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Abstract: The growing demand of society for gas sensors for energy-efficient environmental sensing
stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium
trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays.
TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive
gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air
at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration
(OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as
with heating up to 110 ◦C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that
the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be
governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions
without a UV exposure produced a p-type response that is possibly caused by the enhancement of
the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from
the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which
produced similar responses on individual sensors. We found that the heating up to 110 ◦C reduces
both the sensitivity and selectivity of the sensor array.

Keywords: gas sensor; multisensor array; alcohol; room temperature; UV radiation; benzene;
titanium trisulfide

1. Introduction

One-dimensional (1D) nanostructures, high-aspect-ratio objects where at least one
dimension does not exceed 100 nm, are widely recognized as extremely sensitive material
platforms for gas sensors [1–6]. The research on one-dimensional nanostructures, including
semiconductor nanowires (NWs), nanobelts, and carbon nanotubes, revealed a multitude of
size-dependent electronic, magnetic, optical, and chemical properties that can benefit many
sensing applications. Since one-dimensional nanostructures have a large surface-to-volume
ratio, a significant fraction of their atoms are exposed to analyte species [7]. Another major
advantage of one-dimensional nanostructures related to their morphology/shape is that
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the Debye length, λD, a measure of penetration of the surface electric field into the bulk,
for many semiconductor NWs, is comparable to their radius [8]. As a result, the electronic
properties of NWs are strongly affected by the surface processes, such as doping and
chemical reactions [9]. In particular, binding of analytes to the surface of a sensor material
results in depletion or accumulation of carriers in the bulk of a NW and dramatically
changes its electrical conductivity. These reasons make a sound basis for the NW-based
gas sensors that are capable of detecting gases of interest down to ppb levels even under
environmental conditions [10,11].

More recently, the attention of the materials science community has been drawn to
the large class of two-dimensional (2D) materials, such as graphene and transition metal
dichalcogenides [12]. These materials are typically prepared through exfoliation of layered
van der Waals (vdW) crystals [12] or by the direct growth in a two-dimensional form [13].
Two-dimensional materials also provide a multitude of interesting physical and chemical
properties and have a planar structure, where a large number, if not all, of atoms are
exposed to the environment. These materials combine rather large lateral dimensions with
atomically thin thickness, which makes their properties largely comparable to the one-
dimensional materials. In particular, chemiresistive gas sensors based on two-dimensional
materials became a large and rapidly developing area of research, and many such sen-
sors based on graphene [14], graphene oxide [15], molybdenum disulfide (MoS2) [16],
MXenes [17,18], and other two-dimensional materials have been demonstrated in recent
years [19,20]. However, unlike the one-dimensional structures, in which an electric field
generated by an adsorbed analyte molecule can penetrate a thin NW entirely and largely
affect its electrical conductivity, it would have only a local effect on the electronic transport
through a micrometer-scale flake of a two-dimensional material, whose lateral dimensions
would be much larger than λD. Therefore, decreasing lateral dimensions of a conducting
channel of a sensor based on a two-dimensional material to essentially move towards a
one-dimensional regime could be a strategy to improve the sensor’s sensitivity.

In light of these considerations, when comparing different layered vdW crystals, tita-
nium trisulfide (TiS3), a semiconductor material with a bandgap of ~1 eV [21,22], might
be considered as a promising material for gas sensor applications. Similar to very ex-
tensively studied transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2
and WSe2 [23,24], the titanium trisulfide crystals have a layered structure with weak vdW
bonding between layers [25]. However, unlike layers of TMDs which exhibit a strong
in-plane covalent bonding, the layers of TiS3 consist of one-dimensional chains that also
have weak vdW-like interactions between them [26]. Therefore, mechanical exfoliation
of bulk TiS3 crystals typically results not in randomly shaped two-dimensional flakes, as
in case of TMDs, but in high-aspect-ratio nanoribbons [26–28], which can be viewed as
semiconducting NWs. Furthermore, TiS3 is widely recognized as a very promising semi-
conductor material with high theoretically predicted mobility [29,30], highly anisotropic
electronic and optoelectronic properties [31,32], low contact resistances with conventional
contact metals [33], and intriguing low-temperature physics [34]. The remarkable electronic
characteristics of TiS3 crystals justify their investigation for gas sensing applications.

