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ABSTRACT

The development of cyber-physical systems typically involves the
association between multiple coupled models that capture different
aspects of the system and the environment where it operates. Due
to the dynamic aspect of the environment, unexpected conditions
and uncertainty may impact the system. In this work, we tackle this
problem and propose a taxonomy for characterizing uncertainty in
coupled models. Our taxonomy extends existing proposals to cope
with the particularities of coupled models in cyber-physical sys-
tems. In addition, our taxonomy discusses the notion of uncertainty
propagation to other parts of the system. This allows for studying
and (in some cases) quantifying the effects of uncertainty on other
models in a system even at design time. We show the applicability
of our uncertainty taxonomy in real use cases motivated by our
envisioned scenario of automotive development.
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1 INTRODUCTION

In recent years, the automotive industry has undergone significant
changes in the design and development of vehicles, where software
has become a driving factor for innovation [11]. Today, a vehicle
is a complex cyber-physical system (CPS) where several software,
electric/electronics, and hardware components interact to provide
different functionalities. It is also characterized by the need to
interact with both humans and changing environments as well as
being able to deal with unexpected events and uncertainties that
permeate today’s world. Designing and engineering these complex
systems call for a cooperation between different disciplines.

The model-based approach to design and develop such systems
has proven to be instrumental to guarantee not only their correct
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behaviour, but also to analyse their non-functional properties, like
performance and reliability (cf. examples in [9, 36, 46]). When mul-
tiple models devised by engineers from different disciplines are cre-
ated during the design of a system, a major challenge arises to keep
these models consistent. Design models for CPS are usually coupled
in the sense that they share common elements, such that a change
in one model may need to be reflected in another model as well.
In fact, our expert interviews with developers in the automotive
industry [43] indicated that systematic consistency preservation is
the most desired aspect for any development methodology. Recent
research has developed several approaches and consistency man-
agement tools (CMTs) to (semi-)automatically preserve consistency
in so-called coupled models, i.e., models that together describe the
system-under-design, e.g. [30]). However, model-based develop-
ment and analysis include per-se a certain degree of uncertainty
[47, 49], which is further exacerbated in this context where different
coupled models coexist at the same time. Recognizing the presence
of uncertainties and managing them across coupled models, would
minimize their influence and increase the level of trust in the models.
The missing corrective potential of managing uncertainties could
lead to exaggerate the claims of the models’ validity and to their
uninhibited application to problems far beyond their capabilities.

Thus far, few approaches jointly consider coupled models and
uncertainty. An exception is the work by Famelis, Chechik et al. [13,
19, 20], who present an approach for specifying so-called partial
models to reflect uncertainties about decisions not yet made, which
allows for managing models with this type of uncertainty. However,
as Chechik et al. state for the context of CPS, an open challenge is
to augment existing taxonomies to consider more kinds of uncer-
tainties relevant for system assurance [13].

In this paper, we fill this gap and present a classification of un-
certainties in CPS that can be used as a basis in CMTs to propagate
and more generally manage uncertainties in coupled models. In
particular, we contributes to:

e understanding which uncertainty types emerge in different mod-
els for automotive development, taking the experience in me-
chanical, electrical, and software engineering into account,

e conceptualise the uncertainty propagation between the different
coupled models,

o reify this understanding in a taxonomy that increase the aware-
ness of different types of uncertainty and enable their automated
management, and
illustrate with examples from the automotive domain how the

« Droposed taxonomy can be applied.
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The remainder of the paper is organized as follows. Section 2 pro-
vides a description of existing uncertainty classifications that form
the basis of our proposal. The automotive development context and
the adoption of coupled models is illustrated with an example in Sec-
tion 3. Next, in Section 4 we present our proposal for a classification
of the types of uncertainty, a conceptualisation on the uncertainty
propagation in coupled models together with application examples
in the automotive domain. In Section 5, we summarize related work,
focusing on existing work dealing with uncertainty in the areas of
software engineering, CPS and in coupled models. Finally, Section 6
concludes with an outlook to future work.

2 FOUNDATIONS
Dealing with uncertainty in coupled models typically involves:

(i) Awareness: Recognize the presence of uncertainty in a system.
(ii) Classification: Discover the type and source of the recognized
uncertainty.
(iii) Propagation: Propagate the classified uncertainty through a
single model or coupled models.
(iv) Mitigation: Apply appropriate mitigation strategies to tame
the uncertainty.

For step (i), what often happens in reality is that the existence
of uncertainty is not known in advance, and it can be suspected
only when strange results and/or behaviours are observed. Some
proposals can be found on this theme. For example, [39] proposes a
methodology that guides the software engineers in recognizing the
existence of uncertainty. A Bayesian approach has been proposed
in [8] to evaluate the presence of uncertainty (denoted surprise)
using a metric that measures the distance between the prior and the
posterior probability distributions. Another method is the adoption
of multiple conceptual models [42], which proposes the analysis
of several models of the same system to realize the existence of
uncertainties if their results differ from each other.

