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Nonlocal interaction engineering of 2D roton-like
dispersion relations in acoustic and mechanical
metamaterials
Ke Wang1,2,5, Yi Chen 1,5✉, Muamer Kadic1,3, Changguo Wang2 & Martin Wegener 1,4

The interior of the synthetic unit cells and their interactions determine the wave properties of

metamaterials composed of periodic lattices of these cells. While local interactions with the

nearest neighbors are well appreciated, nonlocal beyond-nearest-neighbor interactions are

often considered as a nuisance. Here, by introducing a versatile effectively two-dimensional

metamaterial platform for airborne sound and elastic waves, we exploit nonlocal effects as a

powerful design tool. Within a simplified discrete model, we analytically show that the lowest

band can be engineered by Fourier synthesis, where the N-th order Fourier coefficient is

determined by the N-th nearest-neighbor interaction strength. Roton-like dispersion relations

are an example. The results of the discrete model agree well with a refined model and with

numerical calculations. In addition, we engineer the passage of waves from a local meta-

material into a nonlocal metamaterial by carefully tailoring the transition region between

the two.
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In the solid-state physics of ordinary crystals, interactions way
beyond the nearest atomic neighbors can be of crucial
importance, for example for the crystal’s ionic binding

energy1. The Madelung constant2 summarizes the effects of this
long-range Coulomb interaction. In electromagnetism and optics,
for artificial crystals called metamaterials3,4, long-range interac-
tions are well known to play an important role as well5,6. For
example, the dynamic electric dipole-dipole interaction asymp-
totically decays inversely with the distance between dipoles just
like the static Coulomb potential1,7. So far, however, long-range
interactions in electromagnetic or optical metamaterials have
mainly been considered a nuisance that complicates the physics
rather than a useful design feature5.

In contrast, when conceptually introducing acoustical and
optical phonons in ordinary crystals by mass-and-spring type
models1, the Hooke’s springs emerging from a given mass are
usually only connected to the immediate neighbors of this
mass8–11. In few cases, springs between next-nearest neighbors
have been considered as a correction12,13. For many years,
this only-nearest-neighbor spirit has also been taken for designing
phonon dispersion relations in mechanical or acoustical
metamaterials3,10,14–17. Few exceptions have discussed the influ-
ence of long-range interactions in linear elastic materials18–20 or
in phononic crystals21–23, albeit not in the spirit of a design tool
but again rather as a correction to ordinary behavior.

Recently, we showed that suitable metamaterial designs using
sufficiently strong N-th nearest-neighbor interactions with
N ¼ 3, in addition to the usual nearest-neighbors interactions
(N ¼ 1), allow for obtaining unusual acoustical-wave dispersion
relations24,25, which mimic the famous rotons in superfluid
helium26–29. However, the three-dimensional (3D) architectures
discussed therein24,25,30 were restricted in three regards, i)–iii). i)
They were limited to tailoring the dispersion relation along only a
single propagation direction. ii) They were not flexible enough to
provide interactions way beyond N ¼ 3. iii) They could not easily
be generalized to support more than just two types of interactions
(nearest-neighbor and third-nearest-neighbor) simultaneously.

We note in passing that another recent publication31 used
beyond-nearest-neighbor interactions in mechanical metamater-
ials to design and tailor the properties of higher phonon bands
and states with the aim of obtaining topological band gaps. This
work is not of immediate importance here because we focus on
the lowest acoustical band.

Herein, we introduce and analyze by numerical and analytical
calculations a flexible effectively two-dimensional metamaterial
platform that allows for tailoring the lowest acoustical phonon
dispersion relation for airborne sound by using beyond-nearest-
neighbor interactions along two orthogonal directions. We design
the long-range interactions by a network of cylindrical tubes,
which connect cuboid compartments in a two-dimensional
square array. The numerically calculated phonon bands reveal
multiple roton-like minima along multiple directions. Through a
simplified discrete analytical model for the lowest (acoustical)
band that is mathematically equivalent to a mass-and-spring
model, we show that the long-range interactions directly deter-
mine the Fourier coefficients of the acoustical-wave dispersion
relation. Based on the simple model, we further demonstrate
interesting negative refraction32,33 and triple refraction at an
interface between two metamaterials with and without beyond-
nearest-neighbor interactions, respectively. We emphasize the
importance of the transition region between an ordinary medium
and the metamaterial comprising beyond-nearest-neighbor
interactions as to which mode in the metamaterial the incident
wave couples to. These calculations highlight the aspect of
nonlocality20,31, which is due to the beyond-nearest-neighbor
interactions. We also propose a refined analytical model that can

capture the higher bands in the band structure as well. The
combination of these aspects shows that nonlocal effects are a
powerful tool for designing acoustic and elastic metamaterials.

Results and discussion
Metamaterial design and numerical calculations. To implement
the Fourier-synthesis idea in the simplest possible yet practical
way, we consider airborne acoustical sound. Here, only long-
itudinally polarized pressure waves occur34. We consider the air
in tubes with rigid walls as mediator of the interactions. In
acoustics, such hollow tubes do not lead to a finite minimum
(“cut-off”) frequency, below which propagating waves do not
occur. The behavior of airborne waves can easily be transferred to
waterborne acoustical waves. In contrast, for waves in general
elastic structures, two transverse modes occur in addition to the
longitudinal modes. The situation would also be more complex
for transversely polarized electromagnetic waves, for which tubes
with walls made of a perfect electrical conductor do lead to a
finite cut-off frequency35. Such finite-frequency cut-off obviously
inhibits an “acoustical” mode starting from zero frequency at zero
wavenumber.

