
Abstract—Ensuring sustainable sourcing of crude materials
and production of goods is a pressing problem in consideration of
the growing world population and rapid climate change. Supply-
chain traceability systems based on distributed ledgers can help
to enforce sustainability policies like production limits.

We propose two mutually independent distributed-ledger-
based protocols that enable public verifiability of policy compli-
ance. They are designed for different supply-chain scenarios and
use different privacy-enhancing technologies in order to protect
confidential supply-chain data: secret sharing and homomorphic
encryption. The protocols can be added to existing supply-
chain traceability solutions with minor effort. They ensure
confidentiality of transaction details and offer public verifiability
of producers’ compliance, enabling institutions and even end
consumers to evaluate sustainability of supply chains. Through
extensive theoretical and empirical evaluation, we show that both
protocols perform verification for lifelike supply-chain scenarios
in perfectly practical time.

Index Terms—Distributed ledger technology, homomorphic
encryption, proxy re-encryption, secret sharing, supply-chain
verification

I. INTRODUCTION

Today’s rapidly growing world population comes with an
increasing demand for food and plantations. Palm oil, the
world’s most consumed vegetable oil [26], is used in numerous
products including groceries, beauty products, and biofuel.
Most oil palms are cultivated in Indonesia and Malaysia,
where palm-oil production is responsible for deforestation
and endangerment of wildlife. To achieve sustainable palm-
oil production, initiatives like the Roundtable on Sustainable
Palm Oil (RSPO)1 created sustainability standards. They issue
certificates for sustainable palm-oil production and use audits
to prevent fraudulent behavior like mixing sustainable and
non-sustainable palm oil or overselling sustainable palm oil.
RSPO allows trading of credits that represent a specific amount
of certified sustainable palm oil. This allows manufacturers to
buy credits that entitle them to offset a particular amount of
palm oil and demonstrate their commitment to sustainability.
Despite these efforts, RSPO is also criticized for investing too
little in independent and credible audits [29].

An alternative to regular audits is supply-chain transparency
through distributed ledgers, such as proposed by the Sustain

This paper is dedicated to the memory of Axel Schröpfer, whose passion
for privacy-enhancing technologies was unsurpassed.

1https://rspo.org

Consortium.2 Tracking every supply-chain action on a public
ledger allows third parties to verify sustainable sourcing and
detect non-compliant or fraudulent behavior. The latter can
cause legal consequences and fines, affect supply-chain partic-
ipants’ reputation and credibility, and reduce customers’ trust
in their suppliers, which can affect future business relations.
Therefore, a high chance of uncovering fraud adds pressure
on companies to comply with policies and regulations.

Distributed ledgers inherently ensure traceability, trans-
parency, and integrity [25]. Confidentiality of transaction de-
tails, however, is not a default feature and intuitively seems
to contradict transparency. Thus, supply-chain participants
might have privacy concerns: Leaking confidential transaction
details could jeopardize their competitive advantages. That is
particularly the case for public ledgers, which are often used
to enable public verifiability, i.e., verifiability for everyone
including end consumers. Existing solutions fail to combine
privacy with public verifiability [1, 13, 15].

Even though sustainable palm oil production is a pressing
problem itself, we expand the underlying problem to general
settings to enable a wide variety of use cases. Our results
can easily be applied to other supply-chain scenarios with
production restrictions, such as ethical fishing and mining.

We propose two independent verification protocols that
work as a confidentiality layer in distributed-ledger-based
supply-chain traceability solutions. They are designed for
different volatility levels of producer-customer relationships to
cover a large variety of supply chains and different stages of
production. They could be long-lasting or last just for a single
transaction. We target two independent supply-chain scenar-
ios. The first scenario covers long-lasting producer-customer
relations, e.g., between palm-oil mills and manufacturers of
palm-oil-based products. The second scenario fits short-term
relations between static producers and volatile customers, e.g.,
manufacturers and (end) consumers.

We design individual protocols for each of these two
scenarios. The protocol for the first scenario uses secret
sharing (ΠS), the second employs a combination of fully
homomorphic encryption and proxy re-encryption (ΠPRE).
These technologies enable different protocol designs and allow
them to properly fit the respective supply-chain scenario.

2https://sustainalliance.org

Efficient Public Verification of Confidential
Supply-Chain Transactions

Kilian Becher∗, Mirko Schäfer∗, Axel Schröpfer†, and Thorsten Strufe‡
∗ Technische Universität Dresden, Germany

† SAP SE, Germany
‡ Karsruhe Institute of Technology, Germany

Email: ∗{kilian.becher, mirko.schaefer}@tu-dresden.de, †axel.schroepfer@sap.com, ‡thorsten.strufe@kit.edu

…

Producer

Customer 1 Customer 3

Verifier 1

Verifier 2Customer 2

Transaction 1 Transaction 2 Transaction 3 Transaction n

Fig. 1: Example Supply-Chain Traceability Scenario

However, they cause different performances, leading to a trade-
off between volatility and performance (see Section V).

II. BACKGROUND AND RELATED WORK

A. Scenario Description

Figure 1 shows an example supply-chain traceability sce-
nario with a producer that performs transactions with three
customers via a distributed ledger. Independent verifiers read
from the ledger to verify compliance. In the palm-oil case,
producers could be refineries, their customers could be food
manufacturers, and verifiers could be end consumers or NGOs.

Our solution aims for public verifiability of the producers’
compliance with production limits: Supply-chain participants,
consumers, NGOs, etc. may verify whether a potentially
malicious producer exceeds a specific limit, i.e., maximum
amount, which may change over time. To do so, the verifier
checks whether the producer has a positive production balance
regarding this maximum amount.

We require balance verification to guarantee confidentiality
of the transaction amounts. These amounts could leak supply-
chain participants’ trade secrets like bill of materials and
recipes of products as well as warehouse stock and storage
capacities. Those ensure participants’ competitive advantages.

