


Estimation of Music Recording Quality

the distance to microphone, the reduction of environmental sounds, or the choice
of the recording room. Therefore, it is useful to estimate the recording quality for
direct user feedback in order to give hints for possible improvements. Moreover,
further processing algorithms like noise suppression could be used in advance
of the MIR task in case of a low estimated recording quality to improve the
recorded signal or reduce problematic interferences. Since the recording quality
generally affects AMT results as well as other MIR tasks like music source sep-
aration or beat tracking, the approach based on the estimated recording quality
for the AMT task in this work can be transferred to other MIR tasks as well.

Degraded music signal quality and its impact on MIR task performance has
been investigated by Mauch and Ewert [14] by a toolbox with 14 controlled degra-
dation units. Their experiments showed that no general relationship between
music degradation and all MIR task performances can be found, but that perfor-
mance strongly depends on the methods and degradations used. They analysed
audio ID, score-to-audio alignment, beat-tracking, and chord detection as MIR
tasks and suggested the development of more robust algorithms by means of their
audio degradation toolbox [14]. Especially for data-driven approaches, robust-
ness is achieved by the incorporation of diverse training examples, which was
highlighted by Serizel et al. [20] for the case of sound event detection with noise
and signal degradation. Additionally, robustness against adversarial attacks can
be improved by simple methods like compression or addition of white noise [21].
Beside degradation, audio compression is a second impact on MIR results that
was investigated by Hamawaki et al. [8] for content-based MIR and by Uemura
et al. [23] for chord recognition. While chord recognition is not strongly affected
by compressed input signals, the effects of different bit rates could be reduced
by normalizing the MFCC feature in case of content-based MIR results.

Quality evaluation of audio signals is often achieved by human perception and
judgement in literature, e.g. for compressed music [4] as well as for telephone
speech signals [16]. Even if they aim to develop an objective framework for the
quality evaluation, the human perception is not important for further signal pro-
cessing algorithms. Therefore, objective criteria like Signal to Noise Ratio (SNR)
suit better for this aim. In case of music signals, no SNR estimation approach is
known by the authors, but for speech signals, the NIST SNR measurement [2]
and the WADA-SNR algorithm [11] are used to estimate the SNR by exploiting
the statistical characteristics of speech like the amplitude density and gamma
distributions. As there are significant characteristical differences between speech
and music, proven approaches for speech SNR estimation unfortunately lead to
big errors in music SNR estimation, even for white noise.

Besides SNR estimation, Kendrick et al. [10] tried to rate the room influence
by means of important room acoustic parameters that are calculated under the
premise of a known speech or music signal. For unknown signals, blind estimation
algorithms of the reverberation time have been presented only for the speech
case. Eaton et al. [6] achieved a noise-robust estimation and Diether et al. [5]
developed a real-time algorithm suitable to mobile applications. According to
the different characteristics of speech and music, those algorithms are not suited
for reverberation time estimation in music signals.



M. Schwabe et al.

In this work, the recording quality of music signals and its impact on an
MIR task is estimated by means of relevant objective quality parameters. Con-
sequently, subjective human perceptions are not included in that quality def-
inition. As the estimation should identify possible opportunities for improving
recording quality, several quality parameters are estimated for the relevant signal
degradation sources. Empirically, three main sources for a reduced AMT task
performance caused by the recording quality have been identified: room reverber-
ation (incl. echos), noise, and short interferers. These sources lead for example
to inaccuracies in active notes’ time estimation and increase the chance of false
positives in case of AMT. Other audio degradations and audio compression only
have very small impact, so they are neglected in this work.

We present three neural network approaches to estimate the influence of the
identified degradation sources noise, short interferers, and reverberation in order
to rate the recording quality of unknown piano music. Finally, we exemplarily
analyse the impact of the recording quality on AMT algorithms using an imple-
mentation of ‘Onsets and Frames’ [9] in Sect. 6.

