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Introduction
Electricity system planners typically use optimisation models to design the combina-
tions of generation, storage and transmission that meet different climate objectives, such 
as CO2 reduction scenarios, limiting the temperature increase or phasing out nuclear 

Abstract 

Modeling the optimal design of the future European energy system involves large data 
volumes and many mathematical constraints, typically resulting in a significant com-
putational burden. As a result, modelers often apply reductions to their model that can 
have a significant effect on the accuracy of their results. This study investigates meth-
ods for spatially clustering electricity system models at transmission level to overcome 
the computational constraints. Spatial reduction has a strong effect both on flows in 
the electricity transmission network and on the way wind and solar generators are 
aggregated. Clustering methods applied in the literature are typically oriented either 
towards preserving network flows or towards preserving the properties of renewables, 
but both are important for future energy systems. In this work we adapt clustering 
algorithms to accurately represent both networks and renewables. To this end we 
focus on hierarchical clustering, since it preserves the topology of the transmission 
system. We test improvements to the similarity metrics used in the clustering by evalu-
ating the resulting regions with measures on renewable feed-in and electrical distance 
between nodes. Then, the models are optimised under a brownfield capacity expan-
sion for the European electricity system for varying spatial resolutions and renewable 
penetration. Results are compared to each other and to existing clustering approaches 
in the literature and evaluated on the preciseness of siting renewable capacity and the 
estimation of power flows. We find that any of the considered methods perform better 
than the commonly used approach of clustering by country boundaries and that any 
of the hierarchical methods yield better estimates than the established method of 
clustering with k-means on the coordinates of the network with respect to the studied 
parameters.
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energy. They are motivated by political goals, such as the Paris Agreement (2012 ) or 
the European Green Deal (2019). Many of these goals require a high share of renewable 
generation.

An energy system model suited for such modelling tasks must capture spatio-temporal 
variations of both renewable resources and electricity demand as well as network bottle-
necks, which are already constraining today. Hence, the models must have a high spatial 
and temporal resolution. One approach for achieving this is to embed historical data into 
the model that contains hourly observations for sites at every few dozen kilometers, such 
as provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): 
ERA5 Reanalysis (2020) or Pfeifroth et al. (2017). However, a sufficient resolution entails 
large amounts of data, which leads to significant computational burdens. They arise 
because the modeling task is typically formulated as an optimisation problem which is 
subject to many mathematical constraints. These constraints account for the physics of 
the system, such as an accurate representation of power flows or (renewable) generation. 
To overcome the computational burdens, different approaches are established in the lit-
erature. They can be manifold ranging from linearisation to multi-level approaches com-
bining aggregation and decomposition methods. An overview on potentials to reduce 
model complexity is provided in Kotzur (2021). However, applying a linearisation to a 
large-scale mathematical model of the European electricity system is not sufficient to 
obtain a computational feasibility. The remaining option is to reduce the model size in 
its temporal or spatial dimension using aggregation methods.

Temporal clustering methods and their impact on the optimal energy system design 
are already well analysed (Kotzur et  al. 2018). The main findings of previous studies 
include the need for at least hourly modelling resolution (Pfenninger et al. 2014) and the 
need to include extreme weather events (Perera et al. 2020). On the spatial side, many 
studies pursue the approach of either using the full electricity substation level resolu-
tion for the transmission grid but only in selected regions (Sasse and Trutnevyte 2020), 
reducing the full model to a smaller equivalent using clustering methods (eHighways 
2050 Final Reports 2015; Neumann 2021; Zeyen et al. 2020; Tröndle et al. 2020) or both 
(Frysztacki and Brown 2020; Lombardi et al. 2020) and make suggestions for the future 
energy system or the modelling process based on the results obtained by the reduced 
models. However, to take advantage of trade over large distances, the model should 
cover the total area of political interest, which typically includes at least a whole conti-
nent, not just single regions (Tröndle et al. 2020; Schlachtberger et al. 2017). In case of 
clustering the model, it is ongoing research to find which method suits which research 
application and how precise reduced model results are compared to solutions obtained 
from higher resolved models.

This study aims to address the issue of spatial exactness of different clustering meth-
ods by extending recently proposed solutions and comparing their performance in the 
application of electricity system models. We extend previous methods to account for the 
spatio-temporal availability of renewable resources and incorporate considerations of 
the network topology and electrical connectivity. Results obtained from reduced mod-
els based on the different aggregation algorithms are compared against each other and 
against established reduction methods from the literature. The obtained low-resolu-
tion estimates are evaluated against an accurate power flow and the siting of renewable 
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capacities and associated storage options (solar, wind, battery and hydrogen) obtained 
from higher-resolution simulations.

To increase transparency of the results, we use the open model PyPSA-Eur (Brown 
et al. 2018; Hörsch et al. 2018) which builds on an open database.

State of the art

In the recent energy system modeling (ESM) literature, suggested solutions to spatially 
reduce high-resolution models to smaller equivalents include different techniques that 
focus on individual features of the system. These solutions can be categorised by whether 
they focus on (i) representing the network or (ii) the variability of renewable resources.

(i) Approaches that focus on the network representation and therefore on accurately 
approximating power flows include the following methods: the Ward equivalent (Ward 
1949), a hybrid method consisting of k-means and an evolutionary algorithm (Cotilla-
Sanchez et al. 2013), clustering into zones based on the similarity of the power trans-
fer distribution factors (PTDFs) (Shi and Tylavsky 2015), k-medoids operating on a 
combination of electrical parameters of the grid as well as their geographical length 
(2015), spectral partitioning taking into account the available transfer capability (ATC) 
(Shayesteh et  al. 2017) or density-based hierarchical clustering operating on the lines 
reactance (Biener and Garcia Rosas 2020). All these approaches use distance or similar-
ity measures on electrical parameters of the transmission grid, often referred to as elec-
trical distance. These methods are designed for a good approximation of power flows 
and mostly evaluated comparing the power flows of a highly resolved model to the one 
of a reduced model without changing the generation fleet. However, power flows are 
strongly impacted when moving away from conventional generation to other resources 
as shown in Shi et al. (2012) (a study conducted with the Ward equivalent) for the exam-
ple of switching from coal fired electricity generation to natural gas. Therefore it remains 
unclear if these methods are applicable when moving towards high shares of renewables 
as they are not designed to precisely approximate the spatio-temporal variability of wind 
and solar. This is especially true for models where the final installed capacity as well as 
its spatial distribution is subject to optimisation, such that no a-priori estimate of power 
flows can be made.