Distributed-ledger-based supply-chain traceability systems
reflect real-life business relations between producers and their
customers, which transfer physical amounts. Such relations are
trade knowledge in many industries and transactions can be
observed in the real world. We address transaction anonymity
through pseudonymization of participants’ identifiers.

We reasonably assume that maximum amounts are public
knowledge, e.g., implied by public sustainability standards
or legal regulations such as the EU’s Renewable Energy
Directive.3 Those standards and regulations can change. As for
the palm-oil industry, we allow credit trading. Producers can
purchase credits that entitle them to offset a particular amount
of palm oil. We take into account that producers can purchase
multiple credits over time. Hence, the maximum amount that
a producer is entitled to process can also change over time.

For simplicity of notations and without loss of generality,
we assume a single producer P that transfers n amounts xi of a
particular good to customers Ci in the physical world. We use i
as the transaction index. Every physical-world transaction has
a digital counterpart that is reflected on a distributed ledger
DL in a privacy-preserving form. We denote by xmax the

3https://eur-lex.europa.eu/eli/dir/2018/2001/oj

maximum amount that P is entitled to produce or process.
This xmax could be stored on DL where everyone can access
it. Representing physical amounts or masses, xi and xmax are
positive by nature. For balance verification, verifiers V aim to
determine whether the total transferred amount x =

∑n
i=1 xi

is below or equal to xmax, i.e., whether the balance

δ = xmax −
n∑

i=1

xi (1)

is non-negative. A negative verification result indicates fraud
by the producer, which can be reported by publishing an alert
entry with details on the accusation on the distributed ledger.

Balance verification should be efficient in terms of computa-
tional resources and storage requirements. The overall solution
should scale well in the complexity of the supply chain.

B. Adversary Model

Our protocols guarantee detection of producer fraud while
hiding the transaction amounts. We consider two adversaries.
The first adversary tries to convince verifiers that the producer
behaved honestly even if it did not. We assume malicious [27]
producers and exclude collusion with customers. This ex-
clusion is reasonable as all supply-chain transactions from
sourcing to manufacturing of end products have to be reflected
on the ledger to allow traceability. Active involvement of
customers in fraud, e.g., in off-ledger transactions, shifts
the burden to convince their customers and eventually end
consumers to them in their role as supplier. Hence, off-ledger
transactions imply that all follow-up transactions have to be
performed off-ledger, including purchasing by end consumers.

The second adversary tries to learn amounts xi of trans-
actions that it was not involved in. It could either corrupt
customers or verifiers, but without collusion with the producer.
Here, we allow semi-honest [27] customers and verifiers.

For direct communication between parties, we require pair-
wise secure, i.e., secret and authentic, channels, e.g., via TLS.

C. Related Work

a) Distributed-Ledger-Based Supply-Chain Verification:
An investigation of the suitability of blockchains for supply-
chain traceability is presented in [15]. It focuses on trans-
parency and suggests to hash confidential information, which
rules out further data processing, including verifications.

AgriBlockIoT [13] is a blockchain-based system that en-
ables traceability and auditability for agriculture and food
supply chains. Entries are written by IoT devices, smart
contracts react autonomously to data anomalies. AgriBlockIoT
does not ensure privacy of the data written into the blockchain.

A blockchain-based traceability system for the textile and
clothing industry is presented in [1]. It aims to establish
technology-based trust among supply-chain participants based
on private blockchains. The latter hinders public verifiability.

A protocol for verification of commodity ratios is presented
in [4]. Supply-chain transactions and their dependencies are
reflected in a distributed ledger as a tree-like data structure.
Confidentiality is ensured via homomorphic encryption.

b) Zero-Knowledge Arguments and Proofs: Zero-knowl-
edge arguments and proofs of knowledge allow a prover P to
convince a verifier V that P knows a secret x without revealing
anything about x besides that it is known to P [22].

zkSNARKs [6] enable constant-size proofs that can be
verified efficiently. They rely on a trusted setup for common
reference string (CRS) generation. A multi-party computation
protocol for creating CRSs for zkSNARKs is presented in [9].
SNIPs [16] can be used to prove syntactical correctness and
are much more efficient than zkSNARKs. zkSTARKs [5] do
not require a trusted setup but suffer from larger proofs. Bul-
letproofs [11] is an efficient non-interactive zero-knowledge
proof protocol. It does not require a trusted setup and has
logarithmic proof size, typically several hundred bytes long.

We aim for a storage-efficient protocol that writes as little
data into the distributed ledger as possible. This rules out com-
plex non-interactive proofs like zkSTARKs. Furthermore, by
nature, these arguments and proofs prove particular statements
which cannot be adjusted later without creating a new proof. In
our scenario, if the maximum amount changes subsequently,
so does the balance. Hence, previous proofs would prove
outdated statements. Instead, we aim for an approach that
allows verification of the balance even if the maximum amount
or the verification function itself changes over time, i.e., for
variable statements.

c) Distributed-Ledger-Based Privacy-Preserving Trans-
action Verification: A major line of work that deals with
privacy-preserving verifications in distributed-ledger scenarios
can be found in the field of cryptocurrencies such as Bitcoin.4

Confidential assets [31] is a scheme that hides transaction
amounts and asset types of (Bitcoin) transactions and ensures
public verifiability of the fact that the input amounts equal
the output amounts of transactions. It allows verification of
fixed statements and, thus, does not support variable maximum
amounts. The same applies to Zether [12], a decentralized
confidential payment mechanism for smart-contract platforms
such as Ethereum.5

Zerocash [7] hides amounts, balances, and identities. Trans-
actions are verified by each node, causing a delay at transaction
time. A payment system based on Zerocash is presented
in [20]. Both use zkSNARKs for privacy-preserving balance
verification, being subject to the above-mentioned limitations.

