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The accurate and efficient computation of the electromagnetic response of objects made from artificial mate-
rials is crucial for designing photonic functionalities and interpreting experiments. Advanced fabrication tech-
niques can nowadays produce new materials as three-dimensional lattices of scattering unit cells. Computing the
response of objects of arbitrary shape made from such materials is typically computationally prohibitive unless
an effective homogeneous medium approximates the discrete material. In here, we introduce a homogenization
method based on the effective T-matrix, Teff. Such a matrix captures the exact response of the discrete material,
is determined by the T-matrix of the isolated unit cell and the material lattice vectors, and is free of spatial
dispersion. The truncation of Teff to dipolar order determines the common bi-anisotropic constitutive relations.
When combined with quantum-chemical and Maxwell solvers, the method allows one to compute the response
of arbitrarily-shaped volumetric patchworks of structured molecular materials and metamaterials.

I. INTRODUCTION AND SUMMARY

Artificial materials increase our ability to control electro-
magnetic fields well beyond what can be achieved with natural
materials. At optical and infrared frequencies, the fabrication
of deterministic photonic materials is challenging because of
the small dimensions of the unit cells needed for mimicking
the way nature builds materials: as periodic three-dimensional
lattices containing a copy of the unit cell at each lattice point.
However, recent advances in fabrication technology provide
nowadays new ways to tackle exactly this challenge. In three-
dimensional laser printing, the feature size resolution is reach-
ing the sub-micrometer and nanometer scales [1]. In addition,
this technique allows for the manufacturing of unit cells com-
posed of various materials including organic (synthetic and
natural) polymers, inorganic materials such as chalcogenide
glasses and/or metals [2]. Another promising class of artifi-
cial materials are molecular metal-organic frameworks (MOF)
and their flat relatives, i.e., surface MOF (SURMOF) [3, 4].
These materials feature nanometer-scale scaffold-like crys-
talline structures formed by organic molecules and metallic
ions. A variety of geometrical shapes can be fashioned [5, 6],
and SURMOFs with different lattices can be combined in the
same functional device [7].

But the benefits of technological advances can only be fully
harvested if theoretical tools keep up with the pace. Regard-
less of the fabrication technique, the efficient and accurate
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simulation of the electromagnetic response of artificial ma-
terials is crucial for both the interpretation of experimental
measurements and for the in silico design of new materials
and devices. In this context, a particularly useful formalism
is the T-matrix or transition matrix formalism [8, 9], which,
for linear light-matter interactions, produces the field scattered
off a given object under general illumination. When dealing
with an infinite periodic repetition of a unit cell, the calcu-
lation of the lattice couplings is very conveniently done [10]
using the Ewald summation method [11]. The T-matrix and
Ewald’s method can be combined in numerical codes for com-
puting the electromagnetic response of infinitely periodic sys-
tems [12–14], achieving efficiencies more than two orders of
magnitude better than numerical solvers of Maxwell differen-
tial equations [15, 16]. The calculations of the T-matrices of
molecular unit cells by quantum-mechanical ab initio meth-
ods [17], in particular time-dependent density-functional the-
ory (TD-DFT) [18, 19], enable the consideration of systems
including slabs of molecular materials such as optical planar
cavities filled with SURMOFs [18]. Unfortunately, Ewald’s
method cannot be used for finite arrangements of scatterers,
such as an object of finite shape made from a 3D lattice
of unit cells. Many of these objects cannot be handled by
other T-matrix based methods either, because of the computa-
tional cost when the number of unit cells grows beyond a few
thousands. This then excludes, for example, non-planar ar-
rangements of meta-atoms [20], and finite objects made from
molecular materials [5, 6]. Additionally, the co-existence of
slabs with different lattice vectors in the same system [7] is
also an obstacle for Ewald’s summations.

For many years, research based on effective medium theo-
ries is aiming at alleviating the computational burden by re-
placing the discrete lattice of scatterers by a homogeneous
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effective medium [21–51]. Homogenization theories address
the computation of the material parameters of such an effec-
tive medium for a given constitutive relation. Then, ideally,
the electromagnetic response of a target object of arbitrary
shape made out of the actual discrete material should be well
approximated using the constitutive relations of the effective
medium, plus appropriate boundary conditions. In this way,
much larger finite-size objects can be considered compared to
what is possible without homogenization.

Homogenization is a complex endeavor, and its complexity
is reflected as different kinds of shortcomings in different ho-
mogenization techniques. Simpler approaches can even have
contradicting conditions for their applicability: For example,
they often require lattice constants much smaller than the
wavelength and a sufficiently sparse lattice simultaneously.
Also, long wavelength approximations in the calculation of
the response of the unit cells and/or the lattice couplings are
often made. A salient problem of some advanced methods is
spatial dispersion: the dependence of the set of material pa-
rameters on the direction of the wavevector of the illumina-
tion. This is an important limitation since it is then unclear
how to use the many-fold instances of the effective material
parameters in practice, except possibly for planar geometries
where only a few propagation directions are involved. Some
homogenization methods are based on retrieval, where a ref-
erence object made with the actual material, typically a slab,
is probed with different illuminations. The numerically mea-
sured response is then fitted, e.g., in a least-square sense, by
the predictions of a homogeneous model of the reference ob-
ject whose material parameters are varied in an optimization
procedure. While, by design, retrieval methods do not suffer
from spatial dispersion, a potentially weak point is that a refer-
ence object is involved from the beginning, and it is not imme-
diately obvious that the retrieved material parameters can be
used for target objects with different shapes. For example, ma-
chine learning techniques confirm a non-uniqueness issue [52]
showing that, in some cases, the measurements can be well
approximated by different sets of material parameters [51].
Whether all the different sets are valid for different objects
remains unclear. We are not aware of any homogenization
technique that is free of all the aforementioned shortcomings.
Moreover, most techniques also lack an a priori quality con-
trol mechanism independent of shape. Without such mecha-
nism, assessing the accuracy of the homogeneous model for
a particular target object would involve the comparison with
simulations that explicitly consider the discrete lattice, hence
defeating the purpose of homogenization.

In this article, we introduce a novel homogenization method
whose starting point is the non-spatially dispersive yet exact
response of the material, and where the material parameters of
the constitutive relations are determined from the dipolar part
of the response without considering any particular shape of
a target object. The quantification of the difference between
the exact description and its dipolar part constitutes a built-in
quality metric that a priori indicates the suitability or unsuit-
ability of using the homogeneous model.