Figure 1a shows one unit cell of the suggested 3D structure of
the metamaterial for airborne sound for the example of N ¼ 3.
Panel b illustrates the resulting two-dimensional lattice. Panel c
shows the unit cell for the fix cases N ¼ 4; 5; 6; 7; 8. In all of these
cases, we consider a two-dimensional square lattice of hollow
compartments with lattice constant a. The walls of these
compartments are treated as rigid bodies. Mathematically, this
corresponds to Neumann boundary conditions for the pressure
field34. Intuitively, the compartments can be seen as the “atoms”.
Tubes connecting the compartments can be seen as mediators of
the interactions among the atoms. Four thin tubes with inner
radius r1 directly connect each of these compartments with its
four immediate neighbors. The walls of all tubes are treated as
Neumann boundaries, too. These tubes mediate the nearest-
neighbor interactions between the compartments. The thicker
tubes with inner radius rN > r1 mediate the beyond-nearest-
neighbor interactions with N ≥ 2. To avoid collision of the tubes
along the x- and the y-direction, respectively, one set of tubes is
located above the xy-plane spanned by the thin tubes and the
other one below. Therefore, the metamaterial structure itself has
only two-fold rotational symmetry with respect to the z-axis.
However, the structure exhibits an additional rotation-reflection
symmetry with respect to the xy-plane. This symmetry ensures
that the phonon dispersion relation ωnðkx; kyÞ, which connects
the angular frequency ωn of the band with band index n and wave
vector k ¼ ðkx; kyÞ, has four-fold rotational symmetry, i.e., wave
propagation along the x- and y-direction are strictly equivalent by
symmetry. For a given fixed radius of the tubes, the maximum
possible integer N is clearly limited by geometrical constrains (cf.
Fig. 1c). For the radii chosen in Fig. 1, the maximum possible
value is N ¼ 8 as the tubes would overlap for N ¼ 9. However,
conceptually, one can consider the limit of r1 ! 0 at fixed finite
ratio rN=r1. In this limit, integers up to N ! 1 are possible
mathematically.

So far, we have only considered structures supporting nearest-
neighbor interactions and N-th nearest-neighbor interactions
with a single specific value of N . However, the metamaterial
platform in Fig. 1b can easily be generalized to support several
different beyond-nearest-neighbor interactions simultaneously.
Figure 2 shows as an example a metamaterial structure
supporting the three interactions with N ¼ 1, N ¼ 3, and
N ¼ 5. The N ¼ 3 interactions lie in planes parallel to the
xy-plane at different z-positions than the N ¼ 5 interactions.
Clearly, for the chosen metamaterial platform, any further values
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of N can be realized at yet different z-positions without imposing
any geometrical constrains or difficulty (not depicted).

To compute the phonon dispersion relation of airborne
acoustical waves propagating in the channel system shown in
Figs. 1, 2, we consider the scalar wave equation for the spatial air-
pressure modulation ePk;iðrÞ on top of a constant background air

pressure P0 � ePk;iðrÞ at spatial position r ¼ ðx; y; zÞ and two-
dimensional wave vector k ¼ ðkx; kyÞ1: We neglect damping. This
assumption is expected to be reasonable if all absolute dimensions
are sufficiently large36. Furthermore, we have also performed
calculations including damping (see Supplementary Note 1). The

relative differences of the (real part of the) eigenfrequencies with
respect to the lossless case are smaller than 4% for all cases (cf.
Fig. 3 and Supplementary Figs. 1 and 2). The qualitative behavior
is not changed at all. In the Fourier-domain, the resulting
eigenvalue problem34 reads

∇ � ∇ePk;n rð Þ
� �

¼ �ω2
n kð Þ
v2air

ePk;n rð Þ:

The band with index n ¼ 1 corresponds to an acoustical
branch, the bands with n≥ 2 can be seen as “optical” phonon

Fig. 1 Considered metamaterial platform supporting beyond-nearest-neighbor interactions along two orthogonal directions. a Scheme of a single unit
cell for N ¼ 3. b 2D square lattice with lattice constant a built from this unit cell. The colors are for illustration only. The colored regions form a channel
system that is bounded by rigid walls (not shown for clarity). The cuboid compartments (yellow) are connected to their four immediate neighbors along the
x- and y-direction by tubes (yellow) with radius r1. They are further connected to their Nth nearest neighbors by tubes (blue) with radius rN. The tubes
along the x-direction (y-direction) are located above (below) the xy-plane spanned by the yellow tubes. c gallery of unit cells for N ¼ 4 to N ¼ 8 as
indicated. For our calculations, we use the following fixed geometrical parameters: r1=a ¼ 0:03, rN=a ¼ 0:05, w=a ¼ 0:30; h=a ¼ 0:80; h0=a ¼
0:24; hN=a ¼ 0:25; and d=a ¼ 0:86. We choose a ¼ 10cm for the metamaterials supporting airborne sound and a ¼ 100μm for the elastic metamaterials.