Provisions [18] allows Bitcoin exchanges to prove their
solvency while hiding customers’ addresses and balances. It
is based on Pedersen commitments [30] and zero-knowledge
proofs. zkLedger [28], a system for auditing banks’ balances
in banking networks, allows public verification and offers rich
auditing capabilities. It uses a tabular structure with a row
for each transaction and a column for each existing bank.
FabZK [24] is an extension to Hyperledger Fabric.6 It hides
transaction details like amounts and transaction relations and
enables periodic ledger auditing. It uses a tabular structure to

4https://bitcoin.org
5https://ethereum.org
6https://hyperledger.org

hide the transaction graph. Being based on zero-knowledge
proofs, Provisions, zkLedger, and FabZK only allow verifica-
tion of fixed statements and, therefore, do not lend themselves
to our scenario. With their tabular structure, the latter two have
quadratic verification complexity and, thus, do not scale well.

Solidus [14], a protocol for bank-intermediated ledgers,
ensures privacy of transaction amounts and the transaction
graph based on publicly verifiable oblivious RAM machines.
Balance audits involve decryption of transaction ciphertexts by
auditors. It does not fit our scenario without trusted auditors.

III. PRELIMINARIES

A. Homomorphic Encryption

An asymmetric cryptosystem is a tuple CS = (G,E,D)
consisting of three polynomial-time algorithms. The proba-
bilistic key-generation algorithm G(·) takes as input a secu-
rity parameter κ and outputs a pair (pk, sk) of a (public)
encryption key pk and a (secret) decryption key sk. The
(probabilistic) encryption algorithm E(·) takes as input a
plaintext m ∈ M and pk and outputs the ciphertext c =
Epk(m) ∈ C. M and C denote the plaintext and ciphertext
space, respectively. We require M ⊂ Z, real numbers need
to be scaled and rounded prior to encryption. The decryption
algorithm D(·) takes as input a ciphertext c and sk and outputs
the plaintext m = Dsk(c) = Dsk(Epk(m)).

Homomorphic encryption (HE) schemes allow computa-
tions on ciphertexts. Assume ciphertexts Epk(m1), Epk(m2)
encrypted under the same pk. A cryptosystem CS is homo-
morphic if it offers an operation ◦ on C that maps to a ho-
momorphic operation • on M, such that Epk(m1) ◦Epk(m2)
yields an encryption of m1 •m2. This can be formalized as
Dsk(Epk(m1)◦Epk(m2)) = m1•m2. Common homomorphic
operations are addition and multiplication.

Dsk(Epk(m1)⊕ Epk(m2)) = m1 +m2 (2)

Dsk(Epk(m1)⊙ Epk(m2)) = m1 ·m2 (3)

Partially homomorphic encryption (PHE) schemes enable ei-
ther addition or multiplication of the underlying plaintexts.
Fully homomorphic encryption (FHE) schemes provide both
addition and multiplication and allow the privacy-preserving
evaluation of arbitrary arithmetic functions. A promising FHE
scheme is the Fan-Vercauteren variant [19] of Brakerski’s
scale-invariant scheme [10], which works over polynomial
rings and relies on the assumed hardness of the Ring Learning
With Errors (RLWE) problem. We refer to this scheme as the
BFV scheme.

B. Proxy Re-Encryption

Re-encryption transforms a ciphertext c1 = Epk1(m) en-
crypted under a key pk1 into a ciphertext c2 = Epk2(m) of
the same plaintext, encrypted under a different key pk2. Proxy
re-encryption (PRE) allows an untrusted party to perform this
transformation without affecting confidentiality [8]. A standard
construction to obtain a PRE scheme from an FHE scheme is
described in Gentry’s seminal work [21].

Following the notation of [32], we define a PRE scheme
as a tuple PRE = (PG,KG,ReKG,E,D,RE) of six
procedures. Parameter generation PG(·) computes a set of
public parameters related to the security parameter κ. The key
generation algorithm KG(·) outputs a key pair (pk, sk). Re-
encryption-key generation ReKG(·) takes a secret key ski and
a public key pkj ̸=i and computes a re-encryption key rki→j .
The re-encryption algorithm RE(·) transforms a ciphertext ci
of m encrypted under pki into a ciphertext cj of m such that
cj encrypts m under pkj ̸=i. E(·) and D(·) are encryption and
decryption algorithms, respectively.

C. Secret Sharing

An (n, n) secret sharing scheme enables a party to split
some secret s ∈ Zq for a prime q into n parts such that the n
parts together represent s [17]. Combining less than n parts re-
veals nothing about s. We denote a secret-shared value s by [[s]]
and the i-th part, called share, by [[s]]i. A secret sharing scheme
ensures privacy and correctness. Privacy guarantees that no
share leaks any non-trivial information about s. Correctness
ensures that s can be reconstructed by combining the n shares.
To share a value s, one chooses n − 1 random numbers
uniformly at random from Zq , i.e., [[s]]1, ..., [[s]]n−1

U← Zq and
computes the n-th share as follows [33].

[[s]]n =

[
s−

n−1∑
i=1

[[s]]i

]
q

(4)

D. Distributed Ledger

Distributed ledgers are append-only data structures main-
tained among a distributed network [25]. Data is represented as
transactions. New transactions are distributed through the net-
work and validated by the nodes, which agree on the ledger’s
state via a distributed consensus procedure. Distributed ledgers
can be permissioned, i.e., only parties with permission can join
the network, while any party can join a permissionless ledger.

IV. BALANCE-VERIFICATION PROTOCOLS

We present two balance-verification protocols for
distributed-ledger-based supply-chain traceability systems. To
the best of our knowledge, they are the first of their kind that
offer public verification for confidential transaction details.

Each protocol consists of two separate subprotocols: one
for transactions and one for verification. In the transaction
subprotocol, the customer of the respective transaction pub-
lishes details about the physical-world transactions on a dis-
tributed ledger DL in a privacy-preserving form. These details
include the transaction amount. The transaction subprotocol is
executed every time the producer P transfers an amount xi to
a customer Ci in the physical world. It does not describe the
actual transmission of xi and instead maintains a distributed-
ledger representation of the corresponding real-world activ-
ities. The verification subprotocol is executed whenever a
verifier V wants to check the producer’s honesty.