(ii) On the other hand, techniques that focus on an accurate representation of renew-
ables include hierarchical clustering applied on a database of electricity demand, con-
ventional generation and renewable profiles (Kueppers et  al. 2020), max-p-regions 
applied on a database of wind and solar potential (Fleischer 2020) or a combination of 
k-means++ with the max-p-regions algorithm applied separately on the full load hours 
of wind, solar and electricity demand (Siala and Mahfouz 2019). Radu et al. (2021) pro-
poses a novel screening routine that identifies relevant generation sites to be passed to 
a capacity expansion problem. All these methods include either a synthesised transmis-
sion grid or one at very low resolution. The downside of such approaches is that trans-
mission bottlenecks within large regions can not be identified, and therefore power flows 
within large regions are not considered at all. By ignoring the grid, transmission conges-
tion hinders exploitation of the best available resource sites and results of these models 
may not be feasible in reality.
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A clustering method that is neutral to both of these features is to reduce the model 
by applying k-means on the coordinates of the network nodes (Frysztacki et al. 2021). 
However, location-wise clustering has no inevitable correlation with either the transmis-
sion grid nor the renewable resources, hence requiring relatively large spatial resolutions 
to yield good results. Furthermore, using k-means on locations ignores the connectivity 
of the grid, and could end up aggregating two nodes that were previously disconnected, 
resulting in strong distortion of the network representation.

Research gap

In the present contribution we focus on two relevant settings: Improvements in the 
clustering process that can capture both the important features to accurately portray 
renewable generation while incorporating the transmission network and evaluating the 
proposed methods on both the representation of renewable generation and power flows. 
We define metrics to determine if good renewable generation sites after the clustering 
are maintained while incorporating the electricity grid by aggregating only nodes con-
nected by an existing transmission line using Ward’s method (hierarchical clustering). 
This approach is completely novel in the context of ESM. For this method, we distin-
guish between two features: The aggregated quantity of annual capacity factors (similar 
to Siala and Mahfouz (2019) with the adaptation of incorporating the grid), and the full 
time series of renewables (a novel metric employed in the context of ESM). Using the 
full time series to define regions is motivated by the fact that regions with similar capac-
ity factors may have very different time profiles, depending on how their generation is 
correlated over space; by using the full time series, we avoid aggregating sites with very 
different profiles.

We compare all results obtained by the same model using the same experimental setup 
and input data. This increases transparency and guarantees that differences in the results 
occur because of the clustering process, not because of differences in the data or other 
parameters of the model. To complete the comparison, we include two common reduc-
tion methods from the literature: k-means clustering on the coordinates of the network 
and clustering based on country borders.

Outline of the paper

The remainder of the paper is as follows: First, we introduce notation, the applied 
data sets and the set-up of the model (chapter Notation, Data and Model Set-Up). 
Second, we introduce a pre-aggregation method on a subset of network nodes that 
reduces the initial network size by a factor of approximately two. Then we present the 
application of the following clustering methods to energy system models for further 
model reduction: k-means, a benchmark clustering technique based on the coordi-
nates of the network nodes that was used in several publications in the past; Ward’s 
method, for which we adapt the metric to a time-aggregated annual and on a time-
resolved hourly feature of the system; and Modularity Maximization, that involves 
considerations of electrical parameters of the model. (Sub-chapter in Clustering 
Methodology). At lowest model resolution, the aggregated networks are equivalent to 
a second benchmark aggregation method that represents each country and synchro-
nous zone with one node. All methods (except for the benchmark methods) are of 
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hierarchical nature, because this approach takes into account the network topology. 
Nonetheless, different similarity (capacity factors and time-series) or distance (elec-
trical distance) measures are applied for the clustering. After defining the regions that 
are to be aggregated, the network is adjusted using the copper plate approach within 
each obtained cluster (see chapter Copperplate Aggregation). The capacity expansion 
model is described in chapter Capacity expansion problem.

Results of the presented methods are divided into two main chapters: In an a-priori 
analysis we show resulting regions obtained from the presented clustering algorithms 
before solving the optimisation problem (chapter Evaluation of the Regions). There-
after we show the convergence of each method in a capacity expansion brownfield 
approach under a 60% and 100% CO2 emission cap (chapter Evaluation of the Capacity 
Expansion model).

At the end, we draw conclusions in chapter Conclusions.
A visualisation of the outline is provided in Fig. 1 using the abbreviations of Table 1 

where we additionally outline the novelty of every proposed method.

Methods
Notation, data and model set‑up

This study is performed using the open Energy System Model PyPSA-EUR, which is 
explained in detail in its original publication (Hörsch et al. 2018), where also a partial 

Fig. 1  Graphical representation of the workflow (left to right). An exemplary initial network graph G is 
displayed to the left. We apply four aggregation methods (k-means, f cap(v) , f time(v) , Q) that are introduced 
in chapter Methods and summarised in Table 1. Each of the methods considers a different feature of the 
network. The clustered graphs are used to solve a reduced capacity expansion problem that minimises the 
total system costs. Results are evaluated on the resulting regions (chapter Evaluation of the Regions)) and on 
the optimal capacities and power flows (chapter Evaluation of the Capacity Expansion model)
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evaluation of the model is provided. Further validation on curtailment of renewables in 
the model against historical data was carried out in Frysztacki and Brown (2020) for the 
years –. There it was shown that the model could portray line congestion accurately. The 
model contains all existing high-voltage alternating and direct current (HVAC/DC) lines 
in the European system, as well as those planned by the European Network of Transmis-
sion System Operators for Electricity (ENTSO-E) in the Ten Year Network Development 
Plan (TYNDP). The network topology and electrical parameters of the transmission 
lines are derived from the ENTSO-E interactive map (2020) using an extraction toolkit 
(Wiegmans 2016). In the latest release, the model consists of 5323 nodes, 6572 HVAC 
and 68 HVDC lines (Fig. 2).

Each node can be interpreted as the vertex v of a graph G = (V ,E) , and each trans-
mission line connecting two nodes v and w as an edge (v,  w) of G , where V is the set 
of all vertices and E the set of all edges. Each node v has its own characteristic attrib-
utes, such as its geographical locations given as latitude xv ∈ R and longitude yv ∈ R or a 
switch lvv ∈ {0, 1} to denote whether it is a substation, i.e. connected to the lower voltage 
distribution grid. Every node with lvv = 1 is assigned a temporally resolved electricity 
demand dv,t ∈ R in MWh and generation time series ḡv,s,t ∈ [0, 1] for its renewable carri-
ers s ∈ {solar, onshorewind, offshorewind} . The total electricity demand dt is taken per 
country from the Open Power System Data project (2019) and spatially resolved pro-
portional to local population and gross domestic product. Zhou and Bialek (2005) has 
shown on a sample region in Italy, that this heuristic provides a good correlation. The 
generation time series are derived using historical wind and solar irradiation data from 
the ERA5 reanalysis (2020) and the SARAH2 surface radiation dataset (Pfeifroth et al. 
2017). Renewable installation potentials Gmax

v,s ∈ [0,∞) are given in MW and are based 

Table 1  Abbreviations and novelty declaration for the applied clustering methods. Each is 
discussed in an own chapter in the methods chapter, see Methods

abbrev. Aggregation based on... Novelty

‘country-zones‘ ... political borders and synchronous zones. benchmark (no novelty).
The spatial resolution of 37 nodes is not variable 
and the lower bound for all other presented 
methods.

k-means ... geographic locations (coordinates) of graph 
nodes. Formulated in eq. (2)

Pre-Aggregation to substations (Dijkstra); other-
wise benchmark (no novelty)

f cap(v) ... annual capacity factors of nodes. Formu-
lated in eq. (3) and (4). Hierarchical clustering.

