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Abstract

The search for dark matter (DM) at colliders is founded on the idea of looking for some-
thing invisible. There are searches based on production and decay processes where DM may
reveal itself as missing energy. If nothing is found, our best tool to constrain the parameter
space of many extensions of the Standard Model (SM) with a DM candidate is the Higgs bo-
son. As the measurements of the Higgs couplings become increasingly precise, higher-order
corrections will start to play a major role. The tree-level contribution to the invisible decay
width provides information about the portal coupling. Higher-order corrections also gives us
access to other parameters from the dark sector of the Higgs potential that are not present
in the tree-level amplitude. In this work we will focus on the complex singlet extension of the
SM in the phase with a DM candidate. We calculate the one-loop electroweak corrections to
the decay of the Higgs boson into two DM particles. We find that the corrections are stable
and of the order of a few percent. The present measurement of the Higgs invisible branching
ratio, BR(H → invisible ) < 0.11, already constrains the parameter space of the model at
leading order. We expect that by the end of the LHC the experimental measurement will
require the inclusion of the electroweak corrections to the decay in order to match the ex-
perimental accuracy. Furthermore, the only competing process, which is direct detection, is
shown to have a cross section below the neutrino floor.
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1 Introduction

The search for dark matter (DM) has replaced the search for the Higgs boson as the main
goal of particle physicists. In fact, since the Higgs has been discovered at the Large Hadron
Collider (LHC) by the ATLAS [1] and CMS [2] collaborations, and the Higgs couplings have
been measured with great precision, the attention has turned to the outstanding problems of
the Standard Model (SM). The search for DM is certainly on the top of the list especially
because at this point we cannot even be sure if it comes in the form of an elementary particle.
Therefore, even if collider physics is not the place to prove a DM candidate exits, it can help
us by hinting at some particular directions even if only by excluding the parameter space of
particular models. The Higgs invisible decay measurements are probably one of best quantities
to probe the dark sector of particular models. The branching ratio of Higgs to invisible is now
bounded to below 11% by ATLAS [3]. This number will improve both in the next LHC run and
in the high luminosity stage. This increasing precision will take us further inside the dark sector
of the models.

In this work we discuss the Higgs invisible decay in the Complex Singlet extension of the SM
(CxSM) which amounts to the addition of a complex scalar singlet to the known SM fields while
keeping the SM gauge symmetries. While the tree-level decay of the Higgs into DM involves only
the portal coupling, the one-loop corrections to the decay give us access to the quartic coupling
of the singlet field. Therefore, the one-loop result gives us a more complete understanding of
the Higgs potential. There is a competing/complementary measurement which is the one given
by the direct detection process. The DM-nucleon cross section is only relevant at one-loop
due to a cancellation that renders the tree-level cross section proportional to the DM velocity
and therefore negligible [4, 5]. The one-loop corrections to the direct detection process were
calculated in [6, 7] and compared to the latest experimental results from XENON [8]. We will
discuss the interplay between direct detection and the branching ratio of the invisible Higgs
decay including the electroweak corrections in both processes.

Our analysis will be performed taking into account the most relevant theoretical and exper-
imental constraints on the model. These are collider constraints and also DM constraints. We
will then calculate the next-to-leading order (NLO) electroweak corrections to the invisible decay
width of the SM-like Higgs boson using several renormalization schemes. Once the allowed pa-
rameter space is found, the NLO result will be compared with the leading order (LO) one. The
final goal is to understand if the NLO Higgs branching ratio into two DM particles can be larger
than the experimentally measured value for some regions of the parameter space. Moreover, as
the new data will become available both at the next LHC run and at the high luminosity stage
the Higgs coupling measurements will be more precise and the theoretical calculations need to
match this precision.

The outline of the paper is as follows. In section 2, we will introduce the CxSM together
with our notation. Section 3 is dedicated to the description of the different renormalization
schemes used in this work. Section 4 discusses the experimental and theoretical constraints on
the model. In section 5, the results are presented and discussed. Our conclusions are collected
in section 6. Finally, there are two appendices, the first one where the results for the scalar
pinched self-energies are presented and the second one where we discuss the minima of the
CxSM potential.



2 The CxSM Potential

In this section we introduce the version of the CxSM used in this work. The model is a sim-
ple extension of the SM by the addition of a complex singlet field with zero isospin and zero
hypercharge. As a singlet for the SM gauge group, the scalar field appears only in the Higgs
potential. The SM Higgs couplings will be, however, modified by the rotation angle from the
matrix that relates the scalar gauge eigenstates with their mass eigenstates. The doublet field
Φ and the singlet field S are defined as

Φ =

(
G+

1√
2

(
v +H + iG0

)) , S =
1√
2

(vS + S + i(vA +A)), (1)

where H, S and A are real scalar fields and G+ and G0 are the Goldstone bosons for the Z and
W± bosons. The v, vA and vS are the vacuum expectation values (VEVs) of the corresponding
fields and can all be, in general, non-zero in which case mixing between all three scalar fields
arises. We will, however, focus on a model where a DM candidate is generated by forcing the
potential to be invariant under a symmetry, unbroken by the vacuum. We choose to impose
invariance of the potential under two separate Z2 symmetries acting on S and A, that is, S → −S
and A→ −A. The resulting renormalizable potential is

V =
m2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
+
δ2

2
Φ†Φ|S|2 +

b2
2
|S|2 +

d2

4
|S|4 +

(
b1
4
S2 + c.c.

)
, (2)

where all constants are real. By choosing vA = 0, the A→ −A symmetry remains unbroken and
A is stable, becoming the DM candidate of the model. The other Z2 symmetry is broken since
vS 6= 0 which leads to mixing between S and H. The mass eigenstates of the CP-even field hi
(i = 1, 2) relate to the gauge eigenstates H and S through(

h1

h2

)
= Rα

(
H
S

)
, (3)

where the rotation matrix is given by

Rα =

(
cosα sinα
− sinα cosα

)
≡
(
cα sα
−sα cα

)
. (4)

The mass matrix in the gauge basis (H,S) is given by

M =

(
v2λ
2

δ2vvS
2

δ2vvS
2

d2v2S
2

)
+

(T1
v 0

0 T2
vS

)
, (5)

where the tadpole parameters T1 and T2 are defined via the minimisation conditions,

∂V

∂v
≡ T1 ⇒

T1

v
=
m2

2
+
δ2v

2
S

4
+
v2λ

4
, (6a)

∂V

∂vS
≡ T2 ⇒

T2

vS
=
b1 + b2

2
+
δ2v

2

4
+
v2
Sd2

4
, (6b)
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and at tree level, the minimum conditions are Ti = 0 (i = 1, 2). The mass of the DM candidate
A is given by

m2
A =

−b1 + b2
2

+
δ2v

2

4
+
v2
Sd2

4
= −b1 +

T2

vS
, (7)

while the remaining mass eigenstates are obtained via

D2
hh ≡ RαMRTα , D2

hh = diag(m2
h1 ,m

2
h2) . (8)

Therefore, the scalar spectrum of the CxSM consists of two Higgs bosons, h1 and h2, one of
which is the SM-like Higgs with a mass of 125 GeV, and one DM scalar, which we call A. Since
the mixing between the two scalars is introduced only via the rotation angle, the couplings of
the two Higgs bosons to the remaining SM particles is modified by the same factor ki defined
as.

ghiSM SM = gHSMSM SMki , ki ≡
{

cosα , i = 1

− sinα , i = 2
, (9)

where gHSMSM SM denotes the SM coupling between the SM Higgs and the SM particle SM .
With these definitions the parameters of the potential can now be written as functions of

our choice of input parameters given by

v , vS , α , mh1 , mh2 , mA , (10)

as

λ =
m2
h1

+m2
h2

+ cos 2α(m2
h1
−m2

h2
)

v2
, (11a)

d2 =
m2
h1

+m2
h2

+ cos 2α(m2
h2
−m2

h1
)

v2
S

, (11b)

δ2 =
(m2

h1
−m2

h2
) sin 2α

vvS
, (11c)

m2 =
1

2

(
cos 2α(m2

h2 −m2
h1)−

v(m2
h1

+m2
h2

) + vS(m2
h1
−m2

h2
) sin 2α

v

)
, (11d)

b2 =
1

2

(
2m2

A −m2
h1 −m2

h2 + cos 2α(m2
h1 −m2

h2)−
v(m2

h1
−m2

h2
) sin 2α

vS

)
, (11e)

b1 = −m2
A . (11f)