Being ledger-agnostic, the protocols can be added to ex-
isting solutions as they only affect the form in which data

is published and the computations that are performed during
verification. We leave security and correctness proofs for our
protocols to the extended version of this paper.

A. Protocol ΠS – Secret Sharing

Protocol ΠS uses secret sharing (see Section III-C) to ensure
confidentiality of the transaction amounts xi in the sense
that the xi’s are blinded by adding large random shares. It
is tailored for long-lasting producer-customer relations, e.g.,
between palm-oil mills and manufacturers of palm-oil-based
products, where customers of subsequent transactions are
known in advance. ΠS runs in epochs of K transactions.
Balance verification can be performed at the end of an epoch as
a form of batch verification. The protocol involves a producer,
multiple customers, and an unspecified number of verifiers.

We assume a group Zq for a prime q and enable the
representation of negative values by allocating the upper half
of Zq for negative values. In a two’s-complement manner, this
represents the range from −(q−1

2) to (q−1
2). To prevent over-

flows, we choose q such that xmax ≪ (q−1
2), which implies

xi ≪ (q−1
2) for all reasonable xi. The two subprotocols are

depicted in Algorithms 1 and 2, respectively.

Algorithm 1: Transaction Subprotocol of ΠS

Data: i, xi, rΣi−1

Result: ti, r1, ..., rK , rΣi , rΣ
1 if i ≡K 1 then
2 P computes:
3 for 1 ≤ j ≤ K − 1 do
4 rj

U← Zq
5 end
6 rK =

[
0−

∑K−1
j=1 rj

]
q

7 end
8 P sends to Ci:
9 ri, C[i+1]K

10 Ci computes and publishes via DL:
11 ti = [xi + ri]q
12 Ci computes and sends to C[i+1]K :
13 if i ≡K 1 then
14 r0

U← Zq

15 rΣi
= [r0 + r1]q

16 else
17 rΣi

=
[
rΣi−1

+ ri
]
q

18 end
19 if i ≡K K then
20 C1 computes and publishes via DL:
21 rΣ = [rΣK

− r0]q
22 end

1) Transaction Subprotocol: Lines 3-6 are only performed
in the first transaction of an epoch, i.e., if i ≡K 1. Here,
P generates K secret shares r1 = [[r]]1, ..., rK = [[r]]K of a
value r. We suggest r = 0. They will be used throughout
this epoch for additively blinding the transaction amounts. P
chooses K − 1 shares r1, ..., rK−1 uniformly at random from
Zq and computes the K-th share as rK = [0−

∑K−1
j=1 rj]q .

In line 9 of the first transaction, P sends r1 to C1 together
with the identity of the customer of the next transaction. The

following transactions of that epoch start with P taking the i-
th previously generated share ri and sending it to Ci in line 9
together with the next customer’s identity. In line 11, Ci takes
the amount xi that it received in the physical world. This
xi could be obtained by counting or weighing the real-world
delivery. Ci additively blinds xi by adding the i-th random
share ri. It publishes the resulting sum ti on the ledger DL.

The customers maintain a rolling sum rΣi
of the shares ri,

which is passed on among customers. This allows them to keep
track of the ri’s used for blinding and later remove them during
balance verification. The computation of rΣi differs depending
on the transaction index i (see lines 13-18). At the beginning of
an epoch, i.e., if i ≡K 1, C1 chooses r0 uniformly at random
from Zq and additively blinds r1 with r0. This sum is sent to
C2, the customer of the second transaction. This prevents C2

from learning r1 and thus protects x1. In all later transactions,
Ci maintains rΣi

by adding ri and sending it to Ci+1. CK ,
the last customer of the epoch, returns the rolling sum to C1.

Line 21 is part of the last transaction of an epoch. It removes
the initial random value r0 from the rolling sum. C1 subtracts
r0 from rΣK

to obtain the sum rΣ. Then, C1 publishes rΣ via
DL. This concludes the transaction subprotocol.

Algorithm 2: Verification Subprotocol of ΠS

Data: t1, ..., tn, xmax, rΣ
Result: ⊤ or ⊥

23 V computes:
24 δ = [xmax + rΣ −

∑n
i=1 ti]q

25 if δ ≤ q−1
2 then

26 return ⊤
27 else
28 return ⊥
29 end

2) Verification Subprotocol: After an epoch has ended, any
verifier V that has access to DL can verify the balance δ. In
line 24, V computes δ according to Equation (1) by reading
all ti from DL, adding them, and subtracting their sum from
xmax. If rΣ ̸= 0, V also adds rΣ. The random shares ri cancel
out, resulting in the balance δ. Lines 25-29 output whether P
behaved honestly or not. If δ > (q−1

2), the computed balance
represents a negative value in two’s complement. Therefore,
V detected fraud and the verification subprotocol returns ⊥.
Otherwise, it returns ⊤ to indicate correct behavior of the
producer. If δ = 0, publication of another ti for the same
xmax in the future immediately indicates fraud.

3) Protocol Discussion: The customer-maintained rolling
sum in the transaction subprotocol implies that the previous
customer remains active until the next transaction starts. Fur-
thermore, the first customer of an epoch actively contributes
to the completion of the epoch. This is reasonable in long-
lasting producer-customer relations, e.g., between palm-oil
mills and manufacturers of palm-oil-based products. Neither
the producer nor the customers participate in the verification.

The epoch-oriented design has two opposing effects: On the
one hand, it allows verification only once every K transactions,
where smaller K allow verification more frequently. On the

other hand, it adds a few maintenance steps at the beginning
and at the end of an epoch, which have smaller impact on
the overall runtime for larger K. We investigate the trade-off
between verification frequency and runtime in Section V-B.

