneous optimization of comb bandwidth, full-width
at half-maximum and pump-to-comb power conversion e�ciency stated in (3). Here,
the power distribution is described as (f0, f1) = (f cosφ, f sinφ) with φ ∈ [0, 2π) and
the normalized total input power f 2 = f 2

0 + f 2
1 .

Figure 5. Pump-to-comb power conversion e�ciency, comb bandwidth and full-width at
half-maximum as a function of φ for three di�erent examples. The blue curves correspond
to d = 0.1 and f = 2, the red ones to d = 0.25 and f = 2 as well as the green ones to
d = 0.1 and f = 5.
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1. Introduction

In Section 5 we discuss the time-dependent Lugiato-Lefever equation

iat = (−i + ζ)a− daxx − |a|2a+ if, a 2π-periodic in x, (1.5)

and the time-dependent two mode modi�cation

iat = (−i + ζ)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1t), a 2π-periodic in x. (1.6)

Note that in contrast to (1.1) and (1.2) here we write t instead of τ for the normalized
time since it is mathematically more common. In Section 5.1 we present some �rst
results on the question whether all time-periodic solutions of (1.5) are constant in t.
This includes Theorem 5.2 which is based on Bendixson's negative criterion and which
shows that this is true in the case d = 0, and Theorem 5.5 which is based on a-priori
bounds and shows that for |f | ≪ 1 all time-periodic solutions of (1.5) are actually
constant both in t and in x. Likewise, in Section 5.2 we present some �rst results on
the question whether all time-periodic solutions of (1.6) are traveling waves, i.e. of the
form a(t, x) = u(x − ωt), where u is a solution of (1.3) and ω = ν1

k1
. In a �rst step

towards this we establish the local uniqueness result Theorem 5.10 which is based on
the implicit function theorem and the global uniqueness result Theorem 5.18 which is
based on a-priori bounds and holds for f 2

0 + f 2
1 ≪ 1.

Section 6 is dedicated to approximation results. In [68], Wabnitz used an approxima-
tion formula for soliton solutions of the following variant of the stationary LLE

−da′′ + (−iα + ζ)a− |a|2a+ if∗ = 0 on R, a′(0) = 0. (1.7)

It is based on the following explicit solution family for α = 0 and f∗ = 0,

aθ(x) =
√

2ζ sech

(√
ζ

d
x

)
eiθ, θ ∈ [0, 2π)

and reads as
a(x) ≈ a∞ + aθ∗(x),

where cos θ∗ = α
√
8ζ

πf∗
and where the constant background a∞ ∈ C denotes the solution

with smallest magnitude of

(−iα + ζ)a∞ − |a∞|2a∞ + if∗ = 0.

In Section 6.1 we provide a mathematically rigorous approximation theorem for the
equation

−dw′′ + (−iε+ ζ)w − |w|2w + iεf = 0 on R, w′(0) = 0. (1.8)

We use a bifurcation approach based on the Crandall-Rabinowitz Theorem of bifurcation
from a simple eigenvalue and consider ε as bifurcation parameter. We provide math-
ematical background on the approximation formula used by Wabnitz and a �rst order
correction term. In Section 6.2 we discuss a generalization to the two mode case.
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1. Introduction

In Section 7 we give an outlook on the situation of pumping more than two modes.
Starting from an adapted modal expansion approach we derive a modi�ed LLE which
models the situation of n distinct pumped modes. We discuss constraints which allow for
traveling wave solutions and present initial investigations indicating that it is bene�cial
to pump as many modes as possible.

Summing up, one of the main objectives of this thesis is to present for the �rst time
a detailed analysis of traveling waves in the dual pumping scheme based on a-priori
bounds, �xed point theorems, the implicit function theorem and bifurcation theory both
for anomalous and normal dispersion. The second main goal is to use numerical path
continuation methods in order to demonstrate that the quality of Kerr frequency combs
in resonators with anomalous dispersion can be signi�cantly improved by pumping two
modes instead of only a single one.

Appendix A contains an independent topic not related to frequency combs. Here, we
study the spectrum of fractional Schrödinger operators with periodic potentials which
formally read as L = (−∆)s+V (x)+αδper(xn). Here, s ∈ (1/2, 1), α ∈ R, V ∈ L∞(Rn,R)
is 2π-periodic in x1, ..., xn and δper denotes a 2π-periodic Dirac comb. In the case α = 0
we even allow s ∈ (0, 1). Our proceeding is motivated by the following considerations,
cf. [16, Chapter 3]. The most important tool for the spectral theory of di�erential
operators with periodic coe�cients is the so-called Floquet-Bloch theory. Let

L =
∑
|α|≤2

cα(x)∂α

denote an uniformly elliptic and formally symmetric second order di�erential operator
on Rn. The (su�ciently smooth) coe�cients are complex-valued and assumed to be
2π-periodic in x1, ..., xn. Viewed as self-adjoint operator

A : H2(Rn) ⊂ L2(Rn) → L2(Rn), Au := Lu,

the spectrum σ(A) can be represented in terms of the spectra of associated operators
Ak acting on the periodicity cell Pn := (0, 2π)n. For k ∈ Bn := [−1/2, 1/2]n the operator
Ak is de�ned on the domain

D(Ak) =
{
u|Pn : u ∈ H2

loc(Rn), u(x+ 2πej) = e2πikju(x) for j = 1, ..., n
}
⊂ H2(Pn)

by
Ak : D(Ak) ⊂ L2(Pn) → L2(Pn), Aku := Lu.

Elements of D(Ak) are said to satisfy quasiperiodic boundary conditions. Floquet-Bloch
theory now gives the important connection

σ(A) =
⋃
k∈Bn

σ(Ak).

14



1. Introduction

The operators Ak have purely discrete spectrum σ(Ak) = {λl(k) : l ∈ N} with real
eigenvalues

λ1(k) ≤ λ2(k) ≤ ... ≤ λl(k)
l→∞−−−→ ∞.

The sets Il := {λl(k) : k ∈ Bn} are compact intervals, whence σ(A) =
⋃
l∈N Il has

so-called band structure. In Appendix A we generalize this result to the fractional
Schrödinger operator L = (−∆)s+V (x)+αδper(xn). For α = 0 this was already done in
[23]. Floquet-Bloch theory does not answer the question whether gaps really occur in the
spectrum or whether the bands actually overlap. Using the one-dimensional examples
L = (−∆)s±2πδper(x), we show the existence of at least one spectral gap in the fractional
case s ∈ (1/2, 1).
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2. Lugiato-Lefever model for a dual-pumped ring resonator

2. From an adapted modal expansion approach to

the Lugiato-Lefever model for a dual-pumped ring

resonator

In this section we derive the LLE model (1.2) for a dual-pumped ring resonator starting
from an adapted modal expansion approach, cf. [62, 32]. When a resonant cavity is
pumped by two continuous wave lasers with frequencies ωp0 and ωp1 a system of nonlinear
coupled mode equations can be used to describe the evolution of the �eld inside the
cavity. The numbering k of the resonant modes in the cavity is relative to the mode
k0 = 0. We use the cold cavity dispersion relation ωk = ω0 + d1k+ d2k

2 for the resonant
frequencies ωk, where d1 corresponds to the FSR of the resonator and 2d2 to the di�erence
between two neighboring FSRs at the center frequency ω0. With k̃0, k̃1 ∈ Z, k̃0 < k̃1,
we denote the two pumped modes. If Âk is the mode amplitude of the k-th resonant
mode normalized such that |Âk|2 is the number of quanta in the k-th mode, then the
simpli�ed set of equations reads as follows, cf. [62, 32]:

∂Âk
∂t

=− κ

2
Âk +

1∑
j=0

δkk̃j
√
κextsje

−i(ωpj−ωk̃j
)t
eiϕj

+ ig
∑

k′+k′′−k′′′=k

Âk′Âk′′
¯̂
Ak′′′e

−i(ωk′+ωk′′−ωk′′′−ωk)t. (2.1)

The �rst term on the right-hand side of equation (2.1) is a damping term, where κ =
κ0 + κext denotes the cavity decay rate as a sum of intrinsic decay rate κ0 and coupling
rate to the waveguide κext. The second term describes the in�ow of photons by the
two input lasers. Here, ϕ0 and ϕ1 are the initial phases of the pumps. If Pin,0, Pin,1

are the powers of the two input lasers then sj =
√
Pin,j/ℏωk̃j , j = 0, 1 are the powers

coupled to the cavity. The last term is due to four-wave mixing which happens only if
k + k′′′ = k′ + k′′. Here, the nonlinear coupling coe�cient

g =
ℏω2

0cn2

n2
0Ve�

denotes a per photon frequency shift of the cavity due to the Kerr nonlinearity and thus
describes the strength of the cubic nonlinearity of the system with linear refractive index
n0, nonlinear refractive index n2 and e�ective cavity nonlinear volume Ve�. Finally, c is
the vacuum speed of light and ℏ the Planck constant.

By using the transformation

ã(τ, x) :=

√
2g

κ

∑
k∈Z

Âk

(
2

κ
τ

)
e−idk2τeikx

the system (2.1) of coupled mode equations may be rewritten in a dimensionless way as
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2. Lugiato-Lefever model for a dual-pumped ring resonator

a PDE,

i
∂ã

∂τ
= −dã′′ − iã− |ã|2ã+ i

1∑
j=0

fje
i(k̃jx−ν̃jτ+ϕj), ã 2π-periodic in x, (2.2)

where τ = κt/2, d = 2d2/κ, and ζj = 2(ωk̃j − ωpj)/κ, ν̃j = dk̃2j − ζj, η = κext/κ,

fj =
√
8ηg/κ2sj for j = 0, 1. To see this, �rst note that it can be checked that

|ã(τ, x)|2ã(τ, x) =
(
2g

κ

) 3
2 ∑
k∈Z

∑
k′+k′′−k′′′=k

Âk′(t)Âk′′(t)
¯̂
Ak′′′(t)e

−i(ωk′+ωk′′−ωk′′′−ωk+d2k
2)teikx.

Equation (2.2) then follows from

i
∂ã

∂τ
(τ, x) = i

√
2g

κ

∑
k∈Z

(
2

κ

∂Âk
∂t

(t)e−idk2τ − idk2Âk(t)e
−idk2τ

)
eikx

= −dã′′(τ, x) + i

√
8g

κ3

∑
k∈Z

∂Âk
∂t

(t)e−idk2τeikx

by inserting (2.1). Using the �nal transformation

a(τ, x) := e−i(k̃0(x+2dk̃0τ−ψ)−ν̃0τ+ϕ0)ã(τ, x+ 2dk̃0τ − ψ) (2.3)

with ψ = (ϕ1 − ϕ0)/k1 we �nd that a satis�es

iaτ = (ζ − i)a− da′′ − |a|2a+ if0 + if1e
i(k1x−ν1τ), a 2π-periodic in x,

with k1 = k̃1 − k̃0, ∆ζ = ζ0 − ζ1 and ν1 = ν̃1 − ν̃0 − 2dk̃0k1 = ∆ζ + dk21. Thus, we
can always assume, for simplicity, that the pumped modes are k0 = 0 and k1 ∈ N and
that the initial phase of both pumps is zero. Moreover we see that the change from ã to
a shifts the time-dependent Fourier-coe�cients from Âk to Âk+k̃0 and multiplies them

with e−i(ζ0τ+ϕ0+kψ) so that the power in each individual mode is (up to an index shift)
preserved by the transformation (2.3).
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2. Lugiato-Lefever model for a dual-pumped ring resonator

We end this section by summarizing physical and normalized quantities in tables.

Physical quantities

Eigennumber of �rst pumped mode k̃0

Eigennumber of second pumped mode k̃1

Frequency of �rst pump ωp0

Frequency of second pump ωp1

FSR of resonator d1

Second-order dispersion coe�cient 2d2

Resonant modes of resonator ωk = ω0 + d1k + d2k
2

First pump power Pin,0

Second pump power Pin,1

Planck constant ℏ

First power coupled to cavity s0 =

√
Pin,0
ℏω

k̃0

Second power coupled to cavity s1 =

√
Pin,1
ℏω

k̃1

Initial phase of �rst pump ϕ0

Initial phase of second pump ϕ1

Intrinsic decay rate κ0

Coupling rate to the waveguide κext

Cavity decay rate κ = κ0 + κext

Coupling strength η = κext
κ

Vacuum speed of light c

Linear refractive index n0

Nonlinear refractive index n2

E�ective cavity nonlinear volume Ve�

Nonlinear coupling coe�cient g =
ℏω2

0cn2

n2
0Ve�
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2. Lugiato-Lefever model for a dual-pumped ring resonator

Normalized quantities

Natural time (slow time) τ = κ
2
t

Di�erence of pumped modes k1 = k̃1 − k̃0

Dispersion d = 2
κ
d2

First detuning ζ0 = ζ = 2
κ
(ωk̃0 − ωp0)

Second detuning ζ1 =
2
κ
(ωk̃1 − ωp1)

Di�erence of detunings ∆ζ = ζ0 − ζ1

Second �detuning term� ν1 = ∆ζ + dk21

First pump power f0 =
√

8ηg
κ2
s0

Second pump power f1 =
√

8ηg
κ2
s1
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3. Global continua of solutions to the Lugiato-Lefever model for frequency combs ...

3. Global continua of solutions to the

Lugiato-Lefever model for frequency combs

obtained by two-mode pumping

This section is based on the preprint [21], which is joint work with Tobias Jahnke, Michael
Kirn and Wolfgang Reichel. Section 3.1 to Section 3.7 are taken from the preprint and
were adapted in order to �t the layout and the structure of this thesis. Appendix B
(Section 3.8) is not part of the preprint. It contains additional results which are of
interest in comparison with results in [41].

[Start of preprint]

ELIAS GASMI, TOBIAS JAHNKE, MICHAEL KIRN, AND WOLFGANG REICHEL

ABSTRACT. We consider Kerr frequency combs in a dual-pumped microresonator

as time-periodic and spatially 2π-periodic traveling wave solutions of a variant of

the Lugiato-Lefever equation, which is a damped, detuned and driven nonlinear

Schrödinger equation given by iaτ = (ζ − i)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1τ).

The main new feature of the problem is the speci�c form of the source term

f0 + f1e
i(k1x−ν1τ) which describes the simultaneously pumping of two di�erent

modes with mode indices k0 = 0 and k1 ∈ N. We prove existence and uniqueness

theorems for these traveling waves based on a-priori bounds and �xed point the-

orems. Moreover, by using the implicit function theorem and bifurcation theory,

we show how non-degenerate solutions from the 1-mode case, i.e. f1 = 0, can be

continued into the range f1 ̸= 0. Our analytical �ndings apply both for anoma-

lous (d > 0) and normal (d < 0) dispersion, and they are illustrated by numerical

simulations.

3.1. Introduction

Optical frequency comb devices are extremely promising in many applications such as,
e.g., optical frequency metrology [65], spectroscopy [53, 72], ultrafast optical ranging [64],
and high capacity optical communications [42]. For many of these applications the Kerr
soliton combs are generated by using a monochromatic pump. However, recently new
pump schemes have been discussed, where more than one resonator mode is pumped,
cf. [62]. The pumping of two modes can have a number of important advantages. In
particular, 1-solitons arising from a dual-pump scheme can be spectrally broader and
spatially more localized than 1-solitons arising from a monochromatic pump, cf. [22] for
a comprehensive discussion of the theoretical advantages. Mathematically, Kerr comb
dynamics are described by the Lugiato-Lefever equation (LLE), a damped, driven and
detuned nonlinear Schrödinger equation [26, 39, 48]. Our analysis relies on a variant
of the LLE which is modi�ed for two-mode pumping, cf. [62] and [22] for a derivation.
Using dimensionless, normalized quantities this equation takes the form

iaτ = (ζ − i)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1τ), a 2π-periodic in x. (3.1)
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3. Global continua of solutions to the Lugiato-Lefever model for frequency combs ...

Here, a(τ, x) represents the optical intracavity �eld as a function of normalized time
τ = κ

2
t and angular position x ∈ [0, 2π] within the ring resonator. The constant κ > 0

describes the cavity decay rate and d = 2
κ
d2 quanti�es the dispersion in the system (where

ωk = ω0 + d1k + d2k
2 is the cavity dispersion relation between the resonant frequencies

ωk and the relative indices k ∈ Z). Here, the case d < 0 amounts to normal and the
case d > 0 to anomalous dispersion. The resonant modes in the cavity are numbered
by k ∈ Z with k0 = 0 being the �rst and k1 ∈ N the second pumped mode. With
f0, f1 we describe the normalized power of the two input pumps and ωp0 , ωp1 denote the
frequencies of the two pumps. Since there are now two pumped modes there are also two
normalized detuning parameters denoted by ζ = 2

κ
(ω0−ωp0) and ζ1 = 2

κ
(ωk1−ωp1). They

describe the o�sets of the input pump frequencies ωp0 and ωp1 to the closest resonance
frequency ω0 and ωk1 of the microresonator. The particular form of the pump term
if0 + if1e

i(k1x−ν1τ) with ν1 = ζ − ζ1 + dk21 suggests to change into a moving coordinate
frame and to study solutions of (3.1) of the form a(τ, x) = u(s) with s = x − ωτ and
ω = ν1

k1
. These traveling wave solutions propagate with speed ω in the resonator and

their pro�les u solve the ordinary di�erential equation

−du′′ + iωu′ + (ζ − i)u− |u|2u+ if0 + if1e
ik1s = 0, u 2π-periodic. (3.2)

In the case f1 = 0 equation (3.1) amounts to the case of pumping only one mode. This
case has been thoroughly studied, e.g. in [11, 18, 25, 26, 41, 43, 48, 49, 50, 51, 59]. In
this paper we are interested in the case f1 ̸= 0. Since the speci�c form of the forcing
term is not essential for many of our results, we allow in the following for more general
forcing terms

f(s) = f0 + f1e(s)

with a 2π-periodic (not necessarily continuous) function e : R → C and f0, f1 ∈ R.
Hence, we consider the LLE

−du′′ + iωu′ + (ζ − i)u− |u|2u+ if(s) = 0, u 2π-periodic. (3.3)

Our main results on the existence of solutions to (3.3) are stated in Section 3.2. In
Section 3.3 we illustrate our main analytical results by numerical simulations. The proofs
of the main results are given in Section 3.4 (a-priori bounds), Section 3.5 (existence and
uniqueness), and Section 3.6 (continuation results). The appendix contains a technical
result and a consideration of the case where in (3.2) the value k1 is not an integer but
close to an integer.

3.2. Main results

In the following we state our main results.

� Theorem 3.1 provides existence of at least one solution of (3.3) for any choice of
the parameters and any choice of f .

� Theorem 3.6 and Corollary 3.8 describe how trivial (constant) solutions from the
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3. Global continua of solutions to the Lugiato-Lefever model for frequency combs ...

special case f1 = 0 can be continued into non-trivial solutions for f1 ̸= 0.

� Theorem 3.9 and Corollary 3.10 show how a non-trivial solution from the case
f1 = 0 can be continued to f1 ̸= 0.

Our �rst theorem, which ensures the existence of a solution of (3.3) in the general case
where f1 does not need to vanish, is based on a-priori bounds and a variant of Schauder's
�xed point theorem known as Schaefer's �xed point theorem. A corresponding unique-
ness result, which applies whenever |ζ| ≫ 1 is su�ciently large or (essentially) ∥f∥2 ≪ 1
is su�ciently small is given in Theorem 3.17 in Section 3.5 together with more precise
details.
We will use the following Sobolev spaces. For k ∈ N the space Hk(0, 2π) consists of all

square-integrable functions on (0, 2π) whose weak derivatives up to order k exist and are
square-integrable on (0, 2π). By Hk

per(0, 2π) we denote all locally square-integrable 2π-
periodic functions on R whose weak derivatives up to order k exist and are locally square-

integrable on R. In both spaces the norm is given by ∥u∥ =
(∑k

j=0 ∥(
d
ds
)ju∥2L2(0,2π)

)1/2
.

Clearly Hk
per(0, 2π) is a proper subspace of Hk(0, 2π) since u ∈ Hk

per(0, 2π) implies that

( d
ds
)ju(0) = ( d

ds
)ju(2π) for j = 0, . . . , k − 1. Unless otherwise stated, all of the above

Hilbert spaces are spaces of complex valued functions over the �eld R. In particular, for
v, w ∈ L2(0, 2π) we use the inner product ⟨v, w⟩2 := Re

∫ 2π

0
vw ds. The induced norm is

denoted by ∥ · ∥2.

Theorem 3.1. Equation (3.3) has at least one solution u ∈ H2
per(0, 2π) for any choice

of the parameters d ∈ R \ {0}, ζ, ω ∈ R and any choice of f ∈ H2(0, 2π).

Next we address the question whether a known solution u0 of (3.3) for f1 = 0 can be
continued into the regime f1 ̸= 0. This continuation will be done di�erently depending
on whether u0 is constant (trivial) or non-constant (non-trivial). Moreover, we �rst
concentrate on one-sided continuations for f1 > 0 (or f1 < 0). Two-sided continuations
will be discussed in Section 3.2.3.

3.2.1. One-sided continuation of trivial solutions

In the special case f1 = 0 there are trivial (constant) solutions u0 ∈ C of (3.3) satisfying
the algebraic equation

(ζ − i)u0 − |u0|2u0 + if0 = 0. (3.4)

From [41, Lemma 2.1] we know that for given f0 ∈ R the curve of constant solutions
can be parameterized by

ζ(t) = (1− t2)f 2
0 +

t√
1− t2

, u0(t) = (1− t2)f0 − if0t
√
1− t2, t ∈ (−1, 1). (3.5)

In Figure 6 we show the curve of the squared L2-norm of all constant solutions of (3.3) for

f1 = 0 and f0 = 1, f0 =
2
√
2

4√27
and f0 = 2. The curve may or may not have turning points

which are characterized by ζ ′(t) = 0. This condition can be formulated independently of
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t by the equivalent condition ζ2− 4|u0|2ζ+1+3|u0|4 = 0. By a straightforward analysis

one can show that with f ∗ = 2
√
2

4√27
we have

� no turning point for |f0| < f ∗ (cf. Figure 6 green curve),

� exactly one (degenerate) turning point for |f0| = f ∗ (cf. Figure 6 red curve),

� exactly two turning points for |f0| > f ∗ (cf. Figure 6 blue curve).

Figure 6. Curve of squared L2-norm of all constant so-
lutions of (3.3) for f1 = 0 and f0 = 1 (green), f0 = 2

√
2

4√27

(red) and f0 = 2 (blue) when ζ ∈ [−1, 5]. Turning points
(if they exist) are marked with a cross.

Note that for |f0| > f ∗, as
a consequence of the exis-
tence of two turning points,
three di�erent constant solu-
tions exist for certain values
of ζ.
Starting from f1 = 0 we

use a kind of global implicit
function theorem to continue
a constant solution u0 ∈ C
of (3.3) with respect to f1.
This procedure is analyzed in
Theorem 3.6. The continua-
tion works if the constant so-
lution u0 ∈ C is non-degenerate in the following sense.

De�nition 3.2. A solution u ∈ H2
per(0, 2π) of (3.3) for f1 = 0 is called non-degenerate

if the kernel of the linearized operator

Luφ := −dφ′′ + iωφ′ + (ζ − i− 2|u|2)φ− u2φ, φ ∈ H2
per(0, 2π)

consists only of span{u′}.

Remark 3.3. Note that Lu : H2
per(0, 2π) → L2(0, 2π) is a compact perturbation of the

isomorphism−d d2

dx2
+sign(d) : H2

per(0, 2π) → L2(0, 2π) and hence an index-zero Fredholm
operator. Notice also that span{u′} always belongs to the kernel of Lu. Non-degeneracy
means that except for the obvious candidate u′ (and its real multiples) there is no other
element of the kernel of Lu. Notice also that a constant solution u0 is non-degenerate
if the linearized operator Lu0 is injective, and, as a consequence, invertible in suitable
spaces.

Lemma 3.4. A trivial solution u0 ∈ C of (3.3) for f1 = 0 is non-degenerate if and only
if

(a) Case ω ̸= 0:
ζ2 − 4|u0|2ζ + 1 + 3|u0|4 ̸= 0.
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(b) Case ω = 0:

(ζ + dm2)2 − 4|u0|2(ζ + dm2) + 1 + 3|u0|4 ̸= 0 for all m ∈ N0.

Proof. Let φ ∈ H2
per(0, 2π) be in the kernel of the linearized operator, i.e.,

−dφ′′ + iωφ′ + (ζ − i− 2|u0|2)φ− u20φ = 0.

This implies that the Fourier coe�cients φm of the Fourier series φ =
∑

m∈Z φme
ims have

the property that

(dm2 − ωm+ ζ − i− 2|u0|2)φm − u20φ−m = 0

for all m ∈ Z. If we also write down the complex conjugate of this equation

−u02φm + (dm2 + ωm+ ζ + i− 2|u0|2)φ−m = 0

then we see that non-degeneracy of u0 is equivalent to the non-vanishing of the deter-
minant for this two-by-two system in the variables φm, φ−m for all m ∈ N0. Computing
the determinant we obtain the condition

(ζ + dm2)2 − 4|u0|2(ζ + dm2) + 1 + 3|u0|4 − ω2m2 − 2iωm ̸= 0 for all m ∈ N0. (3.6)

In the case ω ̸= 0 this is trivially satis�ed for all m ̸= 0 (because then the imaginary
part is non-zero) and for m = 0 by assumption (a) of the lemma. In the case ω = 0
condition (3.6) can only be guaranteed by assumption (b).

Remark 3.5. Trivial solutions of (3.3) for f1 = 0 are determined by (3.4). For ω ̸= 0
all trivial solutions u0 of (3.3) for f1 = 0 are non-degenerate except those at the turning
points described above. In the case ω = 0 all trivial solutions u0 of (3.3) for f1 = 0
are non-degenerate except those at the (potential) bifurcation points and the turning
points. This is true (up to additional conditions ensuring transversality and simplicity of
kernels) because the necessary condition for bifurcation w.r.t. ζ from the curve of trivial
solutions is ful�lled if and only if the expression in (b) vanishes for at least one m ∈ N,
cf. [18],[41].

Theorem 3.6. Let d ∈ R\{0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be �xed. Let furthermore
u0 ∈ C be a constant non-degenerate solution of (3.3) for f1 = 0. Then the maximal
continuum1 C+ ⊂ [0,∞)×H2

per(0, 2π) of solutions (f1, u) of (3.3) with (0, u0) ∈ C+ has
the following properties:

(i) locally near (0, u0) the set C+ is the graph of a smooth curve f1 7→ (f1, u(f1)),

(ii) C+ ∩ [0,M ]×H2
per(0, 2π) is bounded for any M > 0.

1A continuum is a closed and connected set.
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Moreover, if pr1(C+) denotes the projection of C+ onto the f1-parameter component, then
at least one of the following properties hold:

(a) pr1(C+) = [0,∞),

or

(b) ∃u+0 ̸= u0 : (0, u
+
0 ) ∈ C+.

A maximal continuum C− ⊂ (−∞, 0] × H2
per(0, 2π) with corresponding properties also

exists.

Remark 3.7. If property (a) of Theorem 3.6 holds, then C+ is unbounded in the direc-
tion of the parameter f1 ∈ [0,∞) and hence this is an existence result for all f1 ∈ [0,∞).
Property (b) means that the continuum C+ returns to the f1 = 0 line at a point u+0 ̸= u0.

Corollary 3.8. Property (a) in Theorem 3.6 holds in any of the following three cases,

(i) sign(d)ζ < −C(d, f0)21d<0 − 27

(
1 +

πf 2
0 |ω|
|d|

+
π2f 4

0

|d|

)
C(d, f0)

6,

(ii) sign(d)ζ > 3C(d, f0)
2 +

ω2

4|d|
,

(iii)
√
3C(d, f0) < 1,

where
C(d, f0) = |f0|(1 + 2π2f 2

0 |d|−1).

In particular |ζ| ≫ 1 or |f0| ≪ 1 is su�cient.

3.2.2. One-sided continuation of non-trivial solutions

One can ask the question whether also non-trivial (non-constant) solutions at f1 = 0
may be continued into the regime of f1 > 0. This depends on two issues: existence
and non-degeneracy of a non-trivial solution of (3.3) for f1 = 0. First we note that
for ω = 0 there is a plethora of non-trivial solutions, cf. [18],[41]. For ω ̸= 0 we do
not know whether non-trivial solutions exist for f1 = 0. The fact that for ω ̸= 0 there
are no bifurcations from the curve of trivial solutions indicates that there may be no
solutions other than the trivial ones. Although by the current state of understanding
the hypotheses of Theorem 3.9 (see below) can only be ful�lled for ω = 0, we allow in
the following for general ω ∈ R.
In order to describe the continuation from a non-degenerate non-trivial solution, let

us �rst state some properties of (3.3) for f1 = 0: if u0 solves (3.3) for f1 = 0 and if we
denote its shifts by uσ(s) := u0(s− σ), then uσ also solves (3.3) for f1 = 0. Hence

S :

{
R → R×H2

per(0, 2π),

σ 7→ (0, uσ)

26



3. Global continua of solutions to the Lugiato-Lefever model for frequency combs ...

describes a trivial curve of solutions of (3.3) from which we wish to bifurcate at some
point (0, uσ0). Recall also from non-degeneracy that kerLuσ = span{u′σ}. Since L∗

uσ also
has a one-dimensional kernel, there exists ϕ∗

σ ∈ H2
per(0, 2π) such that kerL

∗
uσ = span{ϕ∗

σ}.
Notice that ϕ∗

σ(s) = ϕ∗
0(s− σ). Finally, σ0 will be determined in such a way that there

exists a unique solution ξσ0 ∈ H2
per(0, 2π) of

Lu0ξσ0 = −ie(·+ σ0)

with the property that ξσ0 ⊥L2 u′0. Details of the construction of σ0 and ξσ0 will be given
in Lemma 3.21.

Theorem 3.9. Let d ∈ R\{0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be �xed. Let furthermore
u0 ∈ H2

per(0, 2π) be a non-trivial non-degenerate solution of (3.3) for f1 = 0. If σ0 ∈ R
satis�es

Im

∫ 2π

0

e(s+ σ0)ϕ∗
0(s) ds = 0 (3.7)

and

Im

∫ 2π

0

e′(s+ σ0)ϕ∗
0(s) ds ̸= 0 (3.8)

then the maximal continuum C+ ⊂ [0,∞)×H2
per(0, 2π) of solutions (f1, u) of (3.3) with

(0, u0) ∈ C+ has the following properties:

(i) there exists a smooth curve C : [0, δ) → C+ with C(t) = (f1(t), u(t)), ḟ1(0) = 1,
C(0) = (0, uσ0) such that locally near (0, uσ0) all solutions (f1, u) of (3.3) with
f1 ≥ 0 lie on the curve S or on the curve C,

(ii) C+ ∩ [0,M ]×H2
per(0, 2π) is bounded for any M > 0.

Moreover, if zero is an algebraically simple eigenvalue of Lu0 and if furthermore

2Re

∫ 2π

0

(
2u0|ξσ0|2 + u0ξ

2
σ0

)
ϕ∗
0 dsRe

∫ 2π

0

(
u′0u0 + 2u0u′0

)
u′0ϕ

∗
0 ds

̸=
(
Im

∫ 2π

0

e′(s+ σ0)ϕ∗
0(s) ds

)2

,

(3.9)

then there exists a connected set C+
∗ ⊂ C+ with pr1(C+

∗ ) ⊂ (0,∞) and (0, uσ0) ∈ C+
∗ which

satis�es at least one of the following properties:

(a) pr1(C+
∗ ) = (0,∞),

or

(b) ∃u+0 ̸= uσ0 : (0, u
+
0 ) ∈ C+

∗ .

A maximal continuum C− ⊂ (−∞, 0] × H2
per(0, 2π) with corresponding properties also

exists.
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For the special choice e(s) = eik1s Theorem 3.9 takes the following form.

Corollary 3.10. Let k1 ∈ N, e(s) = eik1s and d, ζ, ω, f0, u0 be as in Theorem 3.9.
Assume that ∫ 2π

0

eik1sϕ∗
0(s) ds ̸= 0 (3.10)

and that σ0 ∈ R satis�es

tan(k1σ0) =

∫ 2π

0
cos(k1s) Imϕ∗

0(s)− sin(k1s) Reϕ
∗
0(s) ds∫ 2π

0
sin(k1s) Imϕ∗

0(s) + cos(k1s) Reϕ∗
0(s) ds

. (3.11)

Then the conditions (3.7) and (3.8) of Theorem 3.9 hold.

Remark 3.11. (α) It follows from the implicit function theorem that in the setting of
Theorem 3.9 assumption (3.7) is a necessary condition for bifurcation (non-trivial kernel
of the linearization). Assumption (3.8) amounts to the transversality condition. In the
setting of Corollary 3.10 this means that, if (3.10) is satis�ed, assumption (3.11) is a
necessary condition for bifurcation.
(β) Assumption (3.10) in Corollary 3.10 guarantees that the numerator and the denom-
inator of the right-hand side of (3.11) do not vanish simultaneously. In the case where
the denominator vanishes, Equation (3.11) is to be read as cos(k1σ0) = 0. In the interval
[0, π

k1
) equation (3.11) has a unique solution σ0 ∈ [0, π

k1
). All solutions of (3.11) in [0, 2π)

are then given by σ0+ j
π
k1

for j = 0, . . . , 2k1−1. This can result in up to 2k1 bifurcation
points. Smaller periodicities of u0 may reduce the actual number of di�erent bifurcation
points. E.g., if k1 ≥ 2 and if u0 has smallest period 2π

k1
then only two bifurcation points

exist.
(γ) Let j ∈ N not be a divisor of k1 and u0 be

2π
j
-periodic. Then assumption (3.10) is

not satis�ed since ϕ∗
0 inherits the periodicity of u0. We will say more about this case in

the Appendix.
(δ) The non-trivial solutions u0 of (3.3) for f1 = 0 and ω = 0 constructed in [18],[41] are
even around s = 0. In this case, (3.9) is not an additional assumption because it coin-
cides with assumption (3.8). The reason is that ϕ∗

0 (spanning kerL∗
u0
) inherits the parity

of u′0 (spanning kerLu0) which implies
∫ 2π

0

(
u′0u0 + 2u0u′0

)
u′0ϕ

∗
0 ds = 0, cf. Proposition

3.22. Also, the value of σ0 in Corollary 3.10 is determined by the simpler expression

tan(k1σ0) = −
∫ 2π

0
sin(k1s) Reϕ

∗
0(s) ds∫ 2π

0
sin(k1s) Imϕ∗

0(s) ds
.

It is an open problem if (3.3) admits solutions for f1 = 0 and ω = 0 which (up to a
shift) are not even around s = 0.
(ϵ) Note that in property (b) we exclude that u+0 = uσ0 but we do not exclude that u+0
coincides with a shift of u0 di�erent from uσ0 .
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3.2.3. Two-sided continuations

Here we explain how we can use the results of Theorem 3.6 and Theorem 3.9, Corol-
lary 3.10 for the continua C+ and C− in order to obtain two-sided continua w.r.t. the
parameter component f1.

As a �rst trivial observation we can construct a two-sided continuum in the following
way both for the setting of Theorem 3.6 and Theorem 3.9: let C ⊂ R × H2

per(0, 2π) be
the maximal continuum of solutions (f1, u) of (3.3) with (0, u0) ∈ C. Then C contains
both C+ and C−.

Next we assume that the generalized forcing term f(s) = f0 + f1e(s) satis�es the
symmetry condition that e

(
s+ π

k1

)
= −e(s) for some k1 ∈ N. This symmetry condition

is motivated by (3.2) where e(s) = eik1s. If we denote by R the re�ection operator which
acts on solution pairs and is given by

R : (f1, u) 7→
(
−f1, u

(
·+ π

k1

))
then, again both for the setting of Theorem 3.6 and Theorem 3.9, the continuum C has
the following property:

(f1, u) ∈ C ⇔ R(f1, u) ∈ C.

This shows that globally the solution sets for positive and negative f1 only di�er by a
phase shift. The following global structure result is a consequence of this symmetry.