Pre-Aggregation to substations (Dijkstra); there-
after similar to (Siala and Mahfouz 2019) with 
the following differences: considers network 
topology using HAC, simultaneous considera-
tion of wind and solar capacity factors in each 
aggregation step, varying spatial resolution (27 
nodes in Siala and Mahfouz (2019))

f time(v) ... hourly capacity factors (time-series) of 
nodes. Formulated in eq. (3) and (5). Hierarchi-
cal clustering.

Fully novel in the context of ESM.

Q ... electrical distance between two nodes. 
Formulated in eq. (3) and (6). Hierarchical 
clustering.

Pre-Aggregation to substations (Dijkstra); there-
after similar to Biener and Garcia Rosas (2020), 
with the difference of accounting for both reac-
tive and resistive parts of transmission lines and 
considering whole Europe not only Germany to 
make results comparable.
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on land cover maps, excluding for example nature reserves, cities or streets using the 
geospatial land availability toolkit (Ryberg et al. 2018).

Important attributes of the lines (edges) are their individual resistance r(v,w) ∈ R
+
0  and 

reactance x(v,w) ∈ R
+
0  (both given in � ), their transmission capacity F(v,w) ∈ R

+
0  (given in 

MW) and their length l(v,w) in km.

Clustering methodology

Pre‑aggregation

Before applying a clustering method on the model, several preparation steps are con-
ducted to simplify the process. First, all lines are mapped to the voltage level of 380kV, 
the prevalent level of the European transmission system.

Second, all one-valent nodes are aggregated to their unique neighbors. This has only a 
weak effect on renewable generators because of the small cluster sizes, and power flows 
are not affected strongly because there is only one way for the power to flow from or to 
one-valent nodes.

In a final pre-aggregation step, a shortest-path problem is solved using Dijkstra’s algo-
rithm D((V ,E), l : E → R

+
0 ) on the nodes that are not substations (i.e. lvv = 0 , see Nota-

tion, Data and Model Set-Up). Such nodes have no electricity demand, storage units or 
generators attached. Hence, the same amount of power that flows into such node has to 
flow out as well, due to the fact that no power can be absorbed or generated. Therefore, 
neither the power flows nor the generating assets are affected significantly when aggre-
gating them to their electrically closest substations.

All these initial steps reduce the network by approximately a factor of 2 to 2435 
nodes, 3673 HVAC and 42 HVDC lines. To further reduce the network size down to a 
desired number of clusters 37 ≤ K ≤ 2435 , a clustering method is applied. The lower 
bound represents the 37 countries and synchronous zones covered by the model. We 
therefore divide K into 37 integer summands Kz , each representing the number of 
nodes within a unique associated synchronous zone or country. The clustering meth-
ods are respectively applied within each “country-zone“ z. The magnitude of Kz is pro-
portional to the electricity demand dz , for every z:

Fig. 2  Examples of the different features for solar (orange) and wind (blue). The left column displays the 
annual capacity factors, the right column a snapshot at 8 o’clock in the morning on the 1st of January 2013. 
Both are displayed for the full resolution model of 2435 nodes, recognisable by the white boundaries of the 
voronoi regions
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The lowest model resolution of 37 nodes represents the benchmark clustering method 
where every political region is represented by one single node, regardless of the applied 
clustering method. Thus, each of the methods has the same properties at lowest reso-
lution. When increasing the network resolution beyond 37 nodes, model results start 
to converge towards the solution at full resolution, where all the methods again yield 
the same solution, because no clustering is applied. At a resolution of 1250 nodes, the 
solutions of all discussed methods have sufficiently converged and are therefore taken 
as benchmark to compare the low resolution solutions to. A detailed survey on why 
1250 nodes are a sufficient benchmark is conducted in  Appendix, see chapter Sufficient 
benchmark resolution of 1250 nodes.

K‑means clustering

K-means is one of the most commonly applied algorithms in cluster analysis, also in 
the field of energy system modelling to reduce the initial network to a desired size. It 
finds groups (clusters) with low variance (with respect to a chosen feature) and favors 
clusters of similar size. The average complexity is O(K |V|i) , with number of iterations 
i. In the worst case, i = 2�(

√
|V|) , resulting in a superpolynomial complexity (Arthur 

and Vassilvitskii 2006).
In our application the clusters are obtained by solving the minimisation problem

where (xc, yc)T is the mean geographical coordinate of each cluster Nc . The original for-
mulation of k-means is designed without weighting wv . However, we choose a weight 
proportional to nominal power Gv,s for conventional generators s and averaged electric-
ity demand 〈dv,t〉t . The weight is chosen such that it incorporates an approximation of 
the transmission system because it represents how the topology of the network was his-
torically planned to connect major generators to major loads:

One drawback of k-means is that it is not possible to enforce a strict connectivity con-
straint based on the transmission grid. For example, two nodes that are close in space 
but not electrically connected can be aggregated to a single node, which can have a sig-
nificant distorting effect on the power flows. Therefore, the other clustering methods are 
of hierarchical nature because hierarchical clustering incorporates a connectivity con-
straint while clustering based a given feature of the data.

(1)argmin{Kz}∈N37

37∑

z=1

(

Kz − dz
∑37

z=1 dz
K

)

s.t.

37∑

z=1

Kz = K .

(2)min{(xc, yc)T∈R2}

Kz∑

c=1

∑

v∈Nc

wv�
(
xc
yc

)

−
(
xv
yv

)

�22 ∀z ∈ {1, . . . , 37} ,

wv =
∑

s∈S|conv. Gv,s
∑

s∈S|conv.
∑

w∈V
Gw,s

+ �dv,t�t
∑

w∈V
�dw,t�t

.
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Ward’s method

Hierarchical agglomerative clustering (HAC) is a bottom-up approach, initially treat-
ing each node as a singleton cluster. In each iteration two adjacent clusters are aggre-
gated that have the most similar feature(s) with respect to a given similarity measure. 
Then, the aggregated cluster’s feature is updated. HAC has greedy characteristics, as 
after the aggregation of the best suited clusters the decision is permanent, and has a 
running time of O(|V|2log2|V|) (Eppstein 2001).

As a distance measure we invoke a variance-minimising approach, similar to 
k-means. Thus, the distance d : V × V → R

+
0  between two clusters Nc and Nd states 

how much the sum of squares will increase when merging:

with f : V → R
d being the feature of a node that can be of arbitrary dimension d. This 

choice of similarity measure is also known as Ward’s method (Joe and Ward 1963). Recall 
that initially each node is treated as a single cluster, hence in the first iteration the dis-
tance between two nodes is

In this work, we consider two related, yet different features of the network: The renew-
able annual capacity factors ḡv,s and the time-series ḡv,s,t of each node, that we briefly 
present in the following chapters.

Capacity Factor Aggregation
The annual capacity factor ḡv,s ∈ [0, 1] is a unit-less ratio of the average actual energy 

output of an asset over its nominal capacity, i.e.

where gv,s,t is the energy dispatch of asset s in node v at time t. The average is taken over 
one year, as the name already suggests.