The epoch-oriented design of ΠS has another major advan-
tage: Repeated balance verification across multiple epochs can
be sped up by caching previous epochs in a memory-efficient
way, which minimizes the effect of previous epochs. V can
cache the sum

∑n
i=1 ti after every epoch. In later verifications,

V adds all newly published ti, causing verification complexity
that is constant in the epoch-length. The cached sum could as
well be computed via smart contracts and be reflected on DL
to share the benefit of caching with other verifiers.

Confidentiality of the transaction amounts is ensured
through additive blinding with secret, random shares. The
balance can be computed by any party with access to DL at the
end of an epoch. If K is sufficiently large, e.g., in the order of
hundreds of transactions, publishing the balance once an epoch
is reasonable. This balance reveals no single unknown xi to
an adversary that does not corrupt customers that are involved
in more than K − 2 transactions. If the second and the last
customer of an epoch are the same or collude, they can infer
r0 and reconstruct r1 and x1 of the first transaction. Similarly,
if Ci−1 and Ci+1 are the same or collude, they can infer ri
and xi of the intermediate transaction. Such combinations are
to be prevented by planning epochs in advance.

B. Protocol ΠPRE – FHE and PRE

Protocol ΠPRE uses homomorphic encryption and proxy
re-encryption (see Sections III-A and III-B) to guarantee
confidentiality of the transaction amounts xi. The transaction
amounts remain encrypted throughout the protocol. Unlike
ΠS , this protocol does not run in epochs. Hence, verification
can be performed after every single transaction. ΠPRE is
tailored for short-term relations between static producers and
volatile customers, e.g., manufacturers and (end) consumers.

In addition to the parties P , Ci, and V , ΠPRE involves a
re-encryption party R. It is semi-honest and must not collude
with any of the other parties. R could be hosted by an NGO
or an industry consortium, e.g., RSPO in the palm-oil case. It
actively contributes to the verification subprotocol.

We require that P has a verification-result key pair
(pkP , skP) of an FHE scheme with plaintext spaceMP ⊂ Z,
plaintext modulus t, and ciphertext space CP . We require
t ≫ xmax, which implies t ≫ xi for all reasonable xi.
Each customer Ci has a key pair (pkCi

, skCi
) of an asym-

metric cryptosystem with ciphertext space CCi
. It sends a re-

encryption key rkCi→P to R at setup time. This key enables
the transformation of ciphertexts under pkCi into ciphertexts
under pkP . The two subprotocols are depicted in Algorithms 3
and 4, respectively.

1) Transaction Subprotocol: Ci takes the physically re-
ceived amount xi, encrypts it under pkCi

, and publishes the
resulting ciphertext yi via DL.

2) Verification Subprotocol: ΠPRE allows balance verifica-
tion after every single transaction. Verification starts in line 4

Algorithm 3: Transaction Subprotocol of ΠPRE

Data: i, xi, pkCi

Result: yi
1 Ci computes and publishes via DL:
2 yi = EpkCi

(xi)

Algorithm 4: Verification Subprotocol of ΠPRE

Data: y1, ..., yn, xmax, rkC1→P , ..., rkCn→P , pkP , skP
Result: ⊤ or ⊥

3 V sends to R:
4 n
5 P sends to V :
6 skP
7 R computes:
8 for 1 ≤ i ≤ n do
9 EpkP

(xi) = RE(yi, rkCi→P)
10 end
11 r1, r2

U←MP s.t. 0 < r2 < r1 ≪ |MP |
12 R computes and sends to V :
13 EpkP

(δ′) = EpkP
((xmax −

∑n
i=1 xi) · r1 + r2)

14 V computes:
15 δ′ = DskP

(EpkP
(δ′))

16 if δ′ ≥ 0 then
17 return ⊤
18 else
19 return ⊥
20 end

with V choosing which transaction it wants to verify the
balance for, e.g., the most recent transaction. The verifier sends
the index n of that transaction to R. This tells R that V wants
to verify whether the sum of the first n transaction amounts of
P exceeds xmax, in other words, if δ = xmax−

∑n
i=1 xi < 0.

On enquiry in line 6, V obtains the decryption
key skP from producer P . It is later used to de-
crypt the output. In lines 8-10, R reads the ciphertexts
EpkC1

(x1), ..., EpkCi
(xi), ..., EpkCn

(xn) from DL. These are
the encrypted transaction amounts that V specified in line 4.
Each of these ciphertexts is then re-encrypted by R. Given
EpkCi

(xi) and the respective re-encryption key rkCi→P , R re-
encrypts each EpkCi

(xi) into EpkP
(xi). This way, R obtains

the full list of transaction amounts encrypted under pkP .
In line 11, R chooses two numbers 0 < r2 < r1 ≪ |MP |

uniformly at random. In line 13, R computes the encrypted
balance, as in Equation (1). The encrypted balance is then
blinded with r1 and r2. Hence, without knowledge of r1 and
r2, the blinded balance δ′ reveals nothing about the actual
balance δ except for its sign. This works as follows.
R homomorphically adds (see Equation (2)) the xi’s en-

crypted as EpkP
(xi). It negates the resulting encrypted sum

by homomorphic multiplication (see Equation (3)) with −1
encrypted as EpkP

(−1). The result is then homomorphically
added to the encrypted maximum amount EpkP

(xmax). This
yields the encrypted balance. To prevent verifiers from learning
the exact balance, it is blinded by homomorphic multiplication
with EpkP

(r1) and homomorphic addition with EpkP
(r2). The

result is the encrypted, blinded balance EpkP
(δ′), which is sent

to V . This can be formalized as follows.

EpkP
(δ′) = EpkP

((xmax −
n∑

i=1

xi) · r1 + r2)

= ((EpkP
(xmax)⊕ (EpkP

(−1)⊙
n⊕

i=1

EpkP
(xi)))

⊙ EpkP
(r1))⊕ EpkP

(r2)

Depending on the FHE scheme, addition and multiplication
by known values could be performed as ciphertext-plaintext
operations for the sake of efficiency. This applies to multipli-
cation by −1 to enable subtraction as well as multiplicative
and additive blinding with r1 and r2.