Proposition 3.12. Let d ∈ R \ {0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be such that
e
(
s+ π

k1

)
= −e(s) for some k1 ∈ N. Let furthermore u0 be a solution of (3.3) for f1 = 0.

Then the maximal continua C+, C− and C containing (0, u0) satisfy C− = R(C+) and
C ⊃ C+ ∪ C−.

Proof. It is obvious that C ⊃ C+ ∪ C−. Now we prove that C− = R(C+). Clearly, C+

and R(C+) contain all shifts {(0, uσ) : σ ∈ R}. Since additionally R(C+) ⊂ (−∞, 0] ×
H2

per(0, 2π) is connected we �nd that R(C+) ⊂ C−. If we assume that R(C+) ⊊ C− then
we obtain C+ ⊊ R−1(C−), which contradicts the maximality of C+.

As another consequence, we have that either pr1(C) = (−∞,∞) or pr1(C) is bounded
from above and below. In the latter case, we call C a loop.

Our �nal result builds upon Theorem 3.6 and the resulting two-sided continuation of
a trivial solution u0. It describes the shape of the L2-projection of the continuum C
locally near (0, u0). In particular, local convexity or concavity can be read from this
result. In Section 3.3 we will put this result into perspective with numerical simulations
of the f1-continuation of trivial solutions.

Theorem 3.13. Assume that the assumptions of Theorem 3.6 are satis�ed and that
additionally e(s) = eik1s is �xed for a k1 ∈ N. Then we can determine the local shape of
the curve f1 7→ ∥u(f1)∥22 as follows:

d

df1
∥u(f1)∥22 |f1=0= 0,

d2

df 2
1

∥u(f1)∥22 |f1=0= 4π(Re(u0ϵ) + |α|2 + |β|2)
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with

α =
−i(dk21 + k1ω + ζ + i− 2|u0|2)

(ζ + dk21 − 2|u0|2)2 − (ωk1 + i)2 − |u0|4
,

β =
iu20

(ζ + dk21 − 2|u0|2)2 − (ωk1 − i)2 − |u0|4
,

x = ζ − i− 2|u0|2,
y = −u20,
z = 4u0(|α|2 + |β|2) + 4u0αβ,

ϵ =
−zy + zx

|x|2 − |y|2
.

3.3. Numerical illustration of the analytical results

In this section we restrict ourselves to equation (3.2), i.e., we �x e(s) = eik1s. For this
choice, we know from Section 3.2.3 that the one-sided continua C+ and C− are related by
C− = R(C+). The following numerical examples were computed with d = −0.1, f0 = 2,
k1 = 1, and ω = 1.

Figure 7. Continua of solutions (f1, u) of (3.2) for selected values of the detuning ζ. The
other parameters were set to d = −0.1, f0 = 2, k1 = 1, and ω = 1.

Figure 7 illustrates some of the two-sided continua C+ ∪ C− obtained by continuation
of trivial solutions for di�erent values of the detuning ζ. Every point on the black and
colored curves corresponds to a solution u of (3.2), but for the sake of visualization in
a three-dimensional image every solution has to be represented by a single number. In
Figure 7, the quantity 1

2π
∥u∥22 was used for this purpose.

The black curve corresponds to spatially constant solutions of (3.2) obtained for f1 = 0
and ζ ∈ [2.4, 4.3]. The colored curves represent (parts of) the continua associated to
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these solutions. Every trivial solution (possibly except the ones at turning points) has
an associated continuum, but for the sake of visualization these continua are only shown
for selected values of ζ, namely ζ ∈ {2.4, 2.6, . . . , 4.0, 4.2}. The picture is symmetric
with symmetry plane {(ζ, 0, z) : ζ ∈ R, z ∈ R}. This is an immediate consequence of the
relation C− = R(C+) and the fact that shifting u does not change ∥u∥2.
For ζ ∈ {2.4, 2.6, 4.2} there is only one trivial solution, and for these three values

Figure 7 shows a part of the associated two-sided continuum C+ ∪ C−. Although f1 was
restricted to [−2, 2], each of these continua appears to be global in f1, i.e. we conjecture
that the continua continue for all values f1 ∈ (−∞,∞). This corresponds to case (a) in
Theorem 3.6.
For ζ ∈ {2.8, 3.0, . . . , 4.0}, however, there are three trivial solutions. For these values

of ζ, there is one colored loop which connects two solutions, and one continuum which
seems to continue for all values of f1. The former corresponds to case (b) in Theorem 3.6,
the latter to case (a). For ζ ∈ {2.8, 3.0} the �lower� two solutions are connected, whereas
for ζ ∈ {3.2, . . . , 4.0} it is the �upper� two solutions which are connected. Hence, there
seems to be a threshold value ζ∗ that determines which of the two scenarios occurs.
Computations with more values of ζ show that this threshold value ζ∗ lies between 3.1344
and 3.1359; cf. Figure 8. The union of the continua for ζ-values close to the threshold
ζ∗ (i.e. for ζ = 3.1344 and ζ = 3.1359) is nearly the same, and the two continua nearly
meet in two points.2 The mathematical mechanisms which cause this qualitative change
are not yet understood. One could expect that the connectivity threshold coincides with
the value where the square of the L2-norm of the solutions as a function of f1 changes
from being locally convex to locally concave. However, Theorem 3.13 shows that this is
not true.
Figure 9 illustrates the same application, but depicted from a di�erent angle and with

more values of ζ. Repeating the simulation with d = 0.1 (anomalous dispersion) instead
of d = −0.1 (normal dispersion) did not change the picture essentially.
Figures 7, 8, and 9 were generated by discretizing (3.2) with central �nite di�erences

(1000 grid points), and by applying the classical continuation method as described in,
e.g., [1], to the discretized system.
The result of Theorem 3.13 can be interpreted as follows: each point on the trivial

curve is a local extremum of the squared L2-norm of the solution curve f1 7→ u(f1). The
type of local extremum is described by the sign of the second derivative d2

df21
∥u(f1)∥22 |f1=0.

We visualize this by an example for d = −0.1, f0 = 2, k1 = 1, ω = 1. By using the
parameterization t 7→ ζ(t), t 7→ u0(t) for t ∈ (−1, 1) from (3.5) we can illustrate the
sign-changes of the second derivative. In Figure 10 we are plotting the curve t 7→
(ζ(t), |u0(t)|2) and indicate at each point on the curve the sign of 4π(Re(u0(t)ϵ̄(t)) +
|α(t)|2 + |β(t)|2), where ϵ(t), α(t), β(t) are taken from Theorem 3.13 with ζ = ζ(t) and
u0 = u0(t). In this particular example, as we run through the curve of trivial solutions

2As mentioned earlier, only the L2-norm of solutions can be visualized in Figure 7, 8 and all other
plots. The fact that two functions have (nearly) the same norm does, of course, not imply that the
functions themselves are (nearly) identical. It can be checked, however, that the two solutions which
correspond to the two points where the distance between the two continua is minimal are indeed
very similar (data not shown).
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Figure 8. Same situation as in Figure 7. Zoom to the region close to the threshold where
the continua change connectivity.

from left to right a �rst sign-change of d2

df21
∥u(f1)∥22 |f1=0 occurs at ζ ≈ 0.8533.

Figure 10. Sign of the second derivative of f1 7→
∥u(f1)∥22 at f1 = 0; blue=positive, red=negative.

A second sign-change (in fact a sin-
gularity changing from −∞ to +∞)
occurs at the �rst turning point.
Then, the next sign-change occurs on
the part of the branch between the
two turning points at ζ ≈ 3.34. Fi-
nally, the second turning point gener-
ates the last sign-change from −∞ to
+∞. Clearly, the changes in the na-
ture of the local extremum of f1 7→
∥u(f1)∥22 at f1 = 0 do not correspond
to the topology changes of the solu-
tion continua which occur near the
threshold value ζ∗ ∈ (3.1344, 3.1359).
Next, we keep the parameters d = −0.1, f0 = 2, k1 = 1 but choose ω = 0 instead of

ω = 1. Recall that for ω = 0 there is a plethora of non-trivial solutions of (3.2) for f1 = 0,
cf. [18],[41]. In fact, this time we �nd additional primary and secondary bifurcation
branches for f1 = 0 which are illustrated in Figure 11 in grey and brown, respectively.
Bifurcation points are shown as grey dots. The bifurcation branches consist of non-
trivial solutions. Further, some numerical approximations of the two-sided maximal
continua C obtained by continuation of trivial or non-trivial solutions for di�erent values
of the detuning ζ are shown. If we start from a constant solution at f1 = 0, then C±

are described by Theorem 3.6. Likewise, if we start from a non-constant solution at
f1 = 0 which has no smaller period than 2π, then C± are described by Theorem 3.9. In
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Figure 9. Same situation as in Figure 7, but depicted from a di�erent angle and with
more values of ζ.

both cases, C ⊃ C+ ∪ C− by Proposition 3.12, but in all examples below we observe in
fact equality. If we expect a maximal continuum to contain two or more (non-trivial)
di�erent simple closed curves, then we illustrate the latter ones with di�erent colors.
Let us look at some particular values of ζ where di�erent phenomena occur.

Figure 11. Continua of solutions (f1, u) of (3.2) for selected values of the detuning ζ.
The other parameters were set to d = −0.1, f0 = 2, k1 = 1, and ω = 0.

At ζ = 2.7 we see exactly one solution for f1 = 0. This solution is constant and its
continuation appears to be global in f1. For ζ = 3.9 and f1 = 0 we see three constant
solutions but also one non-constant solution (up to shifts) which lies on one of the grey
bifurcation branches. The continuation of the constant solution with smallest magnitude
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again appears to be global in f1, while the other three solutions lie on the same eight-
shaped maximal continuum which we will denote as �gure eight continuum. Note that
the latter continuum contains all shifts of the non-trivial solution for f1 = 0.
The �gure eight can be interpreted as an outcome of Theorem 3.6 applied to one of the

constant solutions on the �gure eight. Here, case (b) of the theorem applies. However,
the �gure eight can also be interpreted as an outcome of Theorem 3.9 applied to the
non-constant solution u0 at f1 = 0. Again, case (b) of the theorem applies. A plot
(which we omit) of the non-trivial solution u0 at f1 = 0 shows that u0 has no smaller
period than 2π. Thus, according to Remark 3.11.(β) exactly two shifts of it, which di�er
by π, are bifurcation points. To sum up, we observe that the �gure eight continuum in
fact contains a simple closed �gure eight curve which exactly goes through two shifts
of u0 (which di�er by π) in the point where the orange lines intersect the grey line of
non-trivial solutions. The two shifts cannot be distinguished in the picture, because a
shift does not change the L2-norm. To illustrate the di�erent continua for ζ = 3.6, we

Figure 12. Zoom at ζ = 3.6.

provide a zoom in Figure 12. We obtain again an unbounded continuum and a �gure
eight continuum. However, here we also �nd a third maximal continuum which cannot
be found by simply continuing one of the constant solutions. This continuum consists
of the blue and the light blue simple closed curve connected to each other by shifts at
f1 = 0. The parts of the blue and the light blue curve in the region f1 ≥ 0 are described
by case (b) of Theorem 3.9 applied to one of the non-trivial solutions u0 at f1 = 0 on
it. They have no smaller period than 2π (plots not shown). Going from the blue part
to the light blue part is a consequence of re�ection. At f1 = 0 the blue curve intersects
the grey line at exactly two points. The light blue curve does the same, but at π-shifts
of these points.
For ζ = 3.3 the situation is more complicated. In this case, we see three constant

solutions for f1 = 0 but also seven non-constant ones. The continuation of the upper
constant solution (orange) appears to be unbounded. We observe that the blue, the
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red and the green simple closed curve in fact form a single maximal continuum, since
all curves are connected by shifts of non-constant solutions at f1 = 0. Viewed from
top to bottom, we �nd (plots not shown) that the �rst, the third and the last one are
π-periodic while the remaining ones have smallest period 2π. All together, we observe
that exactly two shifts of every non-constant solution at f1 = 0 are bifurcation points.
For the solutions which have no smaller period than 2π this is a direct consequence of
Theorem 3.9, cf. Remark 3.11.(β). However, at the three remaining π-periodic solutions
at f1 = 0 Theorem 3.9 does not apply, cf. Remark 3.11.(γ). Nevertheless, we observe
continuations from these points. Interestingly, these points seem to be characterized by
horizontal tangents, at least in this example.

Figure 13. Zoom at ζ = 3.3.

For ζ = 3 we see three constant solutions and four non-constant ones at f1 = 0.
Again, the continuation of the upper constant solution is unbounded. We provide a
more general investigation in Figure 14, where we also depict several of the continued
solutions u of (3.2) for f1 ̸= 0. Since u is complex-valued, we use the quantity |u(s)|2 for
illustration purposes and plot it against s ∈ [−π, π]. In Figure 14(a) we show a bounded
continuum consisting of the light blue and the red simple closed curve connected to
each other by shifts at f1 = 0. Starting from the constant solution on the light blue
curve and proceeding �rst into the f1 > 0 direction, Figure 14(b)-(c) show plots of
functions corresponding to colored triangles. In Figure 14(d)-(f) functions corresponding
to colored dots on the red curve are shown, where we start again at the constant solution
and initially proceed in the f1 > 0 direction. We observe that both curves cross the (π-
periodic) non-constant solution with second largest norm, but at two di�erent shifts: the
leftmost dark-red curves in (c) and (f) only coincide after a non-zero shift. Continuations
from π-periodic solutions at f1 = 0 are not covered by Theorem 3.9. Nevertheless,
they are observed in the numerical experiments, again with horizontal tangents. The
explanation of these continuations remains open, cf. the Appendix for further discussion.
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Figure 14. Zoom at ζ = 3 and illustration of selected functions.

3.4. Proof of a-priori bounds

We use the notation r+ = max{0, r} to denote the positive part of any real number
r ∈ R and also 1d<0 to denote (as a function of d ∈ R) the characteristic function of the
interval (−∞, 0). We write ∥ · ∥p for the standard norm on Lp(0, 2π) for p ∈ [1,∞]. A
continuous map between two Banach spaces is said to be compact if it maps bounded
sets into relatively compact sets.

Theorem 3.14. Let d ∈ R \ {0}, ζ, ω ∈ R and f ∈ H2(0, 2π). Then for every solution
u ∈ H2

per(0, 2π) of (3.3) the a-priori bounds

∥u∥2 ≤ F, (3.12)

∥u′∥2 ≤ B∥u∥
1
4
2 ≤ BF

1
4 , (3.13)

∥u∥∞ ≤ C (3.14)

hold, where

F = F (f) = ∥f∥2,

B = B(d, f) =
F

11
4

2|d|
+ 2∥f ′∥∞F

1
4 +

√
∥f ′′∥2F

1
2 + 2∥f ′∥∞

(√
F

2π
+ 1

)
,

C = C(d, f) =
F√
2π

+
√
2πBF

1
4 .
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For ζ sign(d) ≪ −C21d<0 these bounds can be improved to

∥u∥2 ≤ D, ∥u∥∞ ≤
(
F

3
4

√
2π

+
√
2πB

)
D

1
4 ,

where

D = D(d, f, ω, ζ) =

(
F

3
2 + |ω|BF 3

4 + |d|B2

(−ζ sign(d)− C21d<0)+

) 2
3

.

Remark 3.15. The improvement in the second part of the theorem lies in the fact that
the bound D becomes small when the detuning ζ is such that ζ sign(d) is very negative.

Proof. The proof is divided into �ve steps.

Step 1. We �rst prove the L2 estimate

∥u∥2 ≤ F = ∥f∥2. (3.15)

To this end we multiply the di�erential equation (3.3) with ū to obtain

−du′′ū+ iωu′ū+ (ζ − i)|u|2 − |u|4 + ifū = 0. (3.16)

Taking the imaginary part yields

−d Im(u′′ū) + ωRe(u′ū)− |u|2 +Re(fū) = 0. (3.17)

Let h := |u|2 − Re(fū), H := −d Im(u′ū) + ω
2
|u|2. Then H ′ = h by equation (3.17) and

H(0) = H(2π) by the periodicity of u. Hence

0 = H(2π)−H(0) =

∫ 2π

0

h ds =

∫ 2π

0

|u|2 − Re(fū) ds

which implies

∥u∥22 =
∫ 2π

0

Re(fū) ds ≤ ∥f∥2∥u∥2 = F∥u∥2.

Step 2. Next we prove

∥u′∥2 ≤ B∥u∥
1
4
2 ≤ BF

1
4 . (3.18)

From (3.3) we may isolate the linear term u and insert its derivative u′ into the following
calculation for ∥u′∥22:

∥u′∥22 = Re

∫ 2π

0

u′ū′ ds
(3.3)
= Re

∫ 2π

0

(idu′′ + ωu′ − iζu+ i|u|2u+ f)′ū′ ds

= Re

∫ 2π

0

idu′′′ū′ + ωu′′ū′ − iζ|u′|2 + i(|u|2u)′ū′ + f ′ū′ ds

=

∫ 2π

0

−d(Im(u′′ū′))′ +
(ω
2
|u′|2

)′
ds− Im

∫ 2π

0

(|u|2u)′ū′ ds+Re

∫ 2π

0

f ′ū′ ds
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=

∫ 2π

0

(|u|2)′ Im(ūu′)− Re(f ′′ū) ds+Re f ′ū
∣∣2π
0

≤
∫ 2π

0

1

d
(|u|2)′

(ω
2
|u|2 −H

)
+ ∥f ′′∥2∥u∥2 + 2∥f ′∥∞∥u∥∞

=

∫ 2π

0

ω

4d
(|u|4)′ − 1

d
(|u|2)′H + ∥f ′′∥2∥u∥2 + 2∥f ′∥∞∥u∥∞

=

∫ 2π

0

−1

d
(|u|2)′(H −H(0)) + ∥f ′′∥2∥u∥2 + 2∥f ′∥∞∥u∥∞.

Next notice the pointwise estimate

h = |u|2 − Re(fū) ≥ |u|2 − |f ||u| ≥ −1

4
|f |2

from which we deduce the following two-sided estimate for H −H(0):

H(s)−H(0) =

∫ s

0

h(r) dr ≥ −1

4
∥f∥22 (s ∈ [0, 2π]) and

H(s)−H(0) = H(s)−H(2π) = −
∫ 2π

s

h(r) dr ≤ 1

4
∥f∥22 (s ∈ [0, 2π]).

Continuing the above inequality for ∥u′∥22 we conclude

∥u′∥22 ≤
∥f∥22
2|d|

∥u∥2∥u′∥2 + ∥f ′′∥2∥u∥2 + 2∥f ′∥∞∥u∥∞.

Next we want to get rid of the ∥u∥∞ term. For that we note that there exists s0 ∈ [0, 2π]
satisfying |u2(s0)| ≤ 1

2π
∥u∥22. We use this in the following way,

∥u∥2∞ ≤ |u2(s0)|+ sup
s∈[0,2π]

|u2(s)− u2(s0)| ≤
1

2π
∥u∥22 +

∫ 2π

0

2|u||u′| ds

≤ 1

2π
∥u∥22 + 2∥u∥2∥u′∥2

(3.15)

≤ F

2π
∥u∥2 + 2∥u∥2∥u′∥2

≤ ∥u∥2
(
F

2π
+ 1 + ∥u′∥22

)
,

from where we �nd

∥u∥∞ ≤ ∥u∥
1
2
2

(√
F

2π
+ 1 + ∥u′∥2

)
.

In total, we have

∥u′∥22 ≤
∥f∥22
2|d|

∥u∥2∥u′∥2 + ∥f ′′∥2∥u∥2 + 2∥f ′∥∞∥u∥
1
2
2

(√
F

2π
+ 1 + ∥u′∥2

)
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(3.15)

≤ F
11
4

2|d|
∥u∥

1
4
2 ∥u′∥2 + ∥f ′′∥2F

1
2∥u∥

1
2
2 + 2∥f ′∥∞∥u∥

1
2
2

(√
F

2π
+ 1

)
+ 2∥f ′∥∞F

1
4∥u∥

1
4
2 ∥u′∥2

=

(
F

11
4

2|d|
+ 2∥f ′∥∞F

1
4

)
∥u∥

1
4
2 ∥u′∥2 +

(
∥f ′′∥2F

1
2 + 2∥f ′∥∞

(√
F

2π
+ 1

))
∥u∥

1
2
2

=: A1∥u∥
1
4
2 ∥u′∥2 + A2

2∥u∥
1
2
2 .

This is a quadratic inequality in ∥u′∥2 which implies

∥u′∥2 ≤
A1∥u∥

1
4
2 +

√
A2

1∥u∥
1
2
2 + 4A2

2∥u∥
1
2
2

2
≤ A1∥u∥

1
4
2 + A2∥u∥

1
4
2 = B∥u∥

1
4
2

as claimed.

Step 3. Here we prove
∥u∥∞ ≤ C. (3.19)

There exists s1 ∈ [0, 2π] satisfying |u(s1)| ≤ ∥u∥2√
2π
. The claim now follows from

∥u∥∞ ≤|u(s1)|+ sup
s∈[0,2π]

|u(s)− u(s1)| ≤
∥u∥2√
2π

+ ∥u′∥1 ≤
∥u∥2√
2π

+
√
2π∥u′∥2

(3.15),(3.18)

≤

(
F

3
4

√
2π

+
√
2πB

)
∥u∥

1
4
2

(3.15)

≤ C.

Step 4. Next we show in the case ζ sign(d) < −C21d<0 the additional L
2-bound

∥u∥2 ≤ D. (3.20)

After integrating (3.16) over [0, 2π] and taking the real part of the resulting equation we
get

d∥u′∥22 = ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 + Im

∫ 2π

0

fū ds.

In order to prove (3.20) we �rst suppose d > 0. Then we have on one hand

d∥u′∥22
(3.18)

≤ dB2∥u∥
1
2
2 (3.21)
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and on the other hand

ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 + Im

∫ 2π

0

fū ds

≥ −|ω|∥u∥2∥u′∥2 − ζ∥u∥22 − F∥u∥2
(3.18)

≥ −|ω|B∥u∥
5
4
2 − ζ∥u∥22 − F∥u∥2

(3.15)

≥ −|ω|BF
3
4∥u∥

1
2
2 − ζ∥u∥22 − F

3
2∥u∥

1
2
2 .

(3.22)

Combining the two estimates (3.21), (3.22) and grouping quadratic terms and terms of
power 1

2
of ∥u∥2 on separate sides of the inequality we get

−ζ∥u∥22 ≤
(
F

3
2 + |ω|BF

3
4 + dB2

)
∥u∥

1
2
2

which �nally implies ∥u∥2 ≤ D whenever ζ < 0. Assuming now d < 0 the estimate
(3.21) becomes

d∥u′∥22 ≥ −|d|B2∥u∥
1
2
2 (3.23)

whereas in (3.22) the term ∥u∥44, which was previously dropped, now has to be estimated
by ∥u∥44 ≤ ∥u∥2∞∥u∥22 ≤ C2∥u∥22. The estimate (3.22) now becomes

ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 + Im

∫ 2π

0

fū ds

≤ |ω|BF
3
4∥u∥

1
2
2 + (C2 − ζ)∥u∥22 + F

3
2∥u∥

1
2
2 .

(3.24)

The combination of (3.23) and (3.24) leads to

(ζ − C2)∥u∥22 ≤
(
F

3
2 + |ω|BF

3
4 + |d|B2

)
∥u∥

1
2
2

which again implies ∥u∥2 ≤ D whenever −ζ < −C2.

Step 5. Finally we prove

∥u∥∞ ≤
(
F

3
4

√
2π

+
√
2πB

)
D

1
4 (3.25)

whenever ζ sign(d) < −C21d<0. For this we repeat Step 3 and use in the �nal estimate
that ∥u∥2 ≤ D.

3.5. Proof of existence (Theorem 3.1) and uniqueness
(Theorem 3.17) statements

Let us consider the operator L : H2
per(0, 2π) → L2(0, 2π) with Lu = L0u− iu and L0u =

−du′′ + iωu′ + ζu. Since L0 : H
2
per(0, 2π) → L2(0, 2π) is self-adjoint its spectrum is real
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and we see that L has spectrum on the line −i+R. In particular, L is invertible and L−1 :
L2(0, 2π) → H2

per(0, 2π) is bounded. By using the compact embedding H2
per(0, 2π) ↪→

H1
per(0, 2π) we see that

L−1 : L2(0, 2π) → H1
per(0, 2π) is compact.

Since moreover H1
per(0, 2π) is a Banach algebra we can rewrite (3.3) as a �xed point

problem u = Φ(u), where Φ denotes the compact map

Φ : H1
per(0, 2π) → H1

per(0, 2π), Φ(u) = L−1
(
|u|2u− if(s)

)
.

In order to prove our �rst existence result from Theorem 3.1, let us recall Schaefer's
�xed point theorem ([10, Corollary 8.1]).

Theorem 3.16 (Schaefer's �xed point theorem). Let X be a Banach space and Φ : X →
X be compact. Suppose that the set

{x ∈ X : x = λΦ(x) for some λ ∈ (0, 1)}

is bounded. Then Φ has a �xed point.

Proof of Theorem 3.1. Let u ∈ H1
per(0, 2π) and u = λΦ(u) for some λ ∈ (0, 1). Then

u ∈ H2
per(0, 2π) and

−du′′ + iωu′ + (ζ − i)u− λ|u|2u+ iλf(s) = 0.

Let us now de�ne v ∈ H2
per(0, 2π) by v(s) =

√
λu(s). Then

−dv′′ + iωv′ + (ζ − i)v − |v|2v + if̃(s) = 0

with f̃ = λ
3
2f . Estimate (3.12) of Theorem 3.14 with F̃ = F (λ

3
2f) = λ

3
2F implies

∥u∥2 =
1√
λ
∥v∥2 ≤

1√
λ
F̃ = λF ≤ F.

Using (3.13) from Theorem 3.14 with B̃ = B(d, λ
3
2f) we also �nd

∥u′∥2 =
1√
λ
∥v′∥2 ≤

1√
λ
B̃F̃

1
4

= λ4
F 3

2|d|
+ 2λ

7
4∥f ′∥∞F

1
2 +

√
λ2∥f ′′∥2F + 2λ

5
4∥f ′∥∞

(
λ

3
4F√
2π

+
√
F

)

≤ F 3

2|d|
+ 2∥f ′∥∞F

1
2 +

√
∥f ′′∥2F + 2∥f ′∥∞

(
F√
2π

+
√
F

)
= BF

1
4 .

The assertion now follows from Theorem 3.16.
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For the next uniqueness result, cf. Theorem 3.17, let us rewrite the constant D from
Theorem 3.14 as

D = D(d, f, ω, ζ) =

(
D̃

(−ζ sign(d)− C21d<0)+

) 2
3

with
D̃ = D̃(d, f, ω) = F

3
2 + |ω|BF

3
4 + |d|B2.

Our result complements the existence statement provided in Theorem 3.1 by a uniqueness
statement. It consists of three cases: (i) and (ii) cover the case where |ζ| ≫ 1 is
su�ciently large whereas (iii) builds upon ∥f∥ ≪ 1 measured in a suitable norm ∥ · ∥
such that the constant C = C(d, f) becomes small. This is the case, e.g., if ∥f∥2 ≪ 1
and ∥f ′′∥2 remains bounded.

Theorem 3.17. Let d ∈ R \ {0}, ζ, ω ∈ R and f ∈ H2(0, 2π). Then (3.3) has a unique
solution u ∈ H2

per(0, 2π) in the following three cases,

(i)
sign(d)ζ < ζ∗,

(ii)
sign(d)ζ > ζ∗,

(iii) √
3C < 1,

where ζ∗ ≤ 0 ≤ ζ∗ are given by

ζ∗ = ζ∗(d, f, ω) = −C21d<0 −
27(F

3
4 + 2πB)6D̃

8π3
,

ζ∗ = ζ∗(d, f, ω) = 3C2 +
ω2

4|d|
,

and F = F (f), B = B(d, f), C = C(d, f) are the constants from Theorem 3.14.

Proof. It su�ces to consider the case f ̸= 0. By Theorem 3.1 we know that (3.3) has
at least one solution u1 ∈ H2

per(0, 2π). Now let u2 ∈ H2
per(0, 2π) denote an additional

solution and de�ne

R = R(d, f, ω, ζ) =

min

{
C,

(
F

3
4√
2π

+
√
2πB

)
D

1
4

}
, ζ sign(d) + C21d<0 < 0,

C, ζ sign(d) + C21d<0 ≥ 0.

Then ∥uj∥∞ ≤ R for j = 1, 2 by Theorem 3.14, which easily implies∥∥|u1|2u1 − |u2|2u2
∥∥
2
≤ 3R2∥u1 − u2∥2.
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Since uj, j = 1, 2 solves the �xed point problem uj = Φ(uj) we obtain

∥u1 − u2∥2 = ∥Φ(u1)− Φ(u2)∥2 ≤ 3R2∥L−1∥∥u1 − u2∥2,

where ∥L−1∥ = supv∈L2(0,2π),∥v∥2=1 ∥L−1v∥2. Next we show 3R2∥L−1∥ < 1 which implies
u1 = u2 and thus �nishes the proof. To this end we decompose a function v ∈ L2(0, 2π)
into its Fourier series, i.e., v =

∑
m∈Z vme

ims so that

L−1v =
∑
m∈Z

vm
dm2 − ωm+ ζ − i

eims.

On one hand we get ∥L−1∥ ≤ 1 since

∥L−1v∥22 = 2π
∑
m∈Z

|vm|2

1 + (dm2 − ωm+ ζ)2
≤ 2π

∑
m∈Z

|vm|2 = ∥v∥22.

On the other hand, if sign(d)
(
ζ − ω2

4d

)
> 0, we get

∥L−1v∥22 = 2π
∑
m∈Z

|vm|2

1 + (dm2 − ωm+ ζ)2
= 2π

∑
m∈Z

|vm|2

1 +
(
d
(
m− ω

2d

)2
+ ζ − ω2

4d

)2
≤ 2π

∑
m∈Z

|vm|2(
ζ − ω2

4d

)2 =
1(

ζ − ω2

4d

)2∥v∥22,
i.e. ∥L−1∥ ≤ sign(d)

(
ζ − ω2

4d

)−1
.

In case (i) where sign(d)ζ < ζ∗ < −C21d<0 ≤ 0 we use ∥L−1∥ ≤ 1 and �nd by the
de�nition of R and ζ∗ that

3R2∥L−1∥ ≤ 3
(F

3
4 + 2πB)2

2π
D

1
2

= 3
(F

3
4 + 2πB)2

2π

(
D̃

−ζ sign(d)− C21d<0

) 1
3

< 3
(F

3
4 + 2πB)2

2π

(
D̃

−ζ∗ − C21d<0

) 1
3

= 1.

In case (ii) where sign(d)ζ > ζ∗ > ω2

4|d| ≥ 0 we use ∥L−1∥ ≤ sign(d)
(
ζ − ω2

4d

)−1
and get

by the choice of ζ∗

3R2∥L−1∥ ≤ 3C2

sign(d)(ζ − ω2

4d
)
<

3C2

ζ∗ − ω2

4|d|

= 1.
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In case (iii) where
√
3C < 1 we use ∥L−1∥ ≤ 1 to conclude

3R2∥L−1∥ ≤ 3C2 < 1.

3.6. Proof of the continuation results

In this section we continue to use the notion for the operator L : H2
per(0, 2π) → L2(0, 2π)

from Section 3.4. We also use that L−1 : L2(0, 2π) → H2
per(0, 2π) is bounded and that

L−1 : L2(0, 2π) → H1
per(0, 2π) is compact. We �rst consider continuation from a trivial

solution. In order to prove Theorem 3.6 let us provide the following global continuation
theorem.

Theorem 3.18. Let X be a real Banach space and K ∈ C1(R×X,X) be compact. We
consider the problem

T (λ, x) := x−K(λ, x) = 0. (3.26)

Assume that T (λ0, x0) = 0 and that ∂xT (λ0, x0) is invertible. Then there exists a con-
nected and closed set (=continuum) C+ ⊂ [λ0,∞) × X of solutions of (3.26) with
(λ0, x0) ∈ C+. For C+ one of the following alternatives holds:

(a) C+ is unbounded,

or

(b) ∃x+0 ∈ X \ {x0} : (λ0, x
+
0 ) ∈ C+.

If one chooses C+ to be maximally connected then there is no more a strict alternative
between (a) and (b) and instead at least one of the two (possibly both) properties holds.

Remark 3.19. (α) The theorem follows from [2, Theorem 3.3] or [57, Theorem 1.3.2]
since deg(T (λ0, ·), Bε(x0), 0) = deg(∂xT (λ0, x0), Bε(0), 0) ̸= 0 because ∂xT (λ0, x0) is in-
vertible.
(β) There exists also a continuum C− ⊂ (−∞, λ0] × X of solutions of (3.26) with
(λ0, x0) ∈ C− satisfying one of the alternatives of the theorem.
(γ) Alternative (a) of Theorem 3.18 means that C+ is unbounded either in the Banach
space direction X or in the parameter direction [λ0,∞) or in both. If unboundedness
in the Banach space direction is excluded on compact intervals [λ0,Λ], e.g., by a-priori
bounds, then unboundedness in the parameter direction follows, i.e., the projection of
C+ onto [λ0,∞) denoted by pr1(C+) must coincide with [λ0,∞). This is an existence
result for all λ ≥ λ0 which is one aspect of Theorem 3.6.
(δ) Alternative (b) of Theorem 3.18 means that the continuum C+ returns to the λ = λ0
line at a point x+0 ̸= x0.

Proof of Theorem 3.6. Let K : R × H1
per(0, 2π) → H1

per(0, 2π), K(f1, u) := L−1(|u|2u −
if0 − if1e(s)) and T (f1, u) := u−K(f1, u). Then, as explained before Theorem 3.16, K
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is compact and

T (0, u0) = u0 − L−1(|u0|2u0 − if0)
(3.4)
= u0 − L−1

(
(ζ − i)u0

)
= u0 − u0 = 0.

Next we show that ∂uT (0, u0) is invertible. To this end note that

∂uT (0, u0)φ = φ− L−1(2|u0|2φ+ u20φ) for φ ∈ H1
per(0, 2π)

and hence, as a compact perturbation of the identity, ∂uT (0, u0) is invertible if it is
injective. Since u0 is constant this amounts exactly to the characterization of non-
degeneracy of u0 as described in Lemma 3.4.

Now assertion (i) follows from the classical implicit function theorem and Theorem 3.18
yields that the maximal continuum C+ ⊂ [0,∞)×H1

per(0, 2π) of solutions (f1, u) of (3.3)
with (0, u0) ∈ C+ is unbounded or returns to another solution at f1 = 0. The continuum
C+ in fact belongs to [0,∞)×H2

per(0, 2π) and persists as a connected and closed set in
the stronger topology of [0,∞)×H2

per(0, 2π). Next we show that the unboundedness of
C+ coincides with pr1(C+) = [0,∞). According to Remark 3.19.(γ) we need to show that
unboundedness in the Banach space direction H1

per(0, 2π) is excluded for f1 in bounded
intervals. To see this suppose that 0 ≤ f1 ≤ M for all (f1, u) ∈ C+ and some constant
M > 0. Then, by the a-priori bounds (3.12) and (3.13) from Theorem 3.14 we get

∥u∥2 ≤ ∥f0 + f1e(s)∥2 ≤
√
2π|f0|+M∥e∥2 =: N = N(f0,M, e)

and

∥u′∥2 ≤
N3

2|d|
+ 2M∥e′∥∞N

1
2 +

√
M∥e′′∥2N + 2M∥e′∥∞

(
N√
2π

+
√
N

)
for all (f1, u) ∈ C+. Hence C+ is bounded in the Banach space direction. Assertion (ii)
follows in a similar way by using the a-priori bounds of Theorem 3.14 and the fact that
by (3.3) the bounds for ∥u∥2, ∥u′∥2 and ∥u∥∞ translate into a bound for ∥u′′∥2.
According to Remark 3.19.(β) the above line of arguments also yield that the maximal

continuum C− ⊂ (−∞, 0] × H2
per(0, 2π) of solutions of (3.3) with (0, u0) ∈ C− satis�es

pr1(C−) = (−∞, 0] or returns to another solution at f1 = 0. This �nishes the proof.