The factors are derived from historical weather data, taking into account the solar 
irradiation and the wind speeds as well as technical properties of the assets, such 
as the orientation of solar panels (here: south orientation, tilt angle 35◦ ) or the hub 
height (here: 80m) of the wind turbine. The capacity factors for wind are obtained 
from the ERA5 dataset with a spatial resolution of 0.281◦ × 0.281◦ (2020), and for 
solar from the SARAH-2 dataset (Pfeifroth et  al. 2017), with a spatial resolution of 
0.05◦ × 0.05◦ . The final capacity factors are derived from the area (excluding the one 
that is reserved for woodlands, rivers, streets etc.) that is closest to a node v (i.e. the 
voronoi region) by fully exploiting the available space and placing wind turbines and 
solar panels. The capacity factors for each location are taken from the characteristic 
power curves of the assets and then averaged for the corresponding voronoi region.

For Ward’s method, we define the feature f in this case as

d(Nc,Nd) = |Nc||Nd |
|Nc| + |Nd |

�N̄c − N̄d�22 where N̄c = 1

|Nc|
∑

v∈Nc

f (v)

(3)
1

2
�f (v) − f (w)�2 .

ḡv,s = �gv,s,t�t
Gv,s

,
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Time Series Aggregation
Resolved capacity factors in time form a series, in this case with a two-hourly resolution 

over an historical weather year. Without averaging the feed-in over the year, the variability 
of renewables is evident. For example, the energy production of a solar panel at night is 
typically zero, while during day time the power output is positive. While the annual capac-
ity factor averages this fact and remains strictly positive for every region, a highly resolved 
time series captures fluctuations. Thus, additionally to a north-south gradient of the annual 
capacity factor for solar (higher irradiation in the south) an east-west gradient can be cap-
tured (day-night variation). In general, it holds ḡv,s = �ḡv,s,t�t ∀v ∈ V , ∀s ∈ S.

The feature f for Ward’s method in this case is of high dimension, as every resolved time 
step has to be considered:

T  is the set of all time-steps of the model. In our study, |T | = 1
2 · 8760 , because we 

resolve our model with a temporal resolution of two hours and run the optimisation 
over one year (2013).

It is no curse of dimensionality to apply f time(v) , because we solely measure the (high-
dimensional) distance between two points; but we do not sample from this high-dimen-
sional space to approximate it with insufficiently many data points.

Clauset‑Newman‑Moore Greedy modularity maximization

The Clauset-Newman-Moore greedy modularity maximation approach aims to find com-
munity structures in large networks. It is a HAC method with approximately linear running 
time, O(|V|log2|V|) (Clauset et al. 2004). In each iteration, it greedily aggregates the two 
nodes v and w that increase modularity Q the most and continues to do so until the desired 
number of clusters is reached or until Q can not be further improved.

Q is defined as

where Avw is the weighted adjacency matrix of the network graph G , m the sum of all 
edge weights in the graph, and kv the weighted degree of node v. These quantities are 
formally defined as

(4)f (v) := f cap(v) = ḡv,s∈{solar, wind} =
(
ḡv, solar
ḡv, wind

)

∈ [0, 1]2 .

(5)f (v) := f time(v) = ḡv,s∈{solar, wind}, t∈T =










ḡv, solar, 1
. . .

ḡv, solar, |T |
ḡv, wind, 1

. . .

ḡv, wind, |T |










∈ [0, 1]2|T | .

(6)Q = 1

2m

∑

v,w

(

Avw − kvkw

2m

)

δ(cv , cw) ,

Avw :=
{
w(v,w) if (v,w) ∈ E
0 otherwise

, m := 1

2

∑

v,w

Avw , kv :=
∑

w

Avw .



Page 11 of 27Frysztacki et al. Energy Informatics  2022, 5(1):4	

The Kronecker-Delta function is given as δ(cv , cw) :=
{
1 if cv = cw
0 otherwise

 . cv denotes the 

cluster node v is assigned to. This means, that the sum in Q is only non-zero, if v and w 
belong to the same cluster. In its original publication (Clauset et al. 2004), modularity it 
was introduced without weights, i.e. w(v,w) = 1 , but we choose a different weighting to 
adapt the method better to the network topology, similar to the suggestion in Biener and 
Garcia Rosas (2020), but accounting for both the reactive and resistive components of 
the grid. We choose the absolute value of the admittance |y(v,w)| of each line (v,  w), a 
measure of electrical distance that describes how easily a circuit allows power to flow. 
Admittance is defined as the inverse impedance y(v,w) = 1

z(v,w)
.

Regarding the values of Q, Avw is large and positive for a good division, i.e. when 
aggregating electrically close nodes v and w, and small or zero for a bad division, i.e. 
when the impedance is high, or if the nodes are not connected at all. kvkw2m  is a measure 
of (electrical) centrality: it tells us, how well the nodes v and w are interconnected 
in the graph, independent of each other. If the value is large, v and w are nodes with 
either many connections or they are connected by lines with low impedance. A small 
value indicates a sparse connection, i.e. either few edges or connections with high 
impedance. Thus, a (large) positive value of the difference Avw − kvkw

2m  marks v and w to 
be electrically closer than they are on average from other nodes in the network. Their 
aggregation therefore suggests a good grouping. An example is discussed in Fig. 3.

Fig. 3  Consider a symmetric graph G0 with reactances x(v ,w) and without resistances. Above figures show 
different first iteration choices of the weighted Clauset-Newman-Moore Algorithm into graphs Gi , 
i ∈ {1, 2, 3, 4} marked in red. Due to the symmetry of G0 , other than the displayed choices for the fist iteration 
are equivalent. Without clustering, each node in G0 can be interpreted as a singleton cluster, yielding the 
initial modularity of Q0 ≈ −0.1677 . For the four displayed cases, we calculate: 
G1 : A02 ≈ 0.067 > d0d2

2m
≈ 0.022 G2 : A01 = 0.05 >

d0d1
2m

≈ 0.018

G3 : A15 = 0 <
d1d5
2m

≈ 0.314 G4 : A23 = 0.005 <
d2d3
2m

≈ 0.372
 Hence, both G1 and G2 would improve 

the modularity, but G1 is the better choice, as A02 − d0d2
2m

> A01 − d0d1
2m

 . G3 and G4 are bad choices, reducing 
modularity and deteriorate the network community. However, if x(2,3) was much smaller, for example 
x(2,3) = 1 , then G4 would be the best choice for the first iteration



Page 12 of 27Frysztacki et al. Energy Informatics  2022, 5(1):4

Overview of clustering algorithms

In the following chapters, we use the abbreviations introduced in the Methods chapter. 
We summarise them in Table 1.

Copperplate aggregation

After mapping every node v to a cluster Nc , i.e. v �→ Nc , all nodes within Nc are replaced 
by a single equivalent node, where the attributes of all nodes within Nc are aggregated 
to one equivalent. For example, demand and generation potentials are summed up, and 
capacity factors are averaged. This replacement is referred to as copperplate approach 
because it is equivalent to all nodes inside Nc being connected to a lossless copper 
plate. Finally, all lines (v, w) that connect nodes within the same cluster, i.e. v,w ∈ Nc , 
are removed from the model, while lines connecting nodes in different clusters, i.e. 
v ∈ Nc ∧ w ∈ Nd where c �= d , are aggregated to an equivalent line.