In line 15, V decrypts EpkP
(δ′) with skP and obtains δ′. If

δ′ is negative, so is δ. Hence, verification returns ⊥ to indicate
fraud. Otherwise, it returns ⊤, indicating correct behavior.

3) Protocol Discussion: Protocol ΠPRE involves an addi-
tional party R. Both P and R participate in the verification.
Customers can drop out after they completed their transactions.
Hence, ΠPRE is particularly suited for scenarios with static
producers and volatile customers, e.g., transactions between
manufacturers and (end) consumers.

ΠPRE does not run in epochs. Balance verification can be
performed at any time. Compared to ΠS , this gives more
flexibility on the verifiers’ side. For recurring verifications,
the verification complexity can be reduced by having the
re-encryption party R cache the encrypted (rolling) sum of
transaction amounts whenever it performs a verification. In
later verifications, R only adds all newly published encrypted
amounts to that rolling sum. Repeating this caching on a
regular basis, i.e., once every T transactions for a fixed T ,
ensures constant verification complexity. Unlike ΠS , caching
can be performed centrally by R and therefore reduces the
complexity at a global scale for all verifiers at once.

Due to the strong security guarantees of FHE schemes and
their ability to compute arithmetic functions on ciphertexts,
no party learns P ’s balance. Verifiers only learn whether it
is positive or negative. The customers and the re-encryption
party R do not learn anything non-trivial about the balance.

V. EVALUATION

We first examine the asymptotic round, computational, and
communication complexities of ΠS and ΠPRE . Then, we
investigate their empirical performance and compare their
storage requirements to those of Bulletproofs [11].

A. Theoretical Evaluation

Each protocol consists of two subprotocols with a constant
number of steps, independent of the number of transactions or
participants. Hence, they have constant round complexity.

The computation complexity of each operation differs be-
tween the protocols. ΠS consists mainly of modular addi-
tions and subtractions, with a complexity depending on the
parameter q of the secret sharing scheme. The computational
complexity of ΠPRE mostly depends on the used FHE scheme
and re-encryption functionality. Due to the computational

Fig. 2: Transaction Runtime (K = n) Fig. 3: Verification Runtime (K = n)

TABLE I: Computational Complexities

Protocol Trans. Verif. Verif. with Caching
ΠS O(1) O(n) O(K)

ΠPRE O(1) O(n) O(T)

overhead of FHE schemes, one can expect that ΠS has better
runtime than ΠPRE .

Table I shows the asymptotic computational complexity for
transaction, verification, and verification with caching. Each
protocol consists of a constant number of operations per
transaction for both subprotocols, causing O(1) for transaction
and O(n) for verification. Verification can be optimized.
Caching verification results after every epoch in ΠS and after
T transactions in ΠPRE reduces the verification complexity
to O(K) and O(T), respectively. Constant K and T cause
constant verification complexity, i.e., O(1).

The epoch-based protocol ΠS performs a constant number
of steps at the beginning and at the end of an epoch. These
operations influence the overall complexity for small K but
should have minor impact for large K.

Each protocol sends a constant number of messages and
reads a number of messages linear in n. Caching in intervals of
fixed length enables constant communication complexity even
for verification. The amount of data stored on the distributed
ledger in ΠS and ΠPRE depends on the lengths of the
random shares and ciphertexts, respectively. We compare these
storage requirements for practical scheme parameters to those
of Bulletproofs in the empirical evaluation.

B. Empirical Evaluation
To the best of our knowledge, our protocols are the first of

their kind that allow public balance verification while ensuring
confidentiality of transaction details. The empirical analysis
investigates their practicality even for large supply-chain sce-
narios. It consists of storage-requirement comparisons and two
separate runtime experiments. The first experiment investigates
the runtime relatively to the number of transactions n. The
second focuses on the impact of different epoch lengths K
for constant n in ΠS .

1) Experimental Setup: We implemented our protocols in
C++ using the libraries Crypto++7 for big-integer arithmetic

7https://cryptopp.com

and PALISADE8 for FHE and PRE. Our implementations are
parameterized to fit the annual palm oil production of circa
75 metric tons [2]. ΠS uses 512-bit shares to blind 64-bit
amounts. ΠPRE employs the re-encryption functionalities of
the RNS variant of the BFV scheme implemented in PAL-
ISADE [23]. We selected the scheme parameters according to
the Homomorphic Encryption Standard [3] for a security level
of 128 bits. Communication is secured with TLS.

We deployed all protocol participants on cloud instances
with 32 cores, 128GiB of memory, and a 10Gbps network
interface. For lifelike communication, participants were de-
ployed in different data centers distributed across Europe with
a distance of several hundred kilometers. We used Multichain9

as a distributed ledger, which poses as the core of the under-
lying supply-chain traceability system.

2) Storage Requirements: For ΠS , we distinguish between
ordinary transactions and final transactions of epochs. The
latter publish additional data and require more storage on the
ledger. In final transactions, ΠS publishes a blinded secret and
a sum of secret shares, 512 bits each, i.e., 128 bytes in total.
Ordinary transactions store a single blinded secret of 64 bytes.
ΠPRE publishes a ciphertext of 381 kilobytes per transaction.

A single Bulletproof for 64-bit ranges is 688 bytes long [11].
ΠPRE requires more storage. For final transactions, ΠS re-
quires 5.3 times less storage than Bulletproofs. For ordinary
transactions, ΠS requires 10.8 times less storage. For long
epochs of hundreds of transactions, the effect of the final
transaction is negligible.