A number of successful gas sensor designs based on one-dimensional materials em-
ployed random networks of NWs that were drop-casted on pre-patterned electrodes from
a solution [35,36]. Therefore, we have considered this approach to test the chemiresistive
properties of TiS3 NWs grown via a high-temperature reaction between titanium and sulfur
in vacuum according to the previously developed protocols [37–40]. Herein, we report
on chemiresistive properties of TiS3 NWs upon their exposure to isopropanol, which was
used as a model analyte, mixed with synthetic air at part-per-million (ppm) concentrations.
Isopropanol is widely used in everyday life, but could be toxic at high concentrations, re-
sulting in poisoning, respiratory problems, eye irritation, and allergic skin reaction [41,42].
Therefore, the development of gas sensors for a reliable detection of isopropanol is an
important technological problem.
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2. Materials and Methods

To prepare the TiS3 NWs, we used a 0.25-mm-thick titanium foil (99.99+%, Alfa Aesar,
Haverhill, MA, USA) and a sulfur powder (analytical grade, Sigma-Aldrich, St. Louis, MO,
USA), which was taken in a 10% excess to the Ti:S stoichiometric ratio of 1:3 to ensure
the absence of TiS2 byproduct. Both reactants were combined in a quartz ampoule and
sealed under a vacuum of about 0.2 Torr. The ampoule was placed in a tube furnace in
a way that it had a small temperature gradient and annealed at about 550 ◦C for 5 days.
The procedure resulted in the formation of needle-like TiS3 crystals on the Ti foil and on
the surface of the quartz ampoule, which was closer to the hotter part of the tube furnace.
Upon cooling the furnace, the excess sulfur accumulated on the opposite side of the ampule.
The details on the growth and materials characterization of TiS3 whiskers can be found in
our previous works [26,28]. Figure 1a shows the optical photograph of needle-like TiS3
crystals along with a scheme of the crystal structure of TiS3. These crystals were dispersed
in ethanol (99.8%, Sigma-Aldrich), which was first dried using molecular sieves to reduce
the water content, and then subjected to ultrasonication. As we extensively discussed
in our previous works, the basic building blocks of TiS3 crystals are 1D chains that are
assembled into a three-dimensional crystal structure through weak interactions [26,28]. It
was previously shown that these 1D chains could be easily separated from each other by
mechanical exfoliation, which splits bulk TiS3 crystals into thin nanoribbons with their long
axes corresponding to the direction of 1D chains [26]. Similarly, the ultrasonication-assisted
exfoliation of TiS3 crystals splits them along the 1D chain direction, as shown schematically
in the inset in Figure 1b. The resulting suspension (Figure 1b) was collected by a pipette
dispenser, drop-casted on the surface of a multielectrode chip, as drawn in the scheme
in Figure 1c, and dried in ambient conditions. The density of the TiS3 nanowires in the
drop-casted film was adjusted to yield the output resistance in the kOhm–MOhm range,
which was appropriate for the electronics utilized in this study.
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The multielectrode sensor chip was fabricated on an alumina substrate, which was 
equipped with 17 coplanar electrodes (50 μm × 4 mm) with a spacing of 50 μm [43]. The front 
side of the chip also contained two meander-shaped thermoresistors. The metallization of the 
chip was performed by Au printing; the thickness of the gold layers was about 10 μm. Each 
pair of adjacent electrodes and the chip area in between constituted an individual chemiresis-
tive sensor. Thus, the entire chip contained 16 sensors as a multisensor array. The electrodes 
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Figure 1. Fabrication of chemiresistive gas sensors based on TiS3 NWs. (a) Optical photograph
of as-grown TiS3 crystals. The scheme shows a fragment of the crystal structure of TiS3. Yellow
spheres—sulfur; black spheres—titanium. (b) Optical photograph of the dispersion of TiS3 crystals in
ethanol. The scheme shows 1D TiS3 chains that were exfoliated from bulk crystals by ultrasonication.
(c) Optical photograph of a multielectrode sensor chip. The scheme shows the drop-casting of the
TiS3 suspension on the electrode area of the chip.