Capacity expansion problem

The optimisation problem minimises yearly total system costs, including all annualised 
investment costs cv,s and operation costs ov,s . Cost assumptions are based on projections 
for the year 2030 and derived according to suggestions from the Danish Energy Agency 
(Technology data for generation of electricity and district heating, energy storage and 
energy carrier generation and conversion 2019) (wind), the German Institute for Eco-
nomic Research (Schröder 2013) (conventional technologies, pumped hydro storage, 
hydro, run-of-river), Budischak et al. (2013) (storage) and the European Technology and 
Innovation Platform for Photovoltaics Vartiainen et al. (2017) (solar). 2030 is chosen for 
the cost projections since this is the earliest possible time that such a system transforma-
tion might be feasible, and because the cost assumptions are conservative compared to 
projections for a later year.

The objective function is

where S is the set of all the technologies available for the optimisation. It contains solar, 
wind both on- and offshore, run-of-river, oil, gas turbines, coal, lignite, geothermal and 
biomass in terms of generation, and hydrogen, battery and hydro-dams in terms of stor-
age technologies. Nuclear is excluded due to its low social acceptance. The factor of 2 
accounts for the 2-hourly resolution in time.

The dispatch of generators gv,s,t has to be non-negative and is constrained by its capac-
ity Gv,s multiplied with an hourly capacity factor ḡv,s,t ∈ [0, 1] , that was introduced in 
chapter Time Series Aggregation. For conventional technologies, ḡv,s,t = 1:

The installable renewable capacity Gv,s is bounded below by todays installed capaci-
ties G2018

v,s  , and bounded above by land eligibility. The upper bound is derived using the 

(7)
min
Gv,s,
gv,s,t ,
f(v,w),t

[∑

v∈V

∑

s∈S

(

cv,sGv,s + 2
∑

t∈T

ov,sgv,s,t

)]

,

(8)0 ≤ gv,s,t ≤ ḡv,s,tGv,s ∀v ∈ V , ∀t ∈ T , ∀s ∈ S .
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GLAES tool (Ryberg et al. 2018) and is always finite for renewable carriers. Expansion of 
conventional generators is not allowed.

The energy levels of all storage units have to be consistent between all hours, account-
ing for the standing loss, charging efficiency, discharging efficiency, inflow (e.g. river 
inflow in a reservoir) and spillage. Additionally, the energy level is assumed to be cyclic, 
i.e. ei,s,t

∣
∣
t=0

= ei,s,t
∣
∣
t=|T | and is limited by the storage energy capacity Gv,s.

CO2 emissions are limited by a cap CAPCO2 , implemented using the specific emissions 
es in CO2-tonne-per-MWh of the fuel s and the efficiency ηv,s of the generator. In all sim-
ulations this cap was set at a reduction of 60% or 100% of the electricity sector emissions 
compared to 1990.

The (perfectly inelastic) electricity demand dv,t at each node v must be met at each 
time t by either local generators and storage or by the flow f(v,w),t of a line connected to 
v. This is required according to Kirchhoff’s Current Law (KCL).

In the present paper the linear load flow is used, which has been shown to be a good 
approximation for a well-compensated transmission network (Stott et al. 2009), includ-
ing simulations using a large-scale European transmission model (Brown et al. 2016). To 
guarantee the physicality of the network flows, in addition to KCL, Kirchhoff’s Voltage 
Law (KVL) must be enforced in each connected network. KVL states that the voltage dif-
ferences around any closed cycle in the network must sum to zero.

The power flows f(v,w),t are also constrained by 70% of their respective line capacities 
F(v,w)

They are fixed for the optimisation and portray the grid topology that is planned in the 
TYNDP (2018). The factor of 70% leaves a buffer of 30% of the line capacities to account 
for n − 1 line outages and reactive power flows. The choice of 70% is standard in the grid 
modelling literature (Brown et al. 2016) and is also the target fraction of cross-border 
capacity that should be available for cross-border trading in the European Union (EU) by 
2025, as set in the 2019 EU Electricity Market Regulation (2019).

We perform a brownfield capacity optimisation that builds on a system that exists as 
of 2018 for both the generating fleet according to the dataset provided in (Open Power 
System Data 2020) and the planned transmission grid in the ten year network develop-
ment plan 2018 (TYNDP 2018). The optimisation is subject to two decarbonisation goals 
of 60% and 100% lower emissions compared to 1990. Missing capacities of renewables for 
the system to be feasible with respect to the decarbonisation goals are optimised in the 
sense that the total system costs are minimised.

Results
Evaluation of the regions

First of all we present resulting regions in Fig. 4 for an exemplary spatial resolution of 67 
nodes. Additionally, the ranges of cluster sizes are shown in Fig. 5, displaying how many 
nodes were aggregated into one cluster for varying numbers of clusters in steps of 30. 
Results on the community structure, i.e. modularity Q given in equation (6), are shown 
in Fig. 6 for all possible model resolutions starting at 37 and up to 2435 nodes.

(9)f(v,w),t ≤ 0.7 · FTYNDP2018
(v,w) .
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Fig. 4  Resulting regions respective clustering method at a resolution of 67 nodes. The color-map reflects 
the annual capacity factors for all the methods, except for f time(v) , where it is the average capacity factor 
of the time-series at 8 o’clock in the moring. Original regions/nodes are highlighted by white boundaries of 
respective voronoi regions

Fig. 5  Clustersizes respective clustering method: The x-axis displays the number of resulting regions, the 
y-axis the number of aggregated nodes per region, i.e. |Nc | . The horizontal line within each bar denotes is the 
median, the expansion of the bars the 25% and the 75% quantile. The black vertical lines mark the 1.5-times 
interquartile range
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Capacity factors are evaluated in Fig. 7 on a quantile base, because the optimisation 
problem will place renewable assets at their best available sites whenever possible as 
more power can be generated there with the same cost penalty in the objective function, 
according to constraint (8). We also present the average full load hours of the renewable 
assets installed by 2018 in Fig. 8:

(10)
∑

t∈T

〈
ḡv,s,t

∣
∣
G2018
v,s >0

〉

v
s ∈ {solar, wind}

Fig. 6  Modularity respective clustering method: The x-axis displays the number of resulting regions (clusters), 
the y-axis the modularity of the resulting graph according to equation (6)

Fig. 7  Quantiles of capacity factors respective clustering method: The x-axis displays the number of resulting 
regions, the y-axis the resulting 90% , 80% and 70% quantiles of the capacity factors for wind ( 1st row) and solar 
( 2nd row). ’max’ denotes the larges of all available capacity factors

Fig. 8  Average full load hours (FLH) according to equation (10) of existing assets respective renewable 
technology for all model resolutions except for 37 nodes, because the FLH are equal at this resolution
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Evaluation of the capacity expansion model

The main objective of applying different clustering techniques to the model is to 
reduce the model size for it to be computationally tractable. But at the same time, we 
want to obtain good estimates for all the optimisation variables introduced in chapter 
Capacity expansion problem, especially those of equations (7) and (9). It is desired 
that the low resolution results (estimates) resemble the high resolution model results. 
For the power flow this means that the sum of flows f of high resolution lines (v, w) 
that are aggregated to one line (c, d) in the low resolution model (estimate f̂  ) is the 
same:

Similarly for the generation and storage capacities. The sum of optimised capacities G 
at nodes within a cluster v ∈ Nc should equal the one at the clustered node c at the low 
resolution model (estimate Ĝ):

The same is desired for the dispatch (or charging/discharging) of all generating (or stor-
ing) assets. But we restrict the discussion to those two samples of optimisation variables, 
as there exists a strong correlation between generation and capacity. This is because 
exploiting installed resources whenever possible is cheapest according to constraint (8) 
due to the low operational costs for renewables, ov,s ≈ 0.