Proof of Corollary 3.8. The result follows from a combination of Theorem 3.6 and The-
orem 3.17. For f1 = 0, i.e. f(s) = f0, the abbreviations F,B,C from Theorem 3.14 and
D̃ from Theorem 3.17 reduce to

F (f0) =
√
2π|f0|, B(d, f0) = 2

3
8π

11
8 |f0|

11
4 |d|−1,

C(d, f0) = |f0|(1 + 2π2f 2
0 |d|−1),

D̃(d, f0, ω) = (2π)
3
4 |f0|

3
2 (|d|+ πf 2

0 |ω|+ π2f 4
0 )|d|−1.
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Hence the constants ζ∗, ζ
∗ from Theorem 3.17 take the form

ζ∗(d, f0, ω) = −C2(d, f0)1d<0 − 27

(
1 +

πf 2
0 |ω|
|d|

+
π2f 4

0

|d|

)
C(d, f0)

6,

ζ∗(d, f0, ω) = 3C(d, f0)
2 +

ω2

4|d|
.

Finally, the conditions (i), (ii), (iii) from the uniqueness result of Theorem 3.17 translate
into the conditions (i), (ii), (iii) from Corollary 3.8.

Now we turn to continuation from a non-trivial solution. Theorem 3.9 will follow
from the Crandall-Rabinowitz Theorem of bifurcation from a simple eigenvalue, which
we recall next.

Theorem 3.20 (Crandall-Rabinowitz [9],[36]). Let I ⊂ R be an open interval, X,Y
Banach spaces and let F : I × X → Y be twice continuously di�erentiable such that
F (λ, 0) = 0 for all λ ∈ I and ∂xF (λ0, 0) : X → Y is an index-zero Fredholm operator
for λ0 ∈ I. Moreover assume:

(H1) there is ϕ ∈ X,ϕ ̸= 0 such that ker ∂xF (λ0, 0) = span{ϕ},

(H2) ∂2x,λF (λ0, 0)[ϕ] ̸∈ range ∂xF (λ0, 0).

Then there exists ϵ > 0 and a continuously di�erentiable curve (λ, x) : (−ϵ, ϵ) → I ×X
with λ(0) = λ0, x(0) = 0, ẋ(0) = ϕ and x(t) ̸= 0 for 0 < |t| < ϵ and F (λ(t), x(t)) = 0
for all t ∈ (−ϵ, ϵ). Moreover, there exists a neighborhood J × U ⊂ I ×X of (λ0, 0) such
that all non-trivial solutions in J × U of F (λ, x) = 0 lie on the curve. Finally,

λ̇(0) = −1

2

⟨∂2xxF (λ0, 0)[ϕ, ϕ], ϕ∗⟩
⟨∂2x,λF (λ0, 0)[ϕ], ϕ∗⟩

,

where span{ϕ∗} = ker ∂xF (λ0, 0)
∗ and ⟨·, ·⟩ is the duality pairing between Y and its dual

Y ∗.

Next we provide the functional analytic setup. Fix the values of d, ω, ζ, f0 and the
function e. If u0 ∈ H2

per(0, 2π) is the non-trivial non-degenerate solution of (3.3) for
f1 = 0 (as assumed in Theorem 3.9) then for σ ∈ R we denote by uσ(s) := u0(s− σ) its
shifted copy, which is also a solution of (3.3) for f1 = 0. Consider the mapping

G :

{
R×H2

per(0, 2π) → L2(0, 2π),

(f1, u) 7→ −du′′ + iωu′ + (ζ − i)u− |u|2u+ if0 + if1e(s).

Then G is twice continuously di�erentiable. The linearized operator ∂(f1,u)G(0, uσ) =
(ie, Luσ) with Luσ as in De�nition 3.2 is a Fredholm operator and (0, u′σ) ∈ ker ∂(f1,u)G(0, uσ).
As we shall see there may be more elements in the kernel. Next we �x the value σ0 (its
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precise value will be given later) and let H2
per(0, 2π) = span{u′σ0} ⊕ Z where, e.g.,

Z := H2
per(0, 2π) ∩ span{u′σ0}

⊥L2 =

{
φ−

⟨φ, u′σ0⟩L2

⟨u′σ0 , u′σ0⟩L2

u′σ0 : φ ∈ H2
per(0, 2π)

}
.

It will be more convenient to rewrite u = uσ + v with v ∈ Z. In order to justify this,
note also that the map (σ, v) 7→ uσ + v de�nes a di�eomorphism of a neighborhood of
(σ0, 0) ∈ R× Z onto a neighborhood of uσ0 ∈ H2

per(0, 2π) since the derivative at (σ0, 0)
is given by (λ, ψ) 7→ −λu′σ0 + ψ which is an isomorphism from R× Z onto H2

per(0, 2π).
Now we de�ne

F :

{
R× R× Z → L2(0, 2π),

(σ, f1, v) 7→ G(f1, uσ + v)

which is also twice continuously di�erentiable and where ∂(f1,v)F (σ0, 0, 0) is an index-zero
Fredholm operator. Our goal will be to solve

F (σ, f1, v) = 0 (3.27)

by means of bifurcation theory, where σ ∈ R is the bifurcation parameter. Notice that
F (σ, 0, 0) = 0 for all σ ∈ R, i.e., (f1, v) = (0, 0) is a trivial solution of (3.27).

Next we show (H1) of Theorem 3.20.

Lemma 3.21. Suppose that σ0 ∈ R satis�es (3.7), i.e. Im
∫ 2π

0
e(s + σ0)ϕ∗

0(s) ds = 0.
Then dimker ∂(f1,v)F (σ0, 0, 0) = 1 and range ∂(f1,v)F (σ0, 0, 0) = span{ϕ∗

σ0
}⊥L2 .

Proof. The fact that ∂(f1,v)F (σ0, 0, 0) is a Fredholm operator follows from Remark 3.3.
For (α, ψσ0) ∈ R × Z being non-trivial and belonging to the kernel of ∂(f1,v)F (σ0, 0, 0)
we have

∂(f1,v)F (σ0, 0, 0)[α, ψσ0 ] = Luσ0ψσ0 + iαe = 0. (3.28)

If α = 0 then by non-degeneracy we �nd ψσ0 ∈ span{u′σ0}∩Z = {0}, which is impossible.
Hence we may assume w.l.o.g. that α = 1 and ψσ0 has to solve

Luσ0ψσ0 = −ie (3.29)

which, by setting ψσ0(s) = ξσ0(s− σ0), is equivalent to

Lu0ξσ0 = −ie(·+ σ0). (3.30)

By the Fredholm alternative this is possible if and only if −ie(·+ σ0) ⊥L2 ϕ∗
0. If this L

2-
orthogonality holds then there exists ψσ0 ∈ H2

per(0, 2π) solving (3.29) and ψσ0 is unique
up to adding a multiple of u′σ0 . Hence there is a unique ψσ0 ∈ Z solving (3.29). The
L2-orthogonality means

0 = −Re

∫ 2π

0

ie(s+ σ0)ϕ∗
0(s) ds = Im

∫ 2π

0

e(s+ σ0)ϕ∗
0(s) ds
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which amounts to (3.7). Finally, it remains to determine the range of ∂(f1,v)F (σ0, 0, 0).

Let ϕ̃ ∈ L2(0, 2π) be such that ϕ̃ = ∂(f1,v)F (σ0, 0, 0)[α, ψ̃] with ψ̃ ∈ Z and α ∈ R. Thus

Luσ0 ψ̃ + iαe = ϕ̃ (3.31)

and since ie ⊥L2 ϕ∗
σ0

by the de�nition of σ0, the Fredholm alternative says that a

necessary and su�cient condition for ϕ̃ to satisfy (3.31) is that ϕ̃ ∈ span{ϕ∗
σ0
}⊥L2 as

claimed. Note that in this case ψ̃ ∈ H2
per(0, 2π) = kerLuσ0 ⊕Z and hence, for every given

α ∈ R and ϕ̃ ∈ span{ϕ∗
σ0
}⊥L2 there is a unique element ψ̃ ∈ Z that solves (3.31).

Proof of Theorem 3.9. The proof is divided into three steps.

Step 1. We begin by verifying for (3.27) the conditions for the local bifurcation theorem
of Crandall-Rabinowitz, cf. Theorem 3.20. By Lemma 3.21, ∂(f1,v)F (σ0, 0, 0) : R× Z →
L2(0, 2π) is an index-zero Fredholm operator and it satis�es

ker ∂(f1,v)F (σ0, 0, 0) = span{(1, ψσ0)},

where ψσ0 denotes the unique element of Z which solves (3.29). Hence (H1) is satis�ed.
To see (H2) note that

∂2(f1,v),σF (σ0, 0, 0)[1, ψσ0 ] = 2u′σ0uσ0ψσ0 + 2u′σ0uσ0ψσ0 + 2uσ0u
′
σ0
ψσ0 .

On the other hand, di�erentiation of (3.29) w.r.t. s yields

Luσ0ψ
′
σ0

= 2u′σ0uσ0ψσ0 + 2u′σ0uσ0ψσ0 + 2uσ0u
′
σ0
ψσ0 − ie′ (3.32)

so that
∂2(f1,v),σF (σ0, 0, 0)[1, ψσ0 ] = Luσ0ψ

′
σ0

+ ie′. (3.33)

Hence the characterization of range ∂(f1,v)F (σ0, 0, 0) from Lemma 3.21 implies that the

transversality condition (H2) is satis�ed if and only if Re
∫ 2π

0
ie′(s)ϕ∗

σ0
(s) ds ̸= 0 which

amounts to assumption (3.8). This already allows us to apply Theorem 3.20 and we
obtain the existence of a local curve t 7→ (σ(t), f1(t), v(t)), ḟ1(0) = 1, f1(0) = 0, v(0) = 0,
σ(0) = σ0 with F (σ(t), f1(t), v(t)) = 0. Assertion (i) is then satis�ed with u(t) :=
uσ(t) + v(t). Assertion (ii) follows like in the proof of Theorem 3.6.

Step 2. From here on let us additionally assume that zero is an algebraically simple
eigenvalue of Lu0 , i.e. u

′
0 /∈ rangeLu0 . Next we want to show that Lu(t) is invertible for

0 < |t| < δ∗ and δ∗ su�ciently small, i.e. that the critical zero eigenvalue of Lu(0) = Luσ0
moves away from zero when t evolves. Let us de�ne

H :

{
H2

per(0, 2π)× Z × R → L2(0, 2π),

(u, v, µ) 7→ Lu(u
′
σ0

+ v)− µ(u′σ0 + v).
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Then H(uσ0 , 0, 0) = 0 and

∂(v,µ)H(uσ0 , 0, 0) :

{
Z × R → L2(0, 2π),

(ψ, α) 7→ Luσ0ψ − αu′σ0

clearly de�nes an isomorphism due to our assumption that u′σ0 /∈ rangeLuσ0 . By the
implicit function theorem we �nd neighborhoods U ⊂ H2

per(0, 2π) of uσ0 , V ⊂ Z of 0,
J ⊂ R of 0 and continuously di�erentiable functions v∗ : U → V , µ∗ : U → J such that
v∗(uσ0) = 0, µ∗(uσ0) = 0 and

∀(u, v, µ) ∈ U × V × J : H(u, v, µ) = 0 ⇔ v = v∗(u), µ = µ∗(u).

Thus, for |t| su�ciently small we �nd Lu(t)
(
u′σ0 + v∗(u(t))

)
= µ∗(u(t))

(
u′σ0 + v∗(u(t))

)
.

With φ(t) := u′σ0 + v∗(u(t)) and µ(t) := µ∗(u(t)) we have φ(0) = u′σ0 , µ(0) = 0 and

Lu(t)φ(t) = µ(t)φ(t) (3.34)

so that we have found a parameterization of the eigenvalue µ(t) nearby 0 with eigen-
function φ(t) of Lu(t). Next we want to compute µ̇(0) and show that µ̇(0) ̸= 0 so that
the critical zero eigenvalue moves away from zero. Di�erentiating (3.34) w.r.t. t and
evaluating at t = 0 we get

Luσ0 φ̇(0)− 2u̇(0)uσ0u
′
σ0

− 2uσ0u̇(0)u
′
σ0

− 2uσ0u̇(0)u
′
σ0

= µ̇(0)u′σ0 .

Theorem 3.20 yields v̇(0) = ψσ0 from which we �nd u̇(0) = −u′σ0σ̇(0) + ψσ0 . Thus,

Luσ0 φ̇(0)−2(ψσ0uσ0u
′
σ0
+uσ0ψσ0u

′
σ0
+uσ0ψσ0u

′
σ0
)+2σ̇(0)u′σ0(uσ0u

′
σ0
+2uσ0u

′
σ0
) = µ̇(0)u′σ0 .

Using (3.32) this gives

Luσ0 φ̇(0)− Luσ0ψ
′
σ0

− ie′ + 2σ̇(0)u′σ0(uσ0u
′
σ0

+ 2uσ0u
′
σ0
) = µ̇(0)u′σ0 .

Testing this equation with ϕ∗
σ0

and using µ̇(0) ∈ R we obtain

Re

∫ 2π

0

−ie′ϕ∗
σ0

+ 2σ̇(0)u′σ0(uσ0u
′
σ0

+ 2uσ0u
′
σ0
)ϕ∗

σ0
ds = µ̇(0)Re

∫ 2π

0

u′σ0ϕ
∗
σ0
ds.

Due to u′σ0 /∈ rangeLuσ0 we have Re
∫ 2π

0
u′σ0ϕ

∗
σ0
ds ̸= 0 so that

µ̇(0) =
Im
∫ 2π

0
e′(s+ σ0)ϕ∗

0(s) ds+ 2σ̇(0)Re
∫ 2π

0
u′0(u0u

′
0 + 2u0u′0)ϕ

∗
0 ds

Re
∫ 2π

0
u′0ϕ

∗
0 ds

.
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From Theorem 3.20 we know that

σ̇(0) = −1

2

〈
∂2(f1,v)2F (σ0, 0, 0)[(1, ψσ0), (1, ψσ0)], ϕ

∗
σ0

〉
L2〈

∂2(f1,v),σF (σ0, 0, 0)[1, ψσ0 ], ϕ
∗
σ0

〉
L2

.

Therefore, using (3.33) and

∂2(f1,v)2F (σ0, 0, 0)[(1, ψσ0), (1, ψσ0)] = −2uσ0ψ
2
σ0

− 4uσ0 |ψσ0|2

we �nd that the condition µ̇(0) ̸= 0 amounts to assumption (3.9) of the theorem.
Finally, employing some arguments from spectral theory, we ensure that no other

eigenvalue runs into zero. For u = u1 + iu2 ∈ H2
per(0, 2π) let us de�ne the C-linear

operator

LC
u :


H2

per((0, 2π),C2) → L2((0, 2π),C2),(
φ1

φ2

)
7→

(
−dφ′′

1 − ωφ′
2 + ζφ1 + φ2 − 3u21φ1 − u22φ1 − 2u1u2φ2

−dφ′′
2 + ωφ′

1 + ζφ2 − φ1 − u21φ2 − 3u22φ2 − 2u1u2φ1

)
which is constructed in such a way that

LC
u

(
φ1

φ2

)
=

(
ReLu(φ1 + iφ2)
ImLu(φ1 + iφ2)

)
whenever φ1, φ2 ∈ H2

per((0, 2π),R). Since LC
u is an index-zero Fredholm operator, its

spectrum consists of eigenvalues. The real part of these eigenvalues (weighted with
sign(d)) is bounded from below by c ∈ R which is chosen such that

Re

〈
sign(d)LC

u

(
φ1

φ2

)
,

(
φ1

φ2

)〉
L2((0,2π),C2)

≥ c

∥∥∥∥(φ1

φ2

)∥∥∥∥2
L2((0,2π),C2)

holds. This implies that the resolvent set ρ(LC
u) is non-empty and the compact embed-

ding H2
per((0, 2π),C2) ↪→ L2((0, 2π),C2) ensures that LC

u has compact resolvent so that

σ(LC
u) consists of isolated eigenvalues. Now choose ε > 0 such that σ(LC

u(0)) ∩ BC
ε (0) =

{0}. Using [35, Chapter Four, Theorem 3.18] we �nd that σ(LC
u(t))∩BC

ε (0) exactly con-

sists of one algebraically simple eigenvalue if |t| is su�ciently small. If in addition |t| is
chosen so small that µ(t) ∈ (−ε, ε) then this means σ(LC

u(t))∩BC
ε (0) = {µ(t)}. But from

µ̇(0) ̸= 0 we know that µ(t) ̸= 0 for small |t| > 0 which guarantees that 0 /∈ σ(LC
u(t)) for

0 < |t| < δ∗ and δ∗ su�ciently small. Finally, Lu(t) inherits the invertibility of LC
u(t).

Step 3. Using ḟ1(0) = 1 and Step 2 we �nd a local reparameterization (f̃1, u(f̃1)) of
C(t) = (f1(t), u(t)) such that Lu(f̃1) is invertible for 0 < f̃1 < f ∗

1 . Next we construct

the connected set C+
∗ . For this we want to apply Theorem 3.18 to the map T : R ×

H1
per(0, 2π) → H1

per(0, 2π) from the proof of Theorem 3.6. Note that this theorem can
not be applied directly at the point (0, uσ0) since ∂uT (0, uσ0) is not invertible. Instead,
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we apply it to the points (f̃1, u(f̃1)) with f̃1 ∈ (0, f ∗
1 ) and obtain that the maximal

continuum C+(f̃1) ⊂ [f̃1,∞)×H1
per(0, 2π) of solutions of (3.3) with (f̃1, u(f̃1)) ∈ C+(f̃1)

is unbounded or returns to another solution u+(f̃1) ̸= u(f̃1) at f1 = f̃1. As in the proof
of Theorem 3.6 we see that the continuum C+(f̃1) persists as a connected and closed set
in [f̃1,∞)×H2

per(0, 2π). Let us de�ne

C+
∗ :=

⋃
f̃1∈(0,f∗1 )

C+(f̃1) ⊂ C+.

Clearly, pr1(C+
∗ ) ⊂ (0,∞) and C+

∗ is connected since C+(f̃1) ⊂ C+(f̄1) for f̄1 < f̃1. Let
us now suppose that pr1(C+

∗ ) ̸= (0,∞) so that pr1(C+
∗ ) is bounded. By (ii) this implies

that C+
∗ is bounded too. Hence C+(f̃1) is bounded for f̃1 ∈ (0, f ∗

1 ) and contains the
additional element (f̃1, u

+(f̃1)). Let us take f̃1 = 1
n
and consider the two sequences

of solutions ( 1
n
, u( 1

n
))n and ( 1

n
, u+( 1

n
))n. Using Theorem 3.14 we obtain uniform C3-

bounds for both sequences (u( 1
n
))n and (u+( 1

n
))n. Therefore we can take convergent

subsequences (denoted by the same index) and obtain u( 1
n
) → uσ0 and u

+( 1
n
) → u+0 in

C2([0, 2π]) as n → ∞. In particular (0, uσ0), (0, u
+
0 ) ∈ C+

∗ and the uniqueness property
from (i) guarantees that u+0 ̸= uσ0 . This �nishes the proof.

Proof of Corollary 3.10. We �rst check assumption (3.7) of Theorem 3.9. For e(s) = eik1s

we have

Im

∫ 2π

0

e(s+ σ0)ϕ∗
0(s) ds = Im

∫ 2π

0

eik1(s+σ0)ϕ∗
0(s) ds

= cos(k1σ0) Im

∫ 2π

0

eik1sϕ∗
0(s) ds+ sin(k1σ0) Re

∫ 2π

0

eik1sϕ∗
0(s) ds,

where

Im

∫ 2π

0

eik1sϕ∗
0(s) ds =

∫ 2π

0

sin(k1s) Reϕ
∗
0(s)− cos(k1s) Imϕ∗

0(s) ds,

Re

∫ 2π

0

eik1sϕ∗
0(s) ds =

∫ 2π

0

cos(k1s) Reϕ
∗
0(s) + sin(k1s) Imϕ∗

0(s) ds.

Since assumption (3.10) guarantees that Im
∫ 2π

0
eik1sϕ∗

0(s) ds and Re
∫ 2π

0
eik1sϕ∗

0(s) ds do
not vanish simultaneously condition (3.11) ensures that assumption (3.7) of Theorem 3.9
is ful�lled.
Next we check that assumption (3.8) of Theorem 3.9 holds. For this we compute

Im

∫ 2π

0

e′(s+ σ0)ϕ∗
0(s) ds = Im

∫ 2π

0

ik1e
ik1(s+σ0)ϕ∗

0(s) ds = k1Re

∫ 2π

0

eik1(s+σ0)ϕ∗
0(s) ds.

(3.35)

From (3.10) we know that
∫ 2π

0
eik1(s+σ0)ϕ∗

0(s) ds = eik1σ0
∫ 2π

0
eik1sϕ∗

0(s) ds ̸= 0 and more-

over Im
∫ 2π

0
eik1(s+σ0)ϕ∗

0(s) ds = 0 by the de�nition of σ0. Therefore the expression in
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(3.35) does not vanish and so assumption (3.8) of Theorem 3.9 holds. This is all we had
to show.

Proof of Theorem 3.13. Let us �x all parameters d, ω, ζ, k1 and f0 and consider u : f1 7→
u(f1) as a function mapping the parameter f1 ∈ [−f ∗

1 , f
∗
1 ] to the uniquely de�ned solution

of (3.2) in the neighborhood of the trivial solution u0. The existence of such a smooth
function follows from the implicit function theorem applied to the equation T (f1, u) = 0,

cf. proof of Theorem 3.6. Similarly we consider the functions v : f1 7→ du(f1)
df1

and

w : f1 7→ d2u(f1)

df21
. Then

d

df1
∥u(f1)∥22 = 2

∫ 2π

0

Re(uv) ds,
d2

df 2
1

∥u(f1)∥22 = 2

∫ 2π

0

Re(uw) + |v|2 ds (3.36)

and the di�erential equations for v, w at f1 = 0 are given by

−dv′′ + iωv′ + (ζ − i)v − 2|u0|2v − u20v + ieik1s = 0, (3.37)

−dw′′ + iωw′ + (ζ − i)w − 4u0|v|2 − 2u0v
2 − 2|u0|2w − u20w = 0 (3.38)

both equipped with 2π-periodic boundary conditions. The �rst equation (3.37) has
a unique solution since the homogeneous equation has a trivial kernel, cf. proof of
Theorem 3.6. Thus v(s) = αeik1s + βe−ik1s where α, β ∈ C solve the linear system

(dk21 − k1ω + ζ − i− 2|u0|2)α− u20β + i = 0,

(dk21 + k1ω + ζ − i− 2|u0|2)β − u20α = 0.

Solving for α, β leads to the formulae in the statement of the theorem. Since v is the
sum of two 2π-periodic complex exponentials and u0 is a constant we see from (3.36)
that d

df1
∥u(f1)∥22 |f1=0= 0. Having determined v we can consider the second equation

(3.38) as an inhomogeneous equation for w. It also has a unique solution since the
homogeneous equation is the same as in (3.37). Since the inhomogeneity is of the form
c1e

i2k1s+ c2e
−i2k1s+ c3 the solution has the form w(s) = γei2k1s+ δe−i2k1s+ ϵ. Moreover,

for the determination of d2

df21
∥u(f1)∥22 the values of γ, δ are irrelevant and only the value

of ϵ matters. Using

|v|2 = |α|2 + |β|2 + 2Re(αβei2k1s), v2 = α2ei2k1s + β2e−i2k1s + 2αβ

we �nd from (3.38) that the equation determining ϵ is

(ζ − i)ϵ− 4u0(|α|2 + |β|2)− 4u0αβ − 2|u0|2ϵ− u20ϵ = 0.

Since this is an equation of the form xϵ + yϵ = z with x, y, z given in the statement of
the theorem we �nd the solution formula ϵ = −zy+zx

|x|2−|y|2 . Finally, only the constant contri-

butions from w and |v|2 contribute to the integral in the formula (3.36) for d2

df21
∥u(f1)∥22

and lead to the claimed statement of the theorem.
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3.7. Appendix A

Here we raise the issue mentioned in Remark 3.11.(γ) that assumption (3.10) from
Corollary 3.10 is not satis�ed if u0 is

2π
j
-periodic and j ∈ N is not a divisor of k1. Let

us �rst prove that ϕ∗
0 (spanning kerL∗

u0
) inherits several properties from u′0 (spanning

kerLu0).

Proposition 3.22. Let u0 ∈ H2
per(0, 2π) be a non-constant non-degenerate solution of

(3.3) for f1 = 0 and let kerL∗
u0

= span{ϕ∗
0}. Then the following holds:

(i) If u0 is
2π
j
-periodic with j ∈ N then ϕ∗

0 is
2π
j
-periodic.

(ii) If ω = 0 and if u0 is even then ϕ∗
0 is odd.

Proof. (i) By assumption we have that kerLu0 = span{u′0} and u′0 is a 2π
j
-periodic func-

tion. Let us de�ne D := {φ ∈ H2
per(0, 2π) : φ is 2π

j
-periodic} and similarly L2

j(0, 2π) =

{φ ∈ L2(0, 2π) : φ is 2π
j
-periodic}. If we consider the restriction

L#
u0

:

{
D → L2

j(0, 2π),

φ 7→ Lu0φ,

then L#
u0

is again an index-zero Fredholm operator with kerL#
u0

= span{u′0}. Further we
have (L#

u0
)∗ = (L∗

u0
)# where

(L∗
u0
)# :

{
D → L2

j(0, 2π),

φ 7→ L∗
u0
φ

is the restriction of the adjoint. But since 1 = dimker(L∗
u0
)# = dimkerL∗

u0
it follows

that ker(L∗
u0
)# = kerL∗

u0
and hence ϕ∗

0 ∈ D as claimed.

The proof of (ii) is very similar. Due to the assumption ω = 0 we can restrict both
the domain and the codomain of Lu0 to odd functions and observe that it is still an
index-zero Fredholm operator.

Instead of k1 ∈ N let us consider a perturbation k1(ϵ) ∈ R\{k1} with limϵ→0 k1(ϵ) = k1.
For ϵ ≈ 0 one may have maximally connected continua C+

ϵ as described in Theorem 3.9.
In a topological sense one can describe lim inf{C+

ϵ : ϵ−1 ∈ N} and lim sup{C+
ϵ : ϵ−1 ∈ N}

as in [70]. However, having in mind sequences of loops degenerating to one point, we
do not intend to make any existence statement about a bifurcating branch obtained
through such a topological limiting procedure. Let us abbreviate by eϵ(s) the periodic
extension of [0, 2π) → C, s 7→ eik1(ϵ)s onto R. Note that

Im

∫ 2π

0

eϵ(s+ σ0,ϵ)ϕ∗
0(s) ds = Im

∫ 2π

0

eik1(ϵ)sϕ∗
σ0,ϵ

(s) ds = Im

∫ 2π−σ0,ϵ

−σ0,ϵ
eik1(ϵ)(s+σ0,ϵ)ϕ∗

0(s) ds

= cos(k1(ϵ)σ0,ϵ) Im

∫ 2π−σ0,ϵ

−σ0,ϵ
eik1(ϵ)sϕ∗

0(s) ds+ sin(k1(ϵ)σ0,ϵ) Re

∫ 2π−σ0,ϵ

−σ0,ϵ
eik1(ϵ)sϕ∗

0(s) ds
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so that assumption (3.7) from Theorem 3.9 becomes

tan(k1(ϵ)σ0,ϵ) =

∫ 2π−σ0,ϵ
−σ0,ϵ cos(k1(ϵ)s) Imϕ∗

0(s)− sin(k1(ϵ)s) Reϕ
∗
0(s) ds∫ 2π−σ0,ϵ

−σ0,ϵ sin(k1(ϵ)s) Imϕ∗
0(s) + cos(k1(ϵ)s) Reϕ∗

0(s) ds
.

One may expect that if (as a result of such a limiting procedure) a bifurcating branch
at k1 = limϵ→0 k1(ϵ) exists then it bifurcates at σ0 = limϵ→0 σ0,ϵ determined from

tan(k1σ0) = lim
ϵ→0

∫ 2π−σ0,ϵ
−σ0,ϵ cos(k1(ϵ)s) Imϕ∗

0(s)− sin(k1(ϵ)s) Reϕ
∗
0(s) ds∫ 2π−σ0,ϵ

−σ0,ϵ sin(k1(ϵ)s) Imϕ∗
0(s) + cos(k1(ϵ)s) Reϕ∗

0(s) ds

=

∫ 2π−σ0
−σ0 s sin(k1s) Imϕ∗

0(s) + s cos(k1s) Reϕ
∗
0(s) ds∫ 2π−σ0

−σ0 s sin(k1s) Reϕ∗
0(s)− s cos(k1s) Imϕ∗

0(s) ds
.

However, this is not supported by our numerical experiments and we have to leave the
correct determination of σ0 in this case as an open question.

[End of preprint]

3.8. Appendix B: Some tailor-made results for the original
two-mode equation

Clearly, the a-priori bounds from Theorem 3.14 can be used to obtain bounds for the
special case f(s) = f0+f1e

ik1s. However, we can �nd tailor-made a-priori bounds in this
case. For f1 = 0 they recover the bounds stated in [41] for the one mode equation.

Theorem 3.23. Let d ∈ R \ {0}, f0, f1, ζ, ω ∈ R and k1 ∈ N. Then for every solution
u ∈ H2

per(0, 2π) of (3.2) the a-priori bounds

∥u∥2 ≤ F, (3.39)

∥u′∥2 ≤ A∥u∥2 +B
√

∥u∥2 ≤ AF +B
√
F , (3.40)

∥u∥∞ ≤ C (3.41)

hold, where

F = F (f0, f1) =
√
2π
√
f 2
0 + f 2

1 , A = A(d, f0, f1) =
F 2

2|d|
,

B = B(f1, k1) =

√√
2π|f1||k1|, C = C(d, f0, f1, k1) =

F√
2π

+
√
2π(AF +B

√
F ).
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For ζ sign(d) ≪ −γ these bounds can be improved to

∥u∥2 ≤ D, ∥u∥∞ ≤ D√
2π

+
√
2π(AD +B

√
D),

where

D = D(d, f0, f1, k1, ω, ζ) =
F +B

√
F (|ω|+ F 2) + |d|B2

(−ζ sign(d)− γ)+

and

γ = γ(d, f0, f1, k1, ω) =

{
|d|A2 + |ω|A, d > 0,

|d|A2 + C2 + |ω|A, d < 0.

Proof. The proof is divided into �ve steps.

Step 1. We �rst prove the L2 estimate

∥u∥2 ≤ F =
√
2π
√
f 2
0 + f 2

1 . (3.42)

To this end we multiply the di�erential equation (3.2) with ū to obtain

−du′′ū+ iωu′ū+ (ζ − i)|u|2 − |u|4 + if0ū+ if1e
ik1sū = 0. (3.43)

Taking the imaginary part yields

−d Im(u′′ū) + ωRe(u′ū)− |u|2 + f0Re(u) + f1Re(e
ik1sū) = 0. (3.44)

Let h := |u|2 − f0Re(u) − f1Re(e
ik1sū), H := −d Im(u′ū) + ω

2
|u|2. Then H ′ = h by

equation (3.44) and H(0) = H(2π) by the periodicity of u. Hence

0 = H(2π)−H(0) =

∫ 2π

0

h ds =

∫ 2π

0

|u|2 − f0Re(u)− f1Re(e
ik1sū) ds

which implies

∥u∥22 =
∫ 2π

0

(f0 + f1 cos(k1s)) Re(u) + f1 sin(k1s) Im(u) ds

≤ ∥u∥2
(∫ 2π

0

(f 2
0 + f 2

1 + 2f0f1 cos(k1s)) ds

)1/2

=
√
2π
√
f 2
0 + f 2

1∥u∥2 = F∥u∥2.

Step 2. Next we prove

∥u′∥2 ≤ A∥u∥2 +B
√

∥u∥2 ≤ AF +B
√
F . (3.45)

From (3.2) we may isolate the linear term u and insert its derivative u′ into the following
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calculation for ∥u′∥22:

∥u′∥22 = Re

∫ 2π

0

u′ū′ ds
(3.2)
= Re

∫ 2π

0

(idu′′ + ωu′ − iζu+ i|u|2u+ f0 + f1e
ik1s)′ū′ ds

= Re

∫ 2π

0

idu′′′ū′ + ωu′′ū′ − iζ|u′|2 + i(|u|2u)′ū′ + ik1f1e
ik1sū′ ds

= −d
∫ 2π

0

(Im(u′′ū′))′ ds+ ω

∫ 2π

0

(
1

2
|u′|2

)′

ds− Im

∫ 2π

0

(|u|2u)′ū′ + k1f1e
ik1sū′ ds

=

∫ 2π

0

(|u|2)′ Im(ūu′) + k21f1Re(e
ik1sū) ds

=

∫ 2π

0

1

d
(|u|2)′

(ω
2
|u|2 −H

)
+ k21f1Re(e

ik1sū) ds

=

∫ 2π

0

ω

4d
(|u|4)′ − 1

d
(|u|2)′H + k21f1Re(e

ik1sū) ds

=

∫ 2π

0

−1

d
(|u|2)′(H −H(0)) + k21f1Re(e

ik1sū) ds.

Next notice the pointwise estimate

h = |u|2 − f0Re(u)− f1Re(e
ik1sū)

= |u|2 − Re((f0 + f1e
ik1s)ū) ≥ |u|2 − |f0 + f1e

ik1s||u|

≥ −1

4
|f0 + f1e

ik1s|2

from which we deduce the following two-sided estimate for H −H(0):

H(s)−H(0) =

∫ s

0

h(r) dr ≥ −π
2
(f 2

0 + f 2
1 ) (s ∈ [0, 2π]) and

H(s)−H(0) = H(s)−H(2π) = −
∫ 2π

s

h(r) dr ≤ π

2
(f 2

0 + f 2
1 ) (s ∈ [0, 2π]).

Continuing the above expression for ∥u′∥22 we conclude

∥u′∥22 ≤
π(f 2

0 + f 2
1 )

|d|
∥u∥2∥u′∥2 +

√
2πk21|f1|∥u∥2 = A∥u∥2∥u′∥2 +B2∥u∥2.

This is a quadratic inequality in ∥u′∥2 which implies

∥u′∥2 ≤
A∥u∥2 +

√
A2∥u∥22 + 4B2∥u∥2

2
≤ A∥u∥2 +B

√
∥u∥2

as claimed.
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Step 3. Here we prove
∥u∥∞ ≤ C. (3.46)

By (3.42) there exists s1 ∈ [0, 2π] satisfying |u(s1)| ≤ F√
2π
. The claim now follows from

∥u∥∞ ≤ |u(s1)|+ sup
s∈[0,2π]

|u(s)− u(s1)| ≤
F√
2π

+ ∥u′∥1 ≤
F√
2π

+
√
2π∥u′∥2

(3.45)

≤ C.

Step 4. Next we show in the case ζ sign(d) < −γ the additional L2-bound

∥u∥2 ≤ D. (3.47)

After integrating (3.43) over [0, 2π] and taking the real part of the resulting equation we
get

d∥u′∥22 =ω
∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 − f0

∫ 2π

0

Im(u) ds− f1

∫ 2π

0

Im(e−ik1su) ds

=ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44

+

∫ 2π

0

f1 sin(k1s) Re(u)− (f0 + f1 cos(k1s)) Im(u) ds.