3) Effect of the Number of Transactions n: In the first ex-
periment, we investigated the subprotocols’ runtimes relatively
to the number of transactions n for each n ∈ {i · 50|1 ≤
i ≤ 10}, with 100 runs each. The theoretical analysis implies
constant complexity for each transaction and linear (in n)
complexity for a verification of n transactions. For the first
experiment, the epoch length K in ΠS is equal to the number
of written transactions n.

Figure 2 depicts the runtimes of both transaction subpro-
tocols relatively to n. The graph shows linear growth of the
runtime. This confirms our theoretical analysis. With a runtime
of 15.80 s for 500 transactions, ΠS performs slightly better
than ΠPRE with 16.15 s. Hence, ΠS and ΠPRE perform
single transactions in 31.60ms and 32.30ms, respectively.

8https://palisade-crypto.org
9https://multichain.com

Fig. 4: Verification Runtime of ΠS (n = 500)

Figure 3 depicts the verification runtime for n transactions
in logarithmic scale. It grows linearly in n for both protocols.
While a verification of 500 transactions took 49.30ms for ΠS ,
the execution of ΠPRE took 8, 283.04ms. Hence, ΠS and
ΠPRE had an average runtime per transaction of 0.097ms
and 16.013ms, respectively.

In summary, the first experiment proves constant complexity
for single transactions and linear verification complexity.

4) Effect of the Epoch Length K: The second experiment
aims for an understanding of the trade-off between verification
frequency and runtime in ΠS . ΠPRE is not considered here.

We analyzed the impact of different epoch lengths K on
the verification runtime for constant n. We chose n = 500 and
conducted 100 runs for each K ∈ {10, 20, 50, 100, 250, 500}.
Figure 4 shows that verification of n transactions takes longer
with small K but does not decrease substantially for K ≥ 250.
Thus, for the trade-off between runtime and verification fre-
quency, we deem an epoch-length of K = 250 most suitable.

5) The Computation’s Impact on the Runtime: Additionally,
we analyzed the impact that the computation has on the
runtime. Table II shows the ratios between time spent on com-
putation, reading from and writing to the distributed ledger, as
well as communication between parties. In all subprotocols,
the largest share of the runtime is spent on communication and
distributed-ledger operations. The latter is inherent in the un-
derlying supply-chain traceability system. These ratios indicate
that a setup with lower network latency and a more efficient
distributed ledger will improve the runtimes substantially.

6) Summary: We analyzed our protocols theoretically and
empirically. The empirical evaluation confirms the results of
the theoretical analysis. Our protocols feature an asymptotic
behavior that is linear in the number of transactions and, thus,
constant for single transactions. They verify 500 transactions
in 8.3 s (ΠPRE) and 49.3ms (ΠS), respectively. Even though
ΠS performs substantially better than ΠPRE , its communica-
tion between customers limits its suitability to scenarios with
long-lasting producer-customer relations. As both protocols
allow caching of the balance in regular intervals, e.g., once
every 250 transactions, they are suitable even for supply-chain
scenarios with a very large number of transactions. This proves
practicality of both protocols. Most notably, ΠS requires up
to 10.8 times less storage on the ledger than Bulletproofs.

TABLE II: Ratios Between Time Spent on Computation,
Distributed-Ledger Operations, and Communication

Subprotocol Comp. DL Comm.
ΠS Trans. 0.013% 49.646% 50.341%
ΠS Verif. 28.222% 71.778%

ΠPRE Trans. 16.789% 83.211%
ΠPRE Verif. 8.760% 85.876% 3.758%

C. Deployment Considerations and Lessons Learned

The runtimes of our protocols are mostly caused by commu-
nication between parties as well as reading from and writing
to the distributed ledger. The latter is inherent in any supply-
chain traceability system. Our findings indicate that a setup
with lower network latency and a more efficient distributed
ledger would improve the runtimes substantially in production.
Similarly, stronger cloud instances with more cores could
take full advantage of the highly parallelizable nature of our
protocols, especially for the verification subprotocol of ΠPRE .

For evaluation, we used Multichain due to its simplicity
and compatibility with the Bitcoin ecosystem. Our protocols
are designed to be ledger-agnostic and could perform even
better with specialized distributed ledgers. Ledgers that offer
more flexibility in ciphertext encoding could further improve
efficiency, especially for ΠPRE . Hence, future work could in-
vestigate potential performance gains from using other ledgers.

The BFV implementation that we used for evaluation only
offers a plaintext space of ≤ 59 bits. This limits the precision
of inputs and the size of random blinding values. Other
libraries or implementations with a larger plaintext space
could enable larger inputs while still allowing sufficiently
large random blinding values. The latter ensures confidential-
ity. Moreover, future FHE schemes with more efficient PRE
operations could further improve the performance of ΠPRE .

VI. CONCLUSION

Sustainable sourcing and production are major challenges
that result from a growing world population and rapid cli-
mate change. Supply-chain traceability systems with balance-
verification capabilities and public verifiability of compliance
can help to enforce sustainability policies like production
limits. However, a lack of confidentiality hinders adoption.

We propose two independent protocols for privacy-
preserving balance verification over distributed ledgers: ΠS

and ΠPRE . They are designed for different volatility levels of
producer-customer relations to cover a large variety of supply
chains and stages of production. We demonstrate their practi-
cality in an extensive theoretical and empirical evaluation.

Each protocol has constant transaction overhead and ver-
ification complexity that is linear in the number of transac-
tions. Being well suited for caching at regular intervals, both
protocols allow constant verification time. Most notably, ΠS

requires 10.8 times less storage on the distributed ledger than
recent storage-efficient non-interactive zero-knowledge proofs.

Hence, our protocols prove to be perfectly practical in their
respective target scenarios, even for complex supply chains.
Being ledger-agnostic, they can be used as stand-alone solu-
tions on any distributed ledger. Alternatively, they can easily
be added as a confidentiality layer to existing distributed-
ledger-based supply-chain traceability systems. This enables
verification of compliance with sustainability policies while
protecting confidential supply-chain data.