2 Music Data Processing

The pure recording process of music data can be described using three basic com-
ponents: sound source xS, sound transmission path g(·), and recorded sound y.
It is assumed that the recording environment does not change. Therefore, the
transmission can be modeled by a room impulse response (RIR) [13]. Mathe-
matically, the discrete recording process can be described by

y[n] = xS[n] ∗ g[n] + rdisturb[n] + rnoise[n] (1)

with the convolution operator ∗, the RIR g[n] for the music source transmis-
sion path, the background noise rnoise[n], and rdisturb[n] for all disturbing short
interferers which are transmitted to the recorder. As the transmission of noise or
disturbing sound is not of interest, only their overlapping signal portions at the
recorder are considered. Consequently, rnoise[n] and rdisturb[n] include the effects
of RIR between background or disturbing sound sources and the recorder.

For preprocessing, the constant-Q transform (CQT) [18] is widely used in
music signal tasks, because it defines a time-frequency representation with log-
arithmic frequency scale of the discrete signal x[n]. It is calculated by

XCQT(m, k) =
m+�Nk/2�∑

n=m−�Nk/2�
x[n] a∗

k
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with time index m, frequency index k, frequency-dependent normalization factor
Nk and the floor operator �·�. The basis function ak[n] is defined by
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with sampling rate fA and the time-dependent window w[n] at time step n.
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3 Quality Metrics

In order to evaluate the quality of a music signal, several metrics can be used. The
most common metric is the SNR which describes the ratio of the signal power
Psignal to the sum of all noise or disturbance powers Pnoise in a logarithmic scale:

SNRdB = 10 · log10

(
Psignal

Pnoise

)
. (4)

Another metric for acoustic signals is the reverberation time tRT of the record-
ing room. It is calculated by means of the backwards integration

sback[n] =
NRIR∑

i=n

g2[i] , 0 ≤ n < NRIR (5)

of the squared discrete RIR g[n] [19]. Instead of infinity in the continuous case,
the upper bound NRIR of the sum represents the number of samples of the
discrete RIR describing the sound transmission as in (1). Similar to the SNR
calculation in (4), a logarithmic ratio

sdB[n] = 10 · log10

(
sback[n]
sback[0]

)
(6)

is calculated which describes the steady decay rate of the signal. Then, tRT is
defined as the time span for the decay from sdB[n] = −5 dB to sdB[n] = −25 dB.
An alternative for the reverberation time is the early decay time tEDT which
describes the time span for the decay from sdB[n] = 0 dB to sdB[n] = −10 dB.
This can be useful for a detailed analysis of the early behaviour of the signal.
Both times are extrapolated to a decay of 60 dB for comparison, like in [10].

The mean absolute error (MAE) is used as the main evaluation metric. For
two discrete signals z1[n] and z2[n] of length N , it is defined by

MAE =
1
N

·
N∑

i=1

|(z1[i] − z2[i])| . (7)

4 Datasets

Several datasets have been used due to the different sound sources for a reduced
recording quality. They can be split into the three parts piano music, noise
sounds, and RIR.

Piano music is the basis for all quality analysis of this work. It is taken from
the MAPS dataset [7], from which the first 30 s of all 270 music pieces (no solo
notes) are extracted to get an equal length for all recordings. Those 270 music
pieces consist of 210 synthesized piano songs that are used for training and 60
real recorded piano songs which are used for testing.



M. Schwabe et al.

The noise dataset consists of generated white noise, once and double low-
pass filtered white noise (often called pink and brown noise) and an additional
recording of high frequency radio noise from [3]. These sounds have a fairly
steady characteristic. Additionally, canteen and factory noise from [3] and several
sound classes of the ‘UrbanSound Dataset’ [17] are used as disturbance noises
with higher variances and more distinct separate events.

In order to simulate different recording conditions, a dataset with recorded
RIRs of nine different rooms [22] is used. Within this dataset, two rooms (R112
and CR2) will be used exclusively for testing while the other seven rooms are
used for training. Time intervals of tRT ∈ [0.4 s, 2.2 s] and tEDT ∈ [0.2 s, 3.0 s] for
the training rooms and of tRT ∈ [0.4 s, 2.0 s] and tEDT ∈ [0.3 s, 1.5 s] for the test
rooms have been calculated as ground truth room parameters.