Fig. 2 Same as Fig. 1, but tubes (red) mediating the fifth-nearest-neighbor interactions (N = 5) are added as an example. a Single metamaterial unit
cell. b 2D square lattice composed thereof. Clearly, yet further values of N could easily be implemented in other planes parallel to the xy-plane at other
z-positions below and above the plane spanned by the yellow tubes (N ¼ 1). Again, due a rotation-reflection symmetry of the overall structure, wave
propagation along the x- and y-direction is equivalent.
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bands. We will focus our below design and discussion on the
lowest band with n ¼ 1, but we will graphically also show several
higher-frequency bands for completeness. We choose vair ¼
343m=s as the constant speed of sound in air. We solve this
eigenvalue equation by a finite-element method (FEM) imple-
mented in the commercial software Comsol Multiphysics. We
assume Bloch periodic boundary conditions along the x- and the
y-direction and treat the walls of all compartments and tubes as
rigid immovable bodies via Neumann boundary conditions35. All
geometrical parameters of the metamaterial architecture are
defined and given in Figs. 1, 2. As usual, the first 2D Brillouin
zone of the 2D square lattice is given by the conditions kx

�� ��≤ π=a
and jkyj≤ π=a.

Examples of calculated band structures are given in Figs. 3–5.
Figure 3 shows the band structure of the metamaterial depicted in
Fig. 1. It contains beyond-nearest-neighbor interactions with
N ¼ 3. These 2D band structures can be compared with our
previous quasi-1D band structures24. Figure 3a shows the angular
frequency for the usual tour through the 2D Brillouin zone (also
see inset). Figure 3b represents the same results in 2D k-space. It
can be seen that we obtain local minima of the dispersion relation
of the lowest acoustical band along the ðkx; 0Þ direction and the
equivalent ð0; kyÞ direction. These local minima resemble the
roton-like dispersion relations discussed in detail previously24. In
addition, we find four further (roton-like) local minima along the
diagonals. As expected from the symmetry of the metamaterial
structure (see above), the dispersion relation ω1ðkx; kyÞ exhibits
four-fold rotational symmetry. However, it is clearly not isotropic.
The depth of the minima can be tailored by the effective strength
of the beyond-nearest-neighbor interaction compared to the
nearest-neighbor interactions, i.e., by the ratio of the tube radii
r3=r1 (not depicted). The minimum is absent for r3=r1 ¼ 0,
becomes deeper for increasing ratio r3=r1 > 0, and touches zero
angular frequency, ω1 ¼ 0, in the limit of r3=r1 ! 1.

Figure 4 shows the same as Fig. 3a, but for different values of N
instead of N ¼ 3. These results correspond to the metamaterial
unit cells shown in Fig. 1. We find that the number of oscillations
versus wave number within the first Brillouin zone increases with
increasing N . This behavior already suggests a connection between
the integer N and the corresponding Fourier component. We will
come back to this aspect in more detail in the following section.

Figure 5 is as Fig. 4 (where N ¼ 3 only), but for two different
orders of long-range interaction in parallel, namely (a) N ¼ 4 in
addition to N ¼ 3, (b) N ¼ 5 in addition to N ¼ 3, and (c) N ¼
6 in addition to N ¼ 3. The corresponding metamaterial unit
cells have already been shown in Fig. 2. Again, the angular
frequency of the lowest acoustical band exhibits an oscillatory
behavior versus wave number k, however, now with two different
Fourier components superimposed. We will come back to this
aspect in more detail in the following section.

Mass-and-spring model. To obtain a more intuitive as well as an
approximate analytical understanding of the findings of the
previous section, we now consider a simple discrete analytical
model. This model shows the acoustical dispersion relation of the
metamaterial structures shown in Figs. 1, 2 can be tailored in the
sense of Fourier synthesis. The beyond-nearest-neighbor inter-
actions determine the Fourier coefficients.

We consider the mass-and-spring model shown in Fig. 6. We
show that Newton’s equation of motion for the masses in this
2D lattice is mathematically equivalent to the approximate
equation of motion for the air mass in the cuboid compart-
ments shown in yellow in Fig. 1b. The hollow tubes connecting
these compartments correspond to Hooke’s springs. This
ansatz follows our previous reasoning24,25 and is consistent
with the numerically calculated air-pressure fields. An example
referring to the parameters used in Fig. 3 is depicted in
Supplementary Fig 3. We emphasize that this simple model
accounts for the lowest (acoustical) band with n ¼ 1 only, as
the model contains only one degree of freedom (the position of
the single mass in the unit cell). We will expand the analytical
modeling to also include the higher bands with n≥ 2 in the
following section. Let us now derive the discrete model with a
discrete set of equations of motion for the metamaterial
structures illustrated in Figs. 1, 2.