The multielectrode sensor chip was fabricated on an alumina substrate, which was
equipped with 17 coplanar electrodes (50 µm × 4 mm) with a spacing of 50 µm [43]. The
front side of the chip also contained two meander-shaped thermoresistors. The metal-
lization of the chip was performed by Au printing; the thickness of the gold layers was
about 10 µm. Each pair of adjacent electrodes and the chip area in between constituted an
individual chemiresistive sensor. Thus, the entire chip contained 16 sensors as a multisen-
sor array. The electrodes and the thermoresistors were routed to a multi-pin socket (Erni
Electronics, Adelberg, Germany) for connecting to the readout electronics of a KAMINA
unit [44]. The optical photograph of the chip is shown in Figure 1c. Similar chips were
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previously successfully employed in studies of a great variety of nanomaterials, such as
graphene [14], graphene oxide [15,45], graphene nanoribbons [46,47], and MXenes [18].

TiS3 NWs were chemically characterized by X-ray photoelectron spectroscopy (XPS).
For this purpose, the nanowires were immobilized onto Au-coated silicon substrates, and
the XPS measurements were performed using a K-Alpha+ XPS spectrometer (Thermo
Fisher Scientific, East Grinstead, UK). The details of the data acquisition and processing via
the Thermo Avantage software are described elsewhere [48]. All samples were analyzed
using a microfocused, monochromated Al Kα X-ray source with a 400 µm spot size. The
spectra were fitted with one or more Voigt profiles. For intense peaks and/or peaks clearly
evidenced by the peak shape, the binding energy uncertainty was around ±0.1 eV. In case
of weak peaks and no direct justification by the peak shape, the uncertainty was set to
±0.2 eV. The analyzer transmission function, Scofield sensitivity factors [49], and effective
attenuation lengths (EALs) for photoelectrons were applied for quantification. EALs were
calculated using the standard TPP-2M formalism [50]. All spectra were referenced to the
C1s peak in hydrocarbons at 285.0 eV binding energy [51], controlled by means of the
well-known photoelectron peaks of metallic Cu, Ag, and Au.

The crystal structure of the TiS3 NWs was evaluated via X-ray diffraction (XRD)
analysis using a two-circle diffractometer (Stadi P, STOE Co., Darmstadt, Germany) in the
Bragg-Brentano geometry, equipped with a Ge (111) monochromator and using MoKα

radiation, λ = 0.70926 Å [52].
The transmission electron microscopy (TEM) images were acquired using a Tecnai

Osiris scanning transmission electron microscope (FEI, Hillsboro, OR, USA) equipped
with a HAADF detector and a X-FEG high brightness Schottky field emission gun. The
accelerating voltage was 200 kV. The TiS3 NWs were visualized on lacey-carbon-covered
300-mesh copper grids.

The TiS3 NW-based chip was inspected with an optical microscope at ×7.5–×500
magnifications. The morphology of the TiS3 layer on the chip was also visualized by
scanning electron microscopy (SEM, Supra 60VP, Carl Zeiss AG, Jena, Germany) at the
accelerating voltage of 5.0 kV.

The gas sensing experiments were carried out using a homemade gas delivery setup
that is schematically shown in Figure 2a. It consists of a number of gas lines that were fed
primarily by synthetic air (79 vol. % N2, 21 vol. % O2) from a calibrated source. This carrier
gas was mixed with isopropanol or benzene vapors sourced from calibrated mixtures with
synthetic air (250 ppm) to prepare the test mixtures containing 1-100 ppm concentrations
of the analyte. The reported measurements were performed in a flow mode in dry air
background. The entire setup was managed by custom software using a personal computer
(PC). The TiS3 NW-based chip was measured in a stainless-steel gas chamber with inlet and
outlet tubes for gas flow (Figure 2b). The front side of the chamber had a quartz window,
through which the chip could be illuminated using an ultraviolet (UV) light emitting diode
(LED), λ = 345 nm [53]. The UV-LED was powered at 0.05 W using a programmable power
supply unit (PN 300, Grundig Digimess, Neu-Isenburg, Germany). For measurements at
elevated temperatures, we placed the gas chamber with a TiS3 NW-based chip on a hotplate
(Ikamag RCT, IKA Labortechnik, Janke & Kunkel GmbH & Co., Staufen im Breisgau,
Germany), as shown in Figure 2c. The operating temperature was monitored with the
chip thermoresistors, which were calibrated using an infrared (IR) camera (MikroSHOT
9010738, Mikron Infrared Inc., Oakland, NJ, USA). A typical IR image of the hotplate under
operation is given in Figure 2d.