The central object of our novel homogenization method is a
linear operator that provides an exact description of the linear

interaction of light with the bulk material, that is, with the
infinite 3D lattice of scatterers. The linear operator has the
form of a T-matrix in the multipolar basis, which we call the
effective T-matrix: Teff. The effective T-matrix is computed
using the lattice vectors to obtain the mutual interaction and
the T-matrix of a single isolated copy of the unit cell, which
we will call Tcell. All the couplings due to the infinite lattice
are incorporated in Teff. Such couplings change Tcell into Teff
while, at the same time, removing the lattice interactions. In
other words, one can equivalently describe the response of the
material by replacing the copies of Tcell interacting with each
other with copies of Teff which do not interact with each other,
i.e. they are invisible to each other. The effective T-matrix is
an excellent starting object for homogenization because it is
independent of any target object shape, it decouples the unit
cells, and is an exact description of the interaction of light with
the 3D lattice of scatterers of the actual material. Importantly,
Teff does not suffer from spatial dispersion.

We show that the dipolar part of Teff, which we call Tdip
eff and

has 36 parameters, is bijectively connected with a very com-
mon 6×6 model for the constitutive relations of the effective
medium, which is complemented by the usual (bi-anisotropic)
boundary conditions [53, Section 4.3]. The contributions of
higher multipolar orders contained in Teff are excluded from
this homogeneous model. This is the only point where our
model deviates from the exact response. The effective mate-
rial parameters in the given constitutive relations derived in
this way: i) are completely determined by the kind of 3D
lattice and scatterers in the unit cell without any influence
from the shape of any target object, ii) contain all the mod-
ifications that the lattice causes to the dipoles, and iii) do not
suffer from spatial dispersion. The material parameters can
be used in software packages such as COMSOL Multiphysics
[54]. A target object made as a volumetric patchwork of do-
mains with different discrete materials can also be considered.
When compared to other methods, neither retrieval nor fitting
procedures are needed, and the actual assignment of effective
properties is a straightforward computation using the T-matrix
framework. Within one calculation, all entries of the effective
material tensors are computed.

Even before calculating Teff, the band diagram of the actual
material is used to judge whether the material can be homog-
enized at all. For example, the homogeneous model is clearly
inadequate for frequencies that produce diffraction in the lat-
tice, as X-rays produce in most solids. But even before this
obvious limit, light starts to probe the presence of the lattice
due to Bragg reflections.

We show that the response of slabs and spheres made of the
actual discrete material are very accurately approximated by
this method if the material can be homogenized at all and the
relative matrix distance between Teff and Tdip

eff is small.
The rest of the paper is organized as follows. The proposed

homogenization method is explained in Section 2, and Sec-
tions 3 to 5 contain different application examples. In Sec-
tion 3, the material is a cubic lattice of gold spheres that is
homogenizable in the considered frequency range, and whose
Teff and Tdip

eff are essentially identical. The results of the ho-
mogeneous model in a slab and a sphere match very well the
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corresponding exact solutions that explicitly consider the dis-
crete lattice. In Section 4, the material is a cubic lattice of cut-
plate pairs, which is only homogenizable in the lower part of
the considered frequency range, and for which the difference
between Teff and Tdip

eff is two orders of magnitude larger than
in the previous material, and exhibits a growing trend with the
frequency. In this case, the homogeneous model predicts the
exact results reliably only in the lower part of the considered
range of frequencies. Section 5 contains the application to a
chiral SURMOF which features anisotropic chirality. Homog-
enization produces essentially a perfect match with the exact
results for a slab of the SURMOF. Then, the circular dichro-
ism (CD) of an array of spheres made from the molecular ma-
terial is computed in COMSOL for perpendicular and oblique
illumination directions. The CD is much larger at oblique in-
cidence. This last prediction is possible and trustworthy only
because of the accurate homogeneous model. Section 6 con-
tains the conclusion and outlook.

II. HOMOGENIZATION BASED ON THE EFFECTIVE
T-MATRIX OF A MATERIAL

Figure 1 is a block diagram of our homogenization method.
The discrete bulk material is defined by an infinite 3D lattice
and a unit cell, repeated at each lattice point. The lattice is
defined by its three lattice vectors. The unit cell is defined by
Tcell, the T-matrix of the scatterer(s) composing the unit cell.
This T-matrix relates the electromagnetic fields incident upon
an isolated unit cell outside the lattice to the corresponding
scattered electromagnetic fields. The T-matrix formalism was
introduced by Waterman [8] and is nowadays a popular tool
in physics and engineering [9]. The T-matrix of an isolated
scatterer can be calculated by methods such as Mie theory
for spheres, or the finite-element method (FEM) [55, 56] or
the Extended Boundary Conditions Method (EBCM) [57] for
more complicated objects. Most commonly, the multipolar
basis of vector spherical waves is used to expand the incident
and scattered fields. The size of the T-matrix becomes finite
by truncating such expansions to some maximum multipo-
lar order while ensuring that the contribution of the discarded
higher orders to the light-matter interaction is negligible. For
individual molecules or molecular clusters, the T-matrix can
be obtained using ab initio quantum chemical methods [17]
such as TD-DFT. The T-matrix unifies the description of light-
matter interactions for both molecules and macroscopic ob-
jects.

After the definition of the actual material, the first question
to answer is whether the material can be homogenized at all
at the frequencies of interest. This question is independent
of the specific homogenization approach. For example, the
homogeneity assumption clearly breaks down at frequencies
that produce diffraction in the lattice, akin to X-rays in most
solids. But even before this obvious limit, the material can
act as a photonic crystal due to Bragg reflections in the lattice.
For a cubic lattice with lattice constant a, diffraction starts at
a propagation constant β = 2π/a, while the first Bragg reflec-
tion occurs already at the edge of the Brillouin zone at a propa-

gation constant of β = π/a. We note that β is the propagation
constant of some fundamental (Bloch) mode propagating in
the periodically structured material.

