KIT | KIT-Bibliothek | Impressum | Datenschutz

Constructing a Thin Disordered Self‐Protective Layer on the LiNiO₂ Primary Particles Against Oxygen Release

Chen, Jinniu; Yang, Yang; Tang, Yushu ORCID iD icon 1; Wang, Yifan 2; Li, Hang 3; Xiao, Xianghui; Wang, Suning 2; Darma, Mariyam Susana Dewi 2; Etter, Martin; Missyul, Alexander; Tayal, Akhil; Knapp, Michael ORCID iD icon 2; Ehrenberg, Helmut 3; Indris, Sylvio ORCID iD icon 3; Hua, Weibo 2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)

Abstract:

One of the major challenges facing the application of layered LiNiO2 (LNO) cathode materials is the oxygen release upon electrochemical cycling. Here it is shown that tailoring the provided lithium content during synthesis process can create a disordered layered Li1-xNi1+xO2 phase at the primary particle surface. The disordered surface, which serves as a self-protective layer to alleviate the oxygen loss, possesses the same layered rhombohedral structure (R
m) as the inner core of primary particles of the Li1-xNi1+xO2 (x ≈ 0). With advanced synchrotron-based x-ray 3D imaging and spectroscopic techniques, a macroporous architecture within the agglomerates of LNO with ordered surface (LNO-OS) is revealed after only 40 cycles, concomitant with the reduction of nickel on the primary particle surface throughout the whole secondary particles. Such chemomechanical degradation accelerates the deterioration of LNO-OS cathodes. Comparably, there are only slight changes in the nickel valence state and interior architecture of LNO with a thin disordered surface layer (LNO-DS) after cycling, mainly arising from an improved robustness of the oxygen framework on the surface. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000153929
Veröffentlicht am 19.12.2022
Originalveröffentlichung
DOI: 10.1002/adfm.202211515
Scopus
Zitationen: 24
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST)
Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000153929
HGF-Programm 38.01.03 (POF IV, LK 01) Cell Design and Development
Weitere HGF-Programme 43.35.03 (POF IV, LK 01) Structural and Functional Behavior of Solid State Systems
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 33
Heft 6
Seiten Artkl.Nr.: 2211515
Vorab online veröffentlicht am 28.11.2022
Schlagwörter 2017-018-019749 TEM
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page