During the measurements, the gas flow through the chip was maintained at 500 sccm
by high-precision mass flow controllers (FC, MKS Instruments Deutschland GmbH, Munich,
Germany). The chip was exposed to the analyte mixtures for 60 min and then purged with
air for 120 min. These time intervals were chosen from preliminary studies to not only
measure the sensor response but also to collect enough data for vector signals from the
on-chip multisensor array, which were later analyzed by a pattern recognition technique.
We have tested the gas-sensing properties of TiS3 NWs at room temperature (RT), as well as
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at elevated temperatures of 60± 4 ◦C and 110± 5 ◦C, with and without UV-LED irradiation.
The uncertainties indicated for the elevated temperatures were primarily caused by the
temperature fluctuations of the hotplate. Higher temperatures were not tested to avoid
oxidation of TiS3 nanowires.
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Figure 2. Chemiresistive gas–sensor experimental setup to study TiS3 NWs placed on a multielectrode
chip. (a) Scheme of the gas delivery system that can supply two analytes (Gas 1 and Gas 2) at
controlled concentrations. FC—flow controller. (b) Scheme of the entire gas sensor setup, which
includes a housing chamber, a UV light emitting diode (LED), an external heater, and an electrical
measurement unit. (c) Photograph of the gas sensor setup connected to KAMINA electronics (not
shown). (d) Infrared image of the heated support of the chip chamber for temperature measurements.

The direct current (dc) electrical conductance of the TiS3 NW sensing elements was
read out by PC-managed KAMINA unit electronics with a multiplexing card at a rate
of about 1 Hz for the entire array. The minor variations/spikes in the sensor resistances
appeared primarily due to the fluctuating operation of the hotplate and were smoothed
using the Savitzky-Golay filtration.

The vector signals generated by the on-chip multisensor array toward analytes were
processed with linear discriminant analysis (LDA) [54]. The technique transforms a N-
dimensional raw signal to a reduced (N − 1) space, where N is the number of input classes
for recognition, to maximize the ratio between inter-class and in-class variations. In addition
to class recognition, this method allows a visualization of the results in a comprehensive
manner that is intuitively understandable by a user, which provides an advantage over
other artificial intelligence techniques. The axes in the LDA coordinate system, called LDA
components, indicate features of the vector signals related to the differentiation of the
specific input classes.

3. Results and Discussion
3.1. Physical Characterization of TiS3 NWs

To confirm the formation of TiS3 and verify its purity, we characterized the synthesized
material using X-ray diffraction (XRD) analysis. The resulting XRD pattern of the powdered
sample of TiS3 NWs is shown in Figure 3a and demonstrates sharp and intense peaks,
indicating high crystallinity of the sample. All reflections of the XRD pattern were indexed
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using the P21/m space group and the arrangement of atoms corresponding to the ZrSe3-
type structure [26,28]. No other phases were present, confirming the high purity of the
sample. The unit cell parameters were found to be a = 4.9603(11) Å, b = 3.3967(6), c = 8.788 Å,
and β = 97.40(2)◦, which are in line with previous experiments [26,28,55].
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Figure 3. Characterization of TiS3 NWs by means of XRD and XPS techniques. (a) XRD pattern of
a TiS3 powder. (b) XPS survey spectrum taken on the TiS3 material deposited on an Au-coated Si
substrate. The absence of Au-related photoelectron peaks confirms the high density of TiS3 NWs on
the substrate, as can be seen in the optical photograph in the inset (black needles are TiS3 NWs on
an Au-coated Si substrate, green spot shows the area where the XPS spectra were recorded). (c) Ti
2p and (d) S 2p XPS spectra of TiS3 NWs. In panels (c,d), the open circles are the experimental data,
the red curves are the respective envelopes of all peaks, and the green and blue curves are the fitted
doublets of the assigned components.