Once the presence of uncertainty has been recognized, it is nec-
essary to understand which type of uncertainty we are dealing with
and where its source might be in step (ii). Here, classifications that
fit the domain of the system under study can be applied [34]. The
scope of the classification presented in this paper are CPS.

Optionally in step (iii), the uncertainty can be propagated. The
propagation can be based on structural information or custom rules
defined per uncertainty type. In addition, the transition to coupled
models is possible. Although uncertainty can already be mitigated
after classification in step (ii), the propagation helps to describe the
impact of uncertainty more precisely and comprehensively [24].
Based on the results of step (ii) and step (iii), we are able to manage
the uncertainty in the most suitable way in step (iv).

Henceforth, we posit on the awareness of uncertainty and focus
on steps (ii) and (iii). We propose a classification that exploits and
combines existing proposals to better characterize the automotive
domain. We also discuss the propagation of uncertainty in coupled
models for CPS systems. As for step (iv), we plan to exploit existing
methods able to tame the different types of uncertainties that char-
acterize CPS systems. Hereafter, we summarize the classifications
on which we found our work. The first one has been introduced to
deal with uncertainty in technical systems [38] (Section 2.1), while
the second one focuses on self-adaptive systems [40] (Section 2.2).
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Figure 1: Classification of Uncertainty by Pelz et al. [38] (CC
BY 4.0)

For each classification, we shortly report the suggested methods for
step (iv) to tame uncertainty. In Section 2.3, we discuss foundations
regarding coupled models and view-based development, which are
relevant in the domain of CPS.

2.1 Uncertainty in Technical Systems

The main assumption behind the approach by Pelz et al. [38] is that
a system can be modeled with mathematical functions. In particular,
a system function g(x) can be represented by a model

f(u,y,z,m,...) =0 (1)

where u are inputs, y the internal variables, z the output and m the
parameters. The proposed classification moves along two orthogo-
nal aspects (cf. Figure 1).

The first one takes into account whether the effect of an uncertain
property on the system model is known or unknown. If the effect
is known, and it is expressed in terms of probability, then it is
classified as stochastic uncertainty. If the effect is only partially
quantifiable (e.g., with interval or fuzzy metrics), it is classified as
incertitude. When the effect is unknown, it is classified as ignorance.
The first two cases lead to a non-deterministic system design, while
the ignorance implies a deterministic system design. This means
that the unknown effect is not modelled at all, it is disregarded.

The second aspect is related to system design and includes:

o Data uncertainty: is present, if the amount, type, and distribution
of required data are incomplete, unknown, or insufficient. With
respect to the model in Eq. 1, state variables u and z describe
the input and output conditions. Data uncertainty is captured
in parameters y and m, i.e., y describes the internal variables,
and m describes the characteristics of the technical system. In
regard to Figure 1, data uncertainty is represented as 6 = 0 + Jg,
where the value 6 is expressed as the expected value 0 of a given
distribution plus its discrepancy dg. The ability to represent 8y
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with a probabilistic or a non-probabilistic approach distinguishes
the different types of uncertainties in Figure 1.

o Model uncertainty: exists if the functional relations between the
variables in Eq. 1 as well as the scope and complexity of the
model are unknown or incomplete. This can be due, for example,
to the lack of knowledge about the employed materials or about
the effects of the environment or to the decision to neglect some
aspects in the model definition.

To capture the existence of uncertainty Eq. 1 becomes:

fwy,zm .)+6p=0 (2)

where & is a discrepancy function that represents the difference
between the model and reality, albeit its analytical expression is
usually unknown. As for data uncertainty, the ability to represent
8y with a probabilistic or a non-probabilistic (fuzzy, interval, etc.)
approach distinguishes the different types of uncertainties in
Figure 1. When ¢ cannot be quantified, then there is ignorance.

o Structural Uncertainty: refers to the fact that not all the possible
solutions (e.g., materials) are evaluated with respect to uncer-
tainty. In this sense, the model of the system is incomplete. For
example, different materials, with different quality, might exist for
the realization of a given system, all satisfying the same specific
system function g(x), but not all of them are evaluated.

Taming the uncertainty. Monte Carlo Simulation (MCS) meth-
ods [23, 44] have been suggested as a way to deal with probabilistic
data uncertainty, as well as sensitivity analysis [3]. When there is
incertitude, the possibilistic approaches that analyse whether an
event is possible or impossible [25] can be applied, as well as fuzzy
analysis techniques [35] and interval analysis [2]. To handle model
uncertainty, examples of adopted techniques are discrepancy func-
tions [28], error estimates, or Bayesian calibration techniques [38].
Discrete mathematical optimisation methods [37] can be useful to
handle structural uncertainty.