REFERENCES

[1] T. Agrawal. “Contribution to development of a se-
cured traceability system for textile and clothing supply
chain”. PhD thesis. University of Borås, 2019.

[2] United States Department of Agriculture, Foreign Agri-
culture Service, Crop Explorer. Oil, Palm 2020. https:
/ / ipad . fas . usda . gov / cropexplorer / cropview /
commodityView.aspx?cropid=4243000. 2020.

[3] M. Albrecht et al. Homomorphic Encryption
Security Standard. Tech. rep. Toronto, Canada:
HomomorphicEncryption.org, 2018.

[4] K. Becher, J. A. G. Lagodzinski, and T. Strufe.
“Privacy-Preserving Public Verification of Ethical
Cobalt Sourcing”. In: IEEE TrustCom’20. 2020.

[5] E. Ben-Sasson et al. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology
ePrint Archive. https://eprint.iacr.org/2018/046. 2018.

[6] E. Ben-Sasson et al. “SNARKs for C: Verifying Pro-
gram Executions Succinctly and in Zero Knowledge”.
In: Advances in Cryptology – CRYPTO’13. 2013.

[7] E. Ben-Sasson et al. “Zerocash: Decentralized Anony-
mous Payments from Bitcoin”. In: 2014 IEEE Sympo-
sium on Security and Privacy. 2014.

[8] M. Blaze, G. Bleumer, and M. Strauss. “Divertible pro-
tocols and atomic proxy cryptography”. In: Advances in
Cryptology – EUROCRYPT’98. 1998.

[9] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party
Computation for zk-SNARK Parameters in the Random
Beacon Model. Cryptology ePrint Archive. https : / /
eprint.iacr.org/2017/1050. 2017.

[10] Z. Brakerski. “Fully Homomorphic Encryption without
Modulus Switching from Classical GapSVP”. In: Ad-
vances in Cryptology – CRYPTO’12. 2012.

[11] B. Bünz et al. “Bulletproofs: Short Proofs for Confiden-
tial Transactions and More”. In: 2018 IEEE Symposium
on Security and Privacy. 2018.

[12] B. Bünz et al. Zether: Towards Privacy in a Smart
Contract World. Cryptology ePrint Archive. https : / /
eprint.iacr.org/2019/191. 2019.

[13] M. Caro et al. “Blockchain-based traceability in Agri-
Food supply chain management: A practical implemen-
tation”. In: IEEE IOT Tuscany’18. 2018.

[14] E. Cecchetti et al. “Solidus: Confidential Distributed
Ledger Transactions via PVORM”. In: CCS’17. 2017.

[15] B. Cook. Blockchain: Transforming Seafood Supply
Chain Traceability. https : / /dj8xp7a0ejkvv.cloudfront .
net / downloads / draft blockchain report 1 4 1 . pdf.
WWF-New Zealand, 2018.

[16] H. Corrigan-Gibbs and D. Boneh. “Prio: Private, Ro-
bust, and Scalable Computation of Aggregate Statis-
tics”. In: USENIX NSDI’17. 2017.

[17] R. Cramer, I. Damgård, and J. Nielsen. Secure Multi-
party Computation and Secret Sharing. 1st ed. Cam-
bridge University Press, 2015.

[18] G. Dagher et al. “Provisions: Privacy-preserving Proofs
of Solvency for Bitcoin Exchanges”. In: CCS’15. 2015.

[19] J. Fan and F. Vercauteren. Somewhat Practical Fully
Homomorphic Encryption. Cryptology ePrint Archive.
https://eprint.iacr.org/2012/144. 2012.

[20] C. Garman, M. Green, and I. Miers. “Accountable
Privacy for Decentralized Anonymous Payments”. In:
Financial Cryptography and Data Security 2016. 2017.

[21] C. Gentry. “A fully homomorphic encryption scheme”.
PhD thesis. Stanford University, 2009.

[22] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowl-
edge Complexity of Interactive Proof-Systems”. In:
ACM STOC’85. 1985.

[23] S. Halevi, Y. Polyakov, and V. Shoup. “An Improved
RNS Variant of the BFV Homomorphic Encryption
Scheme”. In: CT-RSA’19. 2019.

[24] H. Kang et al. “FabZK: Supporting Privacy-Preserving,
Auditable Smart Contracts in Hyperledger Fabric”. In:
2019 IEEE/IFIP DSN. 2019.

[25] N. Kannengiesser et al. “What Does Not Fit Can be
Made to Fit! Trade-Offs in Distributed Ledger Tech-
nology Designs”. In: HICCS-52. 2019.

[26] O. Lai, C. Tan, and C. Akoh, eds. Palm Oil: Produc-
tion, Processing, Characterization, and Uses. 1st ed.
Academic Press and AOCS Press, 2015.

[27] Y. Lindell. Tutorials on the Foundations of Cryptogra-
phy: Dedicated to Oded Goldreich. Springer, 2017.

[28] N. Narula, W. Vasquez, and M. Virza. “Zkledger:
Privacy-preserving Auditing for Distributed Ledgers”.
In: USENIX NSDI’18. 2018.

[29] World Wildlife Fund for Nature. WWF’s position on
the adopted 2018 RSPO Principles and Criteria. https:
//wwf.panda.org/?337932. 2018.

[30] T. Pedersen. “Non-Interactive and Information-
Theoretic Secure Verifiable Secret Sharing”. In:
Advances in Cryptology – CRYPTO’91. 1992.

[31] A. Poelstra et al. “Confidential Assets”. In: Financial
Cryptography and Data Security 2018 International
Workshops, BITCOIN, VOTING, and WTSC. 2018.

[32] Y. Polyakov et al. “Fast Proxy Re-Encryption for Pub-
lish/Subscribe Systems”. In: ACM TOPS (2017).

[33] D. Stinson. Cryptography: Theory and Practice. 3rd ed.
Chapman & Hall/CRC, 2006.