In order to prove (3.47) we �rst suppose d > 0. Then we have on one hand

d∥u′∥22
(3.45)

≤ d
(
A∥u∥2 +B

√
∥u∥2

)2
= dA2∥u∥22 + 2dAB∥u∥

3
2
2 + dB2∥u∥2

(3.42)

≤ dA2∥u∥22 + 2dAB
√
F∥u∥2 + dB2∥u∥2

(3.48)

and on the other hand

ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 +
∫ 2π

0

f1 sin(k1s) Re(u)− (f0 + f1 cos(k1s)) Im(u) ds

≥ −|ω|∥u∥2∥u′∥2 − ζ∥u∥22 − F∥u∥2
(3.45)

≥ −|ω|A∥u∥22 − |ω|B∥u∥
3
2
2 − ζ∥u∥22 − F∥u∥2

(3.42)

≥ −|ω|A∥u∥22 − |ω|B
√
F∥u∥2 − ζ∥u∥22 − F∥u∥2.

(3.49)

Combining the two estimates (3.48), (3.49) and grouping quadratic terms and linear
terms of ∥u∥2 on separate sides of the inequality we get

(−ζ − dA2 − |ω|A)∥u∥22 ≤
(
F +B

√
F (|ω|+ 2dA︸︷︷︸

=F 2

) + dB2
)
∥u∥2
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which �nally implies ∥u∥2 ≤ D whenever ζ < −γ. Assuming now d < 0 the estimate
(3.48) becomes

d∥u′∥22 ≥ −|d|A2∥u∥22 − 2|d|AB
√
F∥u∥2 − |d|B2∥u∥2 (3.50)

whereas in (3.49) the term ∥u∥44, which was previously dropped, now has to be estimated
by ∥u∥44 ≤ ∥u∥2∞∥u∥22 ≤ C2∥u∥22 with C from step 3. The estimate (3.49) now becomes

ω

∫ 2π

0

Im(u′ū) ds− ζ∥u∥22 + ∥u∥44 +
∫ 2π

0

f1 sin(k1s) Re(u)− (f0 + f1 cos(k1s)) Im(u) ds

≤ |ω|A∥u∥22 + |ω|B
√
F∥u∥2 + (C2 − ζ)∥u∥22 + F∥u∥2. (3.51)

The combination of (3.23) and (3.51) leads to

(ζ − |d|A2 − C2 − |ω|A)∥u∥22 ≤
(
F +B

√
F (|ω|+ F 2) + |d|B2

)
∥u∥2

which again implies ∥u∥2 ≤ D whenever −ζ < −γ.

Step 5. Finally we prove

∥u∥∞ ≤ D√
2π

+
√
2π(AD +B

√
D) (3.52)

whenever ζ sign(d) < −γ. For this we repeat step 3 and use instead of ∥u∥2 ≤ F the
estimate ∥u∥2 ≤ D.

Based on Theorem 3.23 we can also �nd a uniqueness result which is tailor-made for
the case f(s) = f0 + f1e

ik1s. For that let us rewrite the constant D from Theorem 3.23
as

D = D(d, f0, f1, k1, ω, ζ) =
D̃

(−ζ sign(d)− γ)+

with
D̃ = D̃(d, f0, f1, k1, ω) = F +B

√
F (|ω|+ F 2) + |d|B2.

Theorem 3.24. Let d ∈ R \ {0}, f0, f1, ζ, ω ∈ R and k1 ∈ N. Then (3.2) has a unique
solution u ∈ H2

per(0, 2π) in the following three cases,

(i)
sign(d)ζ < ζ∗,

(ii)
sign(d)ζ > ζ∗,

(iii) √
3C < 1,
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where ζ∗ ≤ 0 ≤ ζ∗ are given by

ζ∗ = ζ∗(d, f0, f1, k1, ω) = −γ − D̃(1 + 2πA)2(√
π2B2 +

√
2
3
π(1 + 2πA)− πB

)2 ,

ζ∗ = ζ∗(d, f0, f1, k1, ω) = 3C2 +
ω2

4|d|

and A = A(d, f0, f1), B = B(f1, k1), C = C(d, f0, f1, k1), γ = γ(d, f0, f1, k1, ω) are the
constants from Theorem 3.23.

Proof. The proof is very similar to that of Theorem 3.17. We only need to adjust the
de�nition of R in the following way,

R = R(d, f0, f1, k1, ω, ζ) =

{
min

{
C, D√

2π
+
√
2π(AD +B

√
D)
}
, ζ sign(d) + γ < 0,

C, ζ sign(d) + γ ≥ 0,

and need to slightly modify the calculation made for the case (i). For this, note that it
can be checked that for f 2

0 + f 2
1 ̸= 0 the value −ζ∗ − γ is the unique positive zero of the

strictly decreasing map

t 7→ 3

(
(1 + 2πA)D̃√

2πt
+
√
2πB

√
D̃

t

)2

− 1.

Then, in case (i) where sign(d)ζ < ζ∗ < −γ < 0 we use ∥L−1∥ ≤ 1 and �nd by the
de�nition of R and ζ∗ that

3R2∥L−1∥ ≤ 3

(
D√
2π

+
√
2π(AD +B

√
D)

)2

= 3

(
1 + 2πA√

2π
· D̃

−ζ sign(d)− γ
+
√
2πB

√
D̃

−ζ sign(d)− γ

)2

< 3

(
1 + 2πA√

2π
· D̃

−ζ∗ − γ
+
√
2πB

√
D̃

−ζ∗ − γ

)2

= 1.
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4. Bandwidth and conversion-e�ciency analysis of

Kerr soliton combs in dual-pumped resonators

with anomalous dispersion

This section consists of the preprint [22]. The mentioned preprint is joint work with
Christian Koos, Huanfa Peng and Wolfgang Reichel and was adapted in order to �t the
layout and the structure of this thesis. In contrast to the remaining parts of this thesis
we use the notation ∥u∥22 = 1

2π

∫ 2π

0
|u(s)|2 ds in this section.

[Start of preprint]

E. Gasmi, H. Peng, C. Koos, and W. Reichel

Kerr frequency combs generated in high-Q microresonators o�er an immense po-

tential in many applications, and predicting and quantifying their behavior, per-

formance and stability is key to systematic device design. Based on an extension

of the Lugiato-Lefever equation we investigate in this paper the perspectives of

changing the pump scheme from the well-understood monochromatic pump to

a dual-tone con�guration simultaneously pumping two modes. For the case of

anomalous dispersion we give a detailed study of the optimal choices of detuning

o�sets and division of total pump power between the two modes in order to op-

timize single-soliton comb states with respect to performance metrics like power

conversion e�ciency and bandwidth. Our approach allows also to quantify the

performance metrics of the optimal single-soliton comb states and determine their

trends over a wide range of technically relevant parameters.

4.1. Introduction and main results

Optical frequency combs have revolutionized many applications, comprising optical fre-
quency metrology [65], spectroscopy [53, 72], optical frequency synthesizer [34, 58], op-
tical atomic clocks [46], ultrafast optical ranging [64], and high-capacity optical commu-
nications using massively parallel wavelength-division multiplexing (WDM) [42]. The
recent and rapid development of chip-scale Kerr soliton comb generators o�ers the
prospects of realizing highly integrated devices which o�er compactness, portability,
and robustness, while being amenable to mass production and featuring low power con-
sumption [37]. Whereas Kerr soliton combs have conventionally been generated by using
a monochromatic pump, dual-tone pumping con�gurations permit to achieve threshold-
less comb generation in both normal and anomalous dispersion regimes [29, 38], while
stabilizing the comb-tone spacing to a well-de�ned frequency [47, 61]. The dual mode
pumping scheme can be implemented either by using a phase- or intensity-modulated
continuous-wave laser or two lasers with di�erent wavelengths. Prior works theoretically
investigated the dynamical properties of dissipative cavity soliton generation in a dual-
mode-pumped Kerr microresonator by using the Lugiato-Lefever equation (LLE) with
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the addition of a secondary pump term [69]. However, a comprehensive study of the
optimal pumping conditions for attaining the broadest comb bandwidth and the highest
power conversion e�ciency in the anomalous dispersion regime is still lacking.
In this paper we study a variant of the LLE based on a modi�cation for dual-tone

pumping [62], and we use this equation for a more detailed study of the bene�ts of dual-
tone pumping. Focussing on resonators with anomalous dispersion, we �nd that dual-
tone pumping allows to signi�cantly improve key performance metrics of Kerr frequency
combs such as bandwidth and power conversion e�ciency. Mathematically, Kerr comb
dynamics with a single pumped mode have been described by the LLE, a damped, driven
and detuned nonlinear Schrödinger equation [39, 26, 48]. Our modi�cation of the LLE
arises due to a forcing term which describes the pumping of two resonator modes instead
of only a single one.

Using this equation as a base, we exploit numerical path continuation methods for a
more detailed analysis of comb properties, the results of which can be summarized as
follows:

(1) We show that pumping two modes is advantageous to pumping only one mode.

(2) We present heuristic insights for �nding the optimal detuning parameters that
provide the most localized single-soliton states.

(3) We determined the optimal power distribution between the two pumped modes,
which corresponds to a symmetric distribution where 50% of the power is pumped
into each mode3. This power distribution simultaneously optimizes all performance
metrics (comb bandwidth, full-width at half-maximum in time domain, and power
conversion e�ciency) in case equal detuning o�sets between pump tones and near-
est resonant modes are used.

(4) Under optimal power distribution we determined trends of the performance metrics
w.r.t. varying dispersion and normalized total pump power.

This paper is organized as follows: In Section 4.2 we introduce the Lugiato-Lefever
model for a dual-pumped ring resonator. In Section 4.3 we present the main ideas
for �nding localized solitons in the case of pumping two adjacent modes. Section 4.4
is dedicated to the determination of the optimal power distribution between the two
pumped modes. Here we use the comb bandwidth, the power conversion e�ciency and
the full-width at half-maximum as performance metrics. In Section 4.5 we provide trends
for varying dispersion/forcing of this performance metrics under the provision of optimal
equal power distribution between the two pumped modes. In Section 4.6 we describe
the optimal solitons achieved by pumping two arbitrarily distanced modes. Appendix
A is dedicated to the derivation of the Lugiato-Lefever model for a dual-pumped ring
resonator. In Appendix B we explain the details of the heuristic algorithm for �nding

3For purposes of simplifying the analysis this was exactly the case discussed by the authors in [29].
Our �ndings validate their assumption of the pumps having equal amplitude and phase detuning.
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localized solitons in the case of pumping two adjacent modes and Appendix C contains
the heuristic for the case of pumping two arbitrarily distanced modes.

4.2. Lugiato-Lefever model for a dual-pumped ring resonator

Kerr comb dynamics are described by the LLE, a damped, driven and detuned nonlinear
Schrödinger equation [39, 26, 48]. As in [62] we use a variant of the LLE modi�ed for
two-mode pumping, for which we provide a derivation of equation (4.1) starting from a
system of nonlinear coupled mode equations in physical quantities in Appendix A. Using
dimensionless, normalized quantities, this equation takes the form

i
∂a

∂τ
= −da′′ − (i− ζ0)a− |a|2a+ if0 + if1e

i(k1x−ν1τ). (4.1)

Here, a(τ, x) is 2π-periodic in x and represents the optical intracavity �eld as a function
of normalized time τ = κt/2 and angular position x ∈ [0, 2π] within the ring resonator.
The constant κ > 0 describes the cavity decay rate and d = 2d2/κ > 0 quanti�es
the anomalous dispersion in the system (2d2 corresponds to the di�erence between two
neighboring FSRs at the center frequency ω0). Since the numbering k ∈ Z of the resonant
modes in the cavity is relative to the �rst pumped mode k0 = 0 we denote with k1 ∈ N
the second pumped mode (there is no loss of generality to take k1 as a positive integer
since k1 and −k1 are symmetric modes). Since there are now two pumped modes there
will also be two normalized detuning parameters denoted by ζ0 = 2(ω0 − ωp0)/κ and
ζ1 = 2(ωk1 − ωp1)/κ. They describe the o�sets of the input pump frequencies ωp0 and
ωp1 to the closest resonance frequency ω0 and ωk1 of the microresonator, respectively.
Finally f0, f1 represent the normalized power of the input pumps. If we set ∆ζ=ζ0 − ζ1
and ν1 = ∆ζ + dk21 then (after several transformations, cf. Appendix A) equation (4.1)
emerges with the speci�c form of the second pump f1e

i(k1x−ν1τ).
In the case f1 = 0, equation (4.1) amounts to the case of pumping only one mode.

This case has been thoroughly studied, e.g. in [18, 26, 25, 49, 50, 48, 41, 43, 11, 51]. In
this paper we are interested in the case f1 ̸= 0. The particular form of the pump term
if0 + if1e

i(k1x−ν1τ) suggests to perform a change of variables into a moving coordinate
s = x−ωτ with ω = ν1/k1 and study solutions of (4.1) of the form a(τ, x) = u(x−ωτ).
These traveling-wave solutions propagate with speed ω in the resonator, and their pro�le
u solves the stationary ordinary di�erential equation

−du′′ + iωu′ − (i− ζ0)u− |u|2u+ if0 + if1e
ik1s = 0, (4.2)

where u is again 2π-periodic in s. In Fourier modes a and u are represented as a(τ, x) =∑
k∈Z âk(τ)e

ikx, u(s) =
∑

k∈Z ûke
iks. The intracavity power P of the �eld a at time τ is

given by

P =
∑
k∈Z

|âk(τ)|2 =
1

2π

∫ 2π

0

|a(τ, x)|2 dx.

Since the Fourier modes of a and u are related by âk(τ) = ûke
−ikωτ one �nds P =
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∑
k∈Z |ûk|2 = 1

2π

∫ 2π

0
|u(s)|2 ds. In particular, P is independent4 of the time, and since∫ 2π

0
|u|2 ds = Re

∫ 2π

0
(f0 + f1e

ik1s)ū ds we see that P ≤ f 2 := f 2
0 + f 2

1 , i.e., the intracavity
power cannot exceed the normalized total input power. Details are given at the end of
Appendix A. Here, the notation z̄ denotes the complex conjugate of the complex number
z ∈ C.

4.3. Heuristic for �nding localized solitons in the case of
pumping two adjacent modes

In the following section, we explain the main idea of the heuristic for �nding strongly
localized solutions of (4.2), where two adjacent modes are pumped, i.e. the pumped
modes are k0 = 0 and k1 = 1. In Appendix B we provide a more detailed explanation,
and in Appendix C we show how the heuristic can be adapted to arbitrary values of
k1 ∈ N. The parameters d > 0, k1 = 1, f0 and f1 are �xed, and our goal is to �nd
optimally localized solutions by varying the parameters ζ0 and ω since they can be
in�uenced by the choice of the pump frequencies ωp0 and ωp1 through the relations

ζ0 =
2

κ

(
ω0 − ωp0

)
, ω =

2

κ

(
ω0 − ωp0 − (ω1 − ωp1) + d2

)
.

Optimality is understood as minimality with respect to the full-width at half-maximum
(FWHM) of the �eld distribution |u|2 in the time domain. We have developed our
heuristic by using the Matlab package pde2path (cf. [67], [15]) which has been designed
to numerically treat continuation and bifurcation in boundary value problems for systems
of PDEs.5

In short, the basic algorithm is explained as follows: First we obtain a single-peak
solution for the correct value of the parameter f1 (ignoring the values of the parameters
ζ0 and ω). Then we alternately run a continuation algorithm by varying either the ζ0-
or the ω-parameter (while keeping the other parameter �xed) and detect among the
continued solutions the soliton u with minimal FWHM of |u|2 in the time domain. We
denote the soliton obtained from the j-th ζ0-optimization as Aj and the one obtained
from the j-th ω-optimization as Bj. We stop the algorithm when the relative change of
the FWHM of Bj+1 and Bj is su�ciently small. In our numerical experiments it was
always su�cient to perform at most three optimizations in both of the variables ζ0 and
ω.

In Fig. 15(a)-(c) we plotted the spatial power distributions of the solitons Aj and Bj

for two iteration steps j = 1, 2 and three di�erent choices of the parameters d, f and f1.
It is well visible that the solitons get more localized after every optimization step and

4In fact, the power |ûk|2 = |âk(τ)|2 in each mode is independent of time.
5Continuation and bifurcation solvers for boundary value problems (on which pde2path is based)
allow to globally study the variety of di�erent stationary comb states by exploiting the full range of
technically available parameters. In contrast, time-integration solvers mostly only allow to access
speci�c comb states which strongly depend on the chosen device parameters and initial conditions.
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Figure 15. Spatial and spectral power distributions of the solitons obtained from two
iterations (two ζ0-steps leading to A1, A2 and two ω-steps leading to B1, B2) and a
stability plot for B3 (obtained from the third ω-step) for three di�erent choices of the
parameters d, f and f1. Every column corresponds to one choice. In (g)-(i) we plotted
in green the spectrum of the �nite-element discretization of the linearized operator L at
B3. The black dashed line in (g)-(i) represents the imaginary axis. The spectrum lies to
the left of the imaginary axis so that the solitons are spectrally stable.
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that the solitons A2 and B2 from the second iteration steps do not di�er signi�cantly.
In the second column of Fig. 15 in (b) and (e) the blue soliton A2 is not visible, since it
is covered by the almost identical magenta soliton B2. In the second row Fig. 15(d)-(f)
we show the spectral power distributions. The �nal magenta comb B2 covers almost
entirely the blue comb A2. The third row of Fig. 15 contains information on the spectral
stability of the optimized solitons. This will be explained next.

Stability of optimal solitons. To investigate the stability of the solitons, we use the
transformation a(τ, x) = b(τ, x− ωτ) to rewrite (4.1) as

∂b

∂τ
= −i

(
−db′′ + iωb′ − (i− ζ0)b− |b|2b+ if0 + if1e

ik1s
)
, (4.3)

where b is again 2π-periodic in s. Solutions u of (4.2) correspond to stationary solutions
b(τ, s) = u(s) of (4.3). Spectral stability is based on the following considerations. Let
b(τ, s) ≈ u(s)+ϕ(s)eλτ +ψ(s)eλ̄τ with 2π-periodic functions ϕ, ψ, and insert this ansatz
into (4.3). After keeping only the linear terms in ϕ and ψ, we �nd that ϕ, ψ have to
satisfy the eigenvalue equation

L

(
ϕ
ψ̄

)
= λ

(
ϕ
ψ̄

)
with the linearized operator

L =

(
id d2

ds2
+ ω d

ds
− 1− iζ + 2i|u|2 iu2

−iū2 −id d2

ds2
+ ω d

ds
− 1 + iζ − 2i|u|2

)
.

We see that the perturbation ϕ(s)eλτ + ψ(s)eλ̄τ will tend to zero if and only if the
eigenvalues λ of L lie in the left complex plane. Using this criterion, we found that
the optimized solitons (optimized w.r.t. ζ0 and ω by the above heuristic) discussed in
this section are all spectrally stable. To show this, we computed the eigenvalues of the
�nite-element discretization of the operator L and observed that they entirely belong to
the left complex plane, cf. Fig. 15(g)-(i). One sees that there is always an eigenvalue
very close to 0. The reason for this is the following. The optimized solitons are found
near turning points along branches of the ζ0-continuation, cf. Appendix B. These turning
points are necessarily associated with a 0 eigenvalue of the linearized operator L. Hence,
for u being in the vicinity of a turning point, there will be an eigenvalue of L very close
to 0.

4.4. Optimal power distribution when pumping two adjacent
modes

In this section we answer the question which amount of the normalized total input power
f 2 = f 2

0 + f 2
1 needs to be pumped into each mode in order to obtain the best soliton,

i.e., we determine the optimal power distribution between the two pumped modes. The
power distribution is described as (f0, f1) = (f cosφ, f sinφ) with φ ∈ [0, 2π). As before,
we assume anomalous dispersion d > 0 and �x the indices k0 = 0 and k1 = 1 of the two
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pumped modes. Additionally, the normalized total input power f 2 is given. Armed with
the heuristic from Section 4.3 we are able to identify for any �xed φ ∈ [0, 2π) a 1-soliton
with the strongest spatial localization, i.e., with minimal FWHM.

Using this approach, we calculate for each such a comb state u(s) =
∑

k∈Z ûke
iks the

power conversion e�ciency (PCE), the comb bandwidth (CBW) and its FWHM. The
PCE is de�ned as the ratio PFC/f

2 between intracavity comb power

PFC =
∑

k∈Z\{0,1}

|ûk|2 +
f 2
1

f 2
|û0|2 +

f 2
0

f 2
|û1|2

=
∑

k∈Z\{0,1}

|ûk|2 + sin2(φ)|û0|2 + cos2(φ)|û1|2

and the normalized total input power. Note that the intracavity comb power is a
weighted sum over the power in each mode. The weights f 2

j /f
2, j = 0, 1 of the power

of the zero mode and the �rst mode are such that f1 = 0 or f0 = 0 lead to the usual
de�nition of PCE and f0 → ∞ or f1 → ∞ lead to an exclusion of the power contributed
by the zero or �rst mode, respectively. The CBW is de�ned via the 3dB points, i.e.,

CBW = k∗l + k∗r

with minimal integers k∗l > 0 and k∗r > 0 which ful�ll

|û−k∗l |
2 ≤ 1

2
|û−1|2, |û1+k∗r |

2 ≤ 1

2
|û2|2,

respectively. Note that the 3dB comb bandwidth is de�ned with respect to the power
|û−1|2 and |û2|2 of the modes directly adjacent to the pumped modes rather than the
power |û0|2 and |û1|2 of the pumped modes themselves.

To �nd the optimal power distribution between the zero mode and the �rst mode we
performed a parameter study in φ for three di�erent examples, cf. Fig. 16. In the �rst
example we chose d = 0.1 and f = 2, in the second example we kept f = 2 but changed
the dispersion to d = 0.25 while in the last example we kept d = 0.1 and changed the
forcing to f = 5. For these three examples we computed the most localized 1-soliton for
φ ∈ [0, 2π) based on the heuristic of Section 4.3 and evaluated the PCE, the CBW as
well as the FWHM of the resulting comb state.

The results depicted in Fig. 16 clearly demonstrate the advantages of dual-tone pump-
ing, in particular when using equal power in both modes. In all of the examples PCE
and CBW increase while the FWHM decreases with φ ∈ [0, π/4]. Moreover, as we
will explain at the end of this section, PCE, CBW and FWHM are π/2-periodic and
symmetric w.r.t. π/4. We conclude that

(i) pumping two modes is advantageous to pumping only one mode,

(ii) PCE, CBW and FWHM are monotonic functions of |f0| + |f1| = |f |(| cosφ| +
| sinφ|),
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(iii) the optimal case arises for equal pump powers |f0| = |f1|.

In Fig. 17(a)-(b) we plotted the optimal values of ζ0 and ω (for which the most localized
soliton was found) against φ. Since k1 = 1 we have ω = ∆ζ + d so that the optimal
value of ω can be easily translated into an optimal value of ∆ζ. We added in Fig. 17(c)
a plot of the optimal value of ∆ζ against φ since the normalized detuning di�erence
∆ζ = ζ0 − ζ1 is the physically more tangible quantity while from a mathematical point
of view it is more convenient to work with ω. In all of the examples the optimal values
of ζ0, ω and ∆ζ increase with φ ∈ (0, π/4]. Once again we observe several symmetries,
which we will address in the end of this section. We further conclude that

(iv) the optimal value of ζ0 is almost independent of d,

(v) the optimal value of ω is almost independent of f ,

(vi) the optimal value of ω coincides with the dispersion d in case of optimal power
distribution |f0| = |f1|.

As ω = ∆ζ+d, (vi) means ∆ζ = 0, i.e., optimal solitons require equal detuning distances
ω0 − ωp0 = ω1 − ωp1 in case of equal power distribution |f0| = |f1|. From Fig. 17(c) we
further �nd that the optimal values for ζ0 and ζ1 satisfy the relation |f0| > |f1| ⇔ ζ0 < ζ1,
i.e., pumping more power into one mode is compensated by a larger detuning for the
second mode.

For each of the three examples from Fig. 16 and Fig. 17 we added in Fig. 18 plots of
the spatial and spectral power distributions of the optimal solitons for selected values
of φ ∈ [0, π/4]. In this range for φ we have f0, f1 ≥ 0. The particular values of φ are
chosen as f 2

0 = 100%f 2 (one mode case), f 2
0 = 90%f 2 (slight perturbation of the one

mode case), and f 2
0 = 50%f 2 (optimal two mode case). Since for f1 > 0 there is no

shift-invariance in (4.2) anymore all of the depicted solitons are localized around s = 0,
which is the unique point in the interval [0, 2π) where the absolute value of the pump
term is maximal, i.e., f0 + f1 = maxs∈[0,2π) |if0 + if1e

is|. In other words: the best soliton
positions its maximum at the point where the pump has maximal absolute value.

Finally, we explain the symmetry properties of Fig. 16 and Fig. 17 from the symmetries
of (4.2). If u solves (4.2) then u(·+π) solves (4.2) with f1 replaced by −f1 and −u(·+π)
solves (4.2) with f0 replaced by −f0. This means that the signs of f0 and f1 are not
relevant for the curves in Fig. 16 and Fig. 17. The symmetry with respect to π/4 of
the curves in Fig. 16 stems from the interchangeability of f0 and f1. Namely, if u solves
(4.2) with given values of ζ0, ω then v(s) := u(−s)eis solves

−dv′′ + iω̃v′−(i− ζ1)v − |v|2v + if1 + if0e
is = 0

with ζ1 = ζ0−ω+d and ω̃ = 2d−ω. Note that the roles of f0 and f1 are now interchanged.
The fact that ζ0 and ω have changed to ζ1 and ω̃ is not relevant since we optimize anyway
in these parameters. Together with (vi) this also explains that the curves in Fig. 17(b)
and Fig. 17(c) are odd with respect to the points (π/4, d) and (π/4, 0), respectively. We
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Figure 16. Power conversion e�ciency, comb bandwidth and full-width at half-maximum
as a function of φ for three di�erent examples. The blue curves correspond to d = 0.1
and f = 2, the red ones to d = 0.25 and f = 2 as well as the green ones to d = 0.1 and
f = 5.

Figure 17. Optimal values of ζ0, ω and ∆ζ as a function of φ for three di�erent examples.
The blue curves correspond to d = 0.1 and f = 2, the red ones to d = 0.25 and f = 2 as
well as the green ones to d = 0.1 and f = 5. The blue and the red curves in (a) as well as
the blue and the green curves in (b) and (c) are plotted dashed so that one of the curves
is not completely covered by the other one. The dashed lines colored in magenta in (b)
emphasize that the optimal value of ω coincides with the dispersion d in the optimal
case |f0| = |f1| where φ ∈ {π/4, 3π/4, 5π/4, 7π/4}. The dashed lines colored in magenta
in (c) emphasize that the optimal value of ∆ζ vanishes in the optimal case |f0| = |f1|
where φ ∈ {π/4, 3π/4, 5π/4, 7π/4}.
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Figure 18. Spatial and spectral power distributions of optimal solitons for selected values
of φ ∈ [0, π/4] which correspond to f 2

0 = 100%f 2, f 2
0 = 90%f 2 as well as f 2

0 = 50%f 2

for three di�erent examples. Every column corresponds to one example.

also mention that the curves in Fig. 17(a) are not symmetric with respect to π/4 but
this is not visible in the plot since the di�erence ∆ζ = ζ0− ζ1 = ω−d is small compared
to ζ0 and ζ1.

4.5. Trends for varying forcing and varying dispersion

For the results in this section we have carried out a parameter study w.r.t. dispersion d
and normalized pump amplitude f , considering the behavior of PCE, CBW and FWHM
of the best solitons (i.e., minimal FWHM) under optimal power distribution f0 = f1 =
f/

√
2. As before, we have �xed the two pumped modes to k0 = 0 and k1 = 1. We

have considered dispersion parameters d = 0.1, 0.15, 0.2, 0.25 and normalized total pump
amplitude f ∈ (0, 10]. From Section 4.4 we know that under optimal power distribution
the solitons with minimal FWHM arise for ω = d. Using this information we can reduce
the optimizations from the heuristic of Section 4.3 to a single optimization step in ζ0.
Since f0 = f1 we see that now PCE is the ratio between

PFC =
∑

k∈Z\{0,1}

|ûk|2 +
1

2
|û0|2 +

1

2
|û1|2

and the total pump power f 2.

The results are shown in Fig. 19. We observe the following trends: CBW increases
whereas FWHM and PCE decrease with increasing forcing f . Additionally, one can
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Figure 19. Power conversion e�ciency, comb bandwidth and full-width at half-maximum
as a function of the forcing f and dispersion d = 0.1, 0.15, 0.2, 0.25.

see that with d → 0+ once again CBW increases and FWHM, PCE decrease. This
observations are in good agreement with the trends from the one mode case, cf. [18].
Further, one can observe in Fig. 19(c) that FWHM tends to π as f → 0+. This can be
understood as follows: as f → 0+ the solutions of (4.2) tend to 0 and behave like the
solutions of the linear equation

−du′′ + iωu′ − (i− ζ0,opt)u+ if0 + if1e
is = 0.

Since d = ω for optimal solitons under optimal power distribution f0 = f1 = f/
√
2 the

above linear equation is solved by

u(s) =
if√

2(i− ζ0,opt)
(1 + eis)

and the latter has a FWHM of π. Similarly, in agreement with Fig. 19(a), we have

PCE(u) → 1

2(1 + ζ20,∗)
≤ 1

2

as f → 0+, where we assume ζ0,∗ = limf→0+ ζ0,opt.

Finally we mention that the jumps of size two in Fig. 19(b) could be caused by our
choice of the discretization of the f -interval (0, 10]. It is possible that a �ner discretiza-
tion would lead to more plausible jumps of size one. Nevertheless, the �ner discretization,
which leads to signi�cantly longer run times of the code, has no essential e�ect on the
trends of the curves.

4.6. Pumping two arbitrarily distanced modes

Also in the case where the pumped modes are k0 = 0 and k1 ≥ 2 we have a heuristic
algorithm which enables us to identify a 1-soliton with the strongest spatial localization.
The algorithm is based on a variant of the one from the case k1 = 1, cf. Section 4.3, and
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Figure 20. Spatial and spectral power distributions of the optimal 1-solitons from the
case d = 0.1 and f0 = f1 =

√
2 for k1 = 2, 3, 4. Plot (b) is a zoom of plot (a) which

highlights the background of the solitons.

details can be found in Appendix C. Applying this algorithm our experiments suggest
that the optimal power distribution is again given by the equal distribution |f0| = |f1|
as in the case k1 = 1. Moreover, for equal power distribution, ω = k1d turns out to be
optimal, which once again translates into equal detuning o�sets ∆ζ = 0. In Fig. 20(a)
we plotted the spatial power distributions of the optimal 1-solitons from the case d = 0.1
and f0 = f1 =

√
2 for k1 = 2, 3, 4. One can observe that the optimal 1-soliton gets less

localized as k1 increases. In Fig. 20(b) we added a zoom-in to better point out the
background of the solitons. Since with u also u(·+ 2π/k1) is a solution of (4.2) optimal
1-solitons can be shifted by multiples of 2π/k1. We see that the 1-soliton localizes once
again around one of the points where the absolute value of the pump term if0 + if1e

ik1s

is maximized. In Fig. 20(c) we added the spectral power distributions of the optimal
1-solitons. Necessarily each comb is peaked at the pumped modes k0 = 0 and k1.

4.7. Summary

We have considered pumping two di�erent modes for a Kerr nonlinear microresonator
with anomalous dispersion. Using numerical path continuation methods we found and
tested a heuristic algorithm which allows to �nd for �xed normalized total pump power
the optimal detuning o�sets that provide the most localized 1-soliton. The heuristic
applies in its simple form to the case of pumping two adjacent modes and in a more re-
�ned form (taking bifurcations into account) also to the case of pumping two arbitrarily
distanced modes. Optimal 1-solitons appear to be spectrally stable and localize them-
selves around the intensity maxima of the pump. While it became clear that pumping
two modes is always advantageous to pumping one mode, in the case of pumping two
adjacent modes we went deeper into the question of how the normalized total input
power should be divided into the two pumped modes in order to optimize quality met-
rics like PCE, CBW, and FWHM. A detailed parameter study shows that the optimal
distribution is always the equal distribution |f0| = |f1| = |f |/

√
2 with equal detuning

o�sets. The situation appears to be similar in the case of pumping two arbitrarily dis-
tanced modes. Our approach has thus validated the assumptions in [29]. Finally, we
determined trends of PCE, CBW, and FWHM by varying anomalous dispersion and nor-
malized total input power. The trends are in good agreement with the case of pumping
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only one mode, cf. [18]. Our approach is well-suited to determine and analyze optimal
pumping schemes in the case where more than two modes are pumped.

4.8. Appendix A: Derivation of the Lugiato-Lefever model for a
dual-pumped ring resonator

In this section we derive (4.1) from a system of coupled mode equations, cf. [62, 32].
When a resonant cavity is pumped by two continuous wave lasers with frequencies ωp0
and ωp1 a system of nonlinear coupled mode equations can be used to describe the
evolution of the �eld inside the cavity. The numbering k of the resonant modes in
the cavity is relative to the mode k0 = 0. We use the cold cavity dispersion relation
ωk = ω0 + d1k + d2k

2 for the resonant frequencies ωk, where d1 corresponds to the FSR
of the resonator and 2d2 to the di�erence between two neighboring FSRs at the center
frequency ω0. With k̃0, k̃1 ∈ Z, k̃0 < k̃1, we denote the two pumped modes. If Âk is the
mode amplitude of the k-th resonant mode normalized such that |Âk|2 is the number
of quanta in the k-th mode, then the simpli�ed set of equations reads as follows, cf.
[62, 32]:

∂Âk
∂t

=− κ

2
Âk +

1∑
j=0

δkk̃j
√
κextsje

−i(ωpj−ωk̃j
)t
eiϕj (4.4)

+ ig
∑

k′+k′′−k′′′=k

Âk′Âk′′
¯̂
Ak′′′e

−i(ωk′+ωk′′−ωk′′′−ωk)t. (4.5)

Here, κ = κ0+κext denotes the cavity decay rate as a sum of intrinsic decay rate κ0 and
coupling rate to the waveguide κext, and ϕ0, ϕ1 are the initial phases of the pumps. If

Pin,0, Pin,1 are the powers of the two input lasers then sj =
√
Pin,j/ℏωk̃j , j = 0, 1 are the

powers coupled to the cavity. The nonlinear coupling coe�cient

g =
ℏω2

0cn2

n2
0Ve�

denotes a per photon frequency shift of the cavity due to the Kerr nonlinearity and thus
describes the strength of the cubic nonlinearity of the system with linear refractive index
n0, nonlinear refractive index n2 and e�ective cavity nonlinear volume Ve�. Finally, c is
the vacuum speed of light and ℏ the Planck constant.

By using the transformation

ã(τ, x) :=

√
2g

κ

∑
k∈Z

Âk

(
2

κ
τ

)
e−idk2τeikx

the system (4.4) of coupled mode equations may be rewritten in a dimensionless way as
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a partial di�erential equation,

i
∂ã

∂τ
= −dã′′ − iã− |ã|2ã+ i

1∑
j=0

fje
i(k̃jx−ν̃jτ+ϕj), ã 2π-periodic in x, (4.6)

where τ = κt/2, d = 2d2/κ, and ζj = 2(ωk̃j − ωpj)/κ, ν̃j = dk̃2j − ζj, η = κext/κ,

fj =
√
8ηg/κ2sj for j = 0, 1. By setting

a(τ, x) := e−i(k̃0(x+2dk̃0τ−ψ)−ν̃0τ+ϕ0)ã(τ, x+ 2dk̃0τ − ψ)

with ψ = (ϕ1 − ϕ0)/k1 we �nd that a satis�es (4.1) with k1 = k̃1 − k̃0, ∆ζ = ζ0 − ζ1 and

ν1 = ν̃1 − ν̃0 − 2dk̃0k1 = ∆ζ + dk21. Thus, we can always assume, for simplicity, that
the pumped modes are k0 = 0 and k1 ∈ N and that the initial phase of both pumps is
zero. Moreover we see that the change from ã to a shifts the time-dependent Fourier-
coe�cients from Âk to Âk+k̃0 and multiplies them with e−i(ζ0τ+ϕ0+kψ) so that the power
in each individual mode is (up to an index shift) preserved.