Note that the model depends only on 4 independent parameters, because one of the Higgs
bosons plays the role of the SM-like Higgs with a mass of 125 GeV and the doublet VEV

v = 1/
√√

2GF ≈ 246.22 GeV, where GF denotes the Fermi constant. The VEV is replaced by
GF as an input parameter.
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3 Renormalization

Our goal is to calculate the decay width of the Higgs bosons into a pair of DM particles, hi → AA,
at NLO. Since A only couples to the two Higgs bosons hi we just need to renormalize the scalar
sector. With the trilinear hi couplings to the DM particles given by

λhiAA =
m2
hi

vs

{
sα , i = 1

cα , i = 2
, (12)

and according to our choice of input parameters we need to renormalize the masses of the two
scalars hi, the mass of the DM particle, mA, the singlet VEV vS and the mixing angle α. Besides
these parameters we also need to renormalize the hi and A fields and the tadpoles to work with
finite Green functions. We start by formally defining the relation between the bare and the
renormalized quantities as

β0 = β + δβ , (13)

where δβ is the counterterm of the physical quantity β and β0 is the bare quantity. All bare
fields φ0 are related to their renormalized version via

φ0 =
√
Zφφ ≈

(
1 +

δZφ
2

)
φ , (14)

where Zφ is the field strength renormalization constant.

3.1 On-Shell Renormalization of the Scalar Sector

We start by calculating the mass and field counterterms in the scalar sector using the on-shell
scheme. The renormalization constants for the DM particle are defined as

A0 =
√
ZAA ≈

(
1 +

δZA
2

)
A, D2

A,0 = D2
A + δD2

A, (15)

where ZA is the field strength renormalization constant, D2
A,0 = m2

A,0 and δDA is the mass
counterterm for A.

The two scalars h1 and h2 again mix at one-loop order and therefore both the field renor-
malization constants and the mass counterterms are defined by(

h1,0

h2,0

)
=
√
Zhh

(
h1

h2

)
≈
(

1 +
δZhh

2

)(
h1

h2

)
, D2

hh,0 = D2
hh + δD2

hh, (16)

with D2
hh,0 = diag(m2

h1,0,m
2
h2,0) and the matrices δZhh and δD2

hh defined as

δZhh =

(
δZh1h1 δZh1h2
δZh2h1 δZh2h2

)
, δD2

hh =

(
δD2

h1h1
δD2

h1h2
δD2

h1h2
δD2

h2h2

)
. (17)

The on-shell renormalization conditions lead to the following expressions

δD2
hihi

= Re
(
Σhihi(m

2
hi

)
)
, (18a)

δZhihi = −Re

 ∂Σhihi(p
2)

∂p2

∣∣∣∣
p2=m2

hi

 , (18b)

δZhihj =
2

m2
hi
−m2

hj

Re
(

Σhihj (m
2
hj

)− δD2
hihj

)
(i 6= j), (18c)
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for the counterterms of the scalar fields hi where Σhihi denotes their self-energies. Similarly, the
expressions for the DM field A read

δD2
A = Re

(
ΣA(m2

A)
)
, (19a)

δZA = −Re

(
∂ΣA(p2)

∂p2

∣∣∣∣
p2=m2

A

)
. (19b)

The diagonal terms of δD2
hh or δD2

A are related to the mass counterterms and to the cor-
responding tadpoles. The off-diagonal terms are related to the tadpoles to be discussed in the
next section.

3.2 Tadpole Renormalization

Tadpole renormalization is essentially the way we choose the VEVs at 1-loop order so that the
minimum conditions hold. Another way to express it is to state that the terms proportional to
the scalar fields at 1-loop order have to vanish. The VEV chosen to fulfil this condition [9,10] is
the true VEV of the theory. We will follow the scheme proposed by Fleischer and Jegerlehner [9]
for the SM with the goal of rendering all counterterms related to physical quantities gauge
independent. The scheme was applied to various extensions of the SM (see e.g. [11,12]). For the
CxSM a brief description follows. We start by defining the true VEVs by performing the shifts

v → v + ∆v, (20a)

vS → vS + ∆vS , (20b)

which lead to the following shifts in the tadpole parameters at NLO

T1 → T1 +
v2λ

2
∆v +

δ2vvS
2

∆vS ≡ T1 + δT1, (21a)

T2 → T2 +
δ2vvS

2
∆v +

d2v
2
S

2
∆vS ≡ T2 + δT2. (21b)

The minimum equations lead to the following relations between the shifts in the VEVs and the
tadpole counterterms (

∆v
∆vS

)
= RT

α

 δTh1
m2

h1
δTh2
m2

h2

 , (22)

with the relation between the tadpole counterterms δT1,2 in the gauge basis and those in the
mass basis, δTh1,2 , given by (

δT1

δT2

)
= RTα

(
δTh1
δTh2

)
. (23)

The shift introduced in the VEVs can be applied to the mass matrix from Eq. (5). The additional
terms resulting from that shift read

M → M+

(
v∆vλ δ2

2 (∆vvS + v∆vS)
δ2
2 (∆vvS + v∆vS) d2vS∆vS

)
−
(
T1∆v
v2

0

0 T2∆vS
v2S

)
︸ ︷︷ ︸

vanishes

. (24)
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The last term in Eq. (24) vanishes, because after the shift the tadpole conditions can be applied
again. The mass matrix can now be rotated into the mass basis and all counterterm shifts can
be applied leading to

D2
hh = RαMRT

α → D2
hh +

(
δm2

h1
0

0 δm2
h2

)
+Rα

(
δT1
v + v∆vλ δ2

2 (∆vvS + v∆vS)
δ2
2 (∆vvS + v∆vS) δT2

vS
+ d2vS∆vS

)
RT
α

≡ D2
hh +

(
δm2

h1
0

0 δm2
h2

)
+

(
∆D2

h1h1
∆D2

h1h2
∆D2

h1h2
∆D2

h2h2

)
.

(25)

Using Eqs. (22) and (23) as well as the relations Eq. (11) between the potential parameters and
the input parameters we can express the shifts ∆D2

hihj
(i, j = 1, 2) as

∆D2
h1h1 = i(−iλh1h1h1)

−i
m2
h1

iδTh1 + i(−iλh1h1h2)
−i
m2
h2

iδTh2 , (26a)

∆D2
h1h2 = i(−iλh1h1h2)

−i
m2
h1

iδTh1 + i(−iλh1h2h2)
−i
m2
h2

iδTh2 , (26b)

∆D2
h2h2 = i(−iλh1h2h2)

−i
m2
h1

iδTh1 + i(−iλh2h2h2)
−i
m2
h2

iδTh2 , (26c)

with the trilinear Higgs couplings given by

λh1h1h1 = 3m2
h1

vSc
3
α + vs3

α

vvS
, (27a)

λh1h1h2 =
(2m2

h1
+m2

h2
)sαcα(vsα − vScα)

vvS
, (27b)

λh1h2h2 =
(m2

h1
+ 2m2

h2
)sαcα(vcα + vSsα)

vvS
, (27c)

λh2h2h2 = 3m2
h2

vc3
α − vSs3

α

vvS
. (27d)

In terms of Feynman diagrams this can be seen as the contribution of the tadpole diagram (times
a factor i, at vanishing momentum transfer) to the propagators of h1 and h2, which were not
included previously in the definition of the self-energies. We define

iΣtad
hihj

(p2) ≡ iΣhihj (p
2)− i∆D2

hihj
, (28)

and the renormalized self-energies take the form

Σ̂hihj (p
2) = Σtad

hihj
(p2)−

(
δm2

h1
0

0 δm2
h2

)
+
δZ†hihj

2

(
p2δhihj −D2

hihj

)
+
(
p2δhihj −D2

hihj

) δZhihj
2

.