2.2 Uncertainty in Self-Adaptive Systems

The taxonomy defined by Perez-Palacin and Mirandola [40] pertains
to self-adaptive software systems, which can be modelled using
both formal and semi-formal notation, e.g. stochastic automata or
architectural description languages.

The focus of this classification is on the uncertainties that are
present in the models of the system and are classified regarding the
following dimensions: location, level and nature.

In particular, as illustrated in Figure 2 and detailed in [40], the
location of uncertainty refers to the place where the uncertainty
manifests itself within the model. An uncertainty can be located in
the context, the structure of the model, or the input parameters as
described in the following.

o Context uncertainty is an identification of the boundaries of the
model; that is uncertainty about the information to be modeled.
This uncertainty concerns the completeness of the model with
respect to the real world. It refers to the kind of information that
should be included in the model and the kind of information that
should be abstracted away from it.
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Figure 2: Model uncertainty dimensions (inspired by [40])

o Model structural uncertainty concerns the form of the model
itself. This uncertainty refers to how accurately model’s structure
represents the subset of the real world that has to be modeled.

o Input parameters uncertainty is often identified as parameter
uncertainty and it is associated with the actual value of variables
given as input to the model and with the methods used to calibrate
the model parameters.

The level describes where the uncertainty manifests itself along
the spectrum between deterministic knowledge (0th level) and total
ignorance (3rd level) passing through awareness of uncertainty
(1st level) and unawareness of uncertainty (2nd level). The nature
indicates whether the uncertainty is due to the lack of accurate
information (Epistemic) or is due to the inherent variability of the
phenomena being described (Aleatory).

To manage uncertainties in software systems, researchers have
investigated their possible sources [49]. Examples of sources of
uncertainty are among others: simplifying assumptions, noise in
sensing, future parameter values, humans in the loop. The impact
of these uncertainties on the trustworthiness of the information in
the models and their relation with the taxonomy dimensions have
been analysed in [40, 49]. For example, simplifying assumptions is
classified as being epistemic with location that can be both context
or model structural.!

Taming the uncertainty. According to the identified type of
uncertainty, several methods can be applied to reduce their impact.
For example, to tame uncertainties located in input parameters, reli-
ability bound, confidence intervals, probability distributions [52],
fuzzy methods, range of values, mean and variance, and sensitivity
analysis [14] have been applied so far. Two powerful techniques
that are generally applicable to reduce uncertainty are model av-
eraging [10] and model discrepancy [45]. Some of the above men-
tioned methods were proposed in computer science, while others
are brought from other research areas. However, currently none of
them is able to completely eliminate uncertainties.

2.3 Consistency among Coupled Models

The need to keep multiple sources of information about the design
of a system consistent has been extensively studied in various in-
formatics subdisciplines, such as, databases, software engineering,
in general, and model-driven software engineering, in particular.
In software engineering, the notion of views and view types has

Details about this classification can be found in [40, 49].
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been studied [21, 51]. One approach to view-based development is
to assume a single underlying model from which views for differ-
ent developers are projected [4]. Another approach is the synthetic
approach [26], in which the overall system description is a compo-
sition of views (or models). The term “coupled models” focuses on
the synchronization of information between different models of a
system. Technically, the automation of consistency preservation
in such coupled models involves the specification of consistency-
preserving (bidirectional) model transformations [16]. A Consis-
tency Management Tool (CMT) aims to support the management
and preservation of consistency in coupled models by supporting
the automated and semi-automated propagation of changes from
one model to the others. One approach for integrating view-based
development and coupled models is the idea to treat the coupled
models as a virtual single underlying model (V-SUM) and thus sep-
arate the steps of view creation on such a V-SUM (similar to the
projective view creation with SUMs) and the consistency preser-
vation among the coupled models. The Vitruvius approach [30] is
such a hybrid approach.

In this paper, we build upon the existing idea of consistency
preservation in a V-SUM. Our contribution is the discussion of how
uncertainty can be integrated in a V-SUM-approach to coupled
models and a classification of the different kinds of uncertainty that
needs to be handled (differently) in a resulting V-SUM-based CMT.
Although we expect that the classification can be transferred to
other approaches with views and coupled models, this hypothesis
must be studied in more detail in the future.

3 ENVISIONED AUTOMOTIVE
DEVELOPMENT WITH COUPLED MODELS

To illustrate the different models involved in model-based auto-
motive development and how we envision automated consistency
management to support it, we present an exemplary automotive
development scenario. Based on this scenario, we discuss use cases
of our proposed uncertainty classification in Section 4.3.

We intentionally consider the development of a self-driving elec-
trical car because its design involves many engineers from various
disciplines. This shows that the impact of a design decision can
affect many views involving different areas of expertise. Moreover,
it makes clear that it is neither feasible to involve all disciplines in
every design decision nor practical that every discipline decides for
themselves. In such a situation, uncertainty needs to be represented
and propagated across models, such that all engineers are aware of
current uncertainties.