Therefore, as in [58], we use the band structure of the ac-
tual material to determine whether the material can be ho-
mogenized. When the wavenumber obtained from the band
structure approaches the edge of the Brillouin zone, the onset
of a Bragg band gap can be clearly seen [e.g., in Figure 5].
The presence of the band gap will start affecting the response
of the material already at smaller frequencies by bending the
dispersion relation. Starting around the point that the second
derivative of the dispersion relation vanishes, the light is ex-
plicitly affected by the lattice, and the results of homogenized
models will hence become increasingly unreliable. The ques-
tion of whether homogenization is feasible or not can, there-
fore, be judged by inspecting the emerging band structure.
The band structure can be calculated by solving the eigen-
value equation of the material with a full-wave solver such as
mpGMM once the T-matrix of the object is known and the
lattice geometry is fixed [14].

When homogenization is possible, the response of the ac-
tual material, Teff, is computed from the 3D lattice and the
T-matrix of the unit cell, Tcell. One salient feature of Teff is
that it is an exact description of the material response as long
as enough multipolar orders are considered in its calculation.
Another salient feature is that Teff does not suffer from spatial
dispersion. The effect of the lattice is different for different
illumination directions, but it is possible to rigorously obtain
a single object, Teff, valid for all directions. Before going into
the details of the calculation, it is beneficial to understand the
physical meaning of Teff, illustrated in Figure 2: A 3D lattice
of scatterers described by Tcell, which interact among each
other in Figure 2(a), is rendered equivalent to the same lattice
but with a different unit cell described by Teff in Figure 2(b).
The new “objects” are invisible to each other because all the
lattice interactions have been included in Teff. Therefore Teff
collects all non-local effects into an effectively local descrip-
tion where, as seen in Figure 2, the response of a unit cell is
independent of all other unit cells. Let us now examine the
details.

We start by considering Equation (17) of Ref. 14, which
is the expression for an effective T-matrix T̃eff(k‖) describing
the scattering by an object located at the origin of a 2D peri-
odic lattice, and including all the lattice couplings. Such an
effective T-matrix depends on the propagation direction of the
incident light through the component of the wave vector par-
allel to the lattice plane, k‖. For a 3D lattice, the formula is
identical except that k‖ is replaced by the total wave vector k
[59]:

T̃eff(k) =

(
I−Tcell ∑

R 6=0
C(3)(−R)eik·R

)−1

Tcell, (1)

where Tcell is the T-matrix of an isolated unit cell of the lattice.
The matrix T̃eff(k) connects a(k), the multipolar expansion
coefficients of the original plane wave incident on the unit cell
located at the origin to p̃, the multipolar expansion coefficients
of the corresponding scattered field
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FIG. 1: The blue blocks describe our novel homogenization method that is completely independent of the shape of the final
target object in the orange block. The starting point is the upper left corner, where we calculate the T-matrix of the unit cell from

which the material is made. The unit cell can contain molecules and macroscopic scatterers, whose T-matrices are computed
with TD-DFT and Maxwell solvers, respectively. Afterward, there is a straight flow along the arrows to advance. The blocks
with question marks represent two criteria that must be met to ensure accurate results: that the light does not feel the discrete
lattice, and that, after accounting for all the lattice interactions, the response of a unit cell (Teff) is mostly dipolar. The dipolar
part of Teff is bijectively connected to the bi-anisotropic 6×6 local constitutive relations model for a homogeneous medium.

p̃= T̃eff(k)a(k). (2)

The definition of the multipolar expansion functions, also
known as multipolar fields or vector spherical harmonics,
can be found in Equations (15, S3a-S3d) of Ref. 14. The
C(3)(−R) matrices in Eq. (1) represent the electromagnetic
coupling between the origin and the R lattice point, and their
elements are the translation coefficients for vector spherical
waves [see e.g. Equations (S6a-S7) of Ref. 14]. The infinite
sum ∑R 6=0 C(3)(−R)eik·R over all the lattice points except
for the origin is computed with Ewald’s summation method

[11, 14, 60]. The sum represents the total electromagnetic
coupling between the unit cell in R= 0 and all the other unit
cells in the infinite 3D lattice. The computation of the cou-
pling is exact up to the fact that a maximum allowed mul-
tipolar order must be selected. We note that, in contrast to
approaches that use the quasi-static approximation, see [45],
for instance, the coefficients in C(3)(−R) are exact, depend
on the wavenumber k, and take the spatial oscillations of the
fields into account.

The T̃eff(k) matrix in Eq. (2) has an important disadvantage
regarding its use as the starting point for homogenization: It
is only appropriate for a particular field, namely a plane wave
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FIG. 2: Two equivalent descriptions of light-matter interaction in a 3D lattice of identical scatterers, where an excitation ak

produces a response p̃k. (a) Interacting scatterers in a lattice represented by their individual T-matrices Tcell. (b) Scatterers in a
lattice represented by their effective T-matrix Teff. Every scatterer has the same Teff, which incorporates all the lattice

interactions. As a result, the scatterers represented by Teff are invisible to each other. The effective T-matrix is an excellent
starting point for homogenization.

with momentum k. Therefore, T̃eff(k) should not be used for
any other incident direction. This can be appreciated from the
fact that the 3D lattice “looks differently when looked at from
different directions”, which impacts the lattice sums through
the eik·R factor. If T̃eff(k) is used to derive material param-
eters, those would depend on the directions of k. Such de-
pendence is sometimes called spatial dispersion. It is then
unclear how to use the many-fold instances of material pa-
rameters, except possibly for planar slabs where only a few
plane wave directions are involved. Fortunately, this problem
can be solved rigorously.