XPS measurements were performed in order to obtain information on chemical binding
states. The spectra were collected on TiS3 NWs that were deposited on an Au-coated Si
substrate, see the optical photograph in the inset in Figure 3b. The XPS survey spectrum in
Figure 3b further proves the purity of the TiS3 crystals, which is in agreement with the XRD
data. In addition, the absence of Au-related photoelectron peaks in the spectrum (Figure 3b)
suggests a dense coverage of the Au-coated Si substrate with TiS3 NWs. Figure 3c,d
show the high-resolution XPS spectra of the Ti 2p and S 2p regions, respectively. The
binding energies of Ti 2p3/2 = 455.7 eV, S 2p3/2 = 160.9 eV (S2−), and S 2p3/2 = 162.1 eV
(S2

2−) measured for the TiS3 crystals are in a good agreement with data reported in the
literature [33,56]. Additionally found photoelectron peak at Ti 2p3/2 = 458.8 eV and the
corresponding O 1s peak at 530.3 eV (not shown) were attributed to TiO2 and Ti oxysulfide
species, correspondingly [56–58], suggesting a slight oxidation of the samples at the surface
of the TiS3 NWs [56,59]. Taking the atomic concentrations derived from the Ti 2p and S 2p
peaks assigned to TiS3 NWs, we could estimate the near-surface stoichiometry, [S]/[Ti],
to be 3.9 ± 0.1, which exceeds the expected stoichiometry of 3:1. Such a discrepancy is
explained by the surface Ti oxysulfide species which were not accounted in the [S]/[Ti]
stoichiometry calculation.

The solution-exfoliated TiS3 NWs were studied by TEM. The sample was prepared by
depositing the TiS3 NW suspension on a TEM grid and drying it in air. The TEM analysis
revealed the presence of nanowires (Figure 4a) and thin flakes of TiS3 (Figure 4a,b), which
also had elongated shapes. These TEM images demonstrate that ultrasonication in ethanol
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results in very thin TiS3 NWs with high surface area favorable for sensor applications. The
selected area electron diffraction (SAED) image of a typical TiS3 crystal (Figure 4d) shows
distinct reflections, which further confirm the high crystallinity of the sample. The analysis
of the SAED pattern reveals the presence of (100) and (010) reflections, indicating that the
crystals primarily exfoliated perpendicularly to the c-axis of the TiS3 structure.
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Figure 4. TEM analysis of solution-exfoliated TiS3 nanosheets on a lacey-carbon Cu grid. (a–c) TEM
images at different magnifications. (d) SAED pattern of a representative TiS3 crystal.

Following the drop-casting of the TiS3 NWs on the chip, we examined the sensor
devices by optical and electron microscopies. The resultant TiS3 layer had a good ad-
hesion and sufficient mechanical stability. Typical microscopic images taken at various
magnifications are shown in Figure 5.
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Figure 5. Microscopic characterization of the TiS3 NW mat deposited on the multielectrode chip.
(a) Optical photograph of the chip surface. (b–d) SEM images of the NW mat on a substrate with
gold electrodes (bright horizontal stripes) at various magnifications.