(29)
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This shift of contributions from the mass counterterm matrix into the self-energy corresponds to
the inclusion of the tadpole diagrams into the self-energy. With this change in the renormalized
self-energy the following results for the counterterms hold

δm2
hi

= Re
(

Σtad
hihi

(m2
hi

)
)
, (30a)

δZhihi = −Re

 ∂Σtad
hihi

(p2)

∂p2

∣∣∣∣∣
p2=m2

hi

 , (30b)

δZhihj =
2

m2
hi
−m2

hj

Re
(

Σtad
hihj

(m2
hj

)
)

(i 6= j). (30c)

Following a similar reasoning, the counterterms of the field A can be expressed as

δm2
A = Re

(
Σtad
A (m2

A)
)
, (31)

δZA = −Re

(
∂Σtad

A (p2)

∂p2

∣∣∣∣
p2=m2

A

)
. (32)

3.3 Renormalization of the Mixing Angle α

There are two parameters left to be renormalized. We start with the rotation angle α. Previous
works [11,13] lead us to the conclusion that a scheme that is simultaneously stable (in the sense
that the NLO corrections do not become unreasonably large) and gauge independent can be
built by combining the one proposed in Ref. [14,15] with the gauge dependence handled by the
use of the pinch technique [16, 17]. The scheme proposed in [14, 15] introduces a shift in α, the
angle from the rotation matrix Rα,

Rα,0 ≈ RδαRα, (33)

and by relating it to the field renormalization matrix constant leads to the following counterterm
for α,

δα =
δZh1h2 − δZh2h1

4
. (34)

The result is model independent, it only assumes the mixing of solely two fields. This relation
can now be expressed in terms of self-energies as

δα =
1

2(m2
h1
−m2

h2
)
Re
(

Σtad
h1h2(m2

h1) + Σtad
h1h2(m2

h2)
)
. (35)

This counterterm turns out to be gauge dependent. This in itself would not be a problem if
the complete amplitude for the process was gauge independent, which is not the case. There
is, however, a procedure to isolate this gauge dependence in a systematic and consistent way
known as the pinch technique [16–19]. After successfully applying the pinch technique, the
pinched self-energies can be defined by adding the additional contributions to the self-energies

8



from the pinch technique. This results in

iΣpinch
hihj

(p2) = iΣtad
hihj

(p2) + iΣadd
hihj

(p2)

= iΣtad
hihj

(p2)
∣∣∣
{ξ=1}

+
−ig2

32π2c2
w

(
p2 −

m2
hi

+m2
hj

2

)
OijB0(q2,m2

Z ,m
2
Z)

+
−ig2

16π2

(
p2 −

m2
hi

+m2
hj

2

)
OijB0(q2,m2

W ,m
2
W ).

(36)

The loop integral B0 and the factor Oij as well as Σadd
hihj

(p2) are defined in App. A. Note that
the expression with ξ = 1 does not mean that a specific gauge has been chosen. The additional
terms together with the tadpole self-energies result in a gauge-independent result which can just
be written in that form. We can now define a gauge-independent counterterm for α, for which
two different scales will be chosen:

• Setting the external momenta to the respective OS masses, p2 = m2
hi

, called OS pinched
scheme.

• Setting the external momenta to the mean of the masses, p2 = p2
∗ =

m2
h1

+m2
h2

2 , called p∗

pinched scheme.

In the p∗ pinched scheme the additional gauge-independent terms from the pinch technique
vanish so that the expression for the mixing angle counterterm becomes more compact. We can
write the counterterm for α in the p∗ scheme and the OS pinched scheme as

δαp∗ =
1

(m2
h1
−m2

h2
)
Re

(
Σtad
h1h2(p2

∗)
∣∣∣
{ξ=1}

)
, (37a)

δαOS =
1

2(m2
h1
−m2

h2
)
Re
(

Σpinch
h1h2

(m2
h1) + Σpinch

h1h2
(m2

h2)
)
. (37b)

With these definitions, δα is gauge independent by construction and the problem with the gauge
dependence is solved.

3.4 Renormalization of vS

The last parameter to be renormalized is the VEV vS of the scalar singlet. We will be using
a process-dependent scheme and also a derivation thereof where the conditions are imposed at
the amplitude and not at the physical process level, defined as zero external momentum scheme
(ZEM) scheme [13]. The latter, although less stable, allows to cover the entire parameter space
because it is not constrained by kinematic restrictions.

3.4.1 Process-dependent Scheme

The process to be used needs a coupling constant proportional to vS and if we want to use a
decay, the only possibilities1 in the CxSM are h1 → AA and h2 → AA. Therefore one of the

1In principle the decay h2 → h1h1 could also be chosen but would lead to an additional kinematic constraint
between the two scalar masses mh1 and mh2 and would constrain the parameter space even more.
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processes will be used to extract the singlet VEV renormalization constant, and because we want
to use the measurement of the SM-like Higgs invisible width, the second Higgs will be used for
that purpose. Note, however, that any of the two Higgs bosons can be the SM-like one, while
the other can either be lighter or heavier than 125 GeV. Hence, there are two scenarios to be
analysed and we have to find vS for both.

In the process-dependent scheme the counterterm is calculated by forcing

ΓLO
hi→AA = ΓNLO

hi→AA, (38)

that is, the LO and NLO decay widths are equal. This is turn leads to

0 = Re
((
ALO
hi→AA

)∗ANLO
hi→AA

)
, (39)

where ALO
hi→AA is the amplitude of the process hi → AA at LO and ANLO

hi→AA is the amplitude at
NLO. Because the LO amplitude is just a coupling constant, the expression further simplifies to

0 = Re
(
ANLO
hi→AA

)
. (40)

The NLO contribution ANLO
hi→AA can be written in terms of the vertex corrections AVC

hi→AA and
the vertex counterterm such that

0 = Re
(
ANLO
hi→AA

)
= Re

(
AVC
hi→AA

)
− λhiAA

(
δλhiAA
λhiAA

+ δZA +
δZhihi

2
+
λhjAA

λhiAA

δZhjhi
2

)
,

(41)

where i, j ∈ {1, 2}, but i 6= j. And with the trilinear hi couplings to the DM particles λhiAA
given in Eq. (12) we have

δλhiAA
λhiAA

=
δm2

hi

m2
hi

− δvS
vS

+ Ti(α)δα, Ti(α) ≡
{

cotα , i = 1

− tanα , i = 2
. (42)

Finally, the expression for the counterterm vS reads

δvh1→AAS = vS

(
−Re

(
AVC
h1→AA
λh1AA

)
+
δm2

h1

m2
h1

+ cotα δα+ δZA

+
δZh1h1

2
+
λh2AA
λh1AA

δZh2h1
2

)
,

(43a)

δvh2→AAS = vS

(
−Re

(
AVC
h2→AA
λh2AA

)
+
δm2

h2

m2
h2

− tanα δα+ δZA

+
δZh2h2

2
+
λh1AA
λh2AA

δZh1h2
2

)
,

(43b)

for the two processes. These counterterms are gauge independent and lead to UV-finite results.
The renormalization scheme also leads to stable results. Therefore, the only drawback is the
kinematic restriction

mhi > 2mA, (44)

which forces us to be in a restricted region of the parameter space. We discuss a solution to
avoid this restriction in the next section.
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3.4.2 ZEM Scheme

The ZEM scheme was introduced in [13] to avoid kinematic restrictions on the parameter space,
and we will now apply it to the CxSM. It is a simple derivation of the process-dependent scheme,
where the square of all external momenta are set to zero at the level of the amplitude,

p2
in = p2

out1 = p2
out2 = 0, (45)

eliminating therefore the kinematic constraint. Choosing the same physical processes, the con-
dition now reads

0 = Re
(
ANLO
hi→AA({p2 = 0})

)
, (46)

where p2 = 0 means that all squared external momenta are set to zero. There is another
difference relative to the process-dependent scheme: the NLO leg corrections are not canceled
by the corresponding counterterms, because the leg counterterms are defined through the OS
scheme. Therefore Eq. (46) now takes the form

0 = Re
(
Ahi→AAVC ({p2 = 0}) +Ahi→AALeg ({p2 = 0})

)
,

+ λhiAA

(
−δλhiAA
λhiAA

+ δZA +
δZhihi

2
+
δm2

hi

m2
hi

+
2δm2

A

m2
A

+
λhjAA

λhiAA

m2
hi

m2
hj

δZhihj
2

)
.

(47)

Again, this equation can be solved for the two processes h1 → AA and h2 → AA to obtain the
counterterms

δvZEM,h1→AA
S = vS

(
−Re

(
Ah1→AAVC ({p2 = 0}) +Ah1→AALeg ({p2 = 0})

λh1AA

)

+ cotα δα− δZA −
2δm2

A

m2
A

− δZh1h1
2

− cotα
δZh1h2

2

) (48a)

δvZEM,h2→AA
S = vS

(
−Re

(
Ah2→AAVC ({p2 = 0}) +Ah2→AALeg ({p2 = 0})

λh2AA

)

− tanα δα− δZA −
2δm2

A

m2
A

− δZh2h2
2

− tanα
δZh2h1

2

)
.