5 Recording Quality Estimation

As room reverberation and background noise influence the whole music recording
by different effects and short interferers are only present during a defined time
interval, the estimation of the quality metrics is split up into three separate
regression algorithms based on neural networks. Its schematic overview with the
respective outputs is illustrated in Fig. 1. The neural network architectures were
determined experimentally with focus on small but powerful networks. Therefore
they are composed of several fully connected (FC) layers and some additional
convolutional layers at the beginning if a dimension reduction is necessary.

All algorithms use the CQT of the music signal with 84 frequency bands, a
minimum frequency of 32.70 Hz and a hop size of 512 as input for their prepro-
cessing. The sampling frequency 22 050 Hz is common in audio processing. Fur-
thermore, all networks are trained using Adam optimizer [12] and mean squared
error loss with a batch size of 1024. The training is executed for 50 epochs. ReLU
is used as activation function in the hidden layers and all fully connected layers
are followed by a 40 % dropout to minimize overfitting. Each output layer is a
single neuron with linear activation.

Fig. 1. Schematic overview of the recording quality estimation.
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5.1 Background Noise Estimation

The first network estimates the SNR of a 30 s input song superposed by different
background noise types. Therefore, white, pink, brown, or high frequency noise
is scaled and overlapped with the original music to reach an SNR level in the
interval [−5 dB, 20 dB] with steps of 2.5 dB.

For the training dataset, every combination of MAPS piano song, noise type,
and SNR level is created. In order to increase the amount of training samples,
every recording is also resynthesized from its respective MIDI file with sound
profiles of nine different instruments from the GM 1 sound set [1], followed by a
similar data generation with all noise types and SNR levels. Acoustic grand piano
(PC1), church organ (PC20), acoustic guitar (PC25), acoustic bass (PC33), viola
(PC42), trumpet (PC57), tenor sax (PC67), flute (PC74), and banjo (PC106) are
chosen as synthesized instruments, for which the indices represent their respec-
tive MIDI program change (PC) numbers. For the test dataset, the 60 real
recorded MAPS songs and the 9 × 60 resynthesized variants of them are consid-
ered in two separate cases with the same data generation as described above. In
total, this yields 83 150 samples for training, 2640 samples for testing with real
recordings, and 23 760 samples for testing with resynthesized songs.

On the basis of the CQT of each 30 s dataset sample, mean and variance
are calculated for each of the 84 frequency bands during preprocessing. Thus,
the input of the neural network is reduced to only 168 values which enables a
very fast inference. The network consists of three hidden FC layers with 128, 64,
and 32 neurons respectively which yields a network with 32 001 parameters. Its
architecture is illustrated in Fig. 2.

Fig. 2. Network structure for background noise estimation.

Table 1 shows the MAE results of the SNR estimation for the real piano
recordings and the resynthesized test dataset for different noise types. The best
results are obtained for brown noise and the worst ones for high frequency noise
while all errors are very close within one test dataset. Between the two datasets,
there is a distinct difference for all considered cases. For the real recorded songs,
MAE values of 0.96 dB can be achieved, but for their resynthesized variants,
the MAE almost doubles to 1.69 dB. One reason for this difference is the diffi-
cult noise estimation in case of specific instruments like church organ (PC20) or
acoustic bass (PC33). In Table 2, the results of all synthesized instruments are
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compared to the real piano test recordings by means of the MAE and the mean
standard deviation (STD). Since the STD lies within a single SNR step of 2.5 dB
in most cases, the SNR estimation for background noise performs reliably. The
best results can be achieved for the real recorded piano. Consequently, resynthe-
sizing will not be considered for the following networks as it did not show better
results and might also not represent a realistic scenario, because piano music
synthesized by various instruments was used.

Table 1. MAE (in dB) of the background noise estimation for different noise types
and test datasets (recorded and resynthesized).

White Pink Brown High freq. Average

Real piano recordings 0.95 0.95 0.85 1.09 0.96

Resynthesized songs 1.80 1.67 1.54 1.77 1.69

Table 2. MAE and mean STD (in dB) of the background noise estimation for different
instrument types of [1].