Within the cuboid air compartment with volume Vc at the 2D
lattice site defined by the pair of integers ðm; nÞ, the air pressure
Pmn ¼ P0 þ ePmn shall be approximated by the constant mean
pressure in that compartment. The air pressure directly translates
into the number of air molecules Nmn ¼ N0 þ eNmn in one
compartment. N0 is the number of air molecules in the
compartment at fixed room temperature T , corresponding to

Fig. 3 Calculated phonon dispersion relation for the metamaterial structure shown in Fig. 1, i.e., for N= 3 beyond-nearest-neighbor interactions only.
a Tour through the first Brillouin zone (see inset) of the 2D square lattice with lattice constant a. The gray curve is obtained by numerical finite-element-
method (FEM) calculations. The analytical results of the simple discrete model are shown by the red curve. Here, only the lowest band occurs. The results
of the refined analytical model are shown by the blue dots. These almost completely overlap with the numerical calculations. The agreement with the
simple discrete model is qualitatively very good, especially for the principal directions. The parameters for the gray and blue data are given in Fig. 1. The
used parameters for the simple discrete model are: M ¼ ρVc ¼ 9:3 ´ 10�5g; K1 ¼ 27:9Nm�1, and K3 ¼ 17:7Nm�1. b Frequency as obtained from the
numerical finite-element calculations represented on a false-color scale versus wavenumber kx and ky within the first Brillouin zone of the square lattice.
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the background pressure P0. The ideal-gas equation becomes
Pmn ¼ NmnkBT=Vc or ePmn ¼ eNmnkBT=Vc, with the Boltzmann
constant kB. Furthermore, in each Nth-nearest-neighbor hor-
izontal and vertical tube with radius rN (see above), hence cross
section πr2N , and length LN , we approximate the air velocity along
the tube axis as being constant throughout that tube. We define
the corresponding velocities in the horizontal (x-direction) tubes,
hðNÞ
mn , and those in the vertical (y-direction) tubes, vðNÞ

ij , mediating
the N-th order interaction. The mass density, ρ0, within all tubes
is approximated as being constant, with ρ0 ¼ m0P0=ðkBTÞ, where
m0 is the mass of one air molecule. With these definitions, the
continuity equation applied to compartment ðm; nÞ describes
the in- and out-flux of air molecules from the tubes into the
compartment and reads
d
dt

m0Nmn ¼
d
dt

m0
eNmn ¼ ∑

1

N¼1
�ρ0πr

2
N hðNÞ

mn � hðNÞ
m�N;n

� �
þ vðNÞ

mn � vðNÞ
m;n�N

� �� �
:

ð1Þ
The acceleration d

dt h
ðNÞ
mn in the Nth-order horizontal tubes

results from the net force corresponding to the pressure
difference between the two ends of the tube with length LN , i.e.,
from

ρ0
d
dt

hðNÞ
mn ¼ �

ePmþN;n � ePmn

LN
; ð2Þ

and likewise for the Nth-order vertical tubes

ρ0
d
dt

vðNÞ
mn ¼ �

ePm;nþN � ePmn

LN
: ð3Þ

Taking the time derivative of Eq. (1), inserting Eqs. (2) and (3)
into Eq. (1), and replacing eNmn ¼ ρ0Vc

MP0
ePmn leads to.

M
d2

dt2
ePmn ¼ ∑

1

N¼1
KN

ePm�N;n � 2ePmn þ ePmþN;n

� �
þ ePm;n�N � 2ePmn þ ePm;nþN

� �� �
;

ð4Þ
where we have introduced the two abbreviations

M ¼ ρ0Vc ð5Þ
and

KN ¼ P0
πr2N
LN

: ð6Þ

Equation (4) is identical to Newton’s equation for the mass-
and-spring model shown in Fig. 6 if the pressure variation ePm;n in
Eq. (4) is replaced by the out-of-plane displacement. M in Eq. (4)
is the air mass in one compartment. It is the same for all lattice
sites at this point. Below, when addressing interfaces, we will
consider different values of M at different locations. According to
Eq. (5), the mass M can be varied in practice by changing the
volume of the compartment Vc. KN is the effective Hooke’s
spring constant for the Nth order interaction. According to Eq.
(6), it can be tailored by the radius of the Nth order tube, rN .
Obviously, at fixed tube radius rN , the effective spring constant
KN decreases inversely versus increasing order N of the
interaction, hence with increasing length LN � NL1 of the tube
for N ≥ 2. This behavior is perfectly analogous to that of an
ordinary elastic Hooke’s spring. As the tube diameter 2rN is
geometrically constrained in size from above (cf. Fig. 1), and must

Fig. 4 Dispersion relations as in Fig. 3a, but for different orders N of beyond-nearest-neighbor interactions in addition to the nearest-neighbor
interactions. a N ¼ 3. b N ¼ 4. c N ¼ 5. d N ¼ 6. e N ¼ 7. f N ¼ 8. The corresponding metamaterial structures are depicted in Fig. 1c.
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eventually decrease with increasing N , the effective relative
strength of the Nth-order interaction eventually tends to zero
inversely proportional to the order N , or stronger than that. In
the previous section, we have seen that values up to N ¼ 8 can be
achieved in practice.