The physical ideas behind our solution to such problem can
be stated as follows. Let us assume that we decompose the
scattered field p̃ in Eq. (2) into plane waves. Then, Eq. (2)
can be seen as providing one of the columns of a T-matrix in
the plane wave basis Tpw

eff : The system is excited by a plane
wave and produces scattered plane waves. Now, the entire
Tpw

eff can be obtained by scanning the direction of k. Once
this is done, Tpw

eff can be changed from the plane wave basis
to the multipolar basis to obtain Teff, an effective T-matrix in
the multipolar basis that is (i) valid for all k directions and
(ii) not explicitly dependent on the k direction. The Methods
section contains an analytical derivation that formalizes these
ideas into formulas for the computation of Teff. Besides that
analytical approach, the matrix Teff can also be computed by
adapting the procedure introduced in Ref. 55. First, a finite
number of points on the k̂ sphere, i.e., on the sphere of di-
rections of k, is selected. A particularly useful method for
selecting equally-spaced points on a sphere can be found in
[61]. Then, the T̃eff(k) matrices corresponding to each k̂ are
computed, and Eq. (2) is used two times for each k̂, one for
each of the two possible polarization handedness of an inci-
dent plane wave with momentum k. Then, the coefficients
of all the incident plane waves ak1 , . . . ,akK , and their corre-
sponding expansions of the scattered waves p̃k1 , . . . , p̃kK , are

collected in the following matrix equation

(p̃k1 , . . . , p̃kK ) = Teff(a
k1 , . . . ,akK ), (3)

from where Teff can be obtained. The number of points in
the directions sphere should be much larger than the size of
Teff. The key aspect of Eq. (3) is that it imposes that Teff
shall respond to an incident plane wave with a specific prop-
agation direction k̂ as T̃eff(k) responds. As Figure S3 shows,
the Teff obtained from Eq. (3), which we use in the exam-
ples contained in this article, is essentially identical to the Teff
obtained from the direct implementation of the analytical for-
mulas in the Methods section.

With Teff at hand, the next step is to choose a homogeneous
model for the effective medium and then use Teff for extract-
ing the parameters of the model. In this work, we choose
the linear 6×6 local bi-anisotropic model, where the consti-
tutive relations connecting the electric displacement D and
magnetic flux density B to the E and H fields in the effec-
tive homogeneous medium read in frequency domain [see e.g.,
Eq (1.51) in Ref. 62]

(
D(ω)
B(ω)

)
=

(
εeff(ω) iκeff(ω)

√
ε0µ0

iγeff(ω)
√

ε0µ0 µeff(ω)

)(
E(ω)
H(ω)

)
,

(4)

where εeff(ω) is the tensorial permittivity, µeff(ω) the tenso-
rial permeability, and the κeff(ω) and γeff(ω) tensors describe
the coupling between the electric and magnetic fields. Such
constitutive relations are the most general local and linear con-
stitutive relations. Reciprocal materials such as the ones that
we will consider in this article meet γeff =−κT

eff [62].
The model in Eq. (4) with its corresponding boundary con-

ditions is very commonly used and has full or partial support
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in popular Maxwell solvers. For example, it can be imple-
mented in COMSOL Multiphysics [54], which supports the
full 6×6 model. In MEEP [63], the anisotropic magneto-
electric couplings are restricted to have a particular struc-
ture, and CST [64] supports anisotropy in the electric-electric
and magnetic-magnetic tensors but not in the magneto-electric
ones.

The Methods section contains the derivation that bijectively
connects the 6×6 effective constitutive matrix in Eq. (4), to
the dipolar part of Teff, which we denote by Tdip

eff and also
has 36 parameters. Formally, Tdip

eff can be seen as the result of
zeroing out all the entries of Teff except those relating incident
dipolar fields with scattered dipolar fields. The connection
reads:

(
εeff iκeff

√
ε0µ0

iγeff
√

ε0µ0 µeff

)
=

(
εhI3 0

0 µ0I3

)
+

+n
(

I6−n ·q s1

[
Tdip

eff ,L
])−1

×
(5)

×q s2

[
Tdip

eff

]
,

where L is a depolarization tensor, and we have dropped the
explicit ω-dependence for the benefit of a more concise nota-
tion. See Eq. (17) in Methods for the definitions of the ele-
ments in Eq. (5), including the functions s1 [·, ·], and s2 [·].

The term that contains L represents the depolarization of a
lattice of non-interactive scatterers. This is different in other
methods [27, 37], where the depolarization is due to the inter-
action between the scatterers.

It is important to note that Tdip
eff contains contributions from

the dipolar and the non-dipolar parts of the T-matrix of the
isolated scatterer Tcell. The latter contributions originate from
multipolar couplings in the lattice and can be very significant
in dense lattices even for electromagnetically small objects
[see Figure 3(c)].

The local non-spatially dispersive material parameters con-
tain all the modifications that the non-local lattice interactions
produce to the dipolar response. The frequency-dependent
formulation accommodates any existing temporal dispersion.

Crucially, the bijective connection in Eq. (5) provides a cri-
terium to check the suitability of the homogeneous material
model assumed in Eq. (4): The non-dipolar terms in Teff must
be negligible. This can be quantified with the following for-
mula:

τ (Teff) =

√√√√√√ Tr
{(

Tdip
eff −Teff

)†(
Tdip

eff −Teff

)}
2
(

Tr
{

Tdip
eff

†
Tdip

eff

}
+Tr

{
T†

effTeff

}) , (6)

where τ (Teff) ∈ [0,1], τ (Teff) = 0 implies Teff = Tdip
eff , and

† denotes transpose conjugate. To calculate τ (Teff), Tdip
eff con-

sists of the effective dipolar part in the upper-left corner and
otherwise of entries equal to zero so that the dimensions of

Tdip
eff and Teff are the same. We note that

√
Tr{A†A} is the

square root of the sum of the squared absolute value of each
individual entry of the matrix A, which is the expression of
the Hilbert-Schmidt norm of A. A very small τ (Teff)→ 0 is
needed to ensure the suitability of Eq. (4).

While the second block in Figure 1 determines whether the
actual material is at all homogenizable, τ (Teff)→ 0 indicates
that the particular model in Eq. (4) is sufficient for obtaining
accurate results in the end.

We emphasize that the shape of a target object never enters
the computation of Teff, Tdip

eff , or the computation of the effec-
tive material parameters in the constitutive relations. This is in
sharp contrast to retrieval homogenization approaches, where
the effective material parameters are obtained by fitting the
response of a reference object made from the actual material.
Here, only the bulk material is considered, and all properties
are derived from it.

The methodology and its limits are illustrated in the next
sections with slabs, spheres, and arrays of spheres made
from different materials. In particular, the applicability to
molecular materials is demonstrated for a SURMOF featur-
ing anisotropic chirality. The examples show the value of the
two homogenization criteria, which determine whether a par-
ticular material is homogenizable with Eq. (17) at a particular
frequency: When the two homogenization criteria are simul-
taneously satisfied, the electromagnetic response of a target
object made from the actual material can, independently of
the shape of the object, be computed very precisely using the
constitutive relations in Eq. (17). Crucially, both criteria can
be tested before any simulation of the target object.