As expected, the nanowires with different shapes and diameters are randomly dis-
tributed on a substrate as a stochastic mat. Some large NWs are long enough to entirely
bridge the 50 µm inter-electrode distance (Figure 5d), while many smaller TiS3 nanoribbons
build a network composing the mat layer. The nonuniformity of the mat in terms of the
size, density, and orientation of TiS3 NWs in different areas of the chip translates into a
variation of the electronic properties of different sensor elements. This device-to-device
variation in the on-chip sensor array is important for the electronic nose concept of analyte
recognition (see, for instance, [14,15]), as discussed in Section 3.2.
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3.2. Gas-Sensing Performance of TiS3 NWs

Figure 6 shows the resistance changes of three typical TiS3 NW sensor elements upon
their exposure to isopropanol vapors mixed with synthetic air at concentrations varying
from 1 to 100 ppm. The gas sensing performance was tested at three different temperatures
(RT, 60 ◦C, 110 ◦C) with and without UV radiation. In all regimes except for RT with UV
turned off, the exposure to isopropanol vapor results in a reproducible reduction of the
sensor resistance. A similar effect was observed in sensors based on titanium disulfide
nanosheets when the resistivity of the sensor channel decreased upon exposure to vapors
of reducing gas, H2S, at room temperature [60]. The resistance variation can be expressed
using gas response (S) according to the formula

S =

(
Ra

Rg
− 1

)
× 100%, (1)

where Ra is the resistance of the sensor element when exposed to analyte/air mixture and
Rg is the resistance of the sensor element in background air.
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at room temperature with UV activation (i.e., RT/UV), with the response to 100 ppm of 

Figure 6. The chemiresistive response of TiS3 NW mat-based sensor elements upon their exposure
to isopropanol vapors. (a,b) R(t) transients at 110 ◦C without (a) and with (b) UV-LED radiation.
(d,e) R(t) transients at 60 ◦C without (d) and with (e) UV-LED radiation. (g,h) R(t) transients at RT
without (g) and with (h) UV-LED radiation. The red data points were used for response calculations.
(c,f,i) Response-to-concentration curves at various operation regimes: 110 ◦C (c), 60 ◦C (f), RT (i). The
error bars represent the scattering observed over the sensor array. The green, black and blue curves
indicate resistances of three different sensor elements.

The largest variation of resistance was observed when the sensor array was measured
at room temperature with UV activation (i.e., RT/UV), with the response to 100 ppm of
isopropanol reaching 13.4 ± 5.3%. The scattering in the results accounts for the device-
to-device variation in the on-chip array. A similar response was observed under UV
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irradiation at 60 ◦C with S = 13.9 ± 1.3%. A higher temperature of 110 ◦C diminishes the
effect of the UV, as the observed resistance variation upon exposure to vapors at 100 ppm
concentration results in a response of only 4.5 ± 1.2%. It is worth noting that the measured
concentrations are below the permissible exposure limit established by the United States
Occupational Safety and Health Administration (OSHA) regulations of 400 ppm averaged
over an eight-hour work shift [61].

The dependence of the gas sensor response on the isopropanol concentration, UV
exposure, and temperature is shown in Figure 6c,f,i. A higher concentration of the analyte
results in a higher response for almost all studied conditions except for RT/UV Off. This
behavior is consistent with the XPS results that demonstrated a partial oxidation of the
surface of TiS3 NWs in ambient conditions, implying the presence of the oxygen adspecies.
According to data reported in Ref. [59], the adsorbed oxygen could acquire a free electron
from a NW and become a negatively charged ion, as shown in Equation (2)

O2 + e− → O−2 . (2)

Here, we suggest that O− and/or O2− adspecies would not appear at low temperatures
even under UV activation, as discussed in numerous works on metal oxide-based gas
sensor elements [62]. However, we should clarify what type of oxygen ions is primarily
adsorbed on the TiS3 surface. Accounting for the n-type conductivity of TiS3 [63], the
oxygen adsorption enhances its resistance in the air environment. The adsorbed species
facilitate the appearance of surface defects that lead to electron carrier scattering and lower
carrier mobility, resulting in a higher resistance, as frequently discussed in the literature on
low-dimensional structures, including two-dimensional materials [64].