As the model cannot be solved at full resolution for any of the clustering methods, 
the high-resolution optimised capacities Gv,s and power flows f(v,w),t are taken from a 
model resolution of 1250 nodes (see chapter Sufficient benchmark resolution of 1250 
nodes in Appendix for a justification why this benchmark resolution is sufficient), and 
the estimator quantities Ĝc,s and f̂(v,w),t from a model with 97 nodes, the same resolu-
tion as in Fig. 7 for the capacity factors. Analysing model results at the spatial resolu-
tion of 97 is because many studies choose a resolution of approximately 100 nodes 
for their research, such as the final report of the e-Highway 2050 project (2015). The 
mappings of optimal capacities in equation (12) and power flows in equation (11) are 
shown in Figs. 9 and 10.

Finally, Figs. 11 and 12 display the resulting objective of the optimisation in equa-
tion (7) for the two considered CO2 reduction targets of 60% and 100% for different 
model resolutions in steps of 30 nodes up to a model resolution of 397 nodes.

Discussion of the results
Discussion on the resulting clusters

In Fig. 4 it can be seen that k-means clustering and Ward’s method with hourly capac-
ity factors ( f time(v) ) favor regions with similar size. For k-means this results from the 
objective to minimise geographical distances, see eq. (2), while for f time(v) the reason 

(11)
f̂(c,d),t

!= f(c,d),t :=
∑

(v,w) ∈ E :
v ∈ Nc ∧ w ∈ Nd

f(v,w),t
∀t ∈ {0, . . . , |T |}

∀c, d ∈ {1, . . . ,K }, c �= d

(12)Ĝc,s
!= Gc,s :=

∑

v∈Nc

Gv,s
∀s ∈ {solar, wind}
∀c ∈ {1, . . . ,K } .
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are spatially and temporally varying features that favour this outcome: There exists a 
north-south gradient for the solar capacity factors that constrains the clusters ver-
tically, and the day-night variation of solar irradiation prevents clusters from being 
elongated from east to west by adding a high penalty in eq. (3) when trying to merge 
“day”-nodes with “night”-nodes. This is visible in the east-west elongated clusters 
as well as large coastal regions that can be observed for f cap(v) because the annual 

Fig. 9  Normalised mapping of optimal power flows according to equation (11) with the estimated flows 
of the low resolution model f̂(c,d),t on the x-axis and the aggregated flows on the y-axis. The first row shows 
results on the 60% , the second row on the 100% reduction target. Instead of presenting the raw data, we 
plot a two dimensional histogram and outline the 95% and 85% percentiles of the corresponding probability 
density function (PDF) using contour plots. The black line depicts the origin (perfect correlation), the dashed 
one a line with the slope of the bivariate correlation coefficient ρ . α is the angle between the two lines

Fig. 10  Normalised mapping of optimal capacities according to equation (12): The x-axis reflects the 
estimated optimal capacity of a the low resolution model Ĝc,s , while the y-axis displays the totalised optimal 
capacities of the high-resolution model. The two considered technologies wind and solar are outlined using 
different colors. A linear fit to the respective data is added to the plots. A black line depicts a theoretical 
perfect match
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capacity factors do not see these temporal variations. The cluster structure related 
to modularity Q is similar to f cap(v) , resulting in some very small or elongated thin 
clusters. The structure of clusters continues so for higher resolutions, as can be seen 
in Fig. 5. The outcome of long thin clusters is common for single-linkage HAC meth-
ods (Everitt et al. 2011), but can be overcome with a profound choice of feature, as we 
demonstrate using f time(v).

In Fig. 7 it can be seen that every of the three presented HAC techniques with different 
similarity/distance measures can capture annual capacity factors better than k-means 
clustering with respect to the same model resolution. Applying HAC with the similar-
ity measure f = f cap(v) finds and maintains the best generation sites with an annual 
capacity factor of 53.3% for wind at a model resolution of 97 nodes. The competing clus-
tering techniques are behind: The best generation site is reached at a model resolution 
of 247 when invoking hourly capacity factors f time(v) or modularity Q as a similarity 
or distance measure and 517 nodes for k-means. For Q as well as for k-means, the best 
generation site has a lower annual capacity factor of only 51.6% and 49.7% respectively. 
However, when siting solar assets, the behavior is different: The best site is available ear-
liest for f = f time(v) and f = Q for a model resolution of 487 nodes and capacity factors 

Fig. 11  Resulting total system costs for the 60%-CO2-reduction scenario according to the objective function 
(7) respective clustering method. Resolutions in steps of 30 are on the x-axis, investment and operational 
costs on the y-axis in billion euros. The first row shows the total costs, a breakdown into generation and 
storage technology is displayed in the second and third row

Fig. 12  Resulting total system costs for the 100%-CO2-reduction scenario
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of 16.48% and 16.42% . Both k-means and f = f cap(v) perform worse, with lower capacity 
factors even at a model resolution of 512 nodes. This reflects also in the full load hours 
of existing assets G2018

v,s  of the respective clustering methods (Fig. 8).
Regarding the community structure of the resulting reduced graph, only HAC based 

on modularity performs significantly better than the competing methods. Although 
Ward’s method takes into account the structure of the transmission grid by considering 
only adjacent neighbors, both algorithms perform slightly worse in terms of community 
structure than k-means, see Fig. 6. Regardless of the method, when reducing the model 
resolution below a threshold of approximately 40 nodes, modularity suddenly drops to 
zero.

Discussion on the optimised model results

First, we consider the power flow estimates introduced in equation (12). As we expect 
the low-resolution flow f̂(c,d),t to equal the aggregated optimal flow f(c,d),t , the associ-
ated random variable should be distributed proportional to a two dimensional normal 
distribution:

where the covariance matrix � , and in particular the confidence ellipses provide insight 
of the correlation between the estimated and the optimal power flow. The length of the 
axes of the ellipses can be derived form the eigenvalues σi of the covariance matrix � , 
namely ri = √

σi . This approximately corresponds to the 40th percentile, i.e. 40% of the 
data points lie within the ellipse and 60% outside of it. The narrower the minor axis r2 is, 
the more data points are close to the origin. The major axis r1 gives insight of the mag-
nitude of the power flows. The larger the major axis, the more large power flows can be 
observed. Information on the relation between the actual power flow f and its estimate f̂  
can be gained from from the bivariate correlation coefficient ρ

It is a measure of correlation between the two variables. It is 1 for a perfect correlation, 
0 for no correlation and −1 for a negative correlation. Resulting correlation factors ρ and 
minor axes r2 can be taken from Table 2.