III. GOLD SPHERES IN A CUBIC LATTICE

As a first example, we consider gold spheres of 1 nm radius
arranged in a cubic lattice with lattice constant a = 2.05nm.
The surrounding host medium has a relative permittivity of
εr,h = 2.25 [65]. The material parameters of gold are taken
from [66]. All multipoles up to the N = 5 multipolar order
are included in the calculations. The material is chosen as
an example where homogenization is certainly feasible. First,
the T-matrix of a single sphere is calculated with Mie theory.
Next, the band structure is calculated by solving the eigen-
value equation of the 3D structure with the full-wave solver
mpGMM [14]. Results are shown in Figures 3(a) and (b) con-
cerning the real and imaginary part of the propagation con-
stant for a propagation direction along one of the principal
axes. One observes that the band structure never approaches
the edge of the Brillouin zone, where Bragg reflection would
occur: The material is homogenizable, and Teff is then com-
puted.

Figure 3(c) shows the ratio between the amplitude of the
electric dipolar entry of Teff and the corresponding value for
the isolated sphere in Tcell. Even though the response of an
individual sphere is described by an electric dipolar polariz-
ability to very good approximation (N = 1), the lattice inter-
actions involving up to the N = 5 multipolar order modify the
electric dipolar polarizability of the individual sphere signifi-
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FIG. 3: Band structure for real (a) and imaginary (b) parts kz of a 3D lattice of gold spheres (inset) with a radius of 1 nm
arranged in a cubic lattice with a lattice constant of a = 2.05nm. The bands are bent due to an electric dipolar resonance far

away from the edge of the Brillouin zone so that the material can be homogenized. (c) Ratio between the electric dipolar entry
of the Teff of the material and the same T-matrix entry of the isolated sphere. (d) Effective permittivity of the lattice structure

obtained with Equation (5). Transverse Magnetic (TM) reflection coefficient for normal incidence (e) and for an oblique
incidence (f) of a 2.15 mm thick slab, corresponding to 220 layers of gold spheres. For oblique incidence, the direction of the

wave vector is k̂inc = [sin(θ),0,cos(θ)]T with θ = 75◦. We observe in both cases that there is a perfect agreement between the
results obtained with the effective parameters and the exact results for the actual non-homogeneous slab made from the lattice

of gold spheres calculated with the full-waver solver mpGMM.
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FIG. 4: An object of approximately spherical shape is made from the cubic lattice of gold spheres analyzed in Figure 3.
Figure 4(a) is an equatorial cross-cut of the arrangement. The black line is a circle with a radius of Reff = 8a = 16.4nm. In (b),
the cross-section of the scattered plane waves is shown for both the cluster and an effective sphere with Reff whose response is

obtained with the effective material parameters derived from Tdip
eff . The incident plane wave is linearly polarized. The exact

scattering cross-section for the cluster is computed with CELES [67]. Despite some differences because the cluster does not
have a perfect spherical shape, the cross section calculated for the cluster agrees well with the one calculated with the effective

material parameters. This confirms the expectation that the effective material parameters can be used independently of the
shape of the target object.

cantly. In some frequencies, the amplitude of the electric dipo-
lar entry of Teff is more than twice the corresponding value for
the isolated sphere in Tcell. The SI contains an extended dis-
cussion regarding the impact of the choice of N. Figure S1 in
the SI shows that such modifications are very much smaller
when N = 1: It is hence very important to incorporate higher
multipolar orders in the calculation of Teff. Since such lattice-
induced effects affect the dipolar part of Teff, they also im-
pact the effective permittivity shown in Figure 3(d), where
we observe a very pronounced resonance close to 800 nm.
A much less pronounced resonance is also visible close to
600 nm. We do not show the permeability as there is no no-
table magnetic resonance in this frequency range. The per-
meability is, however, included for calculating the responses
of the slab and the sphere shown below. Figure S1 in the SI
shows that τ (Teff) < 8×10−5 in the whole frequency range,
meaning that Teff is very much dominated by its dipolar part.
We expect accurate results from the homogenized models of
target objects of general shape.

We now study a particular geometry: a slab with a thickness
of 2.15 mm, corresponding to 220 layers of gold spheres. The
well-known Fresnel equations and standard boundary condi-
tions are used to obtain the reflection coefficient for the slab
using the effective material parameters. The obtained reflec-
tion coefficients are compared to the exact solutions for a slab
made from the actual lattice of gold spheres, which are cal-
culated with the full-waver solver mpGMM [14]. Due to the
high absorption and large thickness, the transmission of the
slab is zero. The illumination is a transverse magnetic (TM)-
polarized plane wave with a wave vector in the XZ-plane,
k̂inc = [sin(θ),0,cos(θ)]T. Two cases are considered: normal

incidence (θ = 0◦) in Figure 3(e), and oblique incidence with
θ = 75◦ in Figure 3(f). For normal incidence, TM polariza-
tion means a polarization along the negative x-direction. For
oblique incidence, the polarization is correspondingly rotated
[see e.g. Equation (2.62) in Ref. 68].

As the material is effectively isotropic, the xx-components
of the effective permittivity and permeability are used to cal-
culate the response of the effective slab. However, indeed, all
the other components on the diagonal of the material tensors
would be identical. We observe that, as expected, the results
obtained with mpGMM agree very well with the results cal-
culated with the effective parameters.

We now consider a target object with a different shape. The
same discrete gold-spheres-in-cubic-lattice material is used to
form a cluster with an approximately spherical shape of radius
Reff = 8a= 16.4nm [Figure 4(a), inset in Figure 4(b)]. In Fig-
ure 4(b), we compare the scattering cross sections calculated
in two different ways: using CELES [67] for computing the
exact solution for the cluster (see Methods), and using Mie
theory for a homogeneous effective sphere of radius Reff with
the effective material parameters obtained with Tdip

eff . We ob-
serve that the scattering cross sections agree well, confirming
the expectation that the effective material parameters can be
used independently of the shape of the target object. The res-
onance we see corresponds to a localized plasmon-polariton
excited in the sphere at the wavelength where the effective
permittivity in very good approximation satisfies the Fröhlich
condition. The differences observed in Figure 4(b) can be
attributed to the fact that the cluster does not have a perfect
spherical shape. We also note that, in order to apply any ho-
mogenization technique, a cluster should have a sufficiently
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large number of unit cells, and some inaccuracies could also
originate from having a finite number of spheres in the cluster.