Making a plane-wave ansatz for Eq. (4) according to

ePmn ¼ ePexp iðmkxaþ nkya� ωtÞ
� �

; ð7Þ

with constant amplitude prefactor eP, we obtain the dispersion
relation for acoustical pressure waves with band index n ¼ 1 in
the discrete model

ω2
1 kx; ky
� �

¼ ∑
1

N¼0
FNcos Nkxa

� �þ ∑
1

N¼0
FNcos Nkya

� �
: ð8Þ

This expression is central to our paper. We see that, for N ≥ 1,
the Fourier coefficient FN in the two Fourier series on the right-
hand side is directly connected to the Nth nearest-neighbor
effective Hooke’s spring constant KN and is given by

FN ¼ �2KN=M: ð9Þ
The constant 0th-order term of the Fourier series with

F0 ¼ ∑
1

N 0¼1
2KN 0=M ð10Þ

guarantees that the dispersion relation Eq. (7) starts according to

ω1ðkx; kyÞ / kj j ð11Þ
in the limit kj j ! 0. This is equivalent to saying that we restrict

ourselves to “acoustical” dispersion relations. In the Fourier series
on the right-hand side of Eq. (8), only cosine terms appear as sine
terms would generally violate the reciprocity condition
ωð�kÞ ¼ ωðkÞ.

For suitable parameters, the above simple 2D discrete model
again exhibits roton-like dispersion relations along multiple
directions (see Supplementary Note 2 and Supplementary Fig 4).
To allow for a direct comparison with the above numerical
calculations, we plot the calculated dispersion relations of this
model (red dots) together with those of the numerical calculations
(gray curves) in Figs. 3 and 4. For the lowest band, the overall
agreement is excellent for all values of N . This especially holds
true for the principal direction ΓM. Quantitative discrepancies
occur for other directions, but the agreement is still qualitatively
good. Note, however, that we have taken the freedom to use fitted
ratios KN=M. In principle, these ratios could be calculated from
Eqs. (5) and (6) and from the known geometrical parameters
therein. The fitting procedure gives us freedom to correct for the
simplicity of the mass-and-spring model. We will come back to a
more stringent treatment in the following section.

Before we get there, we now apply the mass-and-spring model
to treating metamaterials that are not infinitely extended, but that
rather contain interfaces. The treatment of such configurations
would be computationally very expensive on the level of the
complete numerical calculations.

As a representative example, we consider only nearest-
neighbor interactions and third-nearest-neighbor interactions
(N ¼ 3). In such a system24, the dispersion relation does not
monotonically increase but features a region of backward waves,

Fig. 5 Calculated phonon dispersion relations for metamaterial structures as shown in Fig. 2. Compared to the dispersion relations shown in Fig. 3, two
different beyond-nearest-neighbor interactions are present simultaneously here. a–c correspond to N ¼ 3 and N ¼ 4 simultaneously, N ¼ 3 and N ¼ 5
simultaneously, and N ¼ 3 and N ¼ 6 simultaneously, respectively. Results from the numerical calculations (gray), the simple discrete model (red), and the
refined analytical model (blue) are compared. d–f False-color representations of frequency versus wavenumber kx and ky from the numerical calculations.
The behavior is due to the combined action of two different beyond-nearest-neighbor interactions.
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with negative scalar product of the phase and group velocity
vectors, and a roton-like26,28 local minimum in the dispersion
relation. We expect interesting wave behavior, including negative
refraction and triple refraction, which we shall study in the
remainder of this section.

The considered interface and excitation configuration is
illustrated in Fig. 7. In the region above the interface, we consider
a discrete system simultaneously with nearest-neighbor interac-
tions and third-nearest-neighbor interactions (N ¼ 3). In the
region below the interface, we assume only nearest-neighbor
interactions. We force displacements of masses located on the
indicated black line according to cos 2πf ct

� �
expð� πf ct=50

� �2Þ
expð�ð x � xc

� �2 þ y � yc
� �2Þ=37:52Þ, with xc ¼ �100, yc ¼

�130 being the coordinate of the middle point of the line in units
of the lattice constant a, and f c being the carrier frequency of the
temporally Gaussian excitation signal. This excitation launches a
spatially Gaussian wave packet towards the interface at an oblique
angle of 45o. We have chosen this particular angle just as an
example to illustrate the principle. The temporal Gaussian envelope
contains about 50 oscillation cycles (see Fig. 7c), corresponding to a
fairly narrow spread in the frequency domain (see Fig. 7d).

Due to the mismatch of interaction orders between the two
regions at the interface, one of the Hooke’s springs that mediate
the third-nearest-neighbor interactions for the first three masses
above the interface (see Fig. 7b) is truncated by the interface.
Therefore, the connections at the interface are modified slightly
(see Fig. 7b). These modifications in the transition region between
the two media will turn out to be crucial for controlling the

transmitted and reflected partial waves. As shown in the below
simulations, which are based on a trial-and error procedure for
the design and for the parameters of the transition layer, we can
even achieve nearly 100% transmission for each of the three
possible modes individually by fine-tuning the indicated interface
parameters, including the two mass parameters, M01 and M02,
and three spring constants, K01, K02 and K03 in Fig. 7.
Alternatively, the parameters for the transition region can be
chosen such that an incident wave couples to all three refracted
modes simultaneously (see Supplementary Fig 7).

We note in passing that an explicit and rational construction
procedure for the transition layer between a local and a non-local
medium and its parameters is presently elusive to our knowledge.
Defining such a procedure beyond a trial-and-error approach is
beyond the scope of our present paper.