Sor the 60% carbon reduction target, f cap(v) as a similarity measure for Ward’s method 
yields the best correlation factor ρ , but the features of annual capacity factors f time(v) and 
modularity Q deviate from f cap(v) by only 0.26% and 1.56% respectively in terms of ρ . 
The minor axis of the confidence ellipses is also most narrow for the features f time(v) and 
f cap(v) , but only 2.5% wider for Q. The distribution of k-means has an approximately 3% 
lower correlation factor of 0.746 and an 3.13% wider spread in terms of the minor axis of 
the confidence ellipse compared to f cap(v) and f time(v) . These variations are clearly vis-
ible in Fig. 9. With a higher carbon reduction target of 100% , the trend that clustering on 
siting capacity prevails over electrical distance when considering the power flow estimates. 
f time(v) yields a 3% better correlation ρ and f cap(v) a 1.45% better one than Q. In terms 

(

f̂(c,d),t

f(c,d),t

)

∼ N2(µ,�) ,

(13)ρ = �01

�00�11
= COV (f̂(c,d),t , f(c,d),t)

V(f̂(c,d),t) · V(f(c,d),t)
.
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of the spread ( r2 ) the same can be observed: The distribution of power flows of f time(v) 
is 5.59% narrower than for Q and f cap s distribution is 3.35% slimer than the one of Q. 
k-means performs similar as in the 60% reduction target. To make sure these results are not 
artificial for the resolution of 97 nodes, we provide the same Table for a spatial resolution 
of 67 and 127 nodes in  Appendix, see chapter More Comparison Results. These results are 
in-line with the ones we found for a resolution of 97 nodes, where it becomes even more 
evident that the error made by k-means is much larger than the one made by the competing 
methods.

Considering the mapping of optimal capacity according to equation (12), we could pursue 
the same approach as for the power flows, i.e. assuming a normal distribution, but due to 
the relatively low amount of data points, such an analysis would be inaccurate. Instead, we 
provide the mean squared errors in Table 3:

We distinguish between the over- and underestimated optimal capacities to be able to 
make better judgement which clustering method is more conservative than another; i.e.

MSE = 1

K

K∑

c=1

(

Gc,s − Ĝc,s

)2
.

(14)
MSE =

(

1

|K+|
∑

c∈K+

(

Gc,s − Ĝc,s

)2
)

︸ ︷︷ ︸

MSE+(overestimated capacities)

+
(

1

|K−|
∑

c∈K−

(

Gc,s − Ĝc,s

)2
)

︸ ︷︷ ︸

MSE−(underestimated capacities)

,

Table 2  Bivariate correlation factor ρ and radius of the minor axis rn of the PDF of power flows in 
Fig. 9 according to equation (11) for each respective clustering method and carbon reduction target 
for a spatial resolution of 97 nodes

CO2Reduction 60% 100%

ρ r2 ρ r2

k-means 0.746 0.165 0.755 0.175

f cap(v) 0.769 0.160 0.768 0.173

f time(v) 0.767 0.160 0.781 0.169

Q 0.757 0.164 0.757 0.179

Table 3  Mean squared error presented as a sum of over- and underestimated optimal estimates 
( MSE = MSE+ + MSE− ) according to equation (14) respective clustering method, renewable 
technology and carbon reduction target for a spatial resolution of 97 nodes. Graphically presented 
in Fig. 10

CO2Reduction 60% 100%

Technology Wind Solar Wind Solar

k-means 0.37 + 3.82 0.01 + 2.80 0.51 + 3.33 0.12 + 1.23

f cap(v) 0.21 + 0.60 0.03 + 1.00 0.01 + 2.22 0.11 + 0.15

f time(v) 0.04 + 3.17 0.08 + 0.79 0.55 + 1.94 0.26 + 0.28

Q 0.36 + 1.31 0.47 + 1.17 0.25 + 1.98 0.17 + 0.78



Page 21 of 27Frysztacki et al. Energy Informatics  2022, 5(1):4	

where K+ = {c ∈ {1, . . . ,K } s.t. Ĝc,s > Gc,s} is the set of clusters where optimal capaci-
ties are overestimated and analogously K− = {c ∈ {1, . . . ,K } s.t. Ĝc,s < Gc,s} is the set of 
clusters where optimal capacities are underestimated.

While the clustered models tend to underestimate the need of renewable generation 
and storage capacity ( MSE+ ≪ MSE− ) for any of the clustering methods, according 
to the resulting values presented in Table 3 and Fig. 10, clustering based on f cap per-
forms best in the optimal placement of simultaneously placing wind and solar assets for 
every carbon reduction target. However, the methods of f time and Q are not significantly 
worse and yield errors in the same order of magnitude. On the other hand, k-means 
performs significantly worse with an at least 0.21 − 2.39 times higher MSE− value com-
pared to the competing methods. To make sure these results are not artificial for the 
resolution of 97 nodes, we provide the same Table for a spatial resolution of 67 and 127 
nodes in Appendix, see chapter More Comparison Results. These results are in-line with 
the ones we found for a resolution of 97 nodes.

In terms of storage technologies, no clear tendency can be derived. All methods equally 
under- and overestimate the need for storage technology ( O(MSE+) ≈ O(MSE−) ) and 
all clustering methods perform equally well. Values for the MSE can be found in Table 8 
in Appendix ("MSE values for Storage" section).

Regarding the total system costs presented in Figs. 11 ( 60% reduction of carbon emis-
sions) and 12 ( 100% reduction), we can observe substantially different convergence 
behaviors of the investment in different technologies and the total system costs. In all 
of the applied methods a big swing from offshore wind at low resolution of 37 nodes 
(‘country-zones‘) to onshore wind can be observed, and all methods yield similar results 
in terms of generation capacity at a spatial resolution of approximately 320 nodes. 
Ward’s method applied with f = f cap(v) converges fastest, where the total costs don’t 
change substantially after reaching a model resolution of 157 nodes ( 60% reduction) and 
67 nodes ( 100% reduction). At the side of flexibility options, the results need higher spa-
tial resolution than provided to reach an equilibrium as they deviate from one another 
even at the highest spatial resolution. For the 60% reduction target, the investment in 
transmission lines is highest for f cap(v) and almost 25% cheaper for Q, because the 
assets are sourced more locally where demand is high, not exploiting the good sites as 
they are not available for this clustering. This can be taken from Fig. 10. The same trend 
continues for the 100% reduction target, but here, for Q, it is clearly visible that 12% more 
hydrogen storage is needed compared to f cap(v) , 8% more compared to k-means and 6% 
more compared to f time(v) . This is because the transmission bottlenecks are better por-
trayed in Q than in the competing clustering techniques, while the good generation sites 
are not available to cover demand. This reflects well with Fig. 9.