Real PC1 PC20 PC25 PC33 PC42 PC57 PC67 PC74 PC106

MAE 0.96 1.19 3.06 1.15 2.14 1.41 1.65 1.75 1.12 1.78

STD 0.99 1.17 2.64 1.16 2.59 1.34 1.72 1.80 1.23 1.57

5.2 Sound Disturbance Estimation

The second network estimates the presence and the SNR values of overlapped
impulsive noise sounds. As it is assumed that the disturbances are time-variant,
short parts of 2 s length are analysed. For the dataset construction ten parts
of each MAPS piano song are extracted and combined with a randomly chosen
disturbance sound and SNR level in the range [−5 dB, 20 dB] with steps of 2.5 dB.
This leads to a total of 4.6 × 105 training and 13 200 test samples.

In order to consider time-dependency, the input of the neural network is the
CQT of each 2 s dataset sample with 87 time bins. Figure 3 shows the network
structure in which ‘FC-Stack’ consists of three fully connected layers with 256,
64, and 32 neurons respectively. The network has 71 473 parameters.

All results for the SNR estimation with different time-dependent noise types
are listed in Table 3. The worst MAE value of 2.8 dB is detected in case of the air
conditioner sound, the best MAE result of 1.75 dB is achieved for factory noise
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Fig. 3. Network structure for sound disturbance estimation.

disturbance. With an average MAE of 2.3 dB, most estimation errors remain
within one SNR step of 2.5 dB. As the average STD of about 2.46 dB is also
lower than one step, the estimation performs reliable.

Table 3. MAE and mean STD (in dB) of the sound disturbance estimation for air
conditioner (a), car horns (b), playing children (c), dog bark (d), canteen (e), and
factory (f) noise types.

(a) (b) (c) (d) (e) (f)

MAE 2.80 2.75 2.40 2.23 1.87 1.75

STD 3.05 2.51 2.68 2.48 2.04 1.97

In Fig. 4, the time-variant estimation is illustrated by the time-dependent
average SNR values of several 30 s recordings with three dog barking distur-
bances and an overlap of 1 s between consecutive 2 s samples. The estimation
shows a distinct break-in in fully disturbed parts and a slightly increase in
partly disturbed samples (50 % is disturbed). Undisturbed samples generally
show higher SNR values, which is expected, but the maximum SNR value of
20 dB cannot be reached in most cases. This effect could be explained by the
real test recordings which maybe have included some additional noise caused by
the recording conditions. Furthermore, higher SNR levels than 15 dB can hardly
be discriminated which is illustrated exemplarily for dog barking in Fig. 5. Most
SNR estimates are within one SNR step of 2.5 dB, but at higher SNR values
this variance is enlarged. In those cases of high SNR, the overlapped sounds are
too low for the neural network to detect the exact SNR level, so it estimates a
value below the trained maximum of 20 dB. But although high SNR values are
slightly underestimated, time periods of reduced SNR can be detected properly.
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Fig. 6. Network structure for room parameter estimation.

Since the signal decay over time is influenced by the RIR, each 30 s dataset
sample is preprocessed similarly to an onset detection [15] by a time differentia-
tion. First, the CQT is transformed to logarithmic amplitude scale and then the
time differentiation is performed which results in a decay value per time step.
Moreover, the 84 frequency bands are reduced to 21 by summarizing blocks of
4 frequency bands respectively to get a more compact representation. The net-
work has 35 745 parameters. Its structure is illustrated in Fig. 6 in which the
same FC-Stack as in Sect. 5.2 is used.

Table 4 shows the results tRT,60 and tEDT,60 which represent the extrapo-
lated estimation of tRT and tEDT to a 60 dB decay. The test room errors are
smaller than the training room errors for both parameters because the ranges of
their ground truth values are smaller. Furthermore, the estimation result errors
are generally lower for tEDT,60 because tEDT is assumed to be both smaller in
absolute numbers and easier to estimate. Figure 7 illustrates the distribution of
all estimated tRT,60 in relation to the real tRT,60 values. The network generally
underestimates higher values while lower values can be estimated decently. One
reason could be the unbalanced training dataset which incorporates more rooms
with moderate reverberation and therefore smaller time values.