In Fig. 8, we first demonstrate negative refraction at the interface.
For the incidence region, we choose the parameters
M=M0 ¼ 1:0;K1=K0 ¼ 1:2, and K3=K0 ¼ 0. Here, M0 and K0
are not relevant to the results and can take any constant reference
values. In Fig. 8a, red (blue) solids lines represent iso-frequency
contours for the discrete system in the incidence (transmission)
region at carrier frequency (= center frequency) ω=ω0 ¼ 0:7 of the
Gaussian wave packed used in the numerical simulation. Dashed
lines correspond to a slightly larger frequency. From two nearby
iso-frequency contours, we can identify the group velocity vector
vg. From Snell’s law, one negatively refracted mode with wave
vector kt and group velocity vg is expected. A snapshot of the
simulated displacement fields at one instant in time, t=Tc ¼ 150, is
shown in Fig. 8b. The interface parameters, as indicated in the
figure, are tuned to achieve a nearly zero reflected partial wave. As
expected, the refracted waves exactly move along the direction of
the predicted group velocity vg. The phase fronts of the refracted
waves move along the wave vector kt. The dashed lines are guides
to the eye for the wave propagation trajectory. The negative
refraction can be seen yet more clearly in Supplementary Movie 1.

Next, we demonstrate triple refraction. In this case, we choose
different parameters for the incidence region, namely
M=M0 ¼ 0:44;K1=K0 ¼ 2:3, and K3=K0 ¼ 0. The carrier fre-
quency of the Gaussian packet is chosen as ωc=ω0 ¼ 0:9. Iso-
frequency contours are depicted in Fig. 9 the same manner as in
Fig. 8a. For this case, there are three possible refracted modes, with
the wave vectors and the group velocities, kt1 and vg1, kt2 and vg2,
and kt3 and vg3, respectively, instead of a single mode as in the
previous example. The third mode is again a backward wave with
kt3 � vg3 < 0. The importance of the interface parameters becomes
evident from the three different calculations shown in Fig. 10a–c. In
each of the three cases, one of the three different modes is excited
almost exclusively. This means that one can select a wanted mode
by appropriately choosing the parameters of the transition region
between the two media. For all three cases, we further illustrate the
behavior by the Supplementary Movies 2–4.

We note in passing that the rich physics of the transition
region can likely also be captured by generalizing the effective-
medium approximation of the mass-and-spring model in terms
of a generalized wave equation for homogeneous non-local
media, as introduced in ref. 25, to the case of heterogeneous non-
local elastic media. However, this aspect goes well beyond the
scope of the present paper.

Refined analytical model. In this section, we present a refined
analytical model, which captures not only the behavior of the
lowest band but also that of the higher bands for the proposed
metamaterials. We make the following two assumptions: i) The
acoustic pressure in the cuboid compartments in Fig. 1 is

Fig. 6 The shown 2D mass-and-spring model is mathematically
equivalent to an approximate discrete model of the 2D metamaterial
lattice shown in Fig. 1b. To allow for comparison, the color of the masses
(yellow) corresponds to that of the cuboid compartments in Fig. 1b.
Likewise, the nearest-neighbor Hooke’s springs (yellow) correspond to the
nearest-neighbor tubes in Fig. 1b. The beyond-nearest-neighbor Hooke’s
springs with spring constants KN, exemplified here for the case of N ¼ 3,
are schematically illustrated by the blue lines. For clarity, they are only
depicted for a single mass in the lattice. All masses M in the square lattice
with lattice constant a are identical. Analytical dispersion relations obtained
from this model are shown by the red dots in Figs. 3 and 4 (also see
Supplementary Fig. 4). By virtue of the good agreement to the complete
numerical calculations, the simple discrete model allows for discussing the
highly unusual wave behavior at interfaces with reasonable effort (see
Figs. 8–10).
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Fig. 7 Simulation setup of wave refraction at interface. a Wave transmission at an interface between a local system with only nearest-neighbor
interactions (bottom, gray) and a nonlocal system additionally including third-nearest-neighbor interactions, K3 ≠0 (top, yellow). The incident wave
impinges under an angle of 45

�
onto the interface. b Due to the mismatch of interaction orders between the two regions, some of the third-order Hooke’s

springs are cut away near the interface (dashed horizontal line) within the nonlocal region. To control the transmission of the incident waves, we fine-tune
the mass parameters, M01 and M02, and three Hooke’s spring constants, K01; K02, and K03, at the interface. To avoid reflection of the partial waves at the
boundaries of the simulation domain, we choose a much larger simulation domain than the one shown. A wave packet that is Gaussian in space and time is
launched by prescribing the pressure in Eq. (4) on the black lines according to cos 2πfct

� �
expð� πfct=50

� �2Þexpð�ð x� xc
� �2 þ y � yc

� �2Þ=37:52Þ.
c Temporal profile of the launched pulse, containing about 50 oscillation cycles. d Corresponding Fourier transform (absolute value).