Figure 3 shows a small part of the envisaged V-SUM meta-
model focusing on three meta-models ranging from a computer-
aided design (CAD) model for the automotive domain (a), a meta-
model for the electronic/electric (E/E) architecture (c), through the
component meta-model for the Robot Operating System (ROS) com-
ponents responsible for trajectory planning within the self-driving
car (e). Moreover, it comprises consistency specifications (CS) [31]
between these meta-models (shown in (b), (d) and (f)).

Let us consider a typical development situation, in which one en-
gineer makes a change to one model which needs to be propagated
to other models and requires subsequent decisions. In the following,
we describe our vision of how this development scenario will be

supported by automated consistency propagation and management.
Suppose that the team leader decides to incorporate braking by
recuperation (i.e., slowing down the car by recovering energy via
the electric engine) and approaches the motor electronics engineer
to modify the engine’s control software. In contrast to the nego-
tiations between multiple disciplines required today, we envision
that each engineer can make individual design decisions while the
CMT preserves the overall consistency of the car under design.

First, the motor electronics engineer opens the engine’s control
software (not shown in Figure 3) and implements the additional
functionality, performs the corresponding tests, and once all pass,
commiits the control software and test results to the CMT. This
change triggers the CMT’s consistency preservation mechanism,
which computes the impact of this change by tracing the consis-
tency relations. This change primarily affects the brake coefficient
when combining the recuperating and mechanical brake. Thus, the
CMT computes the new brake coefficient and, afterwards, generates
and tests the ROS components responsible for trajectory planning
within the self-driving car. This change can be performed automati-
cally without user involvement assuming that there is a consistency
relation between the brake coefficient and the corresponding pa-
rameter within the ROS components.

Additionally, the CMT then notifies the brake system engineer
that the brake coefficient of the mechanical brake can be reduced, as
a portion is contributed by the recuperating brake, to save weight
and production costs. The engineer reduces the brake disc’s size in
the CAD model, which prompts the CMT to rerun the tribological
simulations of the brake disc’s heat distribution as well as the colli-
sion detection algorithm for updated CAD parts. If any violations
of requirements are detected, the engineer is informed.

The change also affects the power electronics, because the engine
now recuperates energy while braking which must be transmit-
ted to the battery. Here, the CMT can automatically run tests and
determine that, in our example, the energy capacity of the power
electronics is exceeded due to the electrical recuperation. Assum-
ing that such a violation of requirements cannot be automatically
repaired in our example and involves manual changes, the power
electronics engineer is notified by the CMT to increase the capacity
of the power electronics in the E/E architecture model.

Later, during the development of the autonomous car, the team
leader can task the CMT to check whether all safety and security
requirements have been fulfilled by running X-in-the-Loop (XiL)
tests, i.e., where models, software, and hardware are assembled in
a physical test infrastructure. This is done, in our example, after
both the newly manufactured brake disc and the modified wiring
have been assembled in the XiL test infrastructure.

Although the presented scenario is simplified and discusses only
a low number of models, it already highlights the benefits of sys-
tematic, (semi-)automated consistency checks. Note that in such an
approach, only known consistency relations between two models
can be handled, i.e. there needs to be a consistency specification
between the respective metamodels (cf. Figure 3). Ideally, such con-
sistency specifications can be defined for two metamodels indepen-
dently of a concrete project, so that the consistency specifications
can be reused across projects and even across organizations. In cases
where an automated consistency preservation for a given consis-
tency specification is not possible but human input is needed, a
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Figure 3: Example of a coupled models in the automotive domain. A (partial) V-SUM meta-model for the automotive domain
containing a computer-aided design (CAD), an E/E architecture, and a ROS component meta-model with viewtypes for 3D
models and tribological simulations, electrical topology with hardware components (PREEvision), software components and
component diagrams, as well as a combination of view types for a simplified vehicular model used by the trajectory planning
component and for testing the drive-train and brake system of a car in a XiL test infrastructure (© IPEK).

CMT can at least notify engineers where in the models information
may have become outdated.

In conclusion, by using a central CMT, the various engineers
involved in the design of a (self-driving) car can individually de-
sign and evaluate which of their design decisions offer the best
trade-off between production cost, reliability, and future extensibil-
ity and save the effort fir manual consistency preservation across
development teams.

After introducing this envisioned automotive development sce-
nario with coupled models and automated consistency preservation,
we next discuss our approach to uncertainty in coupled models of
cyber-physical systems (CPS). While our example here assumed a
CMT based on a V-SUM, we expect that the approach described in
the next section might also be applicable to other approaches for
coupled models. In Section 4.3, we revisit the envisioned scenario
and discuss possible use cases for uncertainty.

4 PROPOSED APPROACH

This section presents our proposal for uncertainty classification in
the automotive domain (Section 4.1) and a first discussion of how
to quantify the uncertainty propagation among the different views
of the system model (Section 4.2).