Finally, let us explain that the intracavity power P =
∑

k∈Z |ûk|2 = 1
2π

∫ 2π

0
|u(s)|2 ds

of a 2π-periodic traveling-wave comb state u cannot exceed the normalized total input
power f 2 = f 2

0 + f 2
1 . To see this, we multiply the equation (4.2) for the traveling-wave

pro�le u with ū(s) and take the imaginary part to obtain

−d Im(u′′(s)ū(s)) + ωRe(u′(s)ū(s))− |u(s)|2 +Re
(
(f0 + f1e

ik1s)ū(s)
)
= 0.

Integration over the interval [0, 2π], using integration by parts for the �rst term and
d
ds
|u(s)|2 = 2Re(u′(s)ū(s)) for the second term together with the Cauchy-Schwarz in-

equality yield∫ 2π

0

|u(s)|2 ds =
∫ 2π

0

Re
(
(f0 + f1e

ik1s)ū(s)
)
ds ≤

(∫ 2π

0

|u(s)|2 ds
)1/2√

2π(f 2
0 + f 2

1 )
1/2

and hence 1
2π

∫ 2π

0
|u(s)|2 ds ≤ f 2

0 + f 2
1 .

4.9. Appendix B: Detailed explanation of the heuristic for
�nding localized solitons in the case of pumping two
adjacent modes

Here we explain in detail the heuristic algorithm mentioned in Section 4.3 for �nding
strongly localized solutions of (4.2) in the case of anomalous dispersion d > 0, where
two adjacent modes are pumped, i.e. the pumped modes are k0 = 0 and k1 = 1. We
recall that the parameters d > 0, k1 = 1, f0 and f1 are �xed and that the goal is to
�nd optimally localized solutions by varying the parameters ζ0 and ω since they can be
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in�uenced by the choice of the pump frequencies ωp0 and ωp1 through the relation

ζ0 =
2

κ

(
ω0 − ωp0

)
, ω =

2

κ

(
ω0 − ωp0 − (ω1 − ωp1) + d2

)
.

Without loss of generality we assume 0 < f1 ≤ f0. The heuristic algorithm consists of
the following steps. For all our computations we carried it out by using pde2path.

Step 0: Initialize with f
(0)
1 = 0, ζ

(0)
0 = 2+ f 2, ω(0) = 0, �nd u0 = constant solution

of (4.2) and set j = 1

Step 1 (f1-continuation): with ζ
(0)
0 , ω(j−1) start from f

(0)
1 and continue u0 in f1-

parameter until desired value f1 is reached, keep solution Tj

Step 2 (ζ0-optimization): with ω(j−1), f1 start from ζ
(0)
0 and continue Tj in ζ0-

parameter until 1-solitons have been exhausted, �nd optimal ζ
(j)
0 , keep optimal soli-

ton Aj

Step 3 (ω-optimization): with ζ
(j)
0 , f1 start from ω(j−1) and continue Aj in ω-

parameter on closed loop, �nd optimal ω(j), keep optimal soliton Bj

j → j + 1, return to Step 1 unless desired accuracy achieved

Now we comment on the individual steps.

Step 0: The algorithm starts by choosing suitable initial values for the parameters f1, ζ0
and ω. For the values of f

(0)
1 = 0 and ζ

(0)
0 = 2+f 2 we can determine a constant solution

u0 of (4.2). It satis�es

0 = −(i− ζ
(0)
0 )u0 − |u0|2u0 + if0.

If we choose ζ
(0)
0 su�ciently large (in all numerical experiments ζ

(0)
0 = 2 + f 2 was

su�cient) then u0 is uniquely determined. Since the dispersion d and the di�erence
of the normalized o�sets between the pump frequencies ωpi and the resonant frequencies
ωi, i = 0, 1 turn out to be rather small we expect that also ω = ∆ζ + d is rather small.
Therefore the initial value ω(0) = 0 is feasible.

Step 1 (f1-continuation): Starting from ζ
(0)
0 , ω(j−1) and f

(0)
1 pde2path performs a con-

tinuation algorithm in the f1-parameter. With the side constraint of always solving (4.2)
the trivial state u0 is continued numerically w.r.t. the f1-parameter until the desired
value f1 is reached for the �rst time. Although the starting point u0 is independent of
ω the continuation w.r.t. the f1-parameter is sensitive to the current value of ω.

Step 2 (ζ0-optimization): Now that the f1-parameter has reached its correct value we
freeze the values of ω(j−1) and f1 and start the optimization w.r.t. the ζ0-parameter
from ζ

(0)
0 = 2 + f 2. Starting from ζ

(0)
0 , the continuation of solutions of (4.2) w.r.t. ζ

�rst provides almost trivial solutions until they develop into 1-solitons followed by less
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localized higher solitons. From the point of view of FWHM-minimization it is therefore
reasonable to continue from ζ

(0)
0 until the part of the branch containing 1-solitons has

been exhausted. Along this part of the branch the optimal solution Aj of (4.2) with the

minimal FWHM together with the optimal parameter value ζ
(j)
0 are kept.

Step 3 (ω-optimization): Now we freeze f1 and ζ
(j)
0 . The optimal point Aj from the

previous step serves as starting point for the subsequent ω-continuation. Beginning
with ω(j−1) the continuation of solutions to (4.2) in the ω-parameter always delivers a
closed loop. From this closed ω-loop the optimal solution Bj of (4.2) with the minimal
FWHM together with the optimal parameter value ω(j) is kept.

At this point the algorithm is not yet �nished since a single optimization in ζ0 fol-
lowed by a single optimization in ω is not an adequate substitute for a continuous
two-parameter optimization in ζ0 and ω. Therefore, the algorithm has to be suitably
iterated until a desired accuracy (measured in the deviations of Aj, Bj from its prede-
cessors Aj−1, Bj−1) is achieved. One might think of using Bj as starting point for the
next ζ0-continuation. However, this turns out to be non-optimal in some cases because
after the update of ω(j) the solution Bj no longer lies on a ζ0-branch that leads to an
optimal FWHM. Instead, our strategy is to only keep the value ω(j), forget the solution
Bj and iterate by starting again with Step 1 instead of Step 2, i.e., by starting the

f1-continuation from f
(0)
1 = 0 (with the by now updated value of ω). The subsequent

ζ0-continuation of Step 2 provides a ζ0-branch with apparently smaller FWHM.

In Fig. 21 we have illustrated Step 2 and 3 for three di�erent values of the parameters
d, f and f1. In the �rst row Fig. 21(a)-(c) we are plotting ζ0-branches, i.e., the intracavity

power of the soliton, given by ∥u∥22 = 1
2π

∫ 2π

0
|u(s)|2 ds, versus the value of ζ0 (Step 2, ζ0-

optimization). The points A1 indicate the optimal soliton with the smallest FWHM and
they are located near a turning point. They serve as starting points for the subsequent
ω-continuation (Step 3). The ω-branches, i.e., intracavity power of the soliton versus the
value of ω, depicted in Fig. 21(d)-(f) turn out to be closed loops. The points B1 indicate
the optimal soliton on the closed ω-loop. In the last row Fig. 21(g)-(i) we illustrate the
optimality of the points A1, B1 by plotting the value of FWHM along the ζ0-branches
(blue) and the ω-loops (green). The FWHM is depicted as a function of normalized arc
length of the corresponding curves. Since the ζ0-curves are unbounded, we decided to
plot the FWHM between the reference points S1 (start) before the relevant 1-solitons
begin and E1 (end) after the relevant 1-solitons have been passed.

An iteration of the ζ0- and ω-optimization steps (until a desired accuracy is reached)
provides similar pictures. In our numerical experiments we always performed three
optimizations in both of the variables ζ0 and ω (unless stated otherwise).

4.10. Appendix C: Heuristic for �nding localized solitons in the
case of pumping two arbitrarily distanced modes

By considering additional bifurcations we will demonstrate how the heuristic from Sec-
tion 4.3 can be adapted to arbitrary values of k1 ≥ 2. A �rst observation is that the very
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Figure 21. Branches show intracavity power ∥u∥22 = 1
2π

∫ 2π

0
|u(s)|2 ds of the soliton u

plotted vs. values of ζ0 or ω. First row: blue branch as achieved by the �rst ζ0-
optimization. Second row: green branch as achieved by the �rst ω-optimization. Third
row: FWHM along these branches. Columns correspond to di�erent values of d, f1, f .
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same heuristic as used in Section 4.3 would lead to solitons which are not only 2π- but
in fact 2π/k1-periodic, i.e., the algorithm detects no 1-solitons. This is essentially due
to the fact that starting from a constant solution any kind of parameter-continuation
will develop solutions that have the shape of the pump.

However, in contrast to the case k1 = 1, we also detect bifurcations this time. The
idea of the adapted heuristic is to switch in every ζ0-optimization step to a bifurcating
branch containing 1-solitons. For d = 0.1, f = 2, f 2

1 = 25%f 2 this is illustrated in
Fig. 22(a),(d) for k1 = 2, 3. The gray branch is the new additional branch bifurcating
from the �rst continued (blue) branch in ζ0 and A1 indicates the optimal point with
the minimal FWHM on that branch. The point A1 is then used as starting point for
the subsequent ω-continuation and from here on we can once again iterate the whole
process.

The mentioned bifurcations turn out to be not of simple nature in general. For exam-
ple, if k1 is odd, pde2path detects no bifurcations at all (which may be due to an even
number of eigenvalues crossing zero simultaneously). However, we can easily overcome
this issue by using an interpolation trick for branch-switching. For that, we consider a
ζ0-value near a turning point, where we �nd two distinct solutions (named X and Y )
for one and the same value of ζ0. In Fig. 22(a) we used ζ0 = 3.3 and in Fig. 22(d) we
used ζ0 = 3.1 for this purpose and marked the mentioned solutions in red and green,
respectively. Fig. 22(b) and Fig. 22(e) show the spatial power distributions of X and
Y . It turns out that a 1-soliton-like state, which is not 2π/k1-periodic anymore, can be
glued together from parts of these solutions. The resulting soliton Z is marked in blue
in Fig. 22(a) and Fig. 22(d) and its spatial power distribution is given in Fig. 22(c) and
Fig. 22(f). The interpolated soliton serves as starting point for another ζ0-continuation
yielding the gray branch which actually is a branch which bifurcates from the original
curve and connects two of its turning points.
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Figure 22. Example for d = 0.1, f = 2 and f 2
1 = 25%f 2. First column: branches show

intracavity power ∥u∥22 = 1
2π

∫ 2π

0
|u(s)|2 ds of the soliton u plotted vs. ζ0. Blue branch as

achieved by �rst ζ0-continuation and gray branch obtained from �rst bifurcation from
blue branch. Second and third column: spatial power distribution of solutions used
for branch-switching. Plots (a)-(c) correspond to the case k1 = 2 while plots (d)-(f)
correspond to k1 = 3.

[End of preprint]
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5. Time-dependent Lugiato-Lefever equation

In Section 5 we are interested in the time-dependent LLE

iat = (−i + ζ)a− daxx − |a|2a+ if, a 2π-periodic in x, (5.1)

and in the time-dependent two-mode modi�cation

iat = (−i + ζ)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1t), a 2π-periodic in x. (5.2)

In Section 5.1 we present some �rst results on the question if all time-periodic solutions
of (5.1) are constant in t. This includes Theorem 5.2 which is based on Bendixson's
negative criterion and which shows that this is true in the case d = 0, and Theorem 5.5
which is based on a-priori bounds and shows that for |f | ≪ 1 all time-periodic solutions
of (5.1) are actually constant both in t and in x. In Section 5.2 we likewise present some
�rst results on the question if all time-periodic solutions of (5.2) are traveling waves, i.e.
of the form a(t, x) = u(x− ωt), where ω = ν1

k1
and u is a solution of

−du′′ + iωu′ + (−i + ζ)u− |u|2u+ if0 + if1e
ik1s = 0, u 2π-periodic. (5.3)

In a �rst step towards this we establish the local uniqueness result Theorem 5.10 which
is based on the implicit function theorem and the global uniqueness result Theorem 5.18
which is based on a-priori bounds and holds for f 2

0 + f 2
1 ≪ 1.

5.1. One mode case

The time-dependent LLE (5.1) may or may not have time-periodic solutions which are
not constant in t. This is a fundamental question which still needs to be answered. In
a �rst step towards this we neglect the dispersion term, i.e. we consider the ODE

iat = (−i + ζ)a− |a|2a+ if. (5.4)

Splitting a = u+ iv into its real and imaginary part we obtain the �rst-order system(
ut
vt

)
=

(
−u+ ζv − u2v − v3 + f
−v − ζu+ u3 + v2u

)
. (5.5)

Our next result relies on Bendixson's negative criterion (cf. [5, p. 318]).

Theorem 5.1 (Bendixson's negative criterion). Assume that h ∈ C1(R2,R2) and that
div h does not change sign in R2. Then the system(

ut
vt

)
= h(u, v) (5.6)

has no non-constant periodic solution.
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For the reader's convenience we repeat the short proof.

Proof. Assume that (u0, v0) is a non-constant periodic solution of (5.6) with (smallest)
period T > 0. Then

Γ := {(u0(t), v0(t)) : t ∈ [0, T ]}

is a closed C1-curve in R2 with no self-intersection points. Let Ω denote the interior of
Γ (cf. Jordan curve theorem). By the divergence theorem we have∫

Ω

div h(u, v) d(u, v) =

∫ T

0

h(u0(t), v0(t)) · ν(u0(t), v0(t))
∣∣∣∣(u′0(t)v′0(t)

)∣∣∣∣ dt
=

∫ T

0

(
u′0(t)
v′0(t)

)
· ν(u0(t), v0(t))︸ ︷︷ ︸

=0

∣∣∣∣(u′0(t)v′0(t)

)∣∣∣∣ dt = 0,

where ν is the outward unit normal vector on Γ. On the other hand
∫
Ω
div h(u, v) d(u, v) ̸=

0 since div h does not change sign, which is a contradiction.

Theorem 5.2. Let ζ, f ∈ R. Then equation (5.4) has no non-constant periodic solution.

Proof. We �nd

div

(
−u+ ζv − u2v − v3 + f
−v − ζu+ u3 + v2u

)
= −1− 2uv + (−1 + 2vu) = −2 < 0,

so that the result follows immediately from Bendixson's negative criterion.

We also have the following more general result which draws a connection between
the non-existence of non-constant periodic solutions and the non-vanishing of a certain
potential V .

Theorem 5.3. Let ζ, f ∈ R and assume that V ∈ C(R,R) is periodic and that V has
no zeros. Then the di�erential equation

iV (t)at = (−i + ζ)a− |a|2a+ if

has no non-constant periodic solution.

Proof. W.l.o.g. we can assume V > 0. Splitting a = u+ iv we get(
V (t)ut
V (t)vt

)
=

(
−u+ ζv − u2v − v3 + f
−v − ζu+ u3 + v2u

)
.

Let us assume that (u, v) is a non-constant periodic solution of this system. Consider
the bijective function H ∈ C1(R,R) de�ned by

H(t) :=

∫ t

0

1

V (τ)
dτ.

82



5. Time-dependent Lugiato-Lefever equation

For ũ, ṽ de�ned via u(t) = ũ(H(t)) and v(t) = ṽ(H(t)) we then �nd

ũt(H(t)) = V (t)ũt(H(t))
1

V (t)
= V (t)ut(t) = −u(t) + ζv(t)− u(t)2v(t)− v(t)3 + f

= −ũ(H(t)) + ζṽ(H(t))− ũ(H(t))2ṽ(H(t))− ṽ(H(t))3 + f

and

ṽt(H(t)) = V (t)ṽt(H(t))
1

V (t)
= V (t)vt(t) = −v(t)− ζu(t) + u(t)3 + v(t)2u(t)

= −ṽ(H(t))− ζũ(H(t)) + ũ(H(t))3 + ṽ(H(t))2ũ(H(t))

so that (ũ, ṽ) solves the autonomous system (5.5). But from Theorem 5.2 we know that
this system has no non-constant periodic solution so that the proof is �nished if we
can ensure that (ũ, ṽ) is periodic. Note that the latter follows from the fact that (ũ, ṽ)
is a non-injective solution of an autonomous system. Observe also that (ũ, ṽ) directly
inherits its non-injectivity from (u, v).

Let us return to the general case where the dispersion term is not neglected any-
more. For small values of |f | we can provide a global uniqueness result for time-periodic
solutions of (5.1) which is based on the following a-priori bounds. Let us abbreviate
(a(t))(x) = a(t, x), ζ± = max{0,±ζ} and write ∥ · ∥p for the standard norm on Lp(0, 2π)
for p ∈ [1,∞].

Theorem 5.4. Let d ∈ R \ {0}, f, ζ ∈ R and T > 0. Then for every solution a ∈
C1

per([0, T ], H
2
per(0, 2π)) of (5.1) the a-priori bounds

sup
t∈[0,T ]

∥a(t)∥22 ≤ F 2, sup
t∈[0,T ]

∥ax(t)∥22 ≤ B, ∥a∥2L∞((0,T )×(0,2π)) ≤ C

hold, where

F = F (f) =
√
2π|f |,

B = B(d, f, ζ) =

{
F 2

|d| (ζ
+ + 3), d < 0,

1
4d2

(
4dF 2(2ζ− + 6 + d) + 45F 6

)
, d > 0,

C = C(d, f, ζ) =
F 2

2π
+ 2F

√
B.

Now we can state our global uniqueness result.

Theorem 5.5. Let d ∈ R \ {0}, f, ζ ∈ R and T > 0. Then (5.1) has a unique solu-
tion a ∈ C1

per([0, T ], H
2
per(0, 2π)) if 3C < 1, where C = C(d, f, ζ) is the constant from

Theorem 5.4. In particular, |f | ≪ 1 is su�cient. The corresponding unique solution is
constant both in t and in x.

Theorem 5.4 and Theorem 5.5 will follow from the more general results Theorem 5.16
and Theorem 5.18 of Section 5.2 by setting f1 = 0. Finally, we note that it remains
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unanswered if there is a choice of the parameters d, f, ζ such that (5.1) admits a time-
periodic solution which is not constant in t.

5.2. Two mode case

Every solution u of (5.3) from Section 3 generates a time-periodic solution of (5.2) by
setting a(t, x) = u(x − ωt) with ω = ν1

k1
and it is an open question if solutions exist

which are not of that type. In a �rst step towards this we establish a local uniqueness
result based on the implicit function theorem and a global uniqueness result (for small
normalized total input power) based on a-priori bounds. Let us abbreviate T = 2π

|ν1| and

Ω = (0, T ) × (0, 2π). Recall that in the special case f1 = 0 there are trivial (constant)
solutions a0 ∈ C of (5.2) satisfying the algebraic equation

(−i + ζ)a0 − |a0|2a0 + if0 = 0,

cf. (3.4). As in Section 3.2.1 a constant solution a0 ∈ C of (5.2) for f1 = 0 may be
continued into the regime where f1 ̸= 0. This relies on the properties of the linearized
equation

iψt = (−i + ζ)ψ − dψxx − 2|a0|2ψ − a20ψ.

We decompose ψ =
∑

k,l∈Z ψk,le
ikxeil

2π
T
t and de�ne the operator

La0ψ =
∑
k,l∈Z

(
l
2π

T
ψk,l − iψk,l + ζψk,l + dk2ψk,l − 2|a0|2ψk,l − a20ψ

∗
−k,−l

)
eikxeil

2π
T
t (5.7)

on L2(Ω) with canonical domain

D(La0) =

{
ψ ∈ L2(Ω) :

∑
k,l∈Z

∣∣∣l2π
T

+ dk2
∣∣∣2|ψk,l|2 <∞

}
.

Here we write ψ∗
−k,−l := ψ−k,−l.

De�nition 5.6. A constant solution a0 ∈ C of (5.2) for f1 = 0 is called non-degenerate
if the linearized operator La0 from (5.7) is injective.

Next we derive conditions for the invertibility of La0 .

Lemma 5.7. A constant solution a0 ∈ C of (5.2) for f1 = 0 is non-degenerate if and
only if

(ζ + dk2)2 − 4|a0|2(ζ + dk2) + 1 + 3|a0|4 ̸= 0 for all k ∈ N0.

In this case La0 : D(La0) → L2(Ω) is invertible.

Remark 5.8. Note that this condition already appeared in Lemma 3.4(b) and was
discussed in Remark 3.5.
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Proof of Lemma 5.7. Let g =
∑

k,l∈Z gk,le
ikxeil

2π
T
t ∈ L2(Ω) be arbitrary. The equation

La0ψ = g then means(
l
2π

T
− i + ζ + dk2 − 2|a0|2

)
ψk,l − a20ψ

∗
−k,−l = gk,l for all k, l ∈ Z.

If we also write down the complex conjugate of this equation

−a02ψk,l +
(
−l2π

T
+ i + ζ + dk2 − 2|a0|2

)
ψ∗
−k,−l = g∗−k,−l

we �nd(
l 2π
T
− i + ζ + dk2 − 2|a0|2 −a20

−a02 −l 2π
T
+ i + ζ + dk2 − 2|a0|2

)(
ψk,l
ψ∗
−k,−l

)
=

(
gk,l
g∗−k,−l

)
.

If we wish La0 to be injective these matrices need to be invertible which leads to

D(k, l) := (ζ + dk2)2 − 4(ζ + dk2)|a0|2 + 3|a0|4 + 1− l2
4π2

T 2
+ l

4π

T
i ̸= 0 for all k, l ∈ Z.

For l ̸= 0 this is trivially satis�ed so that this condition amounts to

(ζ + dk2)2 − 4(ζ + dk2)|a0|2 + 3|a0|4 + 1 ̸= 0 for all k ∈ N0.

In this case,

ψk,l =
(−l 2π

T
+ dk2 + i + ζ − 2|a0|2)gk,l + a20g

∗
−k,−l

D(k, l)
.

Next we want to show that this de�nes an element ψ ∈ D(La0), whence La0 is surjective.
First we show that ψ ∈ L2(Ω). Note that |D(k, l)|2 is bounded away from zero since

|D(k, l)|2 ≥ l2
16π2

T 2
≥ 16π2

T 2
for l ̸= 0

and since

D(k, 0) = (ζ + dk2)2 − 4(ζ + dk2)|a0|2 + 3|a0|4 + 1 → ∞ for |k| → ∞.

Thus,
a20g

∗
−k,−l

D(k, l)
∈ ℓ2(Z2)

and it remains to show

hk,l :=
(−l 2π

T
+ dk2 + i + ζ − 2|a0|2)gk,l

D(k, l)
∈ ℓ2(Z2).

For k, l ∈ Z with | − l 2π
T
+ dk2 + i + ζ − 2|a0|2| ≤ |a0|4 + 1 we can use once again that
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D(k, l) is bounded away from zero to get |hk,l| ≤ C|gk,l| for some constant C > 0. In
the case | − l 2π

T
+ dk2 + i + ζ − 2|a0|2| > |a0|4 + 1 we get

|hk,l| =
∣∣∣∣ (−l 2π

T
+ dk2 + i + ζ − 2|a0|2)gk,l

(−l 2π
T
+ dk2 + i + ζ − 2|a0|2)(l 2πT + dk2 − i + ζ − 2|a0|2)− |a0|4

∣∣∣∣
≤

| − l 2π
T
+ dk2 + i + ζ − 2|a0|2|

| − l 2π
T
+ dk2 + i + ζ − 2|a0|2||l 2πT + dk2 − i + ζ − 2|a0|2| − |a0|4

|gk,l|

≤
| − l 2π

T
+ dk2 + i + ζ − 2|a0|2|

| − l 2π
T
+ dk2 + i + ζ − 2|a0|2| − |a0|4

|gk,l|

=

(
1 +

|a0|4

| − l 2π
T
+ dk2 + i + ζ − 2|a0|2| − |a0|4

)
|gk,l|

≤ (1 + |a0|4)|gk,l|

so that hk,l ∈ ℓ2(Z2) and thus ψ ∈ L2(Ω) is proven. Finally, to obtain ψ ∈ D(La0) note
that by construction we have

∑
k,l∈Z

∣∣∣∣(l2πT − i + ζ + dk2 − 2|a0|2
)
ψk,l − a20ψ

∗
−k,−l

∣∣∣∣2 = ∑
k,l∈Z

|gk,l|2 <∞

which due to ψ ∈ L2(Ω) easily implies∑
k,l∈Z

∣∣∣l2π
T

+ dk2
∣∣∣2|ψk,l|2 <∞.

Remark 5.9. Note that the above proof in fact shows that L−1
a0

: L2(Ω) → L2(Ω)
is continuous which also implies the continuity of L−1

a0
: H2

per(Ω) → H2
per(Ω) since La0

commutes with derivatives. Roughly speaking, we do not know how much regularity we
gain by applying L−1

a0
but at least we do not lose regularity.

From the implicit function theorem we �nd the following continuation result.

Theorem 5.10. Let d ∈ R \ {0}, ζ, f0, ν1 ∈ R and k1 ∈ N be �xed. Let furthermore
a0 ∈ C be a constant non-degenerate solution of (5.2) for f1 = 0. Then there exist
neighborhoods (−δ, δ) ⊂ R of 0 and Bε(a0) ⊂ H2

per(Ω) of a0 and a continuously di�eren-
tiable curve ã : (−δ, δ) → Bε(a0) with ã(0) = a0 such that all solutions (f1, a) of (5.2)
in (−δ, δ)×Bε(a0) are exactly given by {(f̃1, ã(f̃1)) : f̃1 ∈ (−δ, δ)}.

Proof. The operator La0 : D(La0) → L2(Ω) is invertible by the non-degeneracy assump-
tion. Consider the map

A :

{
R×H2

per(Ω) → La0(H
2
per(Ω)),

(f1, a) 7→ −iat + (−i + ζ)a− daxx − |a|2a+ if0 + if1e
i(k1x−ν1t).
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Note that A is well-de�ned since

A(f1, a) = La0a+ 2|a0|2a+ a20a− |a|2a+ if0 + if1e
i(k1x−ν1t)

and
2|a0|2a+ a20a− |a|2a+ if0 + if1e

i(k1x−ν1t) ∈ H2
per(Ω) ⊂ La0(H

2
per(Ω)),

cf. Remark 5.9. We equip La0(H
2
per(Ω)) with the norm ∥g∥La0 (H

2
per(Ω)) = ∥L−1

a0
g∥H2

per(Ω)

so that La0|H2
per(Ω) : H2

per(Ω) → La0(H
2
per(Ω)) becomes an isometric isomorphism and

La0(H
2
per(Ω)) a Banach space. SinceA(0, a0) = 0 and ∂aA(0, a0) = La0|H2

per(Ω) :H
2
per(Ω) →

La0(H
2
per(Ω)) is invertible, the assertion follows from the implicit function theorem.

In fact, we can provide some more information about the deduced solutions.

Corollary 5.11. In the setting of Theorem 5.10, ã(f̃1) is a traveling wave of the form
u(x − ωt) for |f̃1| su�ciently small. Here, ω = ν1

k1
and u is a 2π

k1
-periodic solution of

(5.3).

Proof. Note that Theorem 3.6 provides continuations u of a0 which are not only 2π- but
in fact 2π

k1
-periodic6, cf. Section 4.10. Thus, a(t, x) = u(x − ωt) has time-periodicity

2π
k1|ω| = T and space-periodicity 2π

k1
. In particular, a ∈ H2

per(Ω). By uniqueness, the
assertion follows.

Remark 5.12. The bene�t of Theorem 5.10 lies less in the existence part but rather
in the statement that the locally uniqueness of ã(f̃1) is no longer restricted to traveling
waves but holds for all space- and time-periodic solutions.

Next we want to analyze the domain D(La0) and point out why global continuation
results seem to be challenging in this setting. For this we introduce the norm

∥ψ∥2D(La0 )
=
∑
k,l∈Z

(
1 +

∣∣∣l2π
T

+ dk2
∣∣∣2)|ψk,l|2

on D(La0) which makes the operator La0 : (D(La0), ∥ · ∥D(La0 )
) → L2(Ω) continuous.

Proposition 5.13. The embedding (D(La0), ∥ · ∥D(La0 )
) ↪→ L2(Ω) is not compact.

Proof. For every k ∈ N we can choose l(k) ∈ Z such that∣∣∣l(k)2π
T

+ dk2
∣∣∣2 ≤ π2

T 2
.

The sequence
(
eikxeil(k)

2π
T
t
)
k∈N is bounded in (D(La0), ∥ · ∥D(La0 )

) since

∥∥eikxeil(k) 2πT t
∥∥2
D(La0 )

= 1 +
∣∣∣l(k)2π

T
+ dk2

∣∣∣2 ≤ 1 +
π2

T 2
.

6In case of e(s) = eik1s we can work in H2
per(0,

2π
k1
) instead of H2

per(0, 2π) in Theorem 3.6.
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But due to ∥∥eik1xeil(k1) 2πT t − eik2xeil(k2)
2π
T
t
∥∥2
L2(Ω)

= 4πT for k1 ̸= k2

this sequence has no convergent subsequence in L2(Ω).

Next we want to show that there are no choices of T > 0 and d ̸= 0 such that∣∣∣l2π
T

+ dk2
∣∣∣ ≥ ε0

for some ε0 > 0 and almost all (k, l) ∈ Z2. Note that in the case Td
2π

∈ Q this is
easily proven. In fact, if Td

2π
= m

n
for some m ∈ Z and n ∈ N, then with (k(r), l(r)) =

(rn,−r2mn), r ∈ Z one �nds∣∣∣l(r)2π
T

+ dk(r)2
∣∣∣ = 2π

T

∣∣∣l(r) + Td

2π
k(r)2

∣∣∣ = 2π

T

∣∣∣−r2mn+
m

n
r2n2

∣∣∣ = 0.

The case Td
2π

/∈ Q is more complicated. Note that here the assertion can be reformulated
as

inf
(k,l)∈Z2\{(0,0)}

∣∣∣l2π
T

+ dk2
∣∣∣ = 0.

To show this we will need the following result from Heilbronn (cf. [30]).

Theorem 5.14. For every integer N ≥ 1 and every real θ, integers n and g can be
found such that

1 ≤ n ≤ N, |n2θ − g| ≤ c(η)N− 1
2
+η,

where η is an arbitrarily small positive number and where c(η) depends on η only.

We can use Theorem 5.14 to obtain the following statement.

Proposition 5.15. Let T > 0 and d ̸= 0 be such that Td
2π

/∈ Q. Then

inf
(k,l)∈Z2\{(0,0)}

∣∣∣l2π
T

+ dk2
∣∣∣ = 0.

Proof. Choose θ = −Td
2π
, η = 1

4
and consider N → ∞ in Theorem 5.14.

Next we want to establish a global uniqueness result which is based on the following
a-priori bounds.

Theorem 5.16. Let d ∈ R \ {0}, f0, f1, ζ, ν1 ∈ R and k1 ∈ N. Then for every solution
a ∈ C1

per([0, T ], H
2
per(0, 2π)) of (5.2) the a-priori bounds

sup
t∈[0,T ]

∥a(t)∥22 ≤ F 2, sup
t∈[0,T ]

∥ax(t)∥22 ≤ B, ∥a∥2L∞(Ω) ≤ C

hold, where

F = F (f0, f1) =
√

2π(f 2
0 + f 2

1 ),
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B = B(d, f0, f1, ν1, ζ) =


F
|d|

(√
F 2 + 2πν21f

2
1 + (ζ+ + 2)F

)
, d < 0,

8dF
(√

F 2+2πν21f
2
1+(ζ−+2)F

)
+4d2F 2+45F 6

4d2
, d > 0,

C = C(d, f0, f1, ν1, ζ) =
F 2

2π
+ 2F

√
B.

Proof. The proof is divided into three steps.

Step 1. We �rst prove the estimate

sup
t∈[0,T ]

∥a(t)∥22 ≤ F 2 = 2π(f 2
0 + f 2

1 ). (5.8)

To this end note that

d

dt
∥a(t)∥22 = 2Re

∫ 2π

0

aat dx

(5.2)
= −2Re

∫ 2π

0

a i
(
(−i + ζ)a− daxx − |a|2a+ if0 + if1e

i(k1x−ν1t)
)
dx

= −2Re

∫ 2π

0

a
(
a+ ζia− idaxx − i|a|2a− f0 − f1e

i(k1x−ν1t)
)
dx

= −2∥a(t)∥22 + 2Re

∫ 2π

0

a
(
f0 + f1e

i(k1x−ν1t)
)
dx

≤ −2∥a(t)∥22 + 2∥a(t)∥2
∥∥f0 + f1e

i(k1·−ν1t)
∥∥
2

= −2∥a(t)∥22 + 2∥a(t)∥2
√

2π(f 2
0 + f 2

1 )

≤ −∥a(t)∥22 + 2π(f 2
0 + f 2

1 )

so that
d

dt

(
et∥a(t)∥22

)
≤ 2π(f 2

0 + f 2
1 )e

t.

By integration this yields

∥a(t)∥22 ≤ e−t∥a(0)∥22 + 2π(f 2
0 + f 2

1 )(1− e−t).

Now let t ∈ [0, T ]. Then, for m ∈ N, we get

∥a(t)∥22 = ∥a(t+mT )∥22 ≤ e−(t+mT )∥a(0)∥22 + 2π(f 2
0 + f 2

1 )
(
1− e−(t+mT )

)
by the time-periodicity of a. Finally, m→ ∞ yields

∥a(t)∥22 ≤ 2π(f 2
0 + f 2

1 ).
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Step 2. Next we show

sup
t∈[0,T ]

∥ax(t)∥22 ≤ B =


F
|d|

(√
F 2 + 2πν21f

2
1 + (ζ+ + 2)F

)
, d < 0,

8dF
(√

F 2+2πν21f
2
1+(ζ−+2)F

)
+4d2F 2+45F 6

4d2
, d > 0.

(5.9)

For this let us introduce the modi�ed energy (cf. [33])

E(t, b) = d

2
∥bx∥22 −

1

4
∥b∥44 +Re

∫ 2π

0

(if0 + if1e
i(k1x−ν1t))b dx+

ζ

2
∥b∥22

for t ≥ 0 and b ∈ H1
per(0, 2π). Then,

d

dt
E(t, a(t)) = Re

∫ 2π

0

daxaxt − |a|2aat + (if0 + if1e
i(k1x−ν1t))at + ζaat + ν1f1e

i(k1x−ν1t)a dx

= Re

∫ 2π

0

(
−daxx − |a|2a+ if0 + if1e

i(k1x−ν1t) + ζa
)
at + ν1f1e

i(k1x−ν1t)a dx

(5.2)
= Re

∫ 2π

0

i(at + a)at + ν1f1e
i(k1x−ν1t)a dx

= Re

∫ 2π

0

iaat + ν1f1e
i(k1x−ν1t)a dx

= Re

∫ 2π

0

−iata+ ν1f1e
i(k1x−ν1t)a dx

(5.2)
= Re

∫ 2π

0

(
(i− ζ)a+ daxx + |a|2a− if0 − if1e

i(k1x−ν1t)
)
a+ ν1f1e

i(k1x−ν1t)a dx

= −ζ∥a(t)∥22 − d∥ax(t)∥22 + ∥a(t)∥44 − Re

∫ 2π

0

if0 + (i− ν1)f1e
i(k1x−ν1t)a dx

= −2E(t, a(t)) + 1

2
∥a(t)∥44 +Re

∫ 2π

0

if0 + (i + ν1)f1e
i(k1x−ν1t)a dx.

In order to prove (5.9) we �rst suppose d < 0. In this case

d

dt
E(t, a(t)) ≥ −2E(t, a(t))−

√
2π
√
f 2
0 + f 2

1 + ν21f
2
1∥a(t)∥2

(5.8)

≥ −2E(t, a(t))− 2π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1

(5.10)

so that
d

dt

(
e2tE(t, a(t))

)
≥ −2π

√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 e
2t.

By integration we �nd

E(t, a(t)) ≥ e−2tE(0, a(0))− π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 (1− e−2t).
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5. Time-dependent Lugiato-Lefever equation

Now let t ∈ [0, T ]. Then, for m ∈ N, we get

E(t, a(t)) = E(t+mT, a(t+mT ))

≥ e−2(t+mT )E(0, a(0))− π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 (1− e−2(t+mT ))

by the periodicity of E(·, a(·)) and hence

E(t, a(t)) ≥ −π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 .