Fig. 8 Negative refraction at an interface as illustrated in Fig. 7. a Iso-frequency curves for the nonlocal system, with the same parameters as in
Supplementary Fig 4, and the local system, with parameters M=M0 ¼ 1;K1=K0 ¼ 1:2, and K3=K0 ¼ 0. The solid lines correspond to the carrier frequency
ωc=ω0 ¼ 0:7 of the Gaussian pulse. The blue arrow represents the incident wave vector, ki . From Snell’s law, a single negatively refracted mode with wave
vector, kt, and group velocity vector, vg, is possible. b Snapshot of simulated pressure fields at t=tc ¼ 150, with tc ¼ 2π=ωc. The interface parameters (cf.
Fig. 7) are M01=M0 ¼ 0:5;M02=M0 ¼ 1:0; K01=K0 ¼ 1:0; K02=K0 ¼ 1:0, and K03=K0 ¼ 1:0. The black dashed straight lines indicate the propagation path of
the incident and the refracted wave. In the nonlocal region, the wave propagation direction agrees well with the group velocity vector as derived in a. An
animated version of b is provided in Supplementary Movie 1. The displacement component uz for the two cuts perpendicular to the propagation direction at
positions A (brown) and B (blue), respectively, is shown in Supplementary Fig 5.
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approximated as being constant within. ii) The pressure modes in
all tubes are the fundamental waveguide mode, i.e., at a given
position along the tubes, the pressure is constant over the cross
section34. These two assumptions are expected to be valid for low-

frequency sound, for which the wavelength in air is much larger
than the unit cell size.

On this basis, we derive the metamaterial dispersion relations
analytically based on the Floquet-Bloch theorem1. As an ansatz, the
acoustic pressure modulation at the lattice site defined by the pair of
integers ðm; nÞ is given by ePmn ¼ eP expðiðkxmaþ kyna� ωtÞÞ,
with eP being a constant prefactor as in Eq. (7). The key point to
derive the dispersion relation is to analyze acoustic pressure wave
propagation in the tubes. As one example, we consider the tube that
connects the cuboid compartment at site m; nð Þ to its Nth nearest
neighbor along x-direction at site ðmþ N; nÞ. The pressure field
inside the tube is composed of a forward waveguide mode, from the
cuboid at site m; nð Þ to that at site mþ N; nð Þ, and a corresponding
backward waveguide mode

pðsÞ ¼ Aþexp i
ω

vair
s

� �
þ A�exp �i

ω

vair
s

� �� �
exp �iωtð Þ: ð12Þ

Herein, s indicates the distance along the central axis of the tube,
with s ¼ 0 corresponding to one end of the tube, where it connects

the cuboid at site m; nð Þ. We further have s ¼ LN , with LN ¼
d � wþ 2hN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ N2a2

p
being the tube length, representing

the other end. Aþ and A� are two unknown amplitude coefficients.
The corresponding particle velocity is derived as

v sð Þ ¼ 1
iωρ0

∂p
∂s

¼ 1
ρ0vair

Aþexp i
ω

vair
s

� �
� A�exp �i

ω

vair
s

� �� �
exp �iωtð Þ;

ð13Þ
with ρ0 representing the average air density as previously. Due to
continuity, the acoustic pressure at the two ends of the tube must be
the same as in the corresponding cuboids34

p 0ð Þ ¼ eP exp ikxmaþ ikyna� iωt
� �

; ð14Þ

p LN
� � ¼ eP expðikxðmþ NÞaþ ikyna� iωtÞ: ð15Þ

Fig. 9 Triple refraction at an interface as illustrated in Fig. 7. Iso-
frequency contours for the nonlocal system, with the same parameters as
in Supplementary Fig 4, and the local system, with parameters
M=M0 ¼ 0:44;K1=K0 ¼ 2:3, and K3=K0 ¼ 0. The solid lines correspond to
the carrier frequencyωc=ω0 ¼ 0:9 of the excited Gaussian wave packet. By
using Snell’s law, triple refraction with wave vectors, kt1, kt2 and kt3, and
corresponding group velocity vectors, vg1, vg2 and vg3, becomes possible.
The partial wave with wave vector kt3 and group velocity vector vg3 is a
backward wave with kt3 � vg3 <0.

Fig. 10 Relative amplitude control of the three refracted modes at the interface between a nonlocal system and a local system by tuning the interface
parameters illustrated in Fig. 7b. a Snapshot of simulated pressure fields with the interface parameters, M01=M0 ¼ 0:5, M02=M0 ¼ 1:0, K01=K0 ¼ 6:0,
K02=K0 ¼ 1:0, and K03=K0 ¼ 1:0, respectively. In this case, only the refracted mode with the wave vector kt1 and group velocity vector vg1 occurs. The
dashed lines indicate the propagation path of the incident and refracted waves. b, c Same as a, but with interface parameters M01=M0 ¼ 0:8,
M02=M0 ¼ 0:5, K01=K0 ¼ 2:0, K02=K0 ¼ 0:2, K03=K0 ¼ 6:0, and M01=M0 ¼ 1:0, M02=M0 ¼ 0:6, K01=K0 ¼ 1:0, K02=K0 ¼ 1:0, and K03=K0 ¼ 4:0,
respectively. Animated versions of the three scenarios are provided in the Supplementary Movies 2–4. The displacement component uz for the cuts
perpendicular to the propagation direction at the positions A (brown) and B (blue) in a–c is shown in Supplementary Fig 6.
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The two amplitude coefficients, Aþ and A�, result from

Aþ ¼
eP
2i
exp ikxmaþ ikyna

� �
csc

ωLN
vair

� �
expðikxNaÞ � exp �i

ωLN
vair

� �� �
;