(48b)

We now just have to check if the final result is finite and gauge independent. The question of
gauge dependence in the alternative tadpole scheme is always related to wave function renor-
malization constants. A thorough analysis leads to the conclusion that although finite the result
is gauge dependent due to the term

δZhihi
2

+
λj
λi

m2
hi

m2
hj

δZhihj
2

, (49)

for the corresponding process hi → AA. The problem was solved by simply replacing the self-
energies in the wave function renormalization constants in Eq. (48) by their pinched versions.
This way δvS becomes gauge independent. This change in the δZhihj , however, is only applied
to terms appearing in Eq. (48) where the ZEM counterterm of vS is defined and not anywhere
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else. Otherwise, a gauge dependence in the overall amplitude of the renormalized process could
be reintroduced. Therefore, the resulting counterterms for vS in this modified ZEM scheme read

δvZEMGI,h1→AA
S = vS

(
−Re

(
Ah1→AAVC ({p2 = 0}) +Ah1→AALeg ({p2 = 0})

λh1AA

)

+ cotα δα− δZA −
2δm2

A

m2
A

−
δZpinched

h1h1

2
− tanα

δZpinched
h1h2

2

) (50a)

δvZEMGI,h2→AA
S = vS

(
−Re

(
Ah2→AAVC ({p2 = 0}) +Ah2→AALeg ({p2 = 0})

λh2AA

)

− tanα δα− δZA −
2δm2

A

m2
A

−
δZpinched

h2h2

2
− tanα

δZpinched
h2h1

2

)
.

(50b)

The renormalization is now complete and before moving to the presentation of the NLO
results we will discuss the constraints imposed on the model.

4 Constraints on the Model

The constraints imposed to find the allowed parameter space are implemented in ScannerS [20–
22]. In this section we will just briefly review the most relevant theoretical and experimental
constraints considered.

4.1 Theoretical Constraints

• Boundedness from Below

The conditions to have a stable minimum are easily obtained by writing, Φ†Φ ≡ x and
|S|2 ≡ y and writing the quartic terms of the potential

Vquartic(x, y) =
λ

4
x2 +

δ2

2
xy +

d2

4
y2 =

1

4

(
x y

)T(λ δ2

δ2 d2

)(
x
y

)
. (51)

Forcing the potential to be bounded in all directions leads to the following conditions at
tree level

λ > 0 ∧ d2 > 0 ∧ (δ2
2 < λd2 if δ2 < 0). (52)

• Perturbative Unitarity Constraints

Following [23] we force the eigenvalues of the scattering matrix M2→2 of all possible two-
to-two scalar scattering interactions to obey

|λi| < 8π , (53)

leading to

|λ| ≤ 16π ∧ |d2| ≤ 16π ∧ |δ2| ≤ 16π

∧

∣∣∣∣∣∣32λ+ d2 ±
√(

3

2
λ− d2

)2

+ 2δ2
2

∣∣∣∣∣∣ ≤ 16π.
(54)
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• Stability of the Vacuum

In the CxSM the most general vacuum structure is obtained by the following expectation
values for the fields

〈Φ〉 =
1√
2

(
0
v

)
, 〈S〉 =

1√
2

(vS + ivA) , (55)

because of the SU(2) invariance. Therefore, the value of the tree-level potential at each
vacuum configuration is given by V (v, vS , vA). We have chosen to work in the configuration
where the potential is V (v, vS , 0) to have one DM candidate. In App. B we show that by
choosing the vacuum configuration with non-zero v and vS (and vA =0) to be a minimum
automatically implies that this configuration is the absolute minimum at tree level.

4.2 Experimental Constraints

Before moving to the experimental constraints we note that ρ = m2
W /(m

2
Zc

2
w) where mW,Z are

the masses of the massive W and Z bosons, respectively, and cw denotes the cosine of the
Weinberg angle, is equal to 1 at tree-level, like in the SM. Also, no tree-level flavour-changing
neutral currents are introduced because the gauge singlet does not couple to fermions and to
gauge bosons in the gauge basis.

We will now briefly review the experimental constraints implemented in ScannerS and used
for the generation of parameter points.

• S, T, U precision parameters
The additional scalar fields in the CxSM contribute to the gauge bosons self-energies and
this implies deviations from the SM predictions. These deviations relative to the SM have
to be within experimental bounds, i.e. ScannerS compares the model predictions with the
electroweak precision results from experiment. Then the program applies a consistency
check on the S, T, U parameters [24] with 95 % confidence level to check if the constraints
are fulfilled.

• Compatibility with the LHC Higgs data and exclusion bounds
There are two important constraints coming from colliders. The most relevant one is the
one coming from the LHC related to the measurements of the discovered Higgs boson.
The searches for additional scalars also play a role in restricting the parameter space of
the model. ScannerS enforces these bounds by the interfaces with HiggsSignals [25, 26]
and HiggsBounds [27, 28]. Agreement of the signal rates of the SM-like Higgs boson of
the CxSM with the observations at 2σ level is checked by HiggsSignals-2.6.1. Through
HiggsBounds-5.9.0 the exclusion bounds from searches for extra scalars are taken into
account.

• DM relic density
The CxSM has a scalar DM candidate and therefore the predicted DM relic density of this
model should not exceed the measured value. Smaller values are not excluded since they
allow for additional contributions coming from other sources. ScannerS is interfaced with
the program package MicrOMEGAs [29] to include this constraint from the relic density.

• DM direct detection
As previously stated, the DM-nucleon cross section is only relevant at one-loop order due
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to a cancellation that renders the tree-level cross section proportional to the DM velocity
and therefore negligible [4, 5]. However, one-loop corrections to the DM-nucleon spin-
independent cross section have to be below the present experimentally measured result
from XENON1T [8], as discussed in [6,7]. We will come back to this important constraint
in the next section.

5 Results and Discussion

5.1 Higgs Decay into Dark Matter

The CxSM has two CP-even scalars h1 or h2 and any of them can play the role of the 125 GeV
SM-like Higgs boson denoted h125 in the following. The non SM-like Higgs can be either heavier
or lighter than 125 GeV. In order to optimize the analysis we fixed h1 to always be the lightest
of the two and considered two distinct scenarios,

• mh1 = mh125 (scenario I): the width is calculated from h1 → AA and the process h2 → AA
is chosen for the renormalization of vS .

• mh2 = mh125 (scenario II): the width is calculated from h2 → AA and the process h1 → AA
is chosen for the renormalization of vS .

We now proceed to the calculation of the 125 GeV Higgs partial decay width into two
DM particles at electroweak NLO. The calculations of the NLO corrections were performed
using FeynRules 2.3.35 [30–32], FeynArts 3.10 [33, 34] and FeynCalc 9.3.1 [35, 36]. Loop
integrals were computed using LoopTools [37, 38]. The model file was independently generated
using SARAH 4.14.2 [39–43]. We performed two independent calculations and found agreement
between both results.

The LO decay width is given by

ΓLO
h125→AA =

λ(m2
h125

,m2
A,m

2
A)

32πm3
h125

∣∣ALO
h125→AA

∣∣2 . (56)

while the NLO expression can be written as

ΓNLO
h125→AA =

λ(m2
h125

,m2
A,m

2
A)

32πm3
h125

(∣∣ALO
h125→AA

∣∣2 + 2Re
((
ALO
h125→AA

)∗ANLO
h125→AA

))
, (57)

with λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz and ALO and ANLO denoting the LO and NLO
amplitudes, respectively.

The LO amplitude is simply the coupling constant

iALO
hi→AA = −iλhiAA. (58)

and therefore the decay width takes the form

ΓLO
h1→AA =

s2
αmh1λ(m2

h1
,m2

A,m
2
A)

32πv2
S

, (59a)

ΓLO
h2→AA =

c2
αmh2λ(m2

h2
,m2

A,m
2
A)

32πv2
S

, (59b)
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where both h1 and h2 can be the SM-like Higgs h125.
For the NLO amplitude we need to compute the vertex corrections together with the coun-

terterm contributions. The vertex corrections are just the sum of all irreducible contributions
at 1-loop order while the vertex counterterm can be read off the Lagrangian yielding

ACT
hi→AA = −λhiAA

(
δλhiAA
λhiAA

+ δZA +
δZhihi

2
+
λhjAA

λhiAA

δZhjhi
2

)
, (60)

where i, j ∈ {1, 2} but i 6= j. We finally arrive at the overall NLO contributions for the processes
hi → AA

ANLO
h1→AA = AVC

h1→AA − λh1AA
(
δm2

h1

m2
h1

− δvS
vS

+ cotα δα

+ δZA +
δZh1h1

2
+ cotα

m2
h2

m2
h1

δZh2h1
2

)
,

(61a)

ANLO
h2→AA = AVC

h2→AA − λh2AA
(
δm2

h2

m2
h2

− δvS
vS

+ cotα δα

+ δZA +
δZh2h2

2
+ tanα

m2
h1

m2
h2

δZh1h2
2

)
.