Thus,

− π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1

≤ d

2
∥ax(t)∥22 −

1

4
∥a(t)∥44 +Re

∫ 2π

0

(if0 + if1e
i(k1x−ν1t))a dx+

ζ

2
∥a(t)∥22

(5.8)

≤ d

2
∥ax(t)∥22 +

√
2π(f 2

0 + f 2
1 )∥a(t)∥2 + πζ+(f 2

0 + f 2
1 )

(5.8)

≤ d

2
∥ax(t)∥22 + 2π(f 2

0 + f 2
1 ) + πζ+(f 2

0 + f 2
1 )

from where we �nally deduce

∥ax(t)∥22 ≤
2π
√
f 2
0 + f 2

1

|d|

(√
f 2
0 + f 2

1 + ν21f
2
1 + (ζ+ + 2)

√
f 2
0 + f 2

1

)
=

F

|d|

(√
F 2 + 2πν21f

2
1 + (ζ+ + 2)F

)
.

Assuming now d > 0 the estimate (5.10) becomes

d

dt
E(t, a(t)) ≤ −2E(t, a(t)) + 1

2
sup
r∈[0,T ]

∥a(r)∥44 + 2π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1

so that

d

dt

(
e2tE(t, a(t))

)
≤ e2t

2
sup
r∈[0,T ]

∥a(r)∥44 + 2π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 e
2t.

By integration,

E(t, a(t)) ≤ e−2tE(0, a(0)) + 1− e−2t

4

(
sup
r∈[0,T ]

∥a(r)∥44 + 4π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1

)
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and hence

E(t, a(t)) ≤ 1

4
sup
r∈[0,T ]

∥a(r)∥44 + π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1 .

Thus,

1

4
sup
r∈[0,T ]

∥a(r)∥44 + π
√
f 2
0 + f 2

1 + ν21f
2
1

√
f 2
0 + f 2

1

≥ d

2
∥ax(t)∥22 −

1

4
∥a(t)∥44 +Re

∫ 2π

0

(if0 + if1e
i(k1x−ν1t))a dx+

ζ

2
∥a(t)∥22

(5.8)

≥ d

2
∥ax(t)∥22 −

1

4
sup
r∈[0,T ]

∥a(r)∥44 − 2π(f 2
0 + f 2

1 )− πζ−(f 2
0 + f 2

1 )

from where we �nd

d∥ax(t)∥22 ≤ sup
r∈[0,T ]

∥a(r)∥44 + 2π
√
f 2
0 + f 2

1

(√
f 2
0 + f 2

1 + ν21f
2
1 + (ζ− + 2)

√
f 2
0 + f 2

1

)
= sup

r∈[0,T ]
∥a(r)∥44 + F

(√
F 2 + 2πν21f

2
1 + (ζ− + 2)F

)
.

Using the Gagliardo-Nirenberg inequality (cf. Lemma 5.17 below) and Young's inequal-
ity we can control the fourth order term,

∥a(r)∥44 ≤
64

27

√
2∥a(r)∥32∥a(r)∥H1(0,2π)

≤ 64

27

√
2

(
27d

128
√
2
∥a(r)∥2H1(0,2π) +

32
√
2

27d
∥a(r)∥62

)
=
d

2
∥ax(r)∥22 +

d

2
∥a(r)∥22 +

4096

729d
∥a(r)∥62

(5.8)

≤ d

2
∥ax(r)∥22 +

F 2d

2
+

45

8d
F 6.

Combining the previous two estimates we �nd

sup
t∈[0,T ]

∥ax(t)∥22 ≤
8dF

(√
F 2 + 2πν21f

2
1 + (ζ− + 2)F

)
+ 4d2F 2 + 45F 6

4d2
.

Step 3. Finally we prove

∥a∥2L∞(Ω) ≤ C =
F 2

2π
+ 2F

√
B.
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Using (5.8) we �nd for every t ∈ [0, T ] an element xt ∈ [0, 2π] such that

|a(t, xt)|2 ≤
F 2

2π
.

Now we can conclude

|a(t, x)2| ≤ |a(t, xt)2|+ |a(t, x)2 − a(t, xt)
2| ≤ F 2

2π
+ 2

∫ 2π

0

|a(t, y)ax(t, y)| dy

≤ F 2

2π
+ 2∥a(t)∥2∥ax(t)∥2 ≤

F 2

2π
+ 2F

√
B.

Let us provide the Gagliardo-Nirenberg inequality used in the above proof. Recall
that ∥ · ∥p denotes the standard norm on Lp(0, 2π) for p ∈ [1,∞].

Lemma 5.17. Let b ∈ H1(0, 2π). Then the inequality

∥b∥44 ≤
64

27

√
2∥b∥32∥b∥H1(0,2π)

holds.

Proof. From [44, Corollary 5.15] we �nd

∥v∥4L4(R) ≤
16

27
∥v∥3L2(R)∥v′∥L2(R) (5.11)

for v ∈ H1(R). Now let b ∈ H1(0, 2π). We want to construct an extension c∗ ∈ H1(R)
with c∗|(0,2π) = b. First we extend b to a function b∗ ∈ H1(−π, 3π) in the following way,

b∗(x) =


b(−x), −π ≤ x ≤ 0,

b(x), 0 ≤ x ≤ 2π,

b(4π − x), 2π ≤ x ≤ 3π

and observe ∥b∗∥2L2(−π,3π) = 2∥b∥22 as well as ∥b′∗∥2L2(−π,3π) = 2∥b′∥22. Consider the function
ψ ∈ H1(−π, 3π) ∩ Cc(−π, 3π) de�ned by

ψ(x) =



0, −π ≤ x ≤ −1,

1 + x, −1 ≤ x ≤ 0,

1, 0 ≤ x ≤ 2π,

2π + 1− x, 2π ≤ x ≤ 2π + 1,

0, 2π + 1 ≤ x ≤ 3π.

Note that c := ψb∗ ∈ H1(−π, 3π) ∩ Cc(−π, 3π) is an extension of b and that 0 ≤ ψ ≤ 1
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as well as
|ψ′(x)| ≤ 1 for almost all x ∈ (−π, 3π). (5.12)

Finally, c∗ ∈ H1(R) will be de�ned by

c∗(x) =

{
c(x), −π ≤ x ≤ 3π,

0, otherwise.

Clearly, c∗|(0,2π) = b, ∥c∗∥L2(R) = ∥c∥L2(−π,3π) as well as ∥c′∗∥L2(R) = ∥c′∥L2(−π,3π). Hence,

∥b∥44 ≤ ∥c∗∥4L4(R)

(5.11)

≤ 16

27
∥c∗∥3L2(R)∥c′∗∥L2(R) =

16

27
∥c∥3L2(−π,3π)∥c′∥L2(−π,3π)

=
16

27
∥ψb∗∥3L2(−π,3π)∥(ψb∗)′∥L2(−π,3π) ≤

16

27
∥b∗∥3L2(−π,3π)∥ψb′∗ + ψ′b∗∥L2(−π,3π)

≤ 32

27

√
2∥b∥32

(
∥ψb′∗∥L2(−π,3π) + ∥ψ′b∗∥L2(−π,3π)

)
(5.12)

≤ 32

27

√
2∥b∥32

(
∥b′∗∥L2(−π,3π) + ∥b∗∥L2(−π,3π)

)
=

64

27
∥b∥32

(
∥b′∥2 + ∥b∥2

)
≤ 64

27

√
2∥b∥32∥b∥H1(0,2π)

which �nishes the proof.

Now we can state our global uniqueness result.

Theorem 5.18. Let d ∈ R \ {0}, f0, f1, ζ, ν1 ∈ R and k1 ∈ N. Then (5.2) has a
unique solution a ∈ C1

per([0, T ], H
2
per(0, 2π)) if 3C < 1, where C = C(d, f0, f1, ν1, ζ) is

the constant from Theorem 5.16. In particular, f 2
0 + f 2

1 ≪ 1 is su�cient.

Remark 5.19. The corresponding unique solution is of the form a(t, x) = u(x − ωt)
where u is a 2π

k1
-periodic7 solution of (5.3) and ω = ν1

k1
. Thus, it has the shape of the

pump.

Proof. Equation (5.2) has at least one solution a1 ∈ C1
per([0, T ], H

2
per(0, 2π)) due to The-

orem 3.1. Now let a2 ∈ C1
per([0, T ], H

2
per(0, 2π)) denote an additional solution. Then

∥aj∥2L∞(Ω) ≤ C for j = 1, 2 by Theorem 5.16, which easily implies∥∥|a1|2a1 − |a2|2a2
∥∥
L2(Ω)

≤ 3C∥a1 − a2∥L2(Ω).

Note that aj, j = 1, 2 solves the �xed point problem

aj = L−1
(
|aj|2aj − if0 − if1e

i(k1x−ν1t)
)
,

where

L = −i
∂

∂t
+ (−i + ζ)− d

∂2

∂x2
.

7In case of e(s) = eik1s we can work in H2
per(0,

2π
k1
) instead of H2

per(0, 2π) in Theorem 3.1.
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Hence,
∥a1 − a2∥L2(Ω) ≤ 3C∥L−1∥∥a1 − a2∥L2(Ω),

where ∥L−1∥ = supv∈L2(Ω),∥v∥L2(Ω)=1
∥L−1v∥L2(Ω). Next we show 3C∥L−1∥ < 1 which

implies a1 = a2 and thus �nishes the proof. To this end we decompose a function
b ∈ L2(Ω) into its Fourier series, i.e., b =

∑
k,l∈Z bk,le

ikxeil
2π
T
t so that

L−1b =
∑
k,l∈Z

bk,l
l 2π
T
+ dk2 − i + ζ

eikxeil
2π
T
t.

Since

∥L−1b∥2L2(Ω) = 2πT
∑
k,l∈Z

|bk,l|2

1 +
(
l 2π
T
+ dk2 + ζ

)2 ≤ 2πT
∑
k,l∈Z

|bk,l|2 = ∥b∥2L2(Ω)

we get ∥L−1∥ ≤ 1 which, due to our assumption 3C < 1, is all we had to show.

Note that it remains unanswered if there is a choice of the parameters d, f0, ζ, k1, ν1, f1
such that (5.2) admits a time-periodic solution which is not of the form a(t, x) = u(x−ωt)
where u is a solution of (5.3) and ω = ν1

k1
.
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6. Approximation formulas

6.1. One mode case

In [68], Wabnitz used an approximation formula for soliton solutions of the following
variant of the stationary LLE

−da′′ + (−iα + ζ)a− |a|2a+ if∗ = 0 on R, a′(0) = 0, (6.1)

where we assume α, d, ζ > 0 and f∗ ̸= 0, cf. also [31]. Note that in the anomalous
dispersion regime it is reasonable to consider the LLE on the real line since strongly
localized solutions of (6.1) serve as good approximations for periodic solutions, cf. [31].
Note also that the condition a′(0) = 0 breaks the shift invariance. An advantage of this
approach is that for α = 0 and f∗ = 0 the explicit solution family

aθ(x) =
√
2ζ sech

(√
ζ

d
x

)
eiθ, θ ∈ [0, 2π)

is known, where sech denotes the hyperbolic secant. It serves as the basis for the
approximation formula used by Wabnitz which reads

a(x) ≈ a∞ + aθ∗(x),

where cos θ∗ = α
√
8ζ

πf∗
and where the constant background a∞ ∈ C is the solution with

smallest magnitude of
(−iα + ζ)a∞ − |a∞|2a∞ + if∗ = 0.

Here, the parameters have to be chosen such that α
√
8ζ < π|f∗|.

Our goal is to provide a mathematically rigorous approximation theorem. We use a
bifurcation approach and consider the equation

−dw′′ + (−iε+ ζ)w − |w|2w + iεf = 0 on R, w′(0) = 0, (6.2)

where ε is considered as bifurcation parameter. Compared with (6.1) we have α = ε and

f∗ = εf so that cos θ∗ =
√
8ζ
πf

in our setting. We �x ζ > 0, f ̸= 0 such that
√
8ζ < π|f |

and denote by w∞ = w∞(ε) ∈ C the solution with smallest magnitude of

(−iε+ ζ)w∞ − |w∞|2w∞ + iεf = 0. (6.3)

This choice of w∞ is made since we want to have a curve with w∞(0) = 0. We will work
with the real Hilbert spaces H := {ϕ ∈ H2(R) : ϕ(x) = ϕ(−x)} and L := {ϕ ∈ L2(R) :
ϕ(x) = ϕ(−x)} and the scalar product

⟨ϕ, ψ⟩L2(R) := Re

∫
R
ϕψ dx.
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Roughly speaking, we can formulate our approximation result in the following way.

Approximation result 6.1. Let d, ζ > 0, f ̸= 0 such that

√
8ζ

π|f |
< 1 and cos θ∗ =

√
8ζ

πf
.

Then, localized solutions of (6.2) have the form

w(ε) = w∞(ε) + aθ∗ + εψ +O(ε2)

= aθ∗ + ε

(
ψ − if

ζ

)
+O(ε2),

where

aθ∗(x) =
√

2ζ sech

(√
ζ

d
x

)
eiθ

∗

and where ψ ∈ H is a suitable solution of

−dψ′′ + ζψ − 2|aθ∗|2ψ − a2θ∗ψ = iaθ∗ −
2if

ζ
|aθ∗|2 +

if

ζ
a2θ∗ .

Remark 6.2. (α) Compared to the approximation formula used by Wabnitz, our result
also provides a �rst order correction term εψ. Details of the function ψ will be explained
in Theorem 6.6.
(β) In physical constants the LLE reads

−d2a′′ +
(
−i
κ

2
+ ω0 − ωp

)
a− g|a|2a+ i

√
κηPin

ℏω0

= 0,

cf. Section 2. By a(x) =
√

κ
2gε
ã
(√

κ
4d2ε

x
)
we get

−1

2
ã′′ +

(
−iε+

2ε

κ
(ω0 − ωp)

)
ã− |ã|2ã+ i

√
8gηPin

ℏω0κ2
ε

3
2 = 0.

Comparing the last equation with (6.2) we see ζ = 2ε
κ
(ω0 − ωp) and f =

√
8gηPin
ℏω0κ2

√
ε.

Now the condition
√
8ζ < π|f | leads to

2(ω0 − ωp)ℏω0κ

π2ηg
< Pin.

Next we want to �nd and prove a mathematically more precise formulation of Ap-
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proximation result 6.1. We decompose w = w∞ + w̃ with w̃ ∈ H and de�ne the map

G :

{
R×H → L,
(ε, w̃) 7→ −dw̃′′ + (−iε+ ζ)w̃ − |w∞ + w̃|2(w∞ + w̃) + |w∞|2w∞.

Note that

T :

{
R → R×H,
θ 7→ (0, aθ)

describes a trivial curve of solutions (ε, w) of (6.2), i.e. G(T (θ)) = 0 for θ ∈ R, from
where we wish to bifurcate at some point (0, aθ∗). In particular, (0, ∂θaθ) = (0, iaθ) lies
in the kernel of ∂(ε,w̃)G(0, aθ). As we shall see there may be more elements in the kernel.

Next let us �x the value θ∗ such that cos θ∗ =
√
8ζ
πf

and let H = span{iaθ∗} ⊕ Z where,

e.g., Z := H ∩ span{iaθ∗}⊥L2 . It will be more convenient to rewrite w̃ = aθ + v with
v ∈ Z, cf. Section 3.6. In order to justify this, note also that the map (θ, v) 7→ aθ + v
de�nes a di�eomorphism of a neighborhood of (θ∗, 0) ∈ R × Z onto a neighborhood
of aθ∗ ∈ H since the derivative at (θ∗, 0) is given by (λ, ψ) 7→ λiaθ∗ + ψ which is an
isomorphism from R× Z onto H. Let us de�ne

F :

{
R× R× Z → L,

(θ, ε, v) 7→ G(ε, aθ + v)

which is twice continuously di�erentiable. Our goal is to solve

F (θ, ε, v) = 0 (6.4)

by means of bifurcation theory, where θ ∈ R serves as arti�cial bifurcation parameter.
Notice that F (θ, 0, 0) = 0 for all θ ∈ R, i.e., (ε, v) = (0, 0) is a trivial solution of (6.4).
We will use the following formulation of the Crandall-Rabinowitz Theorem of bifurcation
from a simple eigenvalue [9, Theorem 1.7].

Theorem 6.3 (Crandall-Rabinowitz). Let I ⊂ R be an open interval, X,Y Banach
spaces and let F : I ×X → Y be twice continuously di�erentiable such that F (λ, 0) = 0
for all λ ∈ I and ∂xF (λ0, 0) : X → Y is an index-zero Fredholm operator for λ0 ∈ I.
Moreover assume:

(H1) there is ϕ ∈ X,ϕ ̸= 0 such that ker ∂xF (λ0, 0) = span{ϕ},

(H2) ∂2x,λF (λ0, 0)[ϕ] ̸∈ range ∂xF (λ0, 0).

If K is any complement of ker ∂xF (λ0, 0) in X, then there is a neighborhood U of (λ0, 0)
in I ×X, an interval (−a, a), and continuously di�erentiable functions λ : (−a, a) → I,
ξ : (−a, a) → K such that λ(0) = λ0, ξ(0) = 0 and

F−1(0) ∩ U = {(λ(α), αϕ+ αξ(α)) : |α| < a} ∪ {(λ, 0) : (λ, 0) ∈ U}.
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Finally,

λ̇(0) = −1

2

⟨∂2xxF (λ0, 0)[ϕ, ϕ], ϕ∗⟩
⟨∂2x,λF (λ0, 0)[ϕ], ϕ∗⟩

,

where span{ϕ∗} = ker ∂xF (λ0, 0)
∗ and ⟨·, ·⟩ is the duality pairing between Y and its dual

Y ∗.

In order to show (H1) let us de�ne the operator

A :

{
H → L,
ψ 7→ −dψ′′ + ζψ − 2|aθ∗ |2ψ − a2θ∗ψ

and

b := −iaθ∗ +
2if

ζ
|aθ∗ |2 −

if

ζ
a2θ∗ .

Observe that ∂vF (θ
∗, 0, 0)ψ = Aψ for ψ ∈ Z. Within the next lemma we will show that

∂εF (θ
∗, 0, 0) = b and that θ∗ is chosen in such a way that

Aψ = −b (6.5)

has a unique solution in Z, which we denote by ψ∗.

Lemma 6.4. Let d, ζ > 0, f ̸= 0 such that
√
8ζ < π|f | and cos θ∗ =

√
8ζ
πf

. Then, the

kernel of ∂(ε,v)F (θ
∗, 0, 0) is one-dimensional and range ∂(ε,v)F (θ

∗, 0, 0) = span{iaθ∗}⊥L2 .

Proof. From [19, Lemma 3.5] it follows that A is a self-adjoint index-zero Fredholm
operator with kerA = span{iaθ∗} (cf. also [20]). Further,

∂εF (θ
∗, 0, 0) = −iaθ∗ − 2|aθ∗|2w′

∞(0)− a2θ∗w
′
∞(0),

where w′
∞(0) denotes the derivate of ε 7→ w∞(ε) at ε = 0. From (6.3) one �nds ζw′

∞(0)+
if = 0, whence

∂εF (θ
∗, 0, 0) = −iaθ∗ +

2if

ζ
|aθ∗ |2 −

if

ζ
a2θ∗ = b.

For (δ, ψ) ∈ R× Z belonging to the kernel of ∂(ε,v)F (0, 0, 0) we have

∂(ε,v)F (θ
∗, 0, 0)[δ, ψ] = Aψ + δb = 0.

If δ = 0 we �nd Aψ = 0, i.e. ψ ∈ span{iaθ∗} ∩ Z = {0}. Hence we may assume w.l.o.g.
that δ = 1 and ψ has to solve (6.5). By the Fredholm alternative and the self-adjointness
of A this is possible if and only if b ⊥L2 iaθ∗ . This is true due to the choice of θ

∗, in fact,

⟨b, iaθ∗⟩L2(R) = Re

∫
R

(
−iaθ∗ +

2if

ζ
|aθ∗ |2 −

if

ζ
a2θ∗

)
(−iaθ∗) dx

= Re

∫
R
−2ζ sech2

(√
ζ

d
x

)
+ f
√
8ζ(2e−iθ∗ − eiθ

∗
) sech3

(√
ζ

d
x

)
dx
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=

∫
R
−2ζ sech2

(√
ζ

d
x

)
+ f
√
8ζ cos θ∗ sech3

(√
ζ

d
x

)
dx

=

∫
R
−2ζ sech2

(√
ζ

d
x

)
+

8ζ

π
sech3

(√
ζ

d
x

)
dx

= −2
√
dζ

∫
R
sech2(x) dx︸ ︷︷ ︸

=2

+
8
√
dζ

π

∫
R
sech3(x) dx︸ ︷︷ ︸

=π
2

= 0.

Thus, there exists ψ ∈ H solving (6.5) and ψ is unique up to adding a real multiple of
iaθ∗ . Hence, there is a unique ψ∗ ∈ Z solving (6.5) so that dimker ∂(ε,v)F (θ

∗, 0, 0) = 1
and it remains to determine the range of ∂(ε,v)F (θ

∗, 0, 0). Since b ∈ rangeA we �nd
range ∂(ε,v)F (θ

∗, 0, 0) = rangeA = span{iaθ∗}⊥L2 which is all we had to show.

From the proof of Lemma 6.4 we know that ker ∂(ε,v)F (θ
∗, 0, 0) = span{(1, ψ∗)}, where

ψ∗ ∈ Z denotes the unique element of Z which solves (6.5). Let us prove the transver-
sality condition (H2) in the next lemma.

Lemma 6.5. Let d, ζ > 0, f ̸= 0 such that
√
8ζ < π|f | and cos θ∗ =

√
8ζ
πf

. Then,

∂2(ε,v),θF (θ
∗, 0, 0)[1, ψ∗] ̸∈ range ∂(ε,v)F (θ

∗, 0, 0).

Proof. Recall that

∂(ε,v)F (θ, 0, 0)[1, ψ
∗] = −d(ψ∗)′′ + ζψ∗ − 2|aθ|2ψ∗ − a2θψ

∗ − iaθ +
2if

ζ
|aθ|2 −

if

ζ
a2θ,

whence

∂2(ε,v),θF (θ
∗, 0, 0)[1, ψ∗] = aθ∗ − 2ia2θ∗ψ

∗ +
2f

ζ
a2θ∗ .

Further, range ∂(ε,v)F (θ
∗, 0, 0) = span{iaθ∗}⊥L2 by Lemma 6.4 so that it su�ces to show

Re

∫
R

(
aθ∗ − 2ia2θ∗ψ

∗ +
2f

ζ
a2θ∗

)
(−iaθ∗) dx ̸= 0.

In fact, using Aaθ∗ = −2|aθ∗|2aθ∗ , we �nd

Re

∫
R

(
aθ∗ − 2ia2θ∗ψ

∗ +
2f

ζ
a2θ∗

)
(−iaθ∗) dx

= Re

∫
R
−i|aθ∗ |2 − 2|aθ∗ |2aθ∗ψ∗ − 2if

ζ
|aθ∗|2aθ∗ dx

= Re

∫
R
Aaθ∗ψ∗ − 2if

ζ
|aθ∗|2aθ∗ dx
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= Re

∫
R
aθ∗Aψ∗ − 2if

ζ
|aθ∗|2aθ∗ dx

= Re

∫
R
aθ∗

(
−iaθ∗ +

2if

ζ
|aθ∗|2 −

if

ζ
aθ∗

2

)
− 2if

ζ
|aθ∗ |2aθ∗ dx

= Re

∫
R
− if

ζ
|aθ∗|2aθ∗ dx =

f

ζ
Im

∫
R
|aθ∗ |2aθ∗ dx

= 2
√

2ζf Im

∫
R
sech3

(√
ζ

d
x

)
e−iθ∗ dx

= −2
√
2df sin θ∗

∫
R
sech3(x) dx︸ ︷︷ ︸

=π
2

= −πf
√
2d sin θ∗ ̸= 0

since | cos θ∗| < 1.

Now we can state our approximation theorem.

Theorem 6.6. Let d, ζ > 0, f ̸= 0 such that

√
8ζ

π|f |
< 1 and cos θ∗ =

√
8ζ

πf
.

Then, there is a > 0 and a continuously di�erentiable curve C : (−a, a) → R ×H with
C(ε) = (ε, w̃(ε)), C(0) = (0, aθ∗) such that G(C(ε)) = 0 for |ε| < a and such that locally
near (0, aθ∗) all solutions of G(ε, w̃) = 0 lie on the curve T or on the curve C.
More precisely,

w̃(ε) = aθ∗ + ε(ψ∗ + iγaθ∗) +O(ε2),

where ψ∗ ∈ H is the unique solution of (6.5) with ψ∗ ⊥L2 iaθ∗ and where

γ =
Re
∫
R iaθ∗

2(ψ∗)2 − ψ∗aθ∗ +
2f
ζ
aθ∗

2ψ∗ dx

πf
√
2d sin θ∗

+
π2 − 16

π2ζ
.

Proof. The assumptions of Theorem 6.3 are satis�ed due to Lemma 6.4 and Lemma 6.5.
If K is any complement of span{ψ∗} in Z then K := R × K is a complement of
span{(1, ψ∗)} in R× Z. Thus, Theorem 6.3 provides an interval (−a∗, a∗) and continu-
ously di�erentiable functions θ : (−a∗, a∗) → R, ξ1 : (−a∗, a∗) → R, ξ2 : (−a∗, a∗) → K
with θ(0) = θ∗, ξ1(0) = 0, ξ2(0) = 0 such that

F (θ(α), α(1, ψ∗) + α(ξ1(α), ξ2(α))) = F (θ(α), α+ αξ1(α), αψ
∗ + αξ2(α)) = 0

for |α| < a∗ and such that locally near (θ∗, 0, 0) all non-trivial solutions of F (θ, ε, v) = 0
are of that form. Let us abbreviate ε(α) = α+αξ1(α) and v(α) = αψ∗ +αξ2(α) so that
F (θ(α), ε(α), v(α)) = 0. Next, observe that G(ε(α), w̃∗(α)) = 0 for w̃∗(α) := aθ(α)+v(α).
Since ε̇(0) = 1 we �nd a local reparameterization (ε, w̃(ε)) of (ε(α), w̃∗(α)) on some
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interval (−a, a). Note that

w̃(ε) = aθ∗ + ε
(
ψ∗ + iθ̇(0)aθ∗

)
+O(ε2),

so that the proof is �nished if we can show θ̇(0) = γ. Theorem 6.3 yields

θ̇(0) = −1

2

〈
∂2(ε,v)2F (θ

∗, 0, 0)[(1, ψ∗), (1, ψ∗)], iaθ∗
〉
L2(R)〈

∂2(ε,v),θF (θ
∗, 0, 0)[1, ψ∗], iaθ∗

〉
L2(R)

.

From the proof of Lemma 6.5 we already know〈
∂2(ε,v),θF (θ

∗, 0, 0)[1, ψ∗], iaθ∗
〉
L2(R) = −πf

√
2d sin θ∗.

Further,

∂2(ε,v)2F (θ
∗, 0, 0)[(1, ψ∗), (1, ψ∗)]

=− 2aθ∗(ψ
∗)2 − 4aθ∗|ψ∗|2 − 2iψ∗ +

4if

ζ
aθ∗ψ

∗ +
8f

ζ
aθ∗ Imψ∗

− 4f

ζ2
|aθ∗|2 +

2f 2

ζ2
aθ∗ −

2f 2

ζ2
aθ∗ −

2f

ζ2
a2θ∗ ,

whence〈
∂2(ε,v)2F (θ

∗, 0, 0)[(1, ψ∗), (1, ψ∗)], iaθ∗
〉
L2(R)

= Re

∫
R
2iaθ∗

2(ψ∗)2 − 2ψ∗aθ∗ +
4f

ζ
aθ∗

2ψ∗ dx+

√
8df

πζ
sin θ∗(π2 − 16)

which is all we had to show.

6.2. Two mode case

Here we want to provide an approximation result for a simpli�ed version of the following
two mode equation

−du′′ + iωu′ + (−i + ζ)u− |u|2u+ if0 + if1e
ik1x = 0. (6.6)

The simpli�ed equation will hold in the case |f1| ≪ |f0| and will have the advantage of
admitting constant solutions. We start with the derivation of this model which is due
to Huanfa Peng8. The main idea is that

f0 + f1e
ik1x =

√
f 2
0 + 2f0f1 cos(k1x) + f 2

1 e
i arctan

f1 sin(k1x)
f0+f1 cos(k1x) ≈ f0e

i
f1
f0

sin(k1x)

8Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany
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in the case |f1| ≪ |f0|, where we made use of arctanx ≈ x for x → 0. Equation (6.6)
then becomes

−du′′ + iωu′ + (−i + ζ)u− |u|2u+ if0e
i
f1
f0

sin(k1x) = 0.

The ansatz u(x) = v(x)e
i
f1
f0

sin(k1x) leads to

−dv′′ + iV (x)v′ + (−iW (x) + U(x))v − |v|2v + if0 = 0,

where V (x) = ω−2dk1
f1
f0
cos(k1x),W (x) = 1−df1

f0
k21 sin(k1x), U(x) = ζ+dk21

f21
f20

cos2(k1x)−
ωk1

f1
f0
cos(k1x). Next we use the realistic simpli�cationsW (x) ≈ 1 and U(x) ≈ ζ leading

to
−dv′′ + iV (x)v′ + (−i + ζ)v − |v|2v + if0 = 0. (6.7)

In order to �t (6.7) into a mathematical theory similar to the one used in the previous
section we need to restrict to the special case where ω = 0, i.e.

−dv′′ − 2idk1
f1
f0

cos(k1x)v
′ + (−i + ζ)v − |v|2v + if0 = 0. (6.8)

We use a bifurcation approach and consider the equation

−dw′′ + 2iεβ sin(k1x)w
′ + (−iε+ ζ)w − |w|2w + iεf = 0 on R, w′(0) = 0, (6.9)

where ε serves as bifurcation parameter. Note that the sine term of (6.9) can be trans-
formed into a cosine term like it appears in (6.8) by a simple shifting argument. Roughly
speaking, we can formulate our generalized approximation result in the following way.

Approximation result 6.7. Let d, ζ > 0, f ̸= 0, β ∈ R, k1 ∈ N such that

√
8ζ

π|f |

∣∣∣∣1− R

4
√
ζd

∣∣∣∣< 1 and cos θ∗ =

√
8ζ

πf

(
1− R

4
√
ζd

)
,

where

R = R(β, ζ, d, k1) = −4βζ

∫
R
sin

(√
d

ζ
k1x

)
sinh(x)

cosh3(x)
dx.

Then, localized solutions of (6.9) have the form

w(ε) = w∞(ε) + aθ∗ + εψ +O(ε2)

= aθ∗ + ε

(
ψ − if

ζ

)
+O(ε2),

where

aθ∗(x) =
√

2ζ sech

(√
ζ

d
x

)
eiθ

∗
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and where ψ ∈ H is a suitable solution of

−dψ′′ + ζψ − 2|aθ∗|2ψ − a2θ∗ψ = iaθ∗ −
2if

ζ
|aθ∗|2 +

if

ζ
a2θ∗ − 2iβ sin(k1x)a

′
θ∗ .

Remark 6.8. The counterpart of (6.7) in physical constants (pumped modes: k̃0, k̃1)
reads

−d2v′′ + iV (x)v′ +
(
−i
κ

2
+ ωk̃0 − ωp0

)
v − g|v|2v + i

√
κηPin,0

ℏωk̃0
= 0,

where

k1 = k̃1 − k̃0 and V (x) =
ωk̃0 − ωp0 − ωk̃1 + ωp1

k1
+ d2k1 − 2d2k1

√
Pin,1ωk̃0
Pin,0ωk̃1

cos(k1x),

cf. Section 2. By v(x) =
√

κ
2gε
z
(
x− π

2k1

)
, we get

−2d2ε

κ
z′′ +

2iε

κ
Ṽ (x)z′ +

(
−iε+

2ε

κ
(ωk̃0 − ωp0)

)
z − |z|2z + i

√
8gηPin,0

ℏωk̃0κ
2
ε

3
2 = 0, (6.10)

where

Ṽ (x) =
ωk̃0 − ωp0 − ωk̃1 + ωp1

k1
+ d2k1 + 2d2k1

√
Pin,1ωk̃0
Pin,0ωk̃1

sin(k1x).

In order to �t our mathematical situation, we need to restrict to the case where

ωk̃0 − ωp0 − ωk̃1 + ωp1
k1

+ d2k1 = 0,

i.e.

Ṽ (x) = 2d2k1

√
Pin,1ωk̃0
Pin,0ωk̃1

sin(k1x).

Physically, this means that if the frequency ωp0 of the �rst pump is tuned arbitrarily,
the frequency of the second pump needs to be tuned to ωp1 = ωp0 + ωk̃1 − ωk̃0 − d2k

2
1.

Comparing (6.10) with (6.9) we see ζ = 2ε
κ
(ωk̃0 − ωp0), f =

√
8gηPin,0
ℏω

k̃0
κ2

√
ε and β =

2
κ
d2k1

√
Pin,1ωk̃0

Pin,0ωk̃1

. Using sinx ≈ x for x→ 0 and

∫
R

x sinh(x)

cosh3(x)
dx = 1
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we can approximate R ≈ −4βk1
√
ζd. The condition

√
8ζ

π|f |

∣∣1− R
4
√
ζd

∣∣< 1 then simpli�es to(
1 +

2

κ
d2k

2
1

√
Pin,1ωk̃0
Pin,0ωk̃1

)√
2(ωk̃0 − ωp0)ℏωk̃0κ

gηPin,0
< π.

In order to �nd a mathematically more precise formulation of Approximation re-
sult 6.7 we can proceed analogously to the last section and only need to do some slight
modi�cations. In the de�nition of G we need to include one extra term, i.e.

G(ε, w̃) = −1

2
w̃′′ + 2iεβ sin(k1x)w̃

′ + (−iε+ ζ)w̃ − |w∞ + w̃|2(w∞ + w̃) + |w∞|2w∞.

Thus, the operator A remains the same but the function b becomes

b = −iaθ∗ +
2if

ζ
|aθ∗|2 −

if

ζ
a2θ∗ + 2iβ sin(k1x)a

′
θ∗ .

The change of b also e�ects the de�nition of θ∗ which is determined by ⟨b, iaθ∗⟩L2(R)
!
= 0.

In fact, with

R = R(β, ζ, d, k1) = −4βζ

∫
R
sin

(√
d

ζ
k1x

)
sinh(x)

cosh3(x)
dx ≈ −4βk1

√
ζd

we �nd this time
⟨b, iaθ∗⟩L2(R) =

√
2d(−

√
8ζ + πf cos θ∗) +R,

whence

cos θ∗ =

√
8ζ

πf

(
1− R

4
√
ζd

)
≈

√
8ζ

πf
(1 + βk1).

Note that the change of b also e�ects the de�nition of ψ∗, cf. (6.5). In order to prove
the transversality condition (H2) we now �nd

∂2(ε,v),θF (θ
∗, 0, 0)[1, ψ∗] = aθ∗ − 2ia2θ∗ψ

∗ +
2f

ζ
a2θ∗ − 2β sin(k1x)a

′
θ∗

instead of

∂2(ε,v),θF (θ
∗, 0, 0)[1, ψ∗] = aθ∗ − 2ia2θ∗ψ

∗ +
2f

ζ
a2θ∗ .