When the sensor is exposed to isopropanol vapor, the analyte molecules may interact
not only with TiS3 but also with the oxygen adspecies, especially under the conditions
of UV radiation and/or heating. This can be illustrated by the following reaction, which
demonstrates the general pathway of the process and the most anticipated products rather
than a specific stoichiometric reaction mechanism:

2C3H7OH + 9O−2 → 6CO2 ↑ +8H2O ↑ +9e−. (3)

The UV energy and elevated temperatures support this redox reaction. As a result, the
oxygen adspecies are scavenged from the surface of TiS3, while the gaseous products are
removed from the system. In addition to the removal of surface defects, this reaction will
also increase the free electron concentration in TiS3 NWs. Altogether, the NW resistance
drops down, as observed in the experiment. A rather slight change in resistance is reasoned
by a relatively high concentration of electrons primarily available in TiS3. Interestingly,
a tunable n-/p-type electronic behavior, which was highly dependent on the surface
oxidation and oxygen adspecies, was recently demonstrated for HfS3 that is isostructural
and has many similar properties to TiS3 [65].

It is worth noting that the necessity of UV assistance and heating, at least to 60 ◦C, to
support the chemiresistive effect in TiS3 NWs is evidenced by observations of resistance
behavior and the gas response at RT without UV-LED radiation (Figure 6g,i). Indeed, we
see that exposure of the material to isopropanol vapors yields a slight enhancement of the
NW mat resistance, which is opposite to the effect described above. Similar behavior of the
resistance and change in the gas response sign is frequently observed in various materials,
such as metal oxides [66,67] and sulfides [68].

We suggest that the isopropanol molecules adsorb on the TiS3 surface and create more
defect centers similar to oxygen species and further reduce the electron mobility. However,
this effect is less pronounced than the one related to changing a free carrier concentration.

The data shown in Figure 6c demonstrate that increasing the temperature up to
about 110 ◦C limits the effect of UV activation. The observed gas response values become
unaffected by the UV irradiation and decrease to the values measured at 60 ◦C with UV
turned off. This phenomenon might be related to enhancing phonon oscillations in the
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crystal lattice of TiS3 NWs, which does not allow the isopropanol molecules to effectively
adsorb on the surface of TiS3 and interact with oxygen adspecies.

We have compared our experimental chemiresistive responses to isopropanol vapors
with similar recent reports on gas sensors based on metal oxides or their composites with
two-dimensional structures [69–82]. The comparison charts are shown in Figure 7, where
a two-axis diagram accounts for the response magnitude and the operating temperature
when observing the response. Unlike TiS3 sensor studied in this work, the metal oxides need
thermal activation by heating up to temperatures of 200 ◦C of above, which requires more
energy when compared to the RT/UV regime for TiS3 NWs. Therefore, these structures
could be considered in sensor applications where power consumption is a challenging task,
such as for autonomous detection units.
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Figure 7. Comparison of experimentally observed chemiresistive responses of various materials to
isopropanol at 1–100 ppm concentrations at different operating temperatures. The data are extracted
from the literature [69–82] and compared to the results for TiS3 NW mat-based sensor elements.
(1) Responses to 1 ppm of isopropanol. (2) Responses to 10 ppm of isopropanol. (3) Responses to
100 ppm of isopropanol.

In order to explore the possibility of selective detection of isopropanol, we exposed
the TiS3 NW-based chip to benzene vapor, which is known to be more inert to interact
with chemiresistive materials [83]. In the experiments utilizing the TiS3 NW sensors,
we could only reliably register the chemiresistive response to 100 ppm concentration of
benzene vapors.

Figure 8a–c shows the response to benzene vapor at different conditions in comparison
with the results obtained for 100 ppm of isopropanol vapor. At RT with no UV assistance,
the responses to both analytes are comparable, of about 4–5%, and are of p-type, which
agrees with our suggestion that the physisorbed molecules of both types increase scattering
for the electron transport in the TiS3 NW mats. When UV is on, however, the benzene
is not properly activated to interact with the surface oxygen adspecies, as in the case of
isopropanol with the reaction (3). As a result, the response of S = 1.6% is lower than
without UV, and when compared to the response to isopropanol. Still, the sign of the
response is similar to isopropanol, making it difficult to distinguish between the analytes.
It is still interesting to note that the UV activation at about 60 ◦C slightly improves the
response to benzene, up to about 2.1%, with a further significant drop to about 0.6% at the
UV/110 ◦C operation.
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Figure 8. Comparison of chemiresistive responses of TiS3 NW mat-based sensor elements to iso-
propanol and benzene vapors, both at 100 ppm concentration. (a–c) Magnitudes of the chemiresistive
responses at RT (a), 60 ◦C (b), and 110 ◦C (c) with and without UV assistance. (d–i) LDA diagrams of
the vector signals from the on-chip sensor array under various operation regimes: RT (d), 60 ◦C (e),
110 ◦C (f), RT/UV (g), 60 ◦C/UV (h), and 110 ◦C/UV (i). The points are vector signals, ellipses are
built according to a suggestion of normal distribution of data within each class around the gravity
centers with 0.95 confidence level.