4.1 Uncertainty Classification

We propose a classification that exploits and combines the existing
results tailoring them to the automotive domain. Table 1 summa-
rizes our effort by highlighting the comparison with the taxonomies
described in Section 2.

In regard to the considered types of models, the automotive do-
main requires to be inclusive and cover hardware, electric/electronic,
and software components. To this end, as system models, we con-
sider mathematical models like differential equations as well as
formal and semi-formal models like Markovian models and UML-
like component and behavioural diagrams.

Regarding the effect of uncertainty, we mainly adopt Pelz’s classi-
fication considering the known effect that is the only one analysed.
Besides, we add one additional level: the level of tagging uncertainty.
The rationale behind this choice is that while developing a system,
it may be helpful to tag a model element as uncertain even if one is
not able to further characterize the effect of the uncertainty. Such
an annotation can most likely not be processed further, as more in-
formation has to be collected (either to characterize the uncertainty
further or to even resolve it). These tags might be used to trace the
propagation of uncertainty described in step (iii) in Section 2 by
tainting all the elements in the coupled models that are related to
the annotated model element as somewhat uncertain.
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Table 1: Comparison of existing [38, 40] and own uncertainty classification.

Taxonomy
element

Type of models

Modelling the
effect of uncer-
tainty

Handling un-
certainty

Locus of wun-
certainty

(in the model)

Source of uncer-

Pelz et al. [38]

Mathematical models expressed as a func-
tion of model parameters, internal vari-
ables, input and output f(u, y,z, m, ...)

« probabilistic approaches
« incertitude-based approaches (i.e. pos-
sibilistic, fuzzy, or intervals)

at design time only, cf. Sect. 2.1

« Data
« Model

« Structure

« not considered

Pérez-Palacin and Mirandola [40]

Software architecture models like compo-
nent diagrams, Queuing networks, Petri
nets, Markovian models and mathemati-
cal models

Aspect related to the model formalism
adopted and mentioned in the different
methods to manage uncertainty

« at design time
« at runtime, cf. Sect. 2.2

Partially  captured in  location:
« Input parameters
« Model structure

« Context

« included in location

Our Solution

Both: A broad range of models, from discrete
structural like UML diagrams to mathemati-
cal models such as differential equations

probabilistic approaches
incertitude-based approaches (i.e. possi-
bilistic, fuzzy, or intervals)

just representing uncertainty without char-
acterizing it further

at design time, cf. Sect. 2.1
at runtime, cf. Sect. 2.2

Parameters
Model

Analysis
Decision making

System

tainty (in the
real world)

« Environment

Regarding handling uncertainty, we can devise two main classes
of approaches: the ones that can be applied at design time, like a
Monte Carlo simulation, and the ones that can be applied at run
time, like self-adaptation.

Regarding the locus of uncertainty, we combine the classifications
of Pelz et al. and Perez et al. and introduce the notion of locus. This
differs from the term location in Perez et al. as it specifies which
model elements are affected (locus) and the “location in the real
world”, which we introduce as a new dimension below. Specifically,
we distinguish the following categories:

o Parameters: refers to the uncertainty of all the types of parameters
that characterize a model and covers the input parameters in [40]
and one of the aspects of data uncertainty in [38].

e Model: this type refers to the uncertainty related to the model
definition, formalism selection, boundaries, and structure, and
incorporates the model structure in [40] and one of the aspects
of data uncertainty in [38].

o Analysis: this category refers to the uncertainty due to the evalua-
tion of (design) decisions using model-based evaluation methods.
Models always abstract from lower-level details, which gives rise
to uncertainty on the predicted quality of the system. Besides,
the analysis algorithms themselves could add uncertainty, when,
for example, approximation techniques for mathematical models
are used. In [38] this is partially covered by the model category,
while [40] does not discuss this aspect.

o Decision making: this type of uncertainty is related to the decision
making process when different options are available, concerning,
for example, possible design decisions, or when the decision is
based on incomplete information and only estimates of the values
of interest are available.

Regarding the source of uncertainty (in the real world), we in-
troduce this element to make explicit the difference between the

uncertainty that is related to the system itself (what we design), and
uncertainty that instead depends on the environment (everything
outside the system boundary). This characterization is particularly
helpful in CPS, as it can drive taming or mitigating uncertainty in
a more informed way.

Finally, our classification explicitly excluded the aleatory and/or
epistemic nature of uncertainty, because the distinction between
these two natures often depends on the point of view of the ob-
server and could become a philosophical debate more than a useful
distinction helping the classification and management of uncer-
tainty [17, 29].

4.2 Propagation of Uncertainty in Coupled
Models

Uncertainty propagation allows for further understanding the im-
pact of uncertainty in other parts of the system. In this section, we
discuss several operations on how uncertainties in coupled models
could be propagated by CMTs along the known consistency speci-
fications. We characterize propagation mechanisms according to
the locus of uncertainty based on our taxonomy.