ð16Þ

A� ¼
eP
2i
exp ikxmaþ ikyna

� �
csc

ωLN
vair

� �
�exp ikxNa

� �þ exp i
ωLN
vair

� �� �
:

ð17Þ
Substitution of the above two equations into Eq. (13) leads to

the particle velocity

vðsÞ ¼ i eP
ρ0vair

csc
ωLN
vair

� �
exp ikxmaþ ikyna� iωt

� �

cos
ωs� ωLN

vair

� �
� cos

ωs
vair

� �
exp ikxNa

� �� �
:

ð18Þ

From this expression, the total air mass flowing away from the
cuboid at lattice site m; nð Þ through the above tube is given by

QmþN;n ¼ ρ0SNv 0ð Þ ¼ i
SNePmn

vair
csc

ωLN
vair

� �
cos

ωLN
vair

� �
� exp ikxNa

� �� �
:

ð19Þ
Here, the area SN ¼ πR2

N represents the cross section of the
tube and vð0Þ the particle velocity at one end of the tube.
Similarly, we derive the average mass flow away from the cuboid
at lattice site m; nð Þ through the tube that connects the two
cuboids at sites m; nð Þ and m; nþ Nð Þ as

Qm;nþN ¼ i
SNePmn

vair
csc

ωLN
vair

� �
cos

ωLN
vair

� �
� exp ikyNa

� �� �
:

ð20Þ
With the conservation law for the air mass inside the cuboid

compartment at site m; nð Þ, we have34

i
ω

v2air
Vc

ePmn ¼ ∑
1

N¼1
QmþN;n þ Qm�N;n þ Qm;nþN þ Qm;n�N

� �
:

ð21Þ
Qm�N;n is the mass flow through the tube that connects the two

cuboids at sites ðm; nÞ and ðm� N; nÞ. Qm;n�N is defined
analogously. After some mathematical simplifications, we arrive
at the following expression for the dispersion relation

ω

vair
Vc ¼ ∑

1

N¼1
πR2

Ncsc
ωLN
vair

� �
4cos

ωLN
vair

� �
� 2cos kxNa

� �� 2cosðkyNaÞ
� �� �

:

ð22Þ
Vc represents the volume of the compartment. This equation
connects the angular frequency ω with kx and ky . For a given
Bloch wave vector k¼ðkx; kyÞ, the implicit formula Eq. (22)
provides multiple solutions for ω. These solutions correspond to
the different bands. Compared to the previous section, the price
we pay for the refined modeling in the present section is that we
do not obtain a closed explicit expression for the angular
frequency ω as a function of the Bloch wave vector. However, the
implicit Eq. (22) can easily be solved numerically. Results are
shown by the blue dots in Figs. 3 and 4. They agree well with the
numerical FEM calculations (gray curves) regarding the lowest
bands as well as the higher bands. For the case of two different
orders of long-range interaction in parallel shown in Fig. 5a–c,
the qualitative agreement for the lowest bands is again good, but
quantitative differences occur, especially along the MK direction.
The differences are yet more pronounced for the higher bands.
We assign these differences to the fact that the vertical parts of the
tubes for different N partially overlap (cf. Fig. 2, part with height
h3), leading to interference of the respective partial waves. The

refined model neglects these interferences. However, we recall
that the focus of this study lies on the lowest bands. For these, the
refined model generally performs better than the simple discrete
model in Figs. 3–5.

Elastic waves instead of airborne sound. So far, we have
exclusively discussed longitudinally polarized airborne sound
waves. It is interesting to investigate whether we can translate the
overall approach of the metamaterial platform illustrated in
Figs. 1 and 2 to elastic waves, for which three modes emerge from
the Γ point rather than just a single mode for airborne sound. For
elastic waves, the structures in Figs. 1 and 2 should be interpreted
as being composed of a single ordinary elastic material (e.g., a
polymer, see Supplementary Note 3) rather than as air channels.
Supplementary Fig 8 provides numerically calculated example
band structures for N ¼ 3; 4, and 5, that can be compared with
Fig. 4a–c. Clearly, the overall behavior of the lowest elastic band is
closely similar to that of the lowest band for airborne sound.
Specifically, the number of extrema of ωðkÞ, with k ¼ ðk; 0Þ or
k ¼ ð0; kÞ, versus k in the interval k 2 ½0; π=a� is equal to N—in
agreement with the Fourier synthesis idea presented above.

It is presently not clear whether this idea can also be translated
to experimentally accessible metamaterial structures for yet other
types of waves, such as, e.g., surface water waves, microwaves or
light waves. We hope that our work stimulates future experiments
and further design studies in this direction.

Data availability
The data that support the plots within this paper and other findings of this study are
published on the open-access data repository of the Karlsruhe Institute of Technology
(https://doi.org/10.35097/565).

Code availability
The numerical simulations in this work for the 2D mass-and-spring model have all been
performed by using the commercial software MATLAB. Numerical simulations in this
work for the elastic and acoustic metamaterials are all performed using the commercial
software COMSOL Multiphysics. The code and models are published on the open-access
data repository of the Karlsruhe Institute of Technology (https://doi.org/10.35097/565).
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