But since
⟨−2β sin(k1x)a

′
θ∗ , iaθ∗⟩L2(R) = 0

we once again see that (H2) is satis�ed. For the determination of γ notice that this time〈
∂2(ε,v)2F (θ

∗, 0, 0)[(1, ψ∗), (1, ψ∗)], iaθ∗
〉
L2(R)
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=Re

∫
R
2iaθ∗

2(ψ∗)2 − 2ψ∗aθ∗ +
4f

ζ
aθ∗

2ψ∗ + 4β sin(k1x)(ψ
∗)′aθ∗ dx

+

√
8df

πζ
sin θ∗

(
π2 − 16

(
1− R

4
√
ζd

))
instead of〈

∂2(ε,v)2F (θ
∗, 0, 0)[(1, ψ∗), (1, ψ∗)], iaθ∗

〉
L2(R)

= Re

∫
R
2iaθ∗

2(ψ∗)2 − 2ψ∗aθ∗ +
4f

ζ
aθ∗

2ψ∗ dx+

√
8df

πζ
sin θ∗(π2 − 16).

Hence,

γ =
Re
∫
R iaθ∗

2(ψ∗)2 − ψ∗aθ∗ +
2f
ζ
aθ∗

2ψ∗ + 2β sin(k1s)(ψ
∗)′aθ∗ dx

πf
√
2d sin θ∗

+
1

π2ζ

(
π2 − 16

(
1− R

4
√
ζd

))
.

Now we can state our generalized approximation result.

Theorem 6.9. Let d, ζ > 0, f ̸= 0, β ∈ R, k1 ∈ N such that

√
8ζ

π|f |

∣∣∣∣1− R

4
√
ζd

∣∣∣∣< 1 and cos θ∗ =

√
8ζ

πf

(
1− R

4
√
ζd

)
.

Then the conclusions stated in Theorem 6.6 hold with

γ =
Re
∫
R iaθ∗

2(ψ∗)2 − ψ∗aθ∗ +
2f
ζ
aθ∗

2ψ∗ + 2β sin(k1s)(ψ
∗)′aθ∗ dx

πf
√
2d sin θ∗

+
1

π2ζ

(
π2 − 16

(
1− R

4
√
ζd

))
.
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7. Outlook - Pumping multiple modes

In Section 4 we have illustrated that 1-solitons arising in a dual-pumped resonator are
spectrally broader and spatially more localized than 1-solitons achieved by pumping only
a single mode. Therefore, it is natural to ask what happens if more than two modes are
pumped. Here we write again ζ0 instead of ζ for the detuning of the �rst pump. Let us
denote by k̃j ∈ Z, j ∈ {0, ..., n − 1} the n distinct pumped modes. If we assume (for
simplicity) that the initial phases of all pumps are zero then the evolution of the �eld
inside the cavity is described by the following nonlinear coupled mode equations

∂Âk
∂t

= −κ
2
Âk+

n−1∑
j=0

δkk̃j
√
κextsje

−i(ωpj−ωk̃j
)t
+ig

∑
k′+k′′−k′′′=k

Âk′Âk′′
¯̂
Ak′′′e

−i(ωk′+ωk′′−ωk′′′−ωk)t,

cf. Section 2. The description of the physical quantities is the same as in Section 2 with
the only di�erence that j = 0, 1 has to be replaced by j = 0, ..., n − 1. By using the
transformation

ã(τ, x) :=

√
2g

κ

∑
k∈Z

Âk

(
2

κ
τ

)
e−idk2τeikx

we �nd the partial di�erential equation

i
∂ã

∂τ
= −dã′′ − iã− |ã|2ã+ i

n−1∑
j=0

fje
i(k̃jx−ν̃jτ), ã 2π-periodic in x,

where τ = κt/2, d = 2d2/κ, and ζj = 2(ωk̃j − ωpj)/κ, ν̃j = dk̃2j − ζj, η = κext/κ,

fj =
√

8ηg/κ2sj for j = 0, ..., n− 1. Setting

a(τ, x) := e−i(k̃0(x+2dk̃0τ)−ν̃0τ)ã(τ, x+ 2dk̃0τ)

leads to

i
∂a

∂τ
= −da′′ − (i− ζ0)a− |a|2a+ if0 + i

n−1∑
j=1

fje
i(kjx−νjτ), a 2π-periodic in x

with kj = k̃j − k̃0 and νj = ζ0 − ζj + dk2j for j = 1, ..., n− 1.

In the two mode case the traveling wave ansatz was crucial for simplifying both the
analysis and the numerical computations. In the general case of pumping multiple modes
such a traveling wave ansatz is not possible for arbitrary parameter choices. However,
by imposing the following side constraints we can overcome this issue,

νj =
kj
k1
ν1 for j = 2, ..., n− 1. (7.1)
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Note that in this case

kjx− νjτ = kjx−
kj
k1
ν1τ =

kj
k1

(k1x− ν1τ) for j = 2, ..., n− 1.

The conditions (7.1) translate to

ζj =
kj
k1
ζ1 +

(
1− kj

k1

)
ζ0 + dkj(kj − k1) for j = 2, ..., n− 1, (7.2)

or, in terms of physical quantities,

ωk̃j−ωpj =
k̃j − k̃0

k̃1 − k̃0
(ωk̃1−ωp1)+

k̃1 − k̃j

k̃1 − k̃0
(ωk̃0−ωp0)+d2(k̃j−k̃0)(k̃j−k̃1) for j = 2, ..., n−1.

Physically, this means that if the �rst two lasers are set to arbitrary detunings ωk̃0 −ωp0
and ωk̃1 − ωp1 then the detunings of the remaining lasers must be tuned in the unique
way imposed by (7.1). The traveling wave ansatz a(τ, x) = u(x− ωτ) with s = x− ωτ
and ω = ν1/k1 now leads to

−du′′ + iωu′ − (i− ζ0)u− |u|2u+ if0 + i
n−1∑
j=1

fje
ikjs = 0, u 2π-periodic.

First numerical experiments with pde2path suggest that as in Section 4 pumping of
adjacent modes with equal power distribution between the modes leads to optimal combs.
Thus, from here on we choose the pumped modes as kj = j with j = 0, ..., n−1 for some
n ∈ N and consider the problem

−du′′ + iωu′ − (i− ζ0)u− |u|2u+ if0 + if1

n−1∑
j=1

eijs = 0, u 2π-periodic, (7.3)

where fj = f1 > 0 for j = 2, ..., n− 1. Note that the side constraints (7.2) then read

ζj = jζ1 + (1− j)ζ0 + d(j − 1)j for j = 2, ..., n− 1

and observe also that several of the theoretical results stated in Section 3 hold for
equation (7.3) due to the general forcing term used there. In order to �nd localized
solutions of (7.3) we can apply a heuristic algorithm similar to the one mentioned in
Section 4.3. That is, starting from f1 = 0 and a constant solution u0 ∈ C we perform
a continuation w.r.t. the f1-parameter until f1 = f0 is reached, whence we alternately
run a continuation algorithm by varying either the ζ0- or the ω-parameter. Since our
experiments suggest that the choice ω = (n− 1)d is optimal in the case of equal power
distribution f0 = ... = fn−1 we can in fact reduce the optimizations from the algorithm
to a single optimization step in ζ0. Let us denote the normalized total input power
by f 2 =

∑n−1
j=0 f

2
j . For the example d = 0.1, f = 2 we computed the most localized
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soliton (i.e., minimal FWHM) for the expected optimal power distribution f0 = ... =
fn−1 = f/

√
n for any choice of n = 1, ..., 50 and evaluated the PCE, the CBW as well

as the FWHM of the resulting comb state u(s) =
∑

k∈Z ûke
iks. The results are depicted

in Figure 23. We see that PCE and CBW increase while the FWHM decreases with
increasing number of pumped modes. Hence, it seems to be bene�cial to pump as many
modes as possible. Here, the PCE is de�ned as ratio PFC/f

2 between intracavity comb
power

PFC =
∑
k∈Z

|ûk|2 −
n−1∑
k=0

f 2
k

f 2
|ûk|2

and the normalized total input power. In the special case f0 = ... = fn−1 = f/
√
n we

�nd

PFC =
∑
k∈Z

|ûk|2 −
1

n

n−1∑
k=0

|ûk|2.

The CBW is again de�ned via the 3dB points of the adjacent non-pumped modes, i.e.,

CBW = k∗l + k∗r

with minimal integers k∗l > 0 and k∗r > 0 that ful�ll

|û−k∗l |
2 ≤ 1

2
|û−1|2, |ûn−1+k∗r |

2 ≤ 1

2
|ûn|2

respectively.

Figure 23. Power conversion e�ciency, comb bandwidth and full-width at half-maximum
of expected optimal soliton for d = 0.1 and f = 2 as function of number of pumped
modes.

In Figure 24 we added plots of the spatial and spectral power distributions of the ex-
pected optimal solitons for d = 0.1 and f = 2 for n = 3, 4, 5, 6. One can observe that
the soliton gets spatially more localized and spectrally broader as n increases. Note that
for k ∈ N the power in the mode k is higher than the one in the mode −k since we only
pump modes with nonnegative indices.
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Figure 24. Spatial and spectral power distributions of optimal solitons for d = 0.1 and
f = 2 for n = 3, 4, 5, 6.

In order to formulate a limit equation for the case n → ∞ let us consider un as an
optimal solution of

−du′′ + iωu′ − (i− ζ0)u− |u|2u+ if√
2n+ 1

n∑
j=−n

eijs = 0, u 2π-periodic.

Note that here we are summing from j = −n to j = n in order to include all modes for
n→ ∞. In this case the optimal choice of ω for equal power distribution translates into
ω = 0, whence

−du′′n − (i− ζ0,n)un − |un|2un +
if√

2n+ 1

n∑
j=−n

eijs = 0, un 2π-periodic,

where ζ0,n denotes the optimized ζ0. For vn(s) =
√
2n+ 1un(s) we �nd

−dv′′n − (i− ζ0,n)vn −
1

2n+ 1
|vn|2vn + if

n∑
j=−n

eijs = 0, vn 2π-periodic.

Since
∑n

j=−n e
ijs tends to a delta potential 2πδ0 for n → ∞ it would be interesting to

�nd and analyze an appropriate limit equation for n→ ∞. Note that Theorem 3.14 only
implies ∥un∥22 ≤ 2πf 2, whence (vn)n∈N does not seem to be bounded in L2(0, 2π). But
due to better L1(0, 2π)-bounds of the pump one may �nd boundedness in the L1(0, 2π)-
setting. This is currently not yet understood and it would be interesting to see more
detailed research in this direction in the future.
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A. Band structures for periodic fractional

Schrödinger operators

A.1. Introduction

Appendix A is not related to frequency combs. Here, we study the spectrum of frac-
tional Schrödinger operators with periodic potentials. The operators formally read as
L = (−∆)s + V (x) + αδper(xn). Here, s ∈ (1/2, 1), α ∈ R, V ∈ L∞(Rn,R) is 2π-periodic
in x1, ..., xn and δper denotes a 2π-periodic Dirac comb. In the case α = 0 we even
allow s ∈ (0, 1). We give an exact de�nition of these operators using sesquilinear forms.
Our goal is to generalize the well-known band structure of the spectrum of periodic
di�erential operators to the fractional case. We use Floquet-Bloch theory to give a
representation of the spectrum σ(L) in terms of the spectra of associated operators Lk
acting on the periodicity cell Pn := (0, 2π)n. Note that Lk can not be simply de�ned by
acting via the same expression since L is a nonlocal operator. We show that the spectral
de�nition of the fractional Laplacian, denoted by (−∆)sk, leads to the right operators
Lk = (−∆)sk + V (x) + αδ(xn). Our main result is given in Theorem A.14 and states

σ(L) =
⋃
k∈Bn

σ(Lk),

where Bn := [−1/2, 1/2]n denotes the Brillouin zone. The operators Lk have purely discrete
spectrum σ(Lk) = {λl(k) : l ∈ N} with real eigenvalues

λ1(k) ≤ λ2(k) ≤ ... ≤ λl(k)
l→∞−−−→ ∞.

The sets Il := {λl(k) : k ∈ Bn} are compact intervals, whence σ(L) =
⋃
l∈N Il has

so-called band structure. Floquet-Bloch theory does not answer the question whether
gaps really occur in the spectrum or whether the bands actually overlap. Using the
one-dimensional examples L = (−∆)s± 2πδper(x), we show the existence of at least one
spectral gap in the fractional case s ∈ (1/2, 1). In Section A.2 we collect some important
facts about fractional Sobolev spaces. Section A.3 is dedicated to direct integrals which
occur in a natural way in Floquet-Bloch theory. Section A.4 introduces the Floquet
transformation which is the right tool for connecting the whole space problem with a
family of problems on the periodicity cell. In Section A.5 we start our spectral theory
in one dimension and we provide a multidimensional generalization in Section A.6. In
Section A.7 we treat our one-dimensional examples in which a spectral gap occurs.
Section A.8 contains the proofs of some technical results. Finally, in Section A.9 we
prove that the eigenvalues λl(k) of the periodicity cell operators depend continuously on
the parameter k.
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A.2. Some background on fractional Sobolev spaces

In Section A.2 we collect some important facts about fractional Sobolev spaces. A
detailed introduction can be found in [13].

Let Ω ⊂ Rn be open and s ∈ (0, 1). The fractional Sobolev space Hs(Ω) is de�ned as

Hs(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy <∞

}
.

This space is endowed with the natural norm

|||u|||Hs(Ω) :=

(∫
Ω

|u(x)|2 dx+
∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy

) 1
2

,

where the term

[u]Hs(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy

) 1
2

is the so-called Gagliardo seminorm of u.

If Ω = Rn, there is an equivalent de�nition via the Fourier transform,

Fφ(ξ) := φ̂(ξ) :=
1

(2π)n/2

∫
Rn

φ(x)e−iξTx dx for φ ∈ L1(Rn), ξ ∈ Rn.

As usual, F extends to a unitary map F : L2(Rn) → L2(Rn). By [13, Proposition 3.4],

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

(
1 + |ξ|2

)s |û(ξ)|2 dξ <∞
}

and

[u]2Hs(Rn) = C1(n, s)

∫
Rn

|ξ|2s|û(ξ)|2 dξ (A.1)

for the constant

C1(n, s) := 2

∫
Rn

1− cos(z1)

|z|n+2s
dz. (A.2)

Therefore,

∥u∥Hs(Rn) :=

(∫
Rn

(
1 + |ξ|2

)s |û(ξ)|2 dξ) 1
2

de�nes an equivalent norm on Hs(Rn). We de�ne the fractional Laplacian (−∆)s/2 by
(−∆)s/2u := F−1

(
|ξ|sû(ξ)

)
for u ∈ Hs(Rn). Note that although (−∆)s appears in the

formal de�nition of L, we will only need to deal with (−∆)s/2 since we follow a sesquilinear
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form approach.

By [13, Proposition 3.8], any function u ∈ Hs(Rn) for s ∈ (1/2, 1) has a trace v on the
hyperplane {xn = 0}, such that v ∈ L2(Rn−1). In order to study our sesquilinear forms,
we will need the following inequality. The proof is given in Section A.8.

Theorem A.1. Let s ∈ (1/2, 1) and ε > 0. Then there exists a constant D = D(n, s) > 0
such that u ∈ Hs(Rn) has a trace at {xn = 0} and

∥u(·, 0)∥2L2(Rn−1) ≤ D
(
ε−

2s/2s−1∥u∥2L2(Rn) + ε2s[u]2Hs(Rn)

)
.

Next, we move to the periodicity cell Pn = (0, 2π)n and want to equip Hs(Pn) with
quasiperiodic boundary conditions. For this purpose, if u ∈ L2(Pn), k ∈ Bn = [−1/2, 1/2]n

and l ∈ Zn, then we write

ûk,l :=
1

(2π)n/2

〈
u, ei(k+l)

T(·)
〉
L2(Pn)

=
1

(2π)n/2

∫
Pn

u(x)e−i(k+l)Tx dx.

Observe that
(
(2π)−n/2ei(k+l)

T(·))
l∈Zn forms an orthonormal basis in L2(Pn) and

u =
1

(2π)n/2

∑
l∈Zn

ûk,le
i(k+l)T(·).

Let s ∈ (0, 1) and k ∈ Bn. By means of a discrete Fourier characterization, we de�ne
the space Hs

k(Pn) as

Hs
k(Pn) :=

{
u ∈ L2(Pn) :

∑
l∈Zn

(
1 + |k + l|2

)s |ûk,l|2 <∞

}
,

with norm

∥u∥Hs
k(Pn) :=

(∑
l∈Zn

(
1 + |k + l|2

)s |ûk,l|2)
1
2

.

Further, the quasiperiodic fractional Laplacian (−∆)
s/2
k : Hs

k(Pn) ⊂ L2(Pn) → L2(Pn)
is de�ned by

(−∆)
s/2
k u :=

1

(2π)n/2

∑
l∈Zn

|k + l|sûk,lei(k+l)
T(·). (A.3)

Note that (A.3) holds for s = 2, i.e. for the usual Laplacian, which motivates this

de�nition. Note also that (−∆)
s/2
k is self-adjoint and that Hs

k(Pn) is a Hilbert space.
The following lemma shows that, in fact, Hs

k(Pn) is a subspace of Hs(Pn). The proof is
an adaption of [13, Proposition 3.4].
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Lemma A.2. Let s ∈ (0, 1) and k ∈ Bn. Then, for u ∈ Hs
k(Pn),

[u]2Hs(Pn) ≤ C1(n, s)
∥∥(−∆)

s/2
k u
∥∥2
L2(Pn)

, (A.4)

where the constant C1(n, s) is de�ned by (A.2).

Proof. We consider u as quasiperiodically extended to Rn. Then,

[u]2Hs(Pn) =

∫
Pn

∫
Pn

|u(x)− u(y)|2

|x− y|n+2s
dx dy =

∫
Pn

∫
Pn−y

|u(z + y)− u(y)|2

|z|n+2s
dz dy

≤
∫
Pn

∫
Rn

|u(z + y)− u(y)|2

|z|n+2s
dz dy =

∫
Rn

1

|z|n+2s

∫
Pn

|u(z + y)− u(y)|2 dy dz.

By the Plancherel theorem we further conclude

[u]2Hs(Pn) ≤
∫
Rn

1

|z|n+2s

∑
l∈Zn

|(u(z + ·)− u)
∧

k,l|
2 dz

=

∫
Rn

1

|z|n+2s

∑
l∈Zn

|ei(k+l)Tz − 1|2|ûk,l|2 dz

= 2
∑
l∈Zn

∫
Rn

1− cos((k + l)Tz)

|z|n+2s
dz |ûk,l|2.

Now choose an orthogonal matrix R ∈ Rn×n with R(k + l) = |k + l|e1, where e1 =
(1, 0, ..., 0)T. Using the transformation z = RTζ we have∫

Rn

1− cos((k + l)Tz)

|z|n+2s
dz =

∫
Rn

1− cos(|k + l|ζ1)
|ζ|n+2s

dζ.

A further transformation ζ = |k + l|−1ξ (we can assume |k + l| ≠ 0) yields∫
Rn

1− cos((k + l)Tz)

|z|n+2s
dz =

∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ|k + l|2s = 1

2
C1(n, s)|k + l|2s,

so that �nally

[u]2Hs(Pn) ≤ C1(n, s)
∑
l∈Zn

|k + l|2s|ûk,l|2 = C1(n, s)
∥∥(−∆)

s/2
k u
∥∥2
L2(Pn)

.

We can also prove an analogon of Theorem A.1 for functions acting on the periodicity
cell. The proof is given in Section A.8.

Theorem A.3. Let s ∈ (1/2, 1) and ε > 0. Then there exists a constant C = C(n, s) > 0

116



A. Band structures for periodic fractional Schrödinger operators

such that u ∈ Hs(Pn) has a trace at {xn = 0} and

∥u(·, 0)∥2L2(Pn−1) ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(Pn) + ε2s[u]2Hs(Pn)

)
.

A.3. Direct integrals

Direct integrals occur in a natural way in Floquet-Bloch theory. We limit ourselves to
the most important facts and refer the reader to [55] for more details.

Let H be a separable Hilbert space and (Ω,M, µ) a σ−�nite measure space. We call∫ ⊕

Ω

H dµ := L2(Ω, H)

a constant direct integral. We say that a map k 7→ Bk from Ω to the space L(H) of
bounded linear operators on H is measurable if Ω → C, k 7→ ⟨Bkφ, ψ⟩H is measurable for
all φ, ψ ∈ H. Further, we call a map k 7→ Ak from Ω to the space of (possibly unbounded)
self-adjoint operators on H measurable if the map Ω → L(H), k 7→ (Ak + i Id)−1 is
measurable. For such a map we de�ne an operator

A : D(A) ⊂
∫ ⊕

Ω

H dµ→
∫ ⊕

Ω

H dµ

with domain

D(A) =

{
ψ ∈

∫ ⊕

Ω

H dµ : ψ(k) ∈ D(Ak) for a.a. k ∈ Ω,

∫
Ω

∥Akψ(k)∥2H dk <∞
}

by
(Aψ)(k) := Akψ(k).

We write

A =

∫ ⊕

Ω

Ak dk.

In this situation we have the following result, see [55, Theorem XIII.85].

Theorem A.4.

(a) The operator A is self-adjoint.

(b) For every λ ∈ R one has

λ ∈ σ(A) ⇔ ∀ε > 0 : µ
(
{k ∈ Ω : σ(Ak) ∩ (λ− ε, λ+ ε) ̸= ∅}

)
> 0.

A.4. Floquet transformation

For simplicity, we start our investigations in one dimension, i.e. in Section A.4 and
Section A.5 we �x n = 1. For a local di�erential operator, its restriction to a periodicity
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cell can be de�ned on suitable function spaces (i.e. with included quasiperiodic boundary
conditions) by acting via the same di�erential expression. It is a-priori not clear how
this can be done for the nonlocal operator (−∆)s/2. Here, we show that the spectral

de�nition of (−∆)
s/2
k from (A.3) is the right one.

The Floquet transformation

U : L2(R) → L2(P × B), (Uf)(x, k) =
∑
m∈Z

f(x− 2πm)e2πikm

is the right tool for transforming a problem on the whole space into a family of problems
on the periodicity cell and vice versa. For k ∈ B, let us de�ne the quasiperiodic extension
operator

Ek : L
2(P) → L2

loc(R), (Eku)(x+ 2πl) := u(x)e2πikl for x ∈ P , l ∈ Z.

Then, by [16, Lemma 3.4.1], we have the following result.

Lemma A.5. The operator U is unitary and its inverse is given by(
U−1g

)
(x) =

∫
B

(
Ek g(·, k)

)
(x) dk for x ∈ R.

With the help of U , we �nd the following important relation between the operator
(−∆)s/2 and the operators (−∆)

s/2
k .

Theorem A.6. Let s ∈ (0, 1) and f ∈ Hs(R). Then, for a.a. k ∈ B and all g ∈ Hs
k(P),〈(

U(−∆)
s/2f
)
(·, k), g

〉
L2(P)

=
〈
(Uf)(·, k), (−∆)

s/2
k g
〉
L2(P)

.

For the proof we need the following lemma, see [4].

Lemma A.7. Let s ∈ (0, 1), φ ∈ S(R) be a Schwartz function and

Ss/2(R) :=
{
f ∈ C∞(R) : sup

x∈R

(
1 + |x|1+s

)∣∣f (m)(x)
∣∣ <∞ for all m ∈ N0

}
.

Then, (−∆)s/2φ ∈ Ss/2(R).
Notice that in general (−∆)s/2φ /∈ S(R) for φ ∈ S(R) because |ξ|s introduces a lack of
di�erentiability at the origin, so that |ξ|sφ̂(ξ) no longer need to be a Schwartz function.
Transforming back via F−1, the lack of di�erentiability translates into a lack of rapid
decay.

Proof of Theorem A.6. First, let f ∈ C∞
c (R) and g = (2π)−1/2ei(k+j)(·) for an integer

j ∈ Z. Then, 〈
(Uf)(·, k), (−∆)

s/2
k g
〉
L2(P)
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=
1√
2π

|k + j|s
〈
(Uf)(·, k), ei(k+j)(·)

〉
L2(P)

=
1√
2π

|k + j|s
∫ 2π

0

∑
m∈Z

f(x− 2πm)e2πikme−i(k+j)x dx

=
1√
2π

|k + j|s
∑
m∈Z

∫ 2π

0

f(x− 2πm)e2πikme−i(k+j)x dx

=
1√
2π

|k + j|s
∑
m∈Z

∫ −2πm+2π

−2πm

f(x)e2πikme−i(k+j)(x+2πm) dx

=
1√
2π

|k + j|s
∫
R
f(x)e−i(k+j)x dx

= |k + j|sf̂(k + j).

On the other hand, since (−∆)s/2f ∈ Ss/2(R) by Lemma A.7, via a similar calculation,〈(
U(−∆)

s/2f
)
(·, k), g

〉
L2(P)

=
1√
2π

∫ 2π

0

∑
m∈Z

(
(−∆)

s/2f
)
(x− 2πm)e2πikme−i(k+j)x dx

= (−∆)s/2f
∧

(k + j)

= |k + j|sf̂(k + j). (A.5)

Next, to generalize the result to arbitrary g ∈ Hs
k(P), we de�ne for M ∈ N,

gM :=
1√
2π

M∑
l=−M

ĝk,le
i(k+l)(·).

By linearity, we have〈(
U(−∆)

s/2f
)
(·, k), gM

〉
L2(P)

=
〈
(Uf)(·, k), (−∆)

s/2
k gM

〉
L2(P)

.

Since gM → g in L2(P) as M → ∞ and

(−∆)
s/2
k gM =

1√
2π

M∑
l=−M

|k + l|sĝk,lei(k+l)(·) → (−∆)
s/2
k g in L

2(P)

as M → ∞, the claim follows for f ∈ C∞
c (R). Finally, let f ∈ Hs(R). Then, we �nd

fm ∈ C∞
c (R) with fm → f in Hs(R). In particular, fm → f and (−∆)s/2fm → (−∆)s/2f

in L2(R). By Lemma A.5, Ufm → Uf and U(−∆)s/2fm → U(−∆)s/2f in L2(P×B). Since
L2(P × B) ∼= L2(B, L2(P)) we can assume (up to a subsequence) by the Riesz-Fischer
theorem that (Ufm)(·, k) → (Uf)(·, k) and

(
U(−∆)s/2fm

)
(·, k) →

(
U(−∆)s/2f

)
(·, k) in
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L2(P) for a.a. k ∈ B. The assertion follows from〈(
U(−∆)

s/2fm
)
(·, k), g

〉
L2(P)

=
〈
(Ufm)(·, k), (−∆)

s/2
k g
〉
L2(P)

by taking the limit m→ ∞.

Remark A.8. Inspired by [56, Theorem A] and armed with Theorem A.6, we can

provide an alternative view onto the operator (−∆)
s/2
k . The canonical way to de�ne the

periodicity cell operator (−∆)
s/2
k is the following: Take a function g ∈ Hs

k(P), extend
it quasiperiodically to the whole of R, insert it into the whole-space operator (−∆)s/2

and �nally restrict the obtained function again to the periodicity cell P . The fact
that Ekg /∈ L2(R) for g ̸= 0 now requires a de�nition of (−∆)s/2 for a larger class of
functions. For this, we notice that (−∆)s/2 : S(R) → Ss/2(R) is not only well-de�ned (cf.
Lemma A.7) but also continuous if we equip Ss/2(R) with the family of seminorms (see
[4])

[f ]m := sup
x∈R

(
1 + |x|1+s

)∣∣f (m)(x)
∣∣.

The symmetry of (−∆)s/2 allows us to de�ne (−∆)s/2 : S ′
s/2(R) → S ′(R) by duality, i.e.〈

(−∆)
s/2f, φ

〉
:=
〈
f, (−∆)

s/2φ
〉
, f ∈ S ′

s/2(R), φ ∈ S(R).

Next note that Ekg de�nes a distribution in S ′
s/2(R). In fact, for ψ ∈ Ss/2(R),∫

R
|Ekg||ψ| dx =

∫
R
|Ekg|

1

1 + |x|1+s
(
1 + |x|1+s

)
|ψ| dx

≤
∞∑
j=1

∫
2π(j−1)≤|x|≤2πj

|Ekg|
1

1 + |x|1+s
dx [ψ]0

≤
∞∑
j=1

1

1 + (2π(j − 1))1+s

∫
2π(j−1)≤|x|≤2πj

|Ekg| dx [ψ]0

≤ 2
∞∑
j=1

1

1 + (2π(j − 1))1+s
∥g∥L1(P) [ψ]0,

and the last series converges since s > 0. Further, for φ ∈ S(R),

〈
Ekg, (−∆)

s/2φ
〉
=

∫
R
Ekg (−∆)

s/2φdx =
∑
m∈Z

∫ 2π(m+1)

2πm

g(x− 2πm)e2πikm(−∆)
s/2φdx

=
∑
m∈Z

∫ 2π

0

g(x)e2πikm
(
(−∆)

s/2φ
)
(x+ 2πm) dx

=

∫ 2π

0

g(x)
∑
m∈Z

(
(−∆)

s/2φ
)
(x+ 2πm)e2πikm dx
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=

∫ 2π

0

g(x)
(
U(−∆)

s/2φ
)
(x,−k) dx =

∫ 2π

0

g(x)
(
U(−∆)s/2φ

)
(x, k) dx

=
〈
g,
(
U(−∆)

s/2φ
)
(·, k)

〉
L2(P)

=
〈
(−∆)

s/2
k g,

(
Uφ
)
(·, k)

〉
L2(P)

=

∫ 2π

0

(−∆)
s/2
k g
(
Uφ
)
(x,−k) dx (∗)

=

∫
R
Ek(−∆)

s/2
k g φ dx

=
〈
Ek(−∆)

s/2
k g, φ

〉
.

Therefore, (−∆)s/2Ekg = Ek(−∆)
s/2
k g, whence (−∆)

s/2
k g =

(
(−∆)s/2Ekg

)∣∣
P . Note that

(∗) follows in a similar way as∫
R
Ekg (−∆)

s/2φdx =

∫ 2π

0

g(x)
(
U(−∆)

s/2φ
)
(x,−k) dx,

which was proven during the �rst steps of the calculation.

A.5. One-dimensional spectral theory

Next, we turn to the analysis of the operator L = (−∆)s+V (x)+αδper(x). We assume s ∈
(1/2, 1), α ∈ R and that V ∈ L∞(R,R) is 2π-periodic. First we de�ne the corresponding
sesquilinear form BL : Hs(R)×Hs(R) → C by

BL[u, v] :=

∫
R
|ξ|2sû(ξ)v̂(ξ) dξ +

∫
R
V (x)u(x)v(x) dx+ α

∑
l∈Z

u(2πl)v(2πl).

Recall that s > 1/2 implies the embedding Hs(R) ↪→ C0(R). By Theorem A.3 we �nd
for any ε > 0 and l ∈ Z,

|u(2πl)|2 ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(2πl,2π(l+1)) + ε2s[u]2Hs(2πl,2π(l+1))

)
(A.6)

for a constant C = C(s) > 0. Therefore, using (A.1), we �nd,∑
l∈Z

|u(2πl)|2 ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(R) + ε2s

∥∥(−∆)
s/2u
∥∥2
L2(R)

)
(A.7)

for a new constant C = C(s) > 0. For a suitable choice of ε, this results in

BL[u, u] ≥
1

2

∥∥(−∆)
s/2u
∥∥2
L2(R) − C2∥u∥2L2(R) for a constant C2 = C2(α, s, V ), (A.8)

whence BL is semibounded and closed. By [54, Theorem VIII.15] we may view L as a
self-adjoint operator on a suitable domain D(L) ⊂ Hs(R) given by the relation that for
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u ∈ Hs(R), w ∈ L2(R),

u ∈ D(L) and Lu = w ⇔ ∀v ∈ Hs(R) : BL[u, v] = ⟨w, v⟩L2(R).

We note that

D(L) =

{
u ∈ Hs(R) : |ξ|2sû(ξ) + α√

2π

∑
l∈Z

u(2πl)e−2πilξ ∈ L2(R)

}
,

Lu = F−1

[
|ξ|2sû(ξ) + α√

2π

∑
l∈Z

u(2πl)e−2πilξ

]
+ V (x)u.

Here,
∑

l∈Z u(2πl)e
−2πilξ converges in L2

loc(R) since
∑

l∈Z |u(2πl)|2 < ∞ for u ∈ Hs(R)
by (A.7).

We proceed by introducing the associated periodicity cell operators Lk = (−∆)sk +
V (x) + αδ(x), k ∈ B. The corresponding sesquilinear form BLk

: Hs
k(P) ×Hs

k(P) → C
is de�ned by

BLk
[u, v] :=

∑
l∈Z

|k + l|2sûk,lv̂k,l +
∫ 2π

0

V (x)u(x)v(x) dx+ αu(0)v(0).

We note that s ∈ (1/2, 1) implies the embedding Hs(P) ↪→ C0,β(P) for β = s − 1/2, see
[13, Theorem 8.2]. Combining (A.6) for l = 0 and (A.4), we �nd, for u ∈ Hs

k(P),

|u(0)|2 ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(P) + ε2s

∥∥(−∆)
s/2
k u
∥∥2
L2(P)

)
for a constant C = C(s) > 0. Again, for a suitable choice of ε, this results in

BLk
[u, u] ≥ 1

2

∥∥(−∆)
s/2
k u
∥∥2
L2(P)

− C2∥u∥2L2(P) (A.9)

for the constant C2 = C2(α, s, V ) from (A.8), whence BLk
is semibounded and closed.

The corresponding self-adjoint operator is given by

D(Lk) =

{
u ∈ Hs

k(P) : |k + l|2sûk,l +
α√
2π
u(0) ∈ ℓ2(Z)

}
,

Lku =
1√
2π

∑
l∈Z

(
|k + l|2sûk,l +

α√
2π
u(0)

)
ei(k+l)(·) + V (x)u.

Since P is bounded, compactness arguments can be used to prove the existence of a
L2(P) orthonormal basis (φl(·, k))l∈N of eigenfunctions from Lk with corresponding (real)
eigenvalues satisfying

λ1(k) ≤ λ2(k) ≤ ... ≤ λl(k)
l→∞−−−→ ∞

122



A. Band structures for periodic fractional Schrödinger operators

and
σ(Lk) = {λl(k) : l ∈ N}. (A.10)

Proving the analogon of Theorem A.6 for L and Lk directly seems to be hard by
the complicated structure of D(L). Therefore, we follow [3] and choose a sesquilinear
form approach. Since we are studying a spectral problem, we may assume w.l.o.g.
(introducing a shift by C2 + 1/2) that BL and BLk

de�ne scalar products on Hs(R) and
Hs
k(P), which are equivalent to the usual scalar products on Hs(R) and Hs

k(P).

An important step is to prove that U is also a unitary map between (Hs(R), BL[·, ·])
and the Hilbert space (H, ⟨·, ·⟩H) de�ned by

H :=
{
u ∈ L2(P × B) : u(·, k) ∈ Hs

k(P) for a.a. k ∈ B, ∥u∥H <∞
}
,

⟨u, v⟩H :=

∫
B
BLk

[u(·, k), v(·, k)] dk, ∥u∥H :=
√

⟨u, u⟩H.

Note that H = D
(∫ ⊕

B (−∆)
s/2
k dk

)
and that the graph norm of

∫ ⊕
B (−∆)

s/2
k dk de�nes an

equivalent norm onH. Here, using L2(P×B) ∼= L2(B, L2(P)), we interpret
∫ ⊕
B (−∆)

s/2
k dk

as an operator in L2(P × B). Part (a) of Theorem A.4 now implies the completeness of
H.

Theorem A.9. The map U : (Hs(R), BL[·, ·]) → (H, ⟨·, ·⟩H) is well-de�ned and unitary.

Proof. Let u ∈ C∞
c (R). Since (Uu)(·, k)
∧

k,l = û(k+ l), cf. (A.5) for s = 0, and û ∈ S(R),
we conclude (Uu)(·, k) ∈ Hs

k(P) for all k ∈ B. Further, for u, v ∈ C∞
c (R),

BLk
[(Uu)(·, k), (Uv)(·, k)]

=
∑
l∈Z

|k + l|2sû(k + l)v̂(k + l) +
∑
m,m̃∈Z

e2πik(m−m̃)

∫ 2π

0

V (x)u(x− 2πm)v(x− 2πm̃) dx

+ α
∑
m,m̃∈Z

e2πik(m−m̃)u(−2πm)v(−2πm̃).