We tested selectivity of the analyte recognition by processing all gas sensing responses
from the entire TiS3 NW-based sensor array using LDA algorithms. For this purpose, we
analyzed the responses to isopropanol and benzene, both at 100 ppm concentration, and
used the responses to synthetic air as a reference. The results of the LDA analysis are
plotted in Figure 8d–i for various operation conditions. The points are the vector signals
(resistance distributions) from the array while ellipses are built accounting for Gaussian
distributions of in-class data around the corresponding gravity centers at 0.95 confidence
level. In all cases, the clusters related to benzene and isopropanol are well distinguished
from each other and from the air reference. Still, the Euclidian distances in the LDA space
between the gravity centers of analyte-related clusters and the air-related cluster correlate
with the response magnitudes, i.e., the signals to benzene, which shows weaker responses
than isopropanol, are closer to the signals recorded in air. This behavior is similar to the
chemiresistive response to isopropanol but at a smaller magnitude, which suggests the
fundamental similarities of the interaction of TiS3 surface with the analytes under these
operation conditions. Further insights into the origin of this effect and features related to
various analytes are required [84].

In general, the TiS3 NW mat-based chip functioning without UV activation yields
lower Euclidian distances in this LDA space between clusters related to two analytes, being
16.4 units (un.) at RT, 13.4 un. at 60 ◦C, and 8.1 un. at 110 ◦C. With UV assistance, the
distances are much more pronounced, primarily along the first LDA component axis, and
were found to be 48.8 un. at RT, 24.9 un. at 60 ◦C, and 10.5 un. at 110 ◦C. Therefore, the
spatial variation of the NW mat density in the sensor array is sufficient upon fabrication to
deliver the analyte-specific signals. Further selectivity improvement could be achieved for
these sensor arrays using external impacts (see, for instance, [85]).
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4. Conclusions

The pilot experiments to study a chemiresistive effect in the quasi-1D TiS3 NWs
show that this material is suitable for gas sensors operating at room temperature towards
detecting alcohol vapors in concentrations below the OSHA permissible exposure limit.
The UV radiation of the nanowire surface by LED is shown to effectively facilitate the sensor
response of n-type when the resistance drops upon exposure to isopropanol, in contrast to
the p-type response observed at RT without UV. The reduction of the NW resistance might
be well explained via redox reactions that occur at the surface in accordance with other
research on sulfide materials. At the same time, the enhancement of NW resistance, up to
about 14%, with the analyte under the RT conditions is very similar to effects observed in
two-dimensional materials, such as graphene or MXenes, when the physisorbed molecules
act as surface defects and result in electron scattering. Still, the n-type effect stimulated
by UV irradiation was found to be more pronounced. Finally, we demonstrated the
discrimination of two different analytes, isopropanol and benzene, using the multisensor
approach and analyzing vector signals from all devices in the on-chip sensor array via
pattern recognition algorithms, here LDA. The demonstrated approach for translating
TiS3 crystals into NW-based gas sensor arrays with UV/temperature-tunable responses
and a potential for analyte recognition could be applied to other quasi-one-dimensional
transition metal trichalcogenides that exfoliate into one-dimensional crystals, such as
HfS3 [65], ZrS3 [86], In4Se3 [87], and many others [21,34]. The results of this study may
provide a promising avenue toward UV-activated energy-efficient gas sensors based on
one-dimensional nanomaterials.
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