IV. CUT-PLATE PAIRS IN A CUBIC LATTICE

In order for us to explore the limits of the homogenization
method, we now consider a more extreme photonic material
made from cylindrically-shaped cut-plate pairs with a radius
of R = 90nm and a cubic lattice constant of a = 200nm, em-
bedded in vacuum. The cut-plate pairs consist of two gold
layers with a thickness of dAu = 30nm separated by an insu-
lator with a thickness of dIns = 5nm and made from a mate-
rial with an isotropic, nondispersive dielectric characterized
by εr,Ins = 2.25 [69]. The material parameters of gold are
taken from [70]. The T-matrix of a cut-plate pair is calcu-
lated with JCMsuite [56, 71]. In Figures 5(a) and (b), the
band structure of the material is shown. We observe a band
gap between 300 THz and 550 THz in which no propagation
occurs. This Bragg gap is caused by reflection at the edge of
the Brillouin zone.

At approximately 175 THz, far away from the edge of the
Brillouin zone, a resonance occurs, bending the dispersion re-
lation. This resonance can be related to a multipolar reso-
nance. In the range of this resonance, the influence of the
Bragg gap and higher resonances can be neglected. Starting
approximately at 200 THz, the influence of the multipole reso-
nance vanishes. For frequencies higher than the turning point
of the band at approximately 240 THz, the influence of the
Bragg gap bends the dispersion bands, and homogenization
becomes unreliable. This is marked by the gray shading in the
figures.

In [69], it is shown that the single cut-plate pair has a
magnetic dipole resonance at low frequencies and an electric
dipole resonance at high frequencies. In Figures 5(c) and (d),
we observe, indeed, a distinct resonance on the magnetic per-
meability for a frequency below the 240 THz limit. Above
such limit, we observe a resonance of the electric permittiv-
ity and an additional resonance of the magnetic permeability
due to the electric quadrupole coupling to the magnetic dipole
[72]. The first N = 7 multipolar orders were included in the
calculations of Teff. The τ (Teff) metric of Eq. (6) is shown in
Figure 5 (f), where we see that τ (Teff) is more than two orders
of magnitude higher than in the previous example, including
a peak value of 0.045 in the homogenizable frequency range,
and an increasing trend towards a very large peak well beyond
the 240 THz limit.

In the following, we consider a slab of nine layers of the
cut-plate pairs in the z direction. For the homogeneous model,
we take 1800nm as the thickness of the slab in the z direc-
tion. The transmission and reflection coefficients of the non-
homogeneous slab for normal incidence are calculated with
mpGMM, and those for the homogeneous slab are calculated
with the effective parameters from Equation (17). As the prin-
cipal axes of the material coincide with the Cartesian axes, the
light propagates along the z-axis, and the material is the same
in x- and y-direction, we use the xx-component of both the
permittivity and permeability to calculate the response of the

effective homogeneous slab. Figures 5(e) and (f) contain the
results.

We observe that when both criteria are satisfied, the results
from the homogeneous slab match very well those of the dis-
crete structure. Both results show the pronounced effect of the
magnetic dipole resonance around 175 THz. The results start
to disagree after 200 THz due to the influence of the Bragg
resonance. We also see in Figure 5(a), that from 200 THz on
the dispersion relation calculated with the effective parame-
ters differs from the band structure calculated with mpGMM.

V. A BI-ANISOTROPIC AND CHIRAL MOLECULAR
MATERIAL

We now demonstrate the wide range of applicability of
our homogenization method by considering a material from
a completely different class: a Zn-L-camphoric acid-dabco
SURMOF, which has a chiral bi-anisotropic structure. The
SURMOF consists of the chiral L-camphoric acid linker
molecules, which build a layer together with Zn paddle wheels
[Figure 6(a)]. The layers forming the SURMOF are con-
nected by dabco pillar linkers. The band diagrams in Fig-
ure S2 show that the molecular material is homogenizable in
the considered frequency range. The T-matrix of the unit cell
is computed using TD-DFT [18]. The lattice constants are
in x- and y-direction a1 = a2 = 2.079nm, and in z-direction
a3 = 1.922nm. At optical frequencies, only the dipolar re-
sponse needs to be considered because the unit cells have sizes
with linear dimensions of the order of 2 nm. The criterium
τ (Teff)→ 0 is always satisfied.

In the homogeneous model of Eq. (4), κeff is responsible
for the chiro-optical effects such as circular dichroism (CD),
i.e., the differential absorption of left- and right-hand polar-
ized light. Figure 6(b) shows the real and imaginary parts
of κeff. We observe that they are different along the direc-
tions of the different lattice vectors of the structure, which
implies that κeff is anisotropic in this material. We focus on
the circular dichroism and, therefore, on the chirality. The
permittivity and permeability are not shown as they are of
minor importance in this context. As the material is recip-
rocal, γeff = −κT

eff [62], and, therefore, one can additionally
describe magneto-electric coupling solely with κeff.

We first consider a slab with a thickness of 77 nm. In-
serting the effective material parameters into COMSOL, we
compute, for normal incidence, the absorption spectrum for
a left-handed circularly polarized plane wave and the circu-
lar dichroism of the film. We define the circular dichroism
as CD = A+−A−

2 , where A+ and A− are the absorption of left-
handed and right-handed circularly polarized plane waves, re-
spectively. We observe in Figure 6(c) that the results obtained
with the homogeneous model match perfectly those obtained
with mpGMM, which explicitly considers the discrete SUR-
MOF lattice [18].

The second example is a planar array of spheres embed-
ded in vacuum. The spheres are made from the SURMOF
material, have a radius of R = 72nm, and are arranged in a
square lattice with constant a = 162nm. In Figure 6(d), the
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FIG. 5: (a),(b) Band structure of a 3D lattice made from cut-plate pairs calculated with mpGMM for real and imaginary kz

together with the dispersion relation kz =
2π f
c0

√
εr,eff,xxµr,eff,xx obtained from the effective homogenized material parameters. A

band gap appears between 300 THz and 550 THz due to Bragg reflection at the edge of the Brillouin zone. This bends the
dispersion bands from approximately 240 THz on, which is marked by the gray shade indicating that the light-matter interaction
in the actual material can then not be reliably modeled by a homogeneous medium. Permeability (c) and permittivity (d) of the
material computed with the effective T-matrix. Absolute value of the transmission (e), and reflection (f) coefficients of a slab

under normal incidence. The dark blue lines correspond to the exact solution of nine layers of the cut-plate pairs stacked in the
z direction. The light blue lines correspond to the solution of a homogeneous slab assuming a thickness of 1800 nm.