Integration over B yields∫
B
BLk

[(Uu)(·, k), (Uv)(·, k)] dk

=
∑
l∈Z

∫ 1
2

− 1
2

|k + l|2sû(k + l)v̂(k + l) dk +
∑
m∈Z

∫ 2π

0

V (x)u(x− 2πm)v(x− 2πm) dx

+ α
∑
m∈Z

u(−2πm)v(−2πm)

=
∑
l∈Z

∫ 1
2
+l

− 1
2
+l

|k|2sû(k)v̂(k) dk +
∑
m∈Z

∫ −2πm+2π

−2πm

V (x)u(x)v(x) dx+ α
∑
l∈Z

u(2πl)v(2πl)
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=

∫
R
|ξ|2sû(ξ)v̂(ξ) dξ +

∫
R
V (x)u(x)v(x) dx+ α

∑
l∈Z

u(2πl)v(2πl) = BL[u, v].

Hence, Uu,Uv ∈ H andBL[u, v] = ⟨Uu,Uv⟩H. Now let u ∈ Hs(R). We �nd um ∈ C∞
c (R)

with um → u in Hs(R). Since BL[um − ul, um − ul] = ∥Uum − Uul∥2H, we conclude that
(Uum)m∈N is a Cauchy sequence in H and thus converges to some w ∈ H. In particular,
Uum → w in L2(P ×B). On the other hand, by Lemma A.5, Uum → Uu in L2(P ×B).
Thus, Uu = w ∈ H and Uum → Uu in H, so that BL[u, v] = ⟨Uu,Uv⟩H follows for
all u, v ∈ Hs(R). Conversely, let g ∈ H. It remains to show that U−1g ∈ Hs(R). For
ψ ∈ Hs(R),〈

(−∆)
s/2ψ,U−1g

〉
L2(R) =

〈
U(−∆)

s/2ψ, g
〉
L2(P×B)

=

∫
B

〈(
U(−∆)

s/2ψ
)
(·, k), g(·, k)

〉
L2(P)

dk =

∫
B

〈
(Uψ)(·, k), (−∆)

s/2
k

(
g(·, k)

)〉
L2(P)

dk

=

〈
Uψ,

∫ ⊕

B
(−∆)

s/2
k dk g

〉
L2(P×B)

=

〈
ψ,U−1

∫ ⊕

B
(−∆)

s/2
k dk g

〉
L2(R)

,

where we used Theorem A.6 and twice that U : L2(R) → L2(P × B) is unitary, cf.
Lemma A.5. Using that (−∆)s/2 : Hs(R) ⊂ L2(R) → L2(R) is self-adjoint, the assertion
is proved since U−1g ∈ D

(
((−∆)s/2)∗

)
= D((−∆)s/2) = Hs(R).

Armed with Theorem A.9, we get the following result at operator level.

Corollary A.10. The relation

U(D(L)) = D

(∫ ⊕

B
Lk dk

)
holds and

L = U−1

∫ ⊕

B
Lk dk U|D(L).

In particular,

σ(L) = σ

(∫ ⊕

B
Lk dk

)
.

Proof. Let f ∈ D(L) ⊂ Hs(R). Then, for ψ ∈ D
(∫ ⊕

B Lk dk
)
⊂ H,〈∫ ⊕

B
Lk dk ψ,Uf

〉
L2(P×B)

=

∫
B

〈
Lk
(
ψ(·, k)

)
, (Uf)(·, k)

〉
L2(P)

dk

=

∫
B
BLk

[ψ(·, k), (Uf)(·, k)] dk = ⟨ψ,Uf⟩H = BL

[
U−1ψ, f

]
=
〈
U−1ψ,Lf

〉
L2(R) =

〈
ψ,ULf

〉
L2(P×B)
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by Theorem A.9 and Lemma A.5. Using part (a) of Theorem A.4, we conclude

Uf ∈ D

(∫ ⊕

B
Lk dk

)
and

∫ ⊕

B
Lk dk Uf = ULf.

Conversely, let g ∈ D
(∫ ⊕

B Lk dk
)
⊂ H. Then, for ψ ∈ D(L) ⊂ Hs(R),

〈
Lψ,U−1g

〉
L2(R) = BL

[
ψ,U−1g

]
= ⟨Uψ, g⟩H =

∫
B
BLk

[(Uψ)(·, k), g(·, k)] dk

=

∫
B

〈
(Uψ)(·, k), Lk

(
g(·, k)

)〉
L2(P)

dk =

〈
Uψ,

∫ ⊕

B
Lk dk g

〉
L2(P×B)

=

〈
ψ,U−1

∫ ⊕

B
Lk dk g

〉
L2(R)

by Theorem A.9 and Lemma A.5. Using that L is self-adjoint, we conclude

U−1g ∈ D(L) and LU−1g = U−1

∫ ⊕

B
Lk dk g.

As a last step towards σ(L) =
⋃
k∈B σ(Lk) we show that

σ

(∫ ⊕

B
Lk dk

)
=
⋃
k∈B

σ(Lk).

A crucial step towards this is the a-priori closedness of
⋃
k∈B σ(Lk). For this, for l ∈ N,

we set Il := {λl(k) : k ∈ B}. Then, by (A.10),⋃
k∈B

σ(Lk) =
⋃
l∈N

Il. (A.11)

Lemma A.11. The set
⋃
k∈B σ(Lk) is closed.

Proof. Each Il is a compact interval since λl(k) depends continuously on the parameter
k, see Theorem A.20 in Section A.9. Next, we show that

min Il
l→∞−−−→ ∞. (A.12)

For this, we recall that BLk
[u, u] ≥ 1

2

∥∥(−∆)
s/2
k u
∥∥2
L2(P)

since we introduced a shift. There-

fore, by the min-max characterization of eigenvalues, it su�ces to consider the case
α = 0, V = 0. In this case,

{λl(k) : l ∈ N} =
{
|k + j|2s : j ∈ Z

}
,
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and one �nds

min Il = min
k∈B

λl(k) =

(
l − 1

2

)2s

,

whence (A.12) follows. Finally, let (xm)m∈N be a sequence in
⋃
l∈N Il converging to

some x0 ∈ R. By (A.12) and the boundedness of the sequence, we �nd l0 ∈ N with
{xm : m ∈ N}∩ Il = ∅ for all l > l0. Thus, there exists a number m0 ∈ N satisfying that
xm ∈ Im0 for in�nitely many m ∈ N. As the corresponding subsequence converges also
to x0, we conclude x0 ∈ Im0 by the closedness of Im0 . In particular, x0 ∈

⋃
l∈N Il.

Lemma A.12. The relation

σ

(∫ ⊕

B
Lk dk

)
=
⋃
k∈B

σ(Lk)

is true.

Proof. First, let µ ∈
⋃
k∈B σ(Lk), i.e. µ = λl0(k0) for some l0 ∈ N and some k0 ∈ B. Let

ε > 0. By the continuity of k 7→ λl0(k) (see Theorem A.20), we �nd δ > 0 such that
λl0(k) ∈ (µ− ε, µ+ ε) for all k ∈ B ∩ (k0 − δ, k0 + δ). In particular,

σ(Lk) ∩ (µ− ε, µ+ ε) ⊃ {λl0(k)} ≠ ∅

for all k ∈ B ∩ (k0 − δ, k0 + δ), whence (with λ denoting the Lebesgue measure)

λ
(
{k ∈ B : σ(Lk) ∩ (µ− ε, µ+ ε) ̸= ∅}

)
≥ λ

(
B ∩ (k0 − δ, k0 + δ)

)
> 0.

Part (b) of Theorem A.4 now implies µ ∈ σ
( ∫ ⊕

B Lk dk
)
. Conversely, let µ ∈ R \⋃

k∈B σ(Lk). By Lemma A.11 we �nd ε0 > 0 satisfying that |ν − µ| ≥ ε0 for all
ν ∈

⋃
k∈B σ(Lk). In particular,

σ(Lk) ∩ (µ− ε0, µ+ ε0) = ∅

for k ∈ B, whence

λ
(
{k ∈ B : σ(Lk) ∩ (µ− ε0, µ+ ε0) ̸= ∅}

)
= λ(∅) = 0.

Again, part (b) of Theorem A.4 implies µ ∈ R \ σ
( ∫ ⊕

B Lk dk
)
.

Combining Corollary A.10 and Lemma A.12, we obtain the main result of this section.

Theorem A.13. Let s ∈ (1/2, 1), α ∈ R and V ∈ L∞(R,R) be 2π-periodic. Further, let
L = (−∆)s + V (x) + αδper(x) and Lk = (−∆)sk + V (x) + αδ(x) for k ∈ B. Then,

σ(L) =
⋃
k∈B

σ(Lk).
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Remembering (A.11), we can write the last equation also as

σ(L) =
⋃
l∈N

Il.

Thus, we proved the so-called band structure of the spectrum of L, i.e. σ(L) is a
countable union of compact intervals.

A.6. Multidimensional spectral theory

As stated before, for simplicity we restricted the previous considerations to one dimen-
sion. Here, we provide a multidimensional generalization.

We start with the analysis of the operator L = (−∆)s + V (x) + αδper(xn). Now we
assume s ∈ (1/2, 1), α ∈ R and that V ∈ L∞(Rn,R) is 2π-periodic in x1, ..., xn. First we
de�ne the corresponding sesquilinear form BL : Hs(Rn)×Hs(Rn) → C by

BL[u, v] :=

∫
Rn

|ξ|2sû(ξ)v̂(ξ) dξ+
∫
Rn

V (x)u(x)v(x) dx+α
∑
l∈Z

∫
Rn−1

u(x′, 2πl)v(x′, 2πl) dx′.

By Theorem A.3 we �nd for any ε > 0, l ∈ Z and m ∈ Zn−1,

∥u(·, 2πl)∥2L2(Pn−1+2πm) ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(Pn+2π(l,m)) + ε2s[u]2Hs(Pn+2π(l,m))

)
(A.13)

for a constant C = C(n, s) > 0. Therefore, using (A.1) we �nd,∑
l∈Z

∥u(·, 2πl)∥2L2(Rn−1) =
∑
l∈Z

∑
m∈Zn−1

∥u(·, 2πl)∥2L2(Pn−1+2πm)

≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(Rn) + ε2s

∥∥(−∆)
s/2u
∥∥2
L2(Rn)

)
for a new constant C = C(n, s) > 0. From here, we can proceed as in one dimension, in
order to see that BL is semibounded and closed.

Next, we introduce the associated periodicity cell operators Lk = (−∆)sk + V (x) +
αδ(xn), k ∈ Bn. The corresponding sesquilinear form BLk

: Hs
k(Pn) × Hs

k(Pn) → C is
de�ned by

BLk
[u, v] :=

∑
l∈Zn

|k + l|2sûk,lv̂k,l +
∫
Pn

V (x)u(x)v(x) dx+ α

∫
Pn−1

u(x′, 0)v(x′, 0) dx′.
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Combining (A.13) for l = 0,m = 0 and (A.4), we �nd, for u ∈ Hs
k(Pn),

∥u(·, 0)∥2L2(Pn−1) ≤ C
((
ε2s + ε−

2s/2s−1
)
∥u∥2L2(Pn) + ε2s

∥∥(−∆)
s/2
k u
∥∥2
L2(Pn)

)
.

Again, by proceeding as in one dimension, we see that BLk
is semibounded and closed.

Next, we present a multidimensional generalization of Theorem A.13. We omit the
proof since the main ideas are completely covered by the one-dimensional case. We only
note that the Floquet transformation now reads

U : L2(Rn) → L2(Pn × Bn), (Uf)(x, k) =
∑
m∈Zn

f(x− 2πm)e2πik
Tm.

Theorem A.14. Let s ∈ (1/2, 1), α ∈ R and V ∈ L∞(Rn,R) be 2π-periodic in x1, ..., xn.
Further, let L = (−∆)s+V (x)+αδper(xn) and Lk = (−∆)sk+V (x)+αδ(xn) for k ∈ Bn.
Then,

σ(L) =
⋃
k∈Bn

σ(Lk).

The restriction s > 1/2 is only due to the delta potential term. In fact, in the case
α = 0, we have the following result. Again, we omit the proof.

Theorem A.15. Let s ∈ (0, 1) and V ∈ L∞(Rn,R) be 2π-periodic in x1, ..., xn. Further,
let L = (−∆)s + V (x) and Lk = (−∆)sk + V (x) for k ∈ Bn. Then,

σ(L) =
⋃
k∈Bn

σ(Lk).

A.7. One-dimensional examples

Floquet-Bloch theory does not answer the question whether gaps really occur in the
spectrum or whether the bands actually overlap. Using examples, we show the existence
of at least one spectral gap in the fractional case s ∈ (1/2, 1). We work again in one
dimension.

Note that Lku = L−ku. From this, we conclude λl(k) = λl(−k). Therefore, it su�ces
to consider k ∈ [0, 1/2] instead of k ∈ B, i.e. Il = {λl(k) : k ∈ [0, 1/2]}.

As a �rst example, we set V = 0 and α = 2π, i.e. L = (−∆)s + 2πδper(x) and
Lk = (−∆)sk + 2πδ(x). Calculating the eigenvalues of Lk results in an in�nite system of
equations,

|k + l|2sûk,l +
√
2πu(0) = λûk,l for l ∈ Z.

Using u(0) = (2π)−1/2
∑

j∈Z ûk,j, it su�ces to consider(
λ− |k + l|2s

)
ûk,l =

∑
j∈Z

ûk,j, (A.14)
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whence

ûk,l =
1

λ− |k + l|2s
∑
j∈Z

ûk,j

for λ ̸= |k + l|2s. From this, one �nds that for λ ̸= |k + l|2s,

λ ∈ σ(Lk) ⇔
∑
l∈Z

1

λ− |k + l|2s
= 1,

and that λ is a simple eigenvalue in this case. The case in which λ = |k + l|2s for an
integer l ∈ Z must be treated separately. One can check that this leads to no additional
eigenvalues for k ∈ (0, 1/2), but to the additional simple eigenvalues |l|2s, l ∈ N in the
case k = 0 and to the additional simple eigenvalues |1/2+ l|2s, l ∈ N0 in the case k = 1/2.
Indeed, if for example k = 0 and λ = 0, then (A.14) reduces to −|l|2sû0,l =

∑
j∈Z û0,j for

l ∈ Z. For l = 0 this leads to
∑

j∈Z û0,j = 0, which then for l ̸= 0 implies û0,l = 0. But
from

∑
j∈Z û0,j = 0, we then also �nd û0,0 = 0, i.e. λ = 0 is no eigenvalue for k = 0. If

in contrast λ = 1, then we �nd again
∑

j∈Z û0,j = 0 (this time for l = ±1), but only that
û0,l = 0 for l ̸= ±1. Hence, û0,−1 + û0,1 = 0, i.e. λ = 1 is a simple eigenvalue for k = 0.

We can interpret

D(k, λ) := 1 +
∑
l∈Z

1

|k + l|2s − λ

as some kind of in�nite determinant. For more information on in�nite determinants
appearing in such a context (in the non-fractional case), we refer the reader to [40,
Section 2.3]. We also note that∑

l∈Z

1

|k + l|2 − λ
=

π

2
√
λ

(
cot(π(k −

√
λ))− cot(π(k +

√
λ))
)
, (A.15)

i.e. in the non-fractional case s = 1 it is possible to replace the in�nite series by a
trigonometric term, cf. [40, Section 2.3]. Figure 25 shows a plot of D(1/4, ·) in the non-
fractional case s = 1. The spectrum σ(L1/4) consists exactly of the zeros of D(1/4, ·).
Note that D(k, ·) has the poles

k2s < (1− k)2s < (1 + k)2s < (2− k)2s < (2 + k)2s < ...

for k ∈ (0, 1/2). For k ∈ {0, 1/2} some of the mentioned poles coincide.

Next, we show that there is a spectral gap between I1 and I2, i.e. max I1 < min I2.
First, we observe that D(k, λ) → 1 as λ → −∞ and that D(k, ·) is strictly increasing
in every branch cut. Thus, there is exactly one zero between two adjacent poles. Note
that σ(Lk) consists exactly of these zeros for k ∈ (0, 1/2). In contrast, for k = 1/2, the
spectrum σ(L1/2) also contains all the poles themselves. The same holds for k = 0 except
for the pole at λ = 0. Therefore, 4−s ≤ (1 − k)2s < λ2(k) < (1 + k)2s for k ∈ (0, 1/2].
Combining this with λ2(0) = 1 > 4−s, this results in min I2 > 4−s. Hence, the assertion
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Figure 25. Plot of D(1/4, ·) for s = 1.

is proven once we show that max I1 = 4−s. Clearly, λ1(1/2) = 4−s, whence it remains
to show that λ1(k) ≤ 4−s for k ∈ [0, 1/2). By the monotonicity of D(k, ·), the latter
is the case if D(k, 4−s) ≥ 0 for k ∈ [0, 1/2). In the non-fractional case s = 1, we have
D(k, 4−1) = 1, which follows using (A.15). However, in the fractional case s ∈ (1/2, 1)
the situation is slightly more complicated. The main idea is to use a comparison with
the case s = 1. For k ∈ [0, 1/2) and s ∈ (1/2, 1),

D(k, 4−s) = 1 +
∑
l∈Z

1

|k + l|2s − 4−s

= 1 +
1

k2s − 4−s
+

1

(1− k)2s − 4−s
+

∑
l∈Z\{−1,0}

1

|k + l|2s − 4−s

> 1 +
1

k2s − 4−s
+

1

(1− k)2s − 4−s
+

∑
l∈Z\{−1,0}

1

|k + l|2 − 4−1

= 1 +
1

k2s − 4−s
+

1

(1− k)2s − 4−s
− 1

k2 − 4−1
− 1

(1− k)2 − 4−1
.

Further,

1 +
1

k2s − 4−s
+

1

(1− k)2s − 4−s
− 1

k2 − 4−1
− 1

(1− k)2 − 4−1
≥ 0

⇔ (k2s − 4−s)((1− k)2s − 4−s)(k2 − 4−1)((1− k)2 − 4−1)

+ ((1− k)2s − 4−s)(k2 − 4−1)((1− k)2 − 4−1)
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+ (k2s − 4−s)(k2 − 4−1)((1− k)2 − 4−1)

− (k2s − 4−s)((1− k)2s − 4−s)((1− k)2 − 4−1)

− (k2s − 4−s)((1− k)2s − 4−s)(k2 − 4−1) ≥ 0.

For k ∈ [0, 1/4] and s ∈ (1/2, 1), we rewrite the left side of the last inequality as

((1− k)2s − 4−s)((1− k)2 − 4−1)︸ ︷︷ ︸
≥0

(k2 − 4−1 − k2s + 4−s)

+ (k2s − 4−s)(k2 − 4−1)︸ ︷︷ ︸
≥0

[
((1− k)2s − 4−s)((1− k)2 − 4−1)︸ ︷︷ ︸

≥0

+ (1− k)2 − 4−1 − (1− k)2s + 4−s
]
.

By checking monotonicity in k one can �nd that the remaining terms, i.e. k2 − 4−1 −
k2s + 4−s and (1− k)2 − 4−1 − (1− k)2s + 4−s, are also nonnegative for k ∈ [0, 1/4] and
s ∈ (1/2, 1). On the other hand, for k ∈ [1/4, 1/2) and s ∈ (1/2, 1), we use the representation

[
3(k2s − 4−s)((1− k)2s − 4−s) + (1− k)2s + k2s − 2 · 4−s︸ ︷︷ ︸

=:h(k,s)

]
(k − 2−1)2(k + 2−1)

(
k − 3

2

)
︸ ︷︷ ︸

≤0

+ 2(4−s − k2s)((1− k)2s − 4−s)(k − 2−1)4︸ ︷︷ ︸
≥0

,

whence it su�ces to show that h(k, s) ≤ 0. We have

1

2s

∂h

∂k
(k, s) = 3k2s−1(1− k)2s−1(1− 2k) + (3 · 4−s − 1)((1− k)2s−1 − k2s−1)

≥ 3k2s−1(1− k)2s−1(1− 2k)− 4−1((1− k)2s−1 − k2s−1)

= 3k2s−1(1− k)2s−1(1− 2k)− 4−1

∫ 1−k

k

(2s− 1)x2s−2 dx

≥ 3k2s−1(1− k)2s−1(1− 2k)− 4−1(2s− 1)k2s−2(1− 2k)

= k2s−2(1− 2k)︸ ︷︷ ︸
≥0

(3k(1− k)2s−1 − 4−1(2s− 1))

and by checking monotonicity in k one can show that

3k(1− k)2s−1 − 4−1(2s− 1) ≥ 0

for k ∈ [1/4, 1/2) and s ∈ (1/2, 1). The assertion �nally follows since h(2−1, s) = 0.
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As a second example, we set V = 0 and α = −2π, i.e. L = (−∆)s − 2πδper(x) and
Lk = (−∆)sk − 2πδ(x). Now, we set

D̃(k, λ) := 1−
∑
l∈Z

1

|k + l|2s − λ

and observe that, for λ ̸= |k + l|2s,

λ ∈ σ(Lk) ⇔ D̃(k, λ) = 0

and that λ is a simple eigenvalue in this case. Again, the case in which λ = |k + l|2s for
an integer l ∈ Z must be treated separately and leads to no additional eigenvalues for
k ∈ (0, 1/2), but to the additional simple eigenvalues |l|2s, l ∈ N in the case k = 0 and to
the additional simple eigenvalues |1/2 + l|2s, l ∈ N0 in the case k = 1/2. Figure 26 shows

a plot of D̃(1/4, ·) in the non-fractional case s = 1.

Figure 26. Plot of D̃(1/4, ·) for s = 1.

Again, we show that there is a spectral gap between I1 and I2. First, we observe
that D̃(k, λ) → 1 as λ → −∞ and that D̃(k, ·) is strictly decreasing in every branch
cut. Therefore, 0 ≤ k2s < λ2(k) < (1 − k)2s for k ∈ [0, 1/2). Combining this with
λ2(1/2) = 4−s > 0, this results in min I2 > 0. Hence, the assertion is proven once we
show that max I1 < 0. Clearly, λ1(0) < 0, whence it remains to show that λ1(k) < 0

for k ∈ (0, 1/2]. By the monotonicity of D̃(k, ·), the latter is the case if D̃(k, 0) < 0 for
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k ∈ (0, 1/2]. In fact, for k ∈ (0, 1/2] and s ∈ (1/2, 1),

D̃(k, 0) = 1−
∑
l∈Z

1

|k + l|2s
< 1− 1

k2s
≤ 1− 4s < −1,

whence the assertion follows.

A.8. Proofs of Theorem A.1 and Theorem A.3

This section contains the proofs of Theorem A.1 and Theorem A.3.

Proof of Theorem A.1. By the Gagliardo-Nirenberg inequality (see [44]), for w ∈ Hs(R),

∥w∥L∞(R) ≤M∥w∥1−
1
2s

L2(R)∥(−∆)
s/2w∥

1
2s

L2(R)

with a constant M =M(s) > 0. Using Young's inequality, we conclude

|w(0)|2 ≤M2
(
ε−

2s/2s−1∥w∥2L2(R) + ε2s∥(−∆)
s/2w∥2L2(R)

)
.

Now let u ∈ C∞
c (Rn). Then,

∥u(·, 0)∥2L2(Rn−1) =

∫
Rn−1

|u(x′, 0)|2 dx′

≤M2

∫
Rn−1

(
ε−

2s/2s−1∥u(x′, ·)∥2L2(R) + ε2s
∥∥(−∆)

s/2[u(x′, ·)]
∥∥2
L2(R)

)
dx′

(∗)
= M2

(
ε−

2s/2s−1∥u∥2L2(Rn) + ε2s
∥∥|ξn|sû(ξ)∥∥2L2(Rn)

)
≤M2

(
ε−

2s/2s−1∥u∥2L2(Rn) + ε2s
∥∥|ξ|sû(ξ)∥∥2

L2(Rn)

)
≤ D

(
ε−

2s/2s−1∥u∥2L2(Rn) + ε2s[u]2Hs(Rn)

)
for a constant D = D(n, s) > 0, whence the general assertion follows by an approxi-
mation argument. Note that the equality (∗) is not obvious and needs an explanation,
which follows now. For this, we �rst notice that

F [u(x′, ·)](ξn) = F−1[û(·, ξn)](x′)

for x′ ∈ Rn−1 and ξn ∈ R by the (n− 1)-dimensional Fourier inversion formula. In fact,

F−1[û(·, ξn)](x′) =
1

(2π)
n−1
2

∫
Rn−1

û(ξ′, ξn)e
iξ′Tx′ dξ′

=
1

(2π)
n−1
2

∫
Rn−1

1

(2π)
n
2

∫
Rn

u(y′, yn)e
−i(y′,yn)T(ξ′,ξn) d(y′, yn) e

iξ′Tx′ dξ′
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=
1

(2π)
1
2

∫
R

1

(2π)n−1

∫
Rn−1

∫
Rn−1

u(y′, yn)e
−iy′Tξ′eiξ

′Tx′ dy′ dξ′︸ ︷︷ ︸
=u(x′,yn)

e−iynξn dyn

= F [u(x′, ·)](ξn).

Using the Plancherel identity this �nally results in∫
Rn−1

∥∥(−∆)
s/2[u(x′, ·)]

∥∥2
L2(R) dx

′ =

∫
Rn−1

∥∥|ξn|sF [u(x′, ·)](ξn)
∥∥2
L2(R) dx

′

=

∫
Rn−1

∥∥|ξn|sF−1[û(·, ξn)](x′)
∥∥2
L2(R) dx

′

=

∫
R

∥∥|ξn|sF−1[û(·, ξn)](x′)
∥∥2
L2(Rn−1)

dξn

=

∫
R

∥∥|ξn|sû(ξ′, ξn)∥∥2L2(Rn−1)
dξn

=
∥∥|ξn|sû(ξ)∥∥2L2(Rn)

.

Proof of Theorem A.3. From [13, Theorem 5.4] it follows that Pn is an extension domain
forHs, i.e. there is a constantM =M(n, s) > 0 such that for every function u ∈ Hs(Pn)
there exists ũ ∈ Hs(Rn) with ũ|Pn = u and |||ũ|||Hs(Rn) ≤ M |||u|||Hs(Pn). Here, we need
to know that the last inequality in fact decomposes in [ũ]Hs(Rn) ≤ L|||u|||Hs(Pn) and
∥ũ∥L2(Rn) ≤ L∥u∥L2(Pn) for a constant L = L(n, s) > 0. This follows easily by studying
the proofs of [13, Section 5]. Using Theorem A.1 we conclude

∥u(·, 0)∥2L2(Pn−1) ≤ ∥ũ(·, 0)∥2L2(Rn−1) ≤ D
(
ε−

2s/2s−1∥ũ∥2L2(Rn) + ε2s[ũ]2Hs(Rn)

)
≤ DL2

(
ε−

2s/2s−1∥u∥2L2(Pn) + ε2s|||u|||2Hs(Pn)

)
= C

(
(ε2s + ε−

2s/2s−1)∥u∥2L2(Pn) + ε2s[u]2Hs(Pn)

)
for a constant C = C(n, s) > 0.

A.9. Continuity of eigenvalue functions

We follow [35, Chapter 4] to prove that the eigenvalues λl(k) of the periodicity cell
operators Lk depend continuously on the parameter k. For this we �rst introduce the
concept of generalized convergence for closed operators, which generalizes the norm
convergence of bounded operators.

De�nition A.16.

(a) For Banach spaces X, Y the set of all bounded operators A : X → Y will be
denoted by L(X, Y ) and the set of all closed operators T : D(T ) ⊂ X → Y by
C (X, Y ). In particular, C (X) := C (X,X).
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(b) For any two closed subspaces M,N of a Banach space Z we set

δ(M,N) :=

0 , M = {0}
sup

u∈M,∥u∥Z=1

dist(u,N) , M ̸= {0}

and
δ̂(M,N) := max{δ(M,N), δ(N,M)}.

(c) If T, S ∈ C (X, Y ), their graphs G(T ), G(S) are closed subspaces of X × Y and we
de�ne

δ(T, S) := δ(G(T ), G(S))

as well as
δ̂(T, S) := δ̂(G(T ), G(S)) = max{δ(T, S), δ(S, T )}.

(d) We say that Tn ∈ C (X, Y ) converges to T ∈ C (X, Y ) in the generalized sense if

δ̂(Tn, T ) → 0.

We have the following lemma, see Theorems 2.23 and 3.1 in [35, Chapter 4].

Lemma A.17.

(a) If Tn ∈ C (X, Y ) converges to T ∈ C (X, Y ) in the generalized sense and if
A ∈ L(X, Y ), then Tn + A→ T + A in the generalized sense.

(b) Let T ∈ C (X) and let Γ be a compact subset of the resolvent set ρ(T ). Then there

is an ε > 0 such that Γ ⊂ ρ(S) for any S ∈ C (X) with δ̂(S, T ) < ε. In particular,
Γ ⊂ ρ(Tn) for su�ciently large n ∈ N if Tn → T in the generalized sense.

Next, we show the continuity of the map B → C (L2(P)), k 7→ Lk.

Lemma A.18. Let kn ∈ B converge to k ∈ B. Then, Lkn → Lk in the generalized sense.

Proof. By part (a) of Lemma A.17 it su�ces to show that Tn := (−∆)skn+αδ(x) converges
to T := (−∆)sk+αδ(x) in the generalized sense. For this, we �rst show that δ(T, Tn) → 0.
Let u = (f, Tf) ∈ G(T ) with

∥u∥2L2(P)×L2(P) = ∥f∥2L2(P) + ∥Tf∥2L2(P) = 1.

Then, it is easy to see that
(
ei(kn−k)(·)f, Tne

i(kn−k)(·)f
)
∈ G(Tn), whence

|dist(u,G(Tn))|2 ≤ ∥f − ei(kn−k)(·)f∥2L2(P) + ∥Tf − Tne
i(kn−k)(·)f∥2L2(P).

Further,

∥f − ei(kn−k)(·)f∥2L2(P) ≤ sup
x∈(0,2π)

|1− ei(kn−k)x|2∥f∥2L2(P) ≤ 4π2|kn − k|2 n→∞−−−→ 0.
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On the other hand,

∥Tf − Tne
i(kn−k)(·)f∥2L2(P) = ∥Tf − ei(kn−k)(·)Tf + ei(kn−k)(·)Tf − Tne

i(kn−k)(·)f∥2L2(P)

≤ 2∥Tf − ei(kn−k)(·)Tf∥2L2(P) + 2∥ei(kn−k)(·)Tf − Tne
i(kn−k)(·)f∥2L2(P).

For the �rst part, we have

∥Tf − ei(kn−k)(·)Tf∥2L2(P) ≤ sup
x∈(0,2π)

|1− ei(kn−k)x|2∥Tf∥2L2(P) ≤ 4π2|kn − k|2 n→∞−−−→ 0.

By taking into account

ei(kn−k)(·)Tf =
1√
2π

∑
l∈Z

(
|k + l|2sf̂k,l +

α√
2π
f(0)

)
ei(kn+l)(·)

and

Tne
i(kn−k)(·)f =

1√
2π

∑
l∈Z

(
|kn + l|2sf̂k,l +

α√
2π
f(0)

)
ei(kn+l)(·)

we conclude for the second part,

∥ei(kn−k)(·)Tf − Tne
i(kn−k)(·)f∥2L2(P) =

∑
l∈Z

∣∣|kn + l|2s − |k + l|2s
∣∣2|f̂k,l|2.

Using the mean value theorem, we �nd∣∣|kn + l|2s − |k + l|2s
∣∣2 ≤ 4s2(1 + |k + l|)4s−2|kn − k|2 ≤ 4s2(1 + |k + l|)2s|kn − k|2.

Hence,

∥ei(kn−k)(·)Tf − Tne
i(kn−k)(·)f∥2L2(P) ≤ 4s2|kn − k|2

∑
l∈Z

(1 + |k + l|)2s|f̂k,l|2

≤ 8s2|kn − k|2
(
∥(−∆)

s/2
k f∥

2
L2(P) + ∥f∥2L2(P)

)
≤ 8s2|kn − k|2

(
2⟨Tf, f⟩L2(P) + (2C2 + 1)∥f∥2L2(P)

)
≤ 8s2|kn − k|2

(
2∥Tf∥L2(P)∥f∥L2(P) + (2C2 + 1)∥f∥2L2(P)

)
≤ 8s2max{2C2 + 3, 2}|kn − k|2 n→∞−−−→ 0

with the constant C2 = C2(α, s) from (A.9). Thus, δ(T, Tn) → 0. By a similar calcula-

tion, δ(Tn, T ) → 0, whence δ̂(Tn, T ) → 0.

Before we can prove the continuity of the eigenvalue functions, we need a �nal lemma
(see � 3.5 and Theorem 3.16 in [35, Chapter 4]). For an operator T ∈ C (X) we denote
by σd(T ) its discrete spectrum (consisting of all isolated eigenvalues in σ(T ) with �nite
algebraic multiplicity).
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Lemma A.19. Let Tn ∈ C (X) converge to T ∈ C (X) in the generalized sense. Further,
let λ0 ∈ σd(T ) with algebraic multiplicity ma(λ0, T ) ∈ N and ε > 0 such that

σ(T ) ∩Bε(λ0) = {λ0}.

Then, for su�ciently large n ∈ N,

σ(Tn) ∩Bε(λ0) ⊂ σd(Tn)

and ∑
λ∈σ(Tn)∩Bε(λ0)

ma(λ, Tn) = ma(λ0, T ).

Theorem A.20. Let l0 ∈ N and kn ∈ B converge to k0 ∈ B. Then, λl0(kn) → λl0(k0).

Proof. First of all, we have λl(k) ≥ 1/2 since we introduced a shift. For k ∈ B we denote
by (µl(k))l∈N the strictly increasing sequence of eigenvalues from Lk which counts each
eigenvalue exactly once and we choose l′ ≤ l0 with µl′(k0) = λl0(k0). Moreover, we
choose ε1, ..., εl′ > 0 such that the intervals Jj := (µj(k0) − εj, µj(k0) + εj) are disjoint
and such that µl′(k0)+ εl′ < d := 2−1(µl′(k0)+µl′+1(k0)) as well as µ1(k0)− ε1 > 0. Now
let ε ∈ (0, εl′ ] be arbitrary. The set

Γ := [0, d] \
(
(µl′(k0)− ε, µl′(k0) + ε) ∪

l′−1⋃
j=1

Jj

)

is a compact subset of ρ(Lk0), thus a subset of ρ(Lkn) for n ≥ N = N(ε) by part (b) of
Lemma A.17 and Lemma A.18. Next, we use Lemma A.19. For j = 1, ..., l′ − 1 we �nd
nj ∈ N such that, for n ≥ nj, σ(Lkn)∩Jj consists of eigenvalues from Lkn whose multiplic-
ities add up to that of µj(k0). Further, we choose nl′ = nl′(ε) ∈ N such that, for n ≥ nl′ ,
σ(Lkn)∩(µl′(k0)−ε, µl′(k0)+ε) consists of eigenvalues from Lkn whose multiplicities add
up to those of µl′(k0). Finally, let n ≥ n0 := max{N, n1, ..., nl′}. The operator Lkn has
no negative eigenvalue since λl(k) ≥ 1/2. Further, since n ≥ N , there are no eigenvalues
of Lkn in Γ. In what follows we write ml := ma(µl(k0), Lk0). Since n ≥ n1, the interval
J1 contains exactly the eigenvalues λ1(kn), ..., λm1(kn). Similarly, since n ≥ nj, the in-
terval Jj contains exactly the eigenvalues λm1+...+mj−1+1(kn), ..., λm1+...+mj−1+mj

(kn) for
j = 2, ..., l′ − 1. Finally, since n ≥ nl′ , the interval (µl′(k0) − ε, µl′(k0) + ε) contains
exactly the eigenvalues λm1+...+ml′−1+1(kn), ..., λm1+...+ml′−1+ml′

(kn). In particular, this
includes λl0(kn) so that |λl0(kn)− λl0(k0)| = |λl0(kn)− µl′(k0)| < ε.
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