Propagation of parameter uncertainty: depending on the param-
eter, the effect of uncertainty and the relationship of parameters
to other elements in the models. Uncertainty propagation can be
defined employing the following approaches:

o Identity function: indicates a direct effect of the parameter anno-
tated with uncertainty over another part of the model.

e Functions for non-probabilistic parameters: for example, using in-
terval analysis [27] or T-norms to handle fuzzy values (e.g., [1]
for data uncertainty). In coupled models, the specific T-norms
or T-conorms (depending on the relationship of parameters and
other parts of the model annotated with uncertainty) used to
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compute the propagated uncertainty need to be specified manu-
ally by the author of the consistency specification or the model
transformation. Additionally, the relation can also state that the
uncertainty is not propagated, e.g., with the bottom operator L.

o Approaches for probabilistic parameters: sampling-based approaches,
simulations, and other solutions for propagating the uncertainty
that occurs in probabilistic parameters.

o Domain-specific functions: in some cases, the propagation of un-
certainty needs to be defined in the consistency preservation rule
based on domain knowledge.

Propagation of model uncertainty: The propagation of model un-
certainty depends on the locus of uncertainty within the model. For
instance, when uncertainty occurs in parameters, then the above
described approaches can be used to capture the overall uncertainty
of the model and propagate it to other parts of the system. How-
ever, structural uncertainty in the model is not easy to quantify.
In this case, we hypothesise that there is no generic solution for
uncertainty propagation and specific domain knowledge is needed
to define the propagation.

Propagation of analysis uncertainty: In our experience, the occur-
rence of uncertainty in analyses is reflected on the output elements
of the analyses. Therefore, the propagation of analysis uncertainty
can be treated as a special case of parameter uncertainty, where un-
certainty is represented (and “quantified”) in the output parameter
of the analysis. In this case, we need to map the analysis uncertainty
to parameter uncertainty, e.g., by applying a series of transforma-
tions/combinations from the elements that introduce uncertainty
in the analyses to its output. Our hypothesis is that this mapping
again needs to be defined in the consistency preservation rule based
on domain knowledge.

In general, uncertainty located in parameters or models can be
propagated to analysis. This can be handled in two ways:

o Uncertainty-aware analysis: Some analyses already support un-
certainty in their input parameter or models. In this case, the
uncertainty in coupled models needs to be mapped to the model
elements expressing uncertainty in the input model of the analy-
sis. This, we expect, can only be done by humans specifying the
consistency preservation rules.

o Analyses that ignore (some kind of) uncertainty: For analyses that
are not aware of a given kind of uncertainty, techniques such as
Monte-Carlo simulation can be used to repeatedly execute the
analysis and thus characterize the uncertainty of the analysis
results for the given uncertainty.

4.3 Example Use Cases

In Table 2, we list a number of use cases in which uncertainty
related to our future automotive development scenario may arise
and classify these uncertainties employing our classification. These
use cases are formulated based on discussions with project partners
from electrical and mechanical engineering about coupled models
in the automotive domain.

In connection to the motivating scenario presented in Section 3,
the use cases (UC) discussed in this section are related to some of
the models depicted in Figure 3. In particular, UC 1 is related to
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the E/E architecture, UC 2, 3a, and 3b are related to the automotive
CAD model, and UC 4 is linked to the ROS model. Lastly, UC 5 is
presented as uncertainty in some material (for example occurring
in the CAD model or another part of the system not depicted in
Figure 3), and UC 6 describes uncertainty in the environment (i.e.,
outside of the system).

5 RELATED WORK

We group related work into three sections. First, we give an overview
over the state of the art in uncertainty classification and analysis in
software engineering. Afterwards, we discuss uncertainties in CPS
and coupled models in more detail as these are closer to our work.

5.1 Uncertainty in Software Engineering

The topic of uncertainty has been studied in software engineering,
especially in the community of self-adaptive systems. We group
related work into three categories: general discussion and studies
about uncertainty research, available classifications and taxonomies,
as well as approaches to handle uncertainty.

A decade ago, Garlan [22] already proposed to include uncer-
tainty as first-class concern into the software design process to cre-
ate more resilient systems. Troya et al. [47] gave an overview over
the current state of the art. They conducted a systematic literature
review with 123 primary studies and gathered uncertainty types,
approaches, and application domains. Mahdavi-Hezavehi et al. [34]
conducted a survey in the community of self-adaptive systems to
better understand which sources, methods, and quality require-
ments are considered. They also discuss the lack of systematic
approaches to understand and deal with uncertainty.