CD calculated with COMSOL is displayed for normal inci-
dence and oblique incidence at 70 degrees. We observe that
the circular dichroism is much more pronounced for oblique

incidence. This prediction is only possible and trustworthy
due to the confidence that can be placed in the effective mate-
rial parameters when the two homogenization criteria are met.
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FIG. 6: In a Zn-L-camphoric acid-dabco SURMOF, the T-matrix of the individual isolated cell (a) is computed using TD-DFT.
(b) Real and imaginary parts of the effective chirality. We observe that the chirality is anisotropic. (c) Comparison of the

absorption of an incident left-circularly polarized plane wave and the circular dichroism of a 77nm thick slab computed with
the effective material parameters, and directly with mpGMM which considers the discrete lattice explicitly [18]. The two

results match perfectly. (d) Circular dichroism of a planar array of spheres made from the SURMOF material for normal and
oblique incidence. The spheres have a radius R = 72nm and the lattice constant of the square lattice is a = 162nm.

This example illustrates the use of the constitutive relations
in generic Maxwell solvers, allowing the simulation of target
objects of general shape. Moreover, planar systems contain-
ing different lattices [7] can now be efficiently simulated by
codes that combine the T-matrix and Ewald summation meth-
ods. The simulation is possible once all the lattices, or all but
one of them are homogenized.

We highlight that the T-matrices of the unit cells of molec-
ular materials, and hence ultimately the material parameters,
are obtained from ab initio quantum-chemical computational
methods [17], such as TD-DFT.

VI. CONCLUSION AND OUTLOOK

We have introduced a method for homogenizing artificial
materials made by three-dimensional lattices of electromag-

netic scatterers. The starting point for homogenization is the
non-spatially dispersive yet exact response of the discrete ma-
terial, including all lattice interactions. The material param-
eters of the homogeneous effective medium are determined
from the dipolar part of such exact response without involv-
ing any particular shape of a target object. This truncation
to dipolar order is the only physically significant approxima-
tion in the method. The resulting bi-anisotropic constitutive
relations and boundary conditions are the ones implemented
in standard Maxwell solvers. We have shown that, indepen-
dently of the shape of the target objects, the electromagnetic
response of finite objects made from the actual 3D lattice of
scatterers is very well predicted by the corresponding effective
homogeneous models, provided that two criteria are met. One
is that light should not experience any explicit lattice effects
such as Bragg resonances. This criterium can be assessed us-
ing the band structure of the discrete material and determines
whether the material is homogenizable at all, independently
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of the homogenization method. The other criterium is that
the difference between the exact description of the discrete
material and its dipolar part should be small. Both tests are
independent of the shape of any target object.

We are confident that the method will be helpful for the
computer-aided design of photonic devices containing arti-
ficial materials and for interpreting experimental measure-
ments. In particular, the method is suitable for objects fab-
ricated by three-dimensional laser printing, and/or containing
structured molecular materials.

A plausible extension of the method would include the
quadrupolar orders of the exact response in the homogeneous
model, thereby extending the range of applicability to materi-
als that are homogenizable in principle, but where the contri-
bution of orders higher than the dipole cannot be neglected.

VII. METHODS

A. Analytical derivation of Teff

Let us fix the wavenumber k =
√
k ·k and remove it from

the notation. Let ˆ̃Teff(k̂) be the operator corresponding to the
k-dependent effective T-matrix in Equation (1) so that

ˆ̃Teff(k̂)|k̂,λ 〉= ∑
j̃,m̃,λ̃

p̃ j̃,m̃,λ̃ (k̂,λ )| j̃, m̃, λ̃ 〉, (7)

where |k̂,λ 〉 represents an incident plane wave with well-
defined polarization handedness (helicity) λ =±1 and propa-
gation direction k̂, and p̃ j̃,m̃,λ̃ (k̂,λ ) are the coefficients of the
far-field scattered wave expanded in vector spherical harmon-
ics | j̃, m̃, λ̃ 〉. In | j,m,λ 〉, j = 1 corresponds to the dipolar or-
der, j = 2 to the quadrupolar order, etc ..., and m=− j, . . . , j is
the angular momentum of the spherical wave along the z axis.
Furthermore, let

| j,m,λ 〉=
∫

dk̂β
j,m,λ (k̂)|k̂,λ 〉

=
∫

π

0
dθk̂ sinθk̂

∫
π

−π

dϕk̂β
j,m,λ (k̂)|k̂,λ 〉

(8)

be the expansion of a vector spherical wave | j,m,λ 〉 in
plane waves |k̂,λ 〉, where θk̂ = arccos(kz/k), and ϕk̂ =
arctan(ky,kx).

The expansion coefficients β j,m,λ (k̂) are defined as

β
j,m,λ (k̂) =

γ j,m

4πi j+1

(
m

sinθk̂

P j
m(cosθk̂)+λ

∂

∂θk̂

P j
m(cosθk̂)

)
(9)

with, see Equations (S3c,S3d) from [14],

γ j,m = i

√
2 j+1

4π

( j−m)!
j( j+1)( j+m)!

, (10)

and P j
m(cosθk̂) are the associated Legendre polynomials .