(61b)

which will be calculated numerically using Eq. (57). The value obtained for the width depends on
the renormalization scheme used which will be discussed in the next section. We have explicitly
checked that for all scenarios the NLO width is UV-finite and gauge independent.

5.2 Allowed Parameter Space

For our numerical investigation we performed a scan in the CxSM parameter space using
ScannerS [20–22] and kept only those points that are compatible with the above described
theoretical and experimental constraints. The scan ranges for the input parameters are summa-
rized in Tab. 1. The DM mass has to be below 62.5 GeV for h125 → AA to be kinematically
allowed. The SM input parameters are taken from [44] and their values are given in Tab. 2.
Note that all these parameters enter the calculation via the EW one-loop corrections.

Parameter Range

Lower Upper

ms 30 GeV 1000 GeV
mA 10 GeV 62 GeV
vS 1 GeV 1000 GeV
α −1.57 1.57

Table 1: The scan ranges used for the generation of parameter points with ScannerS.

We have also used the program BSMPT [45,46] to check for the possibility of having a strong
first order EW phase transition (SFOEWPT). We found that in the parameter space probed
there were no points with a SFOEWPT. Before starting the discussion of the allowed parameter
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SM parameter Value

mZ 91.1876 GeV
mW 80.379 GeV
mh125 125.09 GeV
mτ 1.777 GeV
mb 4.7 GeV
mt 172.5 GeV

Table 2: The SM parameter values used in the numerical evaluation taken from [44].

space we again remind the reader that there is a kinematical constraint that applies to the
process-dependent scheme but not to the ZEM scheme of the counterterm δvS .

Figure 1: Input parameters α vs. vS in the upper row and ms vs. vS in the lower row. The red
plots on the left side are for the scenario where the 125 GeV Higgs boson is the lighter scalar
particle and the blue plots on the right are for the heavier Higgs scenario.

As previously discussed two of six parameters are fixed, one by GF and the other one is the
125 GeV Higgs boson mass. This leaves us with the 4 input parameters ms,mA, α, vS where
ms denotes the scalar mass of the non-125 GeV Higgs boson. In Fig. 1 we show correlations
between α, vS and ms. In the upper row a strong correlation can be seen between α and vS .
This is to be expected since all SM couplings to the h125 Higgs boson have an additional cα in
scenario I or sα in scenario II. These couplings are very well measured and only small deviations
are allowed. Thus, the additional factor has to be close to 1 and α has to be close to 0 or ±π

2 ,
respectively. Moreover, the parameters α and vS are connected through the decay width of the
125 GeV Higgs boson into DM particles. As can be seen in Eq. (59), the LO decay width in
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scenario I is proportional to

ΓLO
h1→AA ∝

s2
α

v2
S

. (62)

Thus, in order for the LO branching ratio of the 125 GeV Higgs into DM particles in the CxSM
not to exceed experimental limits [3], this ratio has to be small. Therefore, if vS is small α has to
be small. This behavior can be seen in Fig. 1. In scenario II the LO decay width is proportional
to

ΓLO
h2→AA ∝

c2
α

v2
S

. (63)

Therefore, if vS is small, α has to be close to ±π
2 which can be seen in Fig. 1 as well. One should

also mention that there is a hard bound on α coming from the Higgs coupling measurements.
The plots in the lower row in Fig. 1 show the relation between vS andms. The two parameters

ms and vS can be related via d2. Because in scenario I ms = mh2 and α cannot deviate much
from zero we can write

d2 =
m2
h125

+m2
s + cos(2α)(m2

s −m2
h125

)

v2
S

α→0−−−→ 2m2
s

v2
S

. (64)

Using again the small angle approximation in Eq. (11), λ and δ2 can be expressed as

λ
α→0−−−→

2m2
h1

v2
=

2m2
h125

v2
, (65)

δ2
α→0−−−→ 0. (66)

With this simplified expressions the fourth constraint in Eq. (54) results in∣∣∣∣32λ+ d2 ±
(

3

2
λ− d2

)∣∣∣∣ ≤ 16π ⇒ d2 ≤ 8π ⇒ ms ≤
√

4πvS , (67)

where d2 was considered to be positive. This relation explains the line in Fig. 1 (lower left) for
scenario I, showing ms and vS are linearly related with the correctly predicted slope. The same
calculation applies to scenario II. In this case, ms = mh1 and the angle α is close to ±π

2 . The
conclusion is again that ms and vS are linearly related. For example, setting ms to the highest
possible value in this scenario, i.e. about 125 GeV, vS has to be at least 35 GeV. In this scenario
only a small part of the parameter space is constrained but in Fig. 1 (right) we see that the far
left side of the plot indeed contains no parameter points in scenario II.

Fig. 2 shows the parameter space spanned by ms and mA. The blue points (scenario II)
are the ones where the kinematical constraint (due to the process-dependent scheme) appears.
As expected the constraint is not there for scenario I (red points). In scenario I the DM mass
mA prefers values close to 125/2 GeV, whereas in scenario II (blue points), mA has values close
to half of ms or also close to half of mh125 in the ZEM scheme where the kinematic constraint
2mA < ms from the renormalization condition on vS ceases to apply. This behavior results from
DM constraints applied on the DM mass mA. To visualize the effect of DM constraints, we
show in green the points that passed all constraints except the dark matter ones. The reason
for these constraints is the requirement that the relic density obtained in the CxSM must not
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Figure 2: mA vs. the non-125 GeV scalar mass ms. The red points are for the scenario where
the 125 GeV Higgs is the lighter scalar particle and the blue points the other scenario. The
green points are parameter points rejected by DM constraints.

exceed the observed value of the relic density. Therefore, the thermal annihilation processes of
two DM particles A into one of the scalar particles hi must be efficient enough. This annihilation
is enhanced close to the threshold, so that the DM mass mA is preferably close to half of the
125 GeV or half of ms.

0.00 0.05 0.10
h2Ωcdm

101

102

P
ro

b
ab

ili
ty

D
en

si
ty

10 20 30 40 50 60

mA [GeV]

10−6

10−5

10−4

10−3

10−2

10−1

h
2 Ω

c

ms < mh125

40

60

80

100

120

ms

Figure 3: Left: histogram showing the points frequency as a function of the relic density. Right:
relic density as a function of the DM mass with ms presented by the color bar for the scenario
where mh2 = 125 GeV.
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In Fig 3 (left) we present a histogram showing the points frequency as a function of the relic
density for both scenarios. This plot clearly shows us that there are points that saturate the relic
density but most of the points have a low h2Ωcdm and would need other DM candidates. The
percentage of points that is in the range −5σ < h2Ωcv

cdm ≤ 2σ, where h2Ωcv
cdm is the experimental

central value, is around 1% and the preferred values for the parameters are for the two resonant
regions already discussed. In the right panel we present the relic density as a function of the
DM mass with ms presented by the color bar for the scenario where mh2 = 125 GeV. There are
points that saturate the relic density in the entire DM mass range probed. We clearly see that
these points all have a DM mass that is half of ms or half mh2 . There are also some outliers
that saturate the relic density in the region where ms is roughly between 30 and 50 GeV for a
DM mass above 30 GeV. For the other scenario, since only the case half of 125 GeV is possible
all values of mh2 can in principle saturate the relic density.

Figure 4: Histogram of the frequency of the variable α without (left) and with (right) the relic
density constraint for scenario I.

In Fig 4 we show a histogram of the frequency of the variable α without and with the relic
density constraint for scenario I. Without the DM constraints there is a bound on α that forces
it to be close to zero. This is related to the already discussed bounds from colliders. Looking
at the Boltzmann equation

dn

dt
+ 3Hn = 〈σv〉 (n2

eq − n2) (68)

where n is the DM number density, H is the Hubble parameter, 〈σv〉 is the velocity-averaged
cross section and n2

eq is the density of DM particles when in thermal equilibrium with the
photon bath. The annihilation cross section σ(AA → SMSM), where SM are SM particles,
is proportional to sinα cosα. Hence, if either sinα → 0 or cosα → 0 we get 〈σv〉 → 0 and no
freeze-out will occur or the relic density will be extremely high at the end of freeze-out.