To better understand uncertainty, several taxonomies and classi-
fications have been proposed in the field of software engineering.
Perez-Palacin and Mirandola [40] define a three dimensional clas-
sification of uncertainty based on its location, level, and nature.
Ramirez et al. [41] present a template for describing sources of
uncertainty and present a taxonomy of uncertainties at the level of
requirements, design time, and run time. Besides them, Esfahani
and Malek [17] characterize uncertainty in self-adaptive systems.
They discuss different sources and their reducibility.

Mahdavi-Hezavehi et al. [33] conducted a systematic literature
review on architecture-based approaches to handle uncertainty. We
highlight several of such approaches. Esfahani et al. [18] present
GuideArch, an approach for design space exploration under un-
certainty based on fuzzy values. Similarly, Lytra and Zdun [32]
propose to use fuzzy values to define reusable and uncertainty-
aware design decisions. Famelis and Chechik [19] apply partial
models to handle design time uncertainty and related design deci-
sions. Whittle et al. [50] propose to already consider uncertainty in
requirements by defining points of flexibility.

The major difference to our approach is that our classification
is build for propagation in coupled models, such as CPS. Bringing
together software engineering approaches with model-driven engi-
neering and uncertainty in mechanical engineering [38] requires a
new view. Thus, we present a more detailed discussion of CPS and
coupled models in the following.
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Table 2: Uncertainty classification in envisioned CPS use cases.

ID Use Case (UC) Effect Handling Locus Source
1 When designers evaluate whether to introduce a new sensor for autonomous  representing uncertainty with-  design decision system
driving, they may not yet have made subsequent decisions about the detailed  out characterizing it further time making
E/E design. Thus, they cannot predict the detailed timing behaviour yet based
on E/E models. Consequently, they will initially only estimate the timing
behaviour to evaluate whether the design alternative is promising.
2 If the weight of the brake disc is uncertain, the uncertainty assessment may  probabilistic or incertitude design parameters system
determine that there are no consequences in a mechanical view, because the time
axle mounting is designed to be strong enough.
3a Ifitis yet uncertain which of the available materials out of a set of possi- mix of probabilistic and possi- design model system
ble materials with each well-defined characteristics with stochastic  bilistic time
uncertainty each shall be used for the brake disc, this uncertainty will be
propagated to the thermal stress model. Thermal designers may then notice
that not all options ensure that the brake disc is sufficiently cooled by the
expected air flow. In this UC, we assume that not just a single parameter
value is used to model the material, but multiple model elements.
3b  Ifitisyet uncertain which of the available materials with unknown charac- representing uncertainty with-  design model system
teristics shall be used for the brake disc, this uncertainty will be propagated  out characterizing it further time
to the thermal stress model. This model then cannot be solved and no results
are produced (i.e. the results are unknown as well). In this UC, we assume
that not just a single parameter value is used to model the material, but
multiple model elements.
4  Assume a function that estimates the stopping time of a vehicle based on  any, depending on how well run time analysis system
input parameters like speed of the vehicle, temperature of the breaks, friction  the introduced uncertainty
of the grounds. This function is a simplification of the real world so thatit can be characterized
can fulfill real-time requirements.
5  The characteristic curve of the thermal properties of a material have been any, depending on the avail- design analysis both
measured in a certain context, and it is uncertain whether the material will ~ able knowledge time
behave in the same way in the context of the system.
6  The temperature of environment is uncertain, but can be characterised with  incertitude (interval) design parameter  environ-
an interval (-30 degree to 60 degree). time ment

5.2 Uncertainty in CPS

More recent approaches have focused on representing uncertainty
in CPS [6, 12, 15, 53], which extend the uncertainty models devel-
oped for software engineering (cf. Section 5.1).

Zhang et al. [53] characterise uncertainty in CPS in three lev-
els: application related to data and events, infrastructure, as well as
integration, which relates uncertainty within or between the appli-
cation and the infrastructure levels. Based on this distinction, Zhang
et al. propose the U-Model conceptual model to represent uncer-
tainty in three sub-models: the Belief Model, Uncertainty Model, and
Measure Model. The Belief Model captures the agent that perceives
the uncertainty, the source and the evidence of the uncertainty.
The Uncertainty Model represents self-associations of uncertainty
among the different levels specialized as content, environment, ge-
ographical location, occurrence, and lifetime. The Measure Model
aims at describing uncertainty either qualitatively (e.g., ambiguity)
or quantitatively (e.g., with fuzzy logic). The work by Chatterjee
and Reza [12] extends the U-Model to express new patterns of
spatio-temporal uncertainty that combine geographical location
and occurrence. Chipman et al. [15] classifies uncertainty in CPS in
three dimensions: location as Walker [48], level which corresponds
to the nature dimension by Perez-Palacin and Mirandola [40], and