Then, the matrix elements of the direction-independent ef-
fective T-matrix in the multipolar basis Teff, can be derived
as

〈λ̄ , m̄, j̄|T̂eff| j,m,λ 〉=
∫

dk̂β
j,m,λ (k̂)〈λ̄ , m̄, j̄| ˆ̃Teff(k̂)|k̂,λ 〉

= ∑
j̃,m̃,λ̃

∫
dk̂β

j,m,λ (k̂)p̃ j̃,m̃,λ̃ (k̂,λ )〈λ̄ , m̄, j̄| j̃, m̃, λ̃ 〉 (11)

=
∫

dk̂β
j,m,λ (k̂)p̃ j̄,m̄,λ̄ (k̂,λ ),

where the first equality follows from Eq. (8) and the key im-
position that Teff shall respond to an incident plane wave with
a specific propagation direction k̂ as T̃eff(k) responds. The
second follows from Eq. (7), and the third from the orthonor-
mality of the multipolar fields 〈λ̄ , m̄, j̄| j̃, m̃, λ̃ 〉= δ j̄, j̃δm̄,m̃δ

λ̄ ,λ̃ .
The result in the last line of Eq. (11) features an integral

over the sphere of k̂ directions. In practice, a finite num-
ber of directions must be selected, and p̃ j̄,m̄,λ̄ (k̂,λ ) computed
for each direction. A particularly useful method for selecting
equally-spaced points on a sphere, which transforms the in-
tegral into a Riemann sum of equally weighted terms can be
found in [61]. We show in Figure S3 of the SI for the examples
of cut-plate pairs that the normalized difference between the
effective T-matrices calculated with Equations (3) and (11) is
negligibly small.

B. Deriving effective material parameters from Teff

We consider scatterers in a periodic lattice, surrounded
by an achiral non-magnetic host medium with permittivity
εh = εr,hε0 and permeability µh = µ0. Here, ε0 and µ0 are
the vacuum permittivity and permeability, respectively. In
the following, we omit the frequency ω of the incident wave
as argument. All quantities besides purely geometric factors
are, however, frequency-dependent, and exp(−iωt) factors
are suppressed from the notation.

Externally applied electric Eext and magnetic Hext fields
induce effective electric Peff,e and magnetic polarizations
Peff,m in a scatterer in the lattice. We assume, without loss
of generality, that this scatterer is placed at the origin of the
3D lattice. The effective polarizations of the scatterer are de-
termined from the effective T-matrix (Teff) of the lattice. Re-
stricting our consideration to Tdip

eff , the dipolar part of Teff, the
polarizations can be written as

(
Peff,e
Peff,m

)
= nq

(
T j, j′=1,1

eff,EE,cart iZhT j, j′=1,1
eff,EM,cart

−iZhT j, j′=1,1
eff,ME,cart Z2

hT j, j′=1,1
eff,MM,cart

)(
Eext
Hext

)
,

(12)

where n is the concentration of the scatterers per unit cell,
Zh =

√
µ0/εh the wave impedance of the host medium, q =

−i6π

chZhk3
h

[17], ch = 1/
√

εhµ0 is the speed of light in the host
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medium, and kh the wave number in the host medium. The
T j, j′=1,1

eff,νν ′,cart are block matrices building Tdip
eff in the Cartesian

basis:

Tdip
eff ≡

(
T j, j′=1,1

eff,EE,cart T j, j′=1,1
eff,EM,cart

T j, j′=1,1
eff,ME,cart T j, j′=1,1

eff,MM,cart

)
. (13)

The change from the effective dipolar T-matrix in the basis
of vector spherical waves of well-defined helicity to the elec-
tric/magnetic basis in Cartesian coordinates is achieved via
simple matrix multiplications [see Equation (6) in Ref. 17].
The internal fields in a unit volume in the homogenized lat-
tice are therefore a sum of the incident and the depolarization
fields

(
E
H

)
=

(
Eext
Hext

)
−

(
1
εh

L 0
0 1

µ0
L

)(
Peff,e
Peff,m

)
, (14)

where L is the depolarization matrix, which depends on the
geometrical shape of the unit volume. The latter has the
same shape as the unit cell which it has to fill. For a cube,
L = (1/3)I3, if Tdip

eff and the polarizations are considered at
the origin of the lattice. For a cuboid, a formula for L can be
found in [73, 74].

In frequency domain, the common bi-anisotropic constitu-
tive relations relating the electric displacement D and mag-
netic flux density B to the fields inside a material consisting
of the lattice read

(
D
B

)
=

(
εeff iκeff

√
ε0µ0

iγeff
√

ε0µ0 µeff

)(
E
H

)
, (15)

where εeff is the effective tensorial permittivity, µeff the per-
meability, and κeff and γeff describe the coupling between the
electric and magnetic fields. We aim at relating the effective
material parameters to the effective polarizations and to the
Tdip

eff .
The electric displacement and the magnetic flux density can

be expressed via the electric and magnetic polarizations Peff,e
and Peff,m of the lattice as

(
D
B

)
=

(
εhI3 0

0 µ0I3

)(
E
H

)
+

(
Peff,e
Peff,m

)
. (16)

Equations (12,14,16) can be used to obtain an expression
of (D,B) as a function of Tdip

eff and (E,H) by inserting the
implication of Equation (14) for the externally applied fields
into Equation (12), and substituting the polarizations in Equa-
tion (16) with the resulting expressions. Comparison of the
result with Equation (15) gives the material parameters

(
εeff iκeff

√
ε0µ0

iγeff
√

ε0µ0 µeff

)
=

(
εhI3 0

0 µ0I3

)
+

+n

(
I6−n ·q

(
1
εh

T j, j′=1,1
eff,EE,cartL ichT j, j′=1,1

eff,EM,cartL
−i Zh

εh
T j, j′=1,1

eff,ME,cartL chZhT j, j′=1,1
eff,MM,cartL

))−1

×

(17)

×q

(
T j, j′=1,1

eff,EE,cart iZhT j, j′=1,1
eff,EM,cart

−iZhT j, j′=1,1
eff,ME,cart Z2

hT j, j′=1,1
eff,MM,cart

)
.

The depolarization tensor L in Equation (17) describes the
depolarization of a unit cell by the external fields but not the
interaction between the scatterers inside the lattice. Such in-
teraction is already incorporated in Teff. In particular, the lat-
tice interactions modify the dipolar terms in Tdip

eff and hence
the effective material parameters.

C. Using CELES for computing the scattering cross-section of
a cluster of scatterers

Cross-sections for the scattered waves can be computed us-
ing the software CELES [67] as:

Csca =
2π ∑k̂sca

|Ek̂sca
|2

k2
sca,h

, (18)

where Ek̂sca
are the scattered field amplitudes computed with

CELES, ksca,h is the absolute value of the wave vector of the
scattered plane waves in the surrounding medium, and k̂sca is
the propagation direction of the scattered plane waves.
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