The interesting feature is then that as we move closer to the limit where the couplings are
all SM-like (α ≈ 0 is scenario I) we lose the DM candidate because of the constraints from DM.
This is not surprising because in this limit the portal coupling vanishes and freeze-out is no
longer possible.

Let us now move to the last constraint coming from DM, the direct detection process. Since
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we allow DM not to saturate the relic density we need to define a DM fraction

fAA =
(Ωh2)A

(Ωh2)obs
DM

(69)

where (Ωh2)A is the calculated relic density for each point in the CxSM and (Ωh2)obs
DM is the

central value of the experimental measurement. In the comparison with the data, we are actually
comparing an effective DM annihilation cross section defined by

σeff = fAAσAN (70)

where fAA and σAN , the direct detection DM nucleon cross section, are calculated by MicrOMEGAs.
This is because the experimental limits assume the DM candidate to make up for all of the DM
abundance.
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Figure 5: Effective spin independent nucleon DM cross section as a function of the DM mass for
scenario I (left) and scenario II (right). Also shown is the XENON1T [8] exclusion line (black
line). The grey shaded region corresponds to the neutrino floor.

This constraint is particularly relevant because it directly probes the portal coupling just
like the invisible decay. Even if, as we have already discussed, the DM nucleon cross section is
only relevant at one-loop order, it could be that the experimental bound from XENON1T [8]
would provide a stronger restriction than the one from the invisible Higgs decay. It turns out,
however, that it does not. In Fig. 5 we present the effective spin-independent DM nucleon cross
section [6, 7] as a function of the DM mass for scenario I (left) and scenario II (right). The
neutrino floor [47] is also presented as a grey shaded region. For the range of masses considered
it is below a line of about 10−48 cm2. We can see that the points are not only below the
XENON1T line but they are also below the neutrino floor and therefore have extremely small
chances of being detected directly. Therefore, in the near future, and perhaps also in the far
future, information about the dark sector of the CxSM will come only from the LHC. This shows
the importance of taking into account the radiative corrections for the invisible Higgs decay.
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5.3 Numerical Results and Analysis of the SM Higgs Decay into DM

In the following, we present and discuss the LO and NLO decay widths for all allowed points
in the parameter space, for the two scenarios. There are a total of four schemes corresponding
to the combination of the choices of the counterterms δα (p∗ pinched and OS pinched) and δvS
(process-dependent and ZEM). We display results for the relative size of the NLO decay width
with respect to the LO result, defined as

∆Γ ≡
ΓNLO
h125→AA

ΓLO
h125→AA

− 1 =
2Re

(
ANLO
h125→AA

)
ALO
h125→AA

. (71)

Figure 6: ∆Γ plotted against the scalar mass ms , where h125 = h1 (red points) and h125 =
h2 (blue points). All different combinations of possible renormalization schemes are shown.
Interesting sections (indicated by the red band) of the two plots in the second row are also
shown in more detail.

In Fig. 6 we present ∆Γ as a function of ms for the two scenarios and for the four different
possible combinations of renormalization conditions. The relative NLO corrections in scenario II
(blue points) are quite small in the process-dependent scheme (denoted by ’pd’ in the plot), but
become comparatively large in the ZEM scheme with respect to scenario I (red points). Both in
scenario I and II, ∆Γ is barely affected by the choice of the renormalization scheme of α. Larger
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differences occur when changing the renormalization scheme of vs from the process-dependent
to the ZEM scheme but they still remain relatively stable in scenario I. Note, that the peaks
in scenario I in the ZEM scheme, that induce larger ∆Γ are related to kinematical thresholds
of the B0 and C0 functions of the loop integrals. They are better visualized by the zoomed
inserts in Fig. 6. In scenario II, the change in ∆Γ when turning from the process-dependent
to the ZEM scheme has a large effect. Here, ∆Γ can go from −50 % to 10 %, whereas in the
process-dependent scheme, ∆Γ varies between −3 % and 3 %. Thus, the ZEM scheme can result
in relatively large corrections at NLO. These large corrections, however, only occur in a small
number of points. These are the points that would be rejected by the additional kinematic
constraint that in scenario II is effective in the process-dependent scheme. They hence only
occur in the ZEM scheme.

One further remark is in order here. One has to be careful when directly comparing the
results for ∆Γ in the different renormalization schemes. A consistent comparison would require
the proper conversion of the input parameters when going from one scheme to the other. This
requires the implementation of the conversion formulae which is beyond the scope of this paper.
Our goal here primarily is to show which sizes of relative corrections at all can be expected in
the various schemes. Apart from the ZEM scheme they are all relatively small and numerically
stable in the sense defined above.

Figure 7: ∆Γ plotted against the scalar mass ms, all other parameters have been set to
fixed values, with α = 0.01, vS = 100 GeV and mA = 40 GeV. All possible combinations of
renormalization schemes are shown.

In Fig. 7 we present ∆Γ as a function of ms with all other input parameters fixed. The
resulting scenarios do not necessarily fulfil all theoretical or experimental constraints any more
but are shown here for illustrative reasons. The peaks that can be seen in the figure origin from
thresholds in the loop functions and depend on the chosen scheme as the two schemes used for
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the derivation of δα are evaluated at different scales. For example, the peak in the OS pinched
scheme seen in Fig. 7 at mS ≡ xOS = 250 GeV appears in the p∗ pinched scheme at the mS ≡ xp∗
value equal to 330 GeV because

x2
OS =

m2
h125

+ x2
p∗

2
, (72)

since in the p∗ pinched scheme the self-energies are evaluated at the mean of the scalar masses.
The peaks only occur in scenario I, because most of the SM masses occurring in the calculation
(e.g. the W and Z boson mass) are of order of 100 GeV.

The purpose of this analysis is to improve the precision of the calculation of the Higgs
invisible decay width so that it can be used to constrain the parameters from the dark sector.
The current observed limit on the branching ratio of the 125 GeV Higgs decay into invisible
particles is given by [3]

BR(h125 → invisible) . 0.11+0.04
−0.03 , (73)

at 95 % confidence level. In order to compare results the calculated branching ratio is needed
which in turn means that we need the total decay width of the 125 GeV Higgs boson in the
CxSM including NLO EW corrections. Since the corrections are not available for all decays in
the model we can only estimate the branching ratio using the total decay width of the 125 GeV
Higgs boson in the SM without EW corrections2 which is taken from [48,49] and is given by

ΓSM,tot
h125

= 0.4068× 10−2 GeV. (74)

In order to translate this decay width into the CxSM set-up it will be multiplied by the appropri-
ate squared angular factor k2

i , where the index i is chosen according to the mass scenario. Also
the NLO h125 → AA width is added to obtain the total decay width in the CxSM. Furthermore,
in scenario II the 125 GeV Higgs boson is the heavier of the two scalar particles (h125 ≡ h2). If
h1 is light enough, the decay h2 → h1h1 is also allowed and is added to the total decay width.
Thus, the LO and approximate NLO branching ratio of the decay h125 → AA is given by

BR
LO/NLO
CxSM (h125 → AA) ≈

Γ
LO/NLO
h125→AA

k2
i Γ

SM,tot
h125

+ Γ
LO/NLO
h125→AA + δ ΓLO

h125→h1h1

, (75)

where δ is defined as

δ =

{
1, mh125 ≥ 2ms

0, mh125 < 2ms

. (76)

This expression is approximate in the sense that the NLO EW corrections are only included in
the Higgs-to-invisible decay but not in the SM-like CxSM Higgs decays into SM particles. It is
justified, however, if the EW corrections to these decay widths are small enough compared to
the EW corrections to the h125 → AA decay3. Moreover, for a better approximation the NLO
corrections to the decay h125 → h1h1 have to be included as well unless its contribution to the
total width is negligibly small.

2It includes, however, the relevant higher-order QCD corrections that can be taken over from the SM to the
CxSM.