Table 4. MAE of the estimated tRT,60 and tEDT,60 (in s) for training and test rooms
extrapolated to a decay of 60 dB.

Training dataset Test dataset

tRT,60 0.316 0.288

tEDT,60 0.224 0.201



M. Schwabe et al.

Fig. 7. Estimated vs. real tRT;60 for RIRs of all nine rooms of [22].

6 Experimental Results for AMT

In order to validate the quality estimation in a realistic MIR application, the
relation between estimated SNR values and piano AMT results with the algo-
rithm ‘Onsets and Frames’ [9] is investigated. As in the previous sections, real
piano songs of the MAPS test dataset were superposed and convolved by dif-
ferent levels of noise or RIRs. Other MIR applications could benefit from the
quality estimation as well, but are not considered in this work. The AMT result
is given by the relative F1-Score

F1rel =
F1d
F1p

=
TPd · (TPp + 0.5 (FPp + FNp))
(TPd + 0.5 (FPd + FNd)) · TPp

(8)

which is the resulting F1-Score for a disturbed recording F1d in relation to
its undisturbed ‘pure’ version F1p. Both F1-Scores F1d and F1p are calculated
by means of their respective correctly detected notes (true positives TP), falsely
detected notes (false positives FP), and missed notes (false negatives FN). Conse-
quently, a relative F1-Score of 100 % means that the analysed recording achieves
the same transcription quality as the undisturbed recording.

The resulting relative F1-Scores for the background noise types are illus-
trated in Fig. 8 in relation to the estimated SNR values. As the SNR estimation
has achieved appropriate results in Table 1 and 2, only the results for the esti-
mated SNR values are given. Furthermore, the mean relative F1-Scores in Fig. 8
and those of the true SNR values showed similar characteristics in early experi-
ments. AMT results are only marginally decreased in case of intense brown noise,
whereas white, pink, and especially high frequency noise have a high impact on
the investigated AMT performance. Due to the data distribution, outliers with
an atypical relative SNR are possible. Those outliers can be explained by the
different music pieces and their level of difficulty for AMT.
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Fig. 8. Relative F1-Scores for piano AMT over estimated SNR values for dierent back-
ground noise types. The solid line represents the corresponding relative F1-Scores over
the mean of all estimated SNR values for each ground truth SNR step.

In case of time-dependent sound disturbances, the relative F1-Scores are illus-
trated in Fig. 9 for various sound classes. The data distributions are comparable
to those of high frequency noise in Fig. 8, so only the mean values are given here.
During each music piece of 30 s, three disturbances of 4 s have been analysed,
which results in 40 % disturbance per recording. All investigated sound distur-
bance classes have a comparable and nearly proportional effect on the AMT
results. Consequently, the SNR estimations of background noise and sound dis-
turbances can be used for predictions on AMT result declines and therefore AMT
performance reduction due to lower recording quality.

The AMT results with room parameter estimation are illustrated in Fig. 10
for the early decay time because it has got slightly better results than for tRT,60

in Sect. 5.3. Although a clear correlation between relative F1-Score and tEDT,60

can be stated, the data variance is very high and no reliable AMT performance
prediction is possible. One reason for that is the piano characteristic that includes
controlled reverberation in its sound production, so the influence of low reverber-
ation for piano AMT performance is insignificant. Therefore, only a classification
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AMT due to lower recording quality and possible reasons for it can be pre-
dicted by the estimated quality parameters for background noise, short sound
disturbances, and reverberation.

Fig. 10. Relative F1-Score for piano AMT over estimated tEDT;60. The solid line
represents the corresponding sliding average.

7 Summary

Three neural network approaches for the estimation of piano music recording
quality have been proposed. Each network concentrates on one of the recording
quality degradation sources background noise, sound disturbances, or reverber-
ation and estimates the respective SNR or room parameters. The results have
been validated successfully in a realistic scenario of piano music transcription for
which the quality estimation can be used to predict the performance reduction
due to a lower recording quality.

In future works, quality estimation should be enlarged to other music genres
than piano music. Furthermore, the presented quality estimation can be vali-
dated for other MIR tasks like music source separation or beat tracking.
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