distinguishes between static and dynamic uncertainty. The latter
captures whether an unknown variable is constant (e.g., process
variations) or can change over time (e.g., noise). Chipman et al.
propose a model of uncertainty which is in line with the taxonomy
by Pelz [38] and discuss different approaches for performing verifi-
cation of CPS with uncertainty. Bandyszak et al. [6] study the forms
of uncertainty that can occur in real-time embedded and reactive
systems, e.g., CPS. This work introduces the ECDC reference model
for categorising techniques that handle uncertainty at run time. The
ECDC model comprises four core concepts, i.e., Execution platform,
Communication infrastructure, Data processing, and Coordination.
Each of these four concepts can manifest different forms of run time
uncertainty that can be mitigated by strengthening the physical
infrastructure by design or with software-based solutions. Our pro-
posed solution advances the state of the art in the following ways.
Our taxonomy, when compared to the work by Zhang et al. [53],
captures different models for representing and studying the effect
of uncertainty, while distinguishing between design time and run
time uncertainty. In contrast to the taxonomies in [6, 12, 15], our
solution distinguishes between the locus, i.e., where uncertainty
manifests, and the source of uncertainty, i.e., whether uncertainty
steams from imprecision in the system that should be represented
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or from the environment. Finally, our work differs from the state
of the art, as it studies the propagation of uncertainty in CPS ac-
cording to the locus where the uncertainty occurs. This allows for
understanding the effects of uncertainty even at design time.

Another line of research for representing uncertainty in CPS fo-
cuses on meta-models. The Orthogonal Uncertainty Model (OUM) [5]
is a meta-modelfor representing uncertainties and their connections
to other engineering artefacts (e.g., requirements or behavioural
specifications) in CPS development. OUM is defined as an ontologi-
cal model that captures the core concepts to describe uncertainty,
i.e., uncertainty instance, observation point, activation condition,
rationale, mitigation, and effect. The OUM language proposes an
extension of UML diagrams to visually represent the previous con-
cepts. OUM is complementary to our work as our proposed taxon-
omy allows for modelling specific aspects of uncertainty at another
level of abstraction. For instance, our taxonomy can be used to
express whether the locus of uncertainty is in the input data or in
the model using the input data. In OUM, for instance, the source
of uncertainty can only be traced to the observation point in the
system (e.g., laser sensor) where uncertainty is present, yet, the
nature of uncertainty is not represented. The previous examples
aim to illustrate the differences between our taxonomy and OUM;
this distinction in the levels of abstraction is also true in the other
elements of our taxonomy.

5.3 Uncertainty in Coupled Models

While uncertainty in software engineering and in CPS in general
has been studied in multiple works (see above), uncertainty in
coupled models (as introduced in Section 2.3) has been considered
only by some approaches.

Famelis et al. [19] present a generic approach to adapt existing
model transformations to so called “May models”, i.e. a formalism
to express uncertainty about decisions not yet taken in software
models [20] (cf. the entry “decision making” in our classification,
described in Section 4.1). However, their approach does not cover
other types of uncertainty, such as probabilistic or possibilistic
uncertainty, often encountered in CPS models. In line with that,
Chechik et al. mention “model management for uncertainty and
assurance” as one open challenge [13].

In the context of environmental sciences, the UncertWeb [7]
approach considers modelling uncertainty with UncertML, which
considers only statistical uncertainty in coupled environmental
models. The approach also discusses Monte Carlo simulations as a
generic way to propagate uncertainty into models and analyses that
assume static values. We transfer this idea to CPS-related models
and uncertainties.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a classification of uncertainty in CPS.
Here, we focused on coupled models that are common in the domain
of design and development of vehicles. To this end, we discussed
the four steps of handling uncertainty, from awareness, and classi-
fication to propagation, and mitigation. We then proposed a novel
classification of uncertainty that describes the locus, source, model-
ing, and handling of uncertain influences.
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This classification enables the propagation of uncertainty to
identify affected parts of coupled models. This benefits engineers
in inspecting and representing uncertainty both in design time
and run time. Here, our proposed approach enables them to make
both more precise and more comprehensive statements about the
type and impact of uncertainty. To show this, we have presented a
preliminary analysis of real use cases where uncertainty occurs in
coupled models in CPS development. This analysis exhibits how the
different aspects of our proposed taxonomy allow for representing
or characterizing uncertainty in our envisioned scenario.

In our future work, we want to consolidate the taxonomy to
facilitate an efficient uncertainty management. We then plan to
validate the classification presented in this work by (1) interviewing
experts from the automotive domain, and (2) creating V-SUMs for
the automotive example sketched above, both in a collaboration
with mechanical and electrical engineers at KIT. Furthermore, we
plan to extend the Vitruvius approach to be able to express uncer-
tainty propagation for different kinds of uncertainties in consistency
preservation rules as described in Section 4.2. Based on that, we
will validate whether the uncertainty in realistic dynamic scenarios
can be appropriately propagated and managed. Finally, we plan
to exploit the taxonomy to define blueprints for the application of
suitable methods to tame the different types of uncertainties.
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