3From Ref. [50], where for the 2HDM and the N2HDM the EW corrections have been calculated for all the
allowed parameter sets and in different renormalization schemes, it can be concluded that the EW corrections to
the decay widths of the SM-like Higgs into SM particles amount up to a few percent only.
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Figure 8: The calculated branching ratios for the decay h125 → AA at NLO versus LO for all
generated parameter points and all renormalization schemes. The experimental limit is indicated
by the dashed line with the uncertainty on the limit given by the red band. Red (blue) points
correspond to scenario I (II).

In Fig. 8 the calculated approximate NLO branching ratios for all generated parameter points
are displayed versus the corresponding LO values. The experimental limit on the branching ratio
is shown as well. However, the limit is only indicated for the NLO result, since the parameter
points are generated with respect to the limit at LO. Almost all parameter points have an NLO
branching ratio below the experimental limit . Only about 0.2 % of the points are above the
experimental limit. The highest obtained branching ratio is, however, around 0.121 and therefore
still lies well within the experimental uncertainty. The relative change of the branching ratio
at NLO with respect to LO has been calculated and increases the LO value by up to 7-8% at
most. Thus, the NLO contributions to the branching ratio are too small to further constrain
the model. Moreover, it is interesting to see that the points from scenario II result in smaller
branching ratios, especially when using the ZEM scheme. This is to be expected, since many
points in that scenario have negative relative NLO contributions to the decay width.
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6 Conclusions

In this work we have calculated the EW NLO corrections of the Higgs decay into two dark matter
particles in the CxSM. We have used four different renormalization schemes but with all masses
and fields renormalized on-shell. Except for very particular regions of the parameter space
corresponding to thresholds in the Passarino-Veltman functions, the corrections were shown to
be quite small, on the per cent level in all renormalization schemes. There is one exception,
however, given by the ZEM scheme with h2 being the SM-like Higgs. Here, points that could
not be used in the process-dependent scheme for the renormalization of vS due to kinematic
constraints, lead to relatively large corrections that amount up to a few tens of per cent.

The central value of the measured invisible Higgs branching ratio is now at 0.11. The
inclusion of the EW NLO corrections to the decay width of the process h125 → AA does not
lead to extra constraints on the parameter space because the calculated approximate NLO
branching ratios for all allowed parameter points are found to be within the experimental error.
Calculating the EW corrections to all decays of the SM-like CxSM Higgs boson into SM particles
(and, if kinematically allowed into a pair of lighter scalars) will further improve the obtained
result. But more importantly, tighter experimental constraints will be obtained in the near
future in the upcoming LHC run [51] and even more at the high luminosity stage.

We have also shown why it is crucial to have a precise measurement of the invisible width
- it is the only direct probe of the portal coupling. In fact, the other possible way to probe
the same coupling would be through the DM-nucleon cross section. However, we have shown
that this cross section is not only below the present experimental bound from XENON1T [8]
but is also below the neutrino floor which makes it virtually unusable. Therefore, in the near
future and perhaps also in the far future, information about the dark sector of the CxSM will
come only from the LHC. This shows the importance of having the radiative corrections for the
invisible Higgs decay.
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A The Scalar Pinched Self-Energy in the CxSM

In this appendix we will present the result for the scalar pinched self-energy in the CxSM. We
define the quantity (i, j = 1, 2)

Oij ≡ kikj , (77)

to write all couplings in the CxSM between the scalars and the SM particles X,Y as

gXY hi = gSM
XYHki, (78a)

gXY hihj = gSM
XYHHOij , (78b)

where gSM
XYH and gSM

XYHH are the corresponding couplings between the SM particles X and Y and
one or two SM Higgs bosons and ki is given in Eq. (9). With these definitions the self-energies
iΣadd

hihj
are given by

iΣadd
hihj

(q2) =
−ig2

16π2
Oij

(
q2 −

m2
hi

+m2
hj

2

)
B0(q2,m2

W ,m
2
W )

+
−ig2

32π2c2
w

Oij

(
q2 −

m2
hi

+m2
hj

2

)
B0(q2,m2

Z ,m
2
Z)

+
ig2λW
32π2

Oij

((
q2 −

m2
hi

+m2
hj

2

)
αW − (q4 −m2

hi
m2
hj

)
βWW (q2) + βWξWW (q2)

2

)

+
ig2λZ

64π2c2
w

Oij

((
q2 −

m2
hi

+m2
hj

2

)
αZ − (q4 −m2

hi
m2
hj

)
βZZ(q2) + βZξZZ(q2)

2

)
.

Here mW,Z denote the masses of the W and Z bosons, g = 2mW

√√
2GF is the SU(2) gauge

coupling, cw the cosine of the weak mixing angle, ξV (V = W,Z) are the bare gauge couplings
and λV ≡ 1− ξV . The integrals are defined as

i

16π2
B0(p2,m2

1,m
2
2) ≡

∫
k

1

(k2 −m2
1)((k + p)2 −m2

2)
, (79a)

i

16π2
αV ≡

∫
k

1

(k2 −m2
V )(k2 − ξVm2

V )
, (79b)

i

16π2
βV1V2(p2) ≡

∫
k

1

(k2 −m2
V1

)(k2 − ξV1m2
V1

)((k + p)2 −m2
V2

)
, (79c)

i

16π2
βV1ξV2V2(p2) ≡

∫
k

1

(k2 −m2
V1

)(k2 − ξV1m2
V1

)((k + p)2 − ξV2m2
V2

)
. (79d)

B Minima of the CxSM Higgs Potential

To analyze all possible vacuum configurations, the scalar potential of the CxSM,

Vscalar =
m2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
+
δ2

2
Φ†Φ|S|2 +

b2
2
|S|2 +

d2

4
|S|4 +

(
b1
4
S2 + c.c.

)
, (80)
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has to be considered with the fields defined as

Φ =

(
G+

1√
2

(
H + iG0

)) , S =
1√
2

(S + iA). (81)

Due to the SU(2) invariance we can choose a configuration where only the fields H, S and A
can acquire a non-zero VEV, in the following labeled xH , xS and xA.

The stationary conditions of the potential read

∂V

∂~φ

∣∣∣∣
〈φi〉=xi

= 0 ⇒



m2

2 xH + λ
4x

3
H + δ2

4 xH(x2
S + x2

A) = 0
b1+b2

2 xS + d2
4 xS(x2

S + x2
A) + δ2

4 xSx
2
H = 0

b2−b1
2 xA + d2

4 xA(x2
S + x2

A) + δ2
4 xAx

2
H = 0
0 = 0
0 = 0
0 = 0

, (82)

with the scalar fields collected in the vector (G+ ≡ 1/
√

2(G1 − iG2))

~φ =
(
H, S, A, G0, G1, G2

)T
. (83)

The three nontrivial equations in Eq. (82) can be written as

xH

(
m2

2
+
λ

4
x2
H +

δ2

4
(x2
S + x2

A)

)
= 0, (84a)

xS

(
b1 + b2

2
+
d2

4
(x2
S + x2

A) +
δ2

4
x2
H

)
= 0, (84b)

xA

(
b2 − b1

2
+
d2

4
(x2
S + x2

A) +
δ2

4
x2
H

)
= 0, (84c)

from which we read off that for all VEVs a possible solution is to set them to zero or solve the
equations in brackets. Thus, eight different cases, in general, have to be considered. Moreover,
if xS and xA are simultaneously non-zero, the terms in brackets in Eqs. (84b) and (84c) have to
be zero. Since these two terms only differ in the sign in front of the parameter b1, this can only
be achieved if b1 is set to zero. Here, however, b1 is always chosen to be non-zero and thus these
cases cannot result in a minimum of the potential.

Furthermore, it has to be checked whether the stationary point is indeed a minimum of the
potential, i.e. the Hessian matrix of the potential has to be positive definite. The general form
of the Hessian matrix reads

VHesse =



A δ2xHxS
2

δ2xHxA
2 0 0 0

δ2xHxS
2 B d2xSxA

2 0 0 0
δ2xHxA

2
d2xSxA

2 C 0 0 0
0 0 0 D 0 0
0 0 0 0 D 0
0 0 0 0 0 D


, (85)
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where the diagonal elements are

A =
m2

2
+
δ2(x2

S + x2
A)

4
+

3λx2
H

4
, (86a)

B =
b1 + b2

2
+
d2(3x2

S + x2
A)

4
+
δ2x

2
H

4
, (86b)

C =
−b1 + b2

2
+
d2(x2

S + 3x2
A)

4
+
δ2x

2
H

4
, (86c)

D =
m2

2
+
δ2(x2

A + x2
S)

4
+
λx2

H

4
. (86d)

To start with the remaining cases, first the desired minimum is considered, namely the
configuration with the VEVs xH and xS to be non-zero and xA to be zero. Since the VEVs are
chosen to be input parameters, they are in this case relabeled as v and vS and the Eqs. (84) can
be solved for other parameters resulting in

m2 =
−1

2

(
λv2 + δ2v

2
S

)
, b1 + b2 =

−1

2

(
d2v

2
S + δ2v

2
)
. (87)

Next, the positive definiteness of the Hessian matrix has to be checked. For this Eq. (87) is
used to simplify the Hessian matrix in Eq. (85) leading to

VHesse(xH = v, xS = vS , xA = 0) =



λv2

2
δ2vvS

2 0 0 0 0
δ2vvS

2
d2v2S

2 0 0 0 0
0 0 −b1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (88)

The matrix is positive definite if the determinants of all minors are positive, i.e. the relations

λ > 0 ∧ d2 > 0 ∧ λd2 > δ2
2 ∧ b1 < 0 (89)

have to be satisfied. If these inequalities hold, the potential is automatically bounded from
below (compare with Eq. (52)). Moreover, the Hessian matrix of the potential resembles the
mass matrix of the scalar fields, i.e. the eigenvalues of the matrix are the squared masses of the
corresponding particles and thus the eigenvalues have to be positive, i.e. the Hessian matrix has
to be positive definite. Furthermore, the parameter b1 is just given by −m2

A.
This means that if the VEVs v and vS are given as input parameters and the VEV for the

field A is chosen to be zero and the potential parameters fulfill the relations in Eq. (89), this
configuration of VEVs is a minimum of the potential, as desired. The remaining question now is,
whether this minimum is automatically the global minimum of the potential. Thus, the values
of the potential at all minimum configurations have to be calculated and compared. For the
desired configuration the value of the potential at the minimum reads

V (xH = v, xS = vS , xA = 0) = V (v, vS , 0) = − 1

16
(λv4 + 2δ2v

2v2
S + d2v

4
S). (90)

Now all other VEV configurations have to be checked for their potential values at the sta-
tionary point and whether or not they are indeed a minimum of the potential.
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• case xH = xS = xA = 0:

This is the most trivial configuration, and the value of the potential at this point reads

V (0, 0, 0) = 0. (91)

Thus, the difference between the values of the potential at the two configurations results
in

V (v, vS , 0)− V (0, 0, 0) = − 1

16
(λv4 + 2δ2v

2v2
S + d2v

4
S) < 0. (92)

The inequality is true because of the relation between δ2, λ and d2 from Eq. (89).

• case xS = xA = 0, xH 6= 0:

Here the nontrivial equation from Eqs. (84) can be solved for xH and results in

xH =

√
−2m2

λ
≡ x1. (93)

Here m2 has to be negative. The value of the potential results in

V (x1, 0, 0) =
−m4

4λ
= −(λv2 + δ2v

2
S)2

16λ
, (94)

where in the second step the relations Eq. (87) were used. The difference between the
values of the potential of the different configurations reads

V (v, vS , 0)− V (x1, 0, 0) = −(d2λ− δ2
2)v4

S

16λ
< 0. (95)

The inequality again holds because of the relations Eq. (89).

• case xH = xA = 0, xS 6= 0

Here the nontrivial equation from Eqs. (84) can be solved for xS and results in

xS =

√
−2(b1 + b2)

d2
≡ x2. (96)

Here b1 + b2 has to be negative. The value of the potential results in

V (0, x2, 0) = −(b1 + b2)2

4d2
= −(δ2v

2 + d2v
2
S)2

16d2
, (97)

where in the second step the relations Eq. (87) were used. The difference between the
values of the potential of the different configurations reads

V (v, vS , 0)− V (0, x2, 0) = −(d2λ− δ2
2)v4

16d2
< 0. (98)

The inequality again holds because of the relations Eq. (89).
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• case xH = xS = 0, xA 6= 0

Here the nontrivial equation from Eqs. (84) can be solved for xA and results in

xA =

√
−2(b2 − b1)

d2
≡ x3. (99)

Here b2 − b1 has to be negative. The value of the potential results in

V (0, 0, x3) = −(b2 − b1)2

4d2
= −(4b1 + δ2v

2 + d2v
2
S)2

16d2
, (100)

where in the second step the relations Eq. (87) were used. Here the parameter b1 does not
get canceled and the difference between the values of the potential of this configuration
with respect to the desired minimum state depends additionally on b1 and an inequality
similar to the other cases cannot be shown as straightforwardly. It is, however, sufficient
to look at the Hessian matrix. It results in

VHesse(0, 0, x3) =



E 0 0 0 0 0
0 b1 0 0 0 0
0 0 b1 − b2 0 0 0
0 0 0 E 0 0
0 0 0 0 E 0
0 0 0 0 0 E

 , (101)

where E is a combination of potential parameters. It can be seen that b1 is a negative
eigenvalue of the matrix. Thus, it cannot be positive definite and this VEV configuration
cannot be a minimum.

• case xS = 0, xH 6= 0, xA 6= 0

The last case is a bit more complicated, since now two VEVs are non-zero. Here it is
easier to redo the same steps as in the desired minimum configuration. First, the VEVs
are relabeld as w and wA. Next, the stationary conditions from Eqs. (84) are solved for
other parameters to obtain the relations

m2 = −1

2
(λw2 + δ2w

2
A), b2 − b1 = −1

2
(δ2w

2 + d2w
2
A). (102)

Similar to the last case, the value of the potential of this configuration will again depend on
b1, so comparing values with the desired minimum configuration will not lead to a simple
inequality. Thus, the Hessian matrix is again considered. With the help of Eqs. (102) it
can be simplified to

VHesse(w, 0, wA) =



λw2

2 0 δ2wwA
2 0 0 0

0 b1 0 0 0 0
δ2wwA

2 0
d2w2

A
2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (103)
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Again, b1 is a negative eigenvalue of the matrix, thus it cannot be a positive definite matrix
and the configuration is not a minimum.

Moreover, the similarity between the two cases with two non-zero VEVs is interesting. If
the configuration with w and wA would be chosen as the desired minimum configuration,
then b1 would necessarily be positive and the minimum configuration with v and vS would
no longer be a minimum. The sign in front of b1 is essentially the only difference between
the fields S and A and therefore also the only difference between these VEV configurations.

To conclude, if the non-zero VEV parameters v and vS are given as input parameters and
the remaining potential parameters are chosen such that the relations Eq. (89) are fulfilled, then
this configuration is a minimum of the potential and it is the global minimum (the potential
is also bounded from below with the same relations, so it really is the global minium of the
potential).
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[46] P. Basler, M. Mühlleitner and J. Müller, BSMPT v2 a tool for the electroweak phase
transition and the baryon asymmetry of the universe in extended Higgs Sectors, Comput.
Phys. Commun. 269 (2021) 108124, [2007.01725].

[47] J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on
the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89
(2014) 023524, [1307.5458].

34

http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://dx.doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/10.1007/BF01621031
http://dx.doi.org/10.1016/j.cpc.2010.01.011
https://arxiv.org/abs/0909.2863
http://dx.doi.org/10.1016/j.cpc.2010.11.030
https://arxiv.org/abs/1002.0840
http://dx.doi.org/10.1016/j.cpc.2013.02.019
http://dx.doi.org/10.1016/j.cpc.2013.02.019
https://arxiv.org/abs/1207.0906
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://dx.doi.org/10.1016/j.cpc.2014.02.018
https://arxiv.org/abs/1309.7223
http://dx.doi.org/10.1155/2015/840780
http://dx.doi.org/10.1155/2015/840780
https://arxiv.org/abs/1503.04200
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1016/j.cpc.2018.11.006
http://dx.doi.org/10.1016/j.cpc.2018.11.006
https://arxiv.org/abs/1803.02846
http://dx.doi.org/10.1016/j.cpc.2021.108124
http://dx.doi.org/10.1016/j.cpc.2021.108124
https://arxiv.org/abs/2007.01725
http://dx.doi.org/10.1103/PhysRevD.89.023524
http://dx.doi.org/10.1103/PhysRevD.89.023524
https://arxiv.org/abs/1307.5458


[48] A. Djouadi, J. Kalinowski and M. Spira, Hdecay: a program for higgs boson decays in the
standard model and its supersymmetric extension, Computer Physics Communications
108 (Jan, 1998) 56–74.
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