Limitations of this work

Comparing modeling results retrieved from varying spatial resolutions is a computa-
tionally challenging task, meaning that additional simplifications had to be made to the 
model. For example, the optimisation is run for a single weather year, only those tech-
nologies that are considered most substantial in the energy transition are included in 
the model and the scope of the model is limited to the electricity system. The latter lacks 
the coupling of different sectors such as building heating, transport and non-electric 
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industry demand, but including them might offer additional flexibility and interactions 
and change the results substantially. Nevertheless, a lot of research is conducted based 
on electricity-only models, such that our results are still valuable. A follow-up study 
could consider the interactions of spatial scale under different clustering methods in sec-
tor-coupled systems.

Regarding our results on the network representation, we ignore the positive impacts 
that dynamic line rating could impose on the ampacity of the overhead transmission 
grid. In our simulations, we model severe high summer weather conditions such that the 
results are conservative However, the ampacity of lines can be significantly increased, 
which might impair on our results conducted on the electrical distance of the network, 
where the cooling effects of wind are not considered in the metric (6).

On the other hand, in terms of modeling renewables and particularly offshore wind, 
we did not model wake effects of wind turbines such that capacity factors for offshore 
wind are being overestimated. This might impact the strong preference towards offshore 
wind, particularly for models at low spatial resolution (see Figs. 11 and 12).

Finally, allowing grid-expansion relaxes many of the constraints imposed by the upper 
bound of line-capacities (9), which in turn will effect the results of this study. However, 
as found in Frysztacki et al. (2021), grid expansion does not affect the main qualitative 
features of the results, but it does have the overall effect of lowering the total system 
costs. Nevertheless, this study could be expanded upon which clustering method cap-
tures most of the congested lines and performs best in a planning transmission expan-
sion study.

Conclusions
From this analysis several conclusions can be drawn. First of all, the choice of spatial res-
olution is crucial to obtain accurate model results, particularly to the ratio and distribu-
tion of renewable carriers. A model that is based on political borders such as countries is 
not advisable, as important transmission bottlenecks are neglected and good generation 
sites of onshore carriers are underestimated. When moving towards a higher spatial res-
olution where each country is represented by multiple nodes, modelers should consider 
carefully how the aggregation is conducted. For models that consist of conventional car-
riers (such as coal or lignite), an accurate estimate of power flows is more important 
than accurately portraying renewable generation sites. Therefore, in this case we sug-
gest a model reduction based on electrical distance such as the Clauset-Newman-Moore 
greedy modularity maximization. However, modeling is mostly conducted to simulate 
future green scenarios that have high shares of renewable energy. In this case, Ward’s 
method applied on the full time series prevails in terms of accurate siting of capacity and 
in terms of a good approximation of power flows. It is advisable not to choose annual 
capacity factors because it ignores correlations in time and leads to very elongated clus-
ters. This tends to underestimate transmission bottlenecks within regions and, therefore, 
underestimates the need of renewable capacity. Inter-regional power flows in a model 
where Ward’s method based on the full time series was applied for equivalencing are 
similarly well estimated as those obtained from a reduced model based on electrical 
distance. For higher shares of renewables the power flow approximation of the reduced 
model using Ward’s method on the time-series is even more precise compared to results 
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obtained from the reduced model based on electrical distance. Therefore, when mod-
eling a highly renewable electricity system, we recommend using a hierarchical method 
with a similarity measure that entails spatio-temporal features of renewables, such as the 
renewable time-series. Model results obtained from clustering on the geographical loca-
tions of the nodes are less accurate than those from any of the three hierarchical meth-
ods both in terms of siting renewable capacities and an accurate estimate of power flows, 
so we advise against using this method in future.

Appendix
Sufficient benchmark resolution of 1250 nodes

Computational model feasibility remains a problem even after applying linearisation to 
the model formulation and spatial/temporal aggregation. Therefore all low-resoltuion 
model results were compared against a higher resolved model with a spatial resolution 
of 1250 nodes. Requirements for solving this model size were a runtime of up to 24 days 
and 240 GB of RAM capacity.

1250 nodes portray approximately 51% of the pre-aggregated model size and 24% of 
the original full-resolution problem. Results in Frysztacki and Brown (2020) indicate 
that model results are stable when the spatial resolution is at least 49% of the pre-aggre-
gated model and 26% of the original model. At this or higher resolutions only minor fluc-
tuations of 4 − 6% occur in terms of optimal dispatch and power flows. As this could 
potentially be wrong for a capacity expansion problem, we make further justifications for 
this benchmark by providing the average deviation from the mean as well as the correla-
tion factors for every considered carrier (solar, wind, battery and hydrogen) evaluated on 
the lowest common region size and power flows between these regions in a 4 × 4 corre-
lation-matrix. The lowest common regions turn out to be the countries and synchronous 
zones, which is in line with the benchmark-setting of equation (1).

For the 60% carbon reduction target, optimal investments have small deviations from 
the mean of up to 5% for offshore wind. Onshore wind and solar installations are more 
stable with lower cross-deviations. However, optimal installation for battery storage 
deviates by more than 10% when comparing the 1250 node results of the clustered model 
with Q to the other clustered model results. But as battery storage for this carbon level is 
low in general (only 2% of total installed capacity), the relative deviation gives the wrong 
impression of having strong impact on the optimal result. These results are graphically 
illustrated in Additional file 1: Fig. S1 and Additional file 2: Fig. S2. It shall also be noted 
that shifting capacity from one carrier to another might have only small impacts on the 
objective function, see (Neumann and Brown 2021).

For the 100% carbon reduction target the worst deviation from the mean can be 
observed for the optimal investment in offshore wind assets with deviations of up to 
8% ; other technologies as well as power flows have smaller deviations. These results are 
graphically illustrated in Additional file 3: Fig. S3 and Additional file 4: Fig. S4.

In both scenarios, the pearson’s correlation coefficients are ≈ 1 except for power flows 
where the coefficients are lower but still > 0.9 , indicating a linear correlation between 
the results.
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MSE values for storage

We provide the mean squared error values MSE = MSE+ + MSE− for storage technol-
ogies for a spatial resolution of 97 nodes in Table  8, and additionally for 67 nodes in 
Table 9 and 127 nodes in Table 10.

More comparison results

To make sure that the results of Tables 2 and 3 are no artifacts of a resolution of 97 nodes 
and change substantially when varying the spatial resolution, we additionally provide the 
equivalent tables for of 67 nodes (Tables 4 and 6) and 127 nodes (Tables 5, 6, 7, 8, 9 and 
10).

Table 4  Analogous to Table 2, however with a spatial resolution of 67 nodes

CO2 Reduction 60% 100%

ρ r2 ρ r2

k-means 0.704 0.188 0.725 0.195

f cap(v) 0.754 0.174 0.759 0.187

f time(v) 0.749 0.173 0.765 0.181

Q 0.739 0.173 0.740 0.187

Table 5  Analogous to Table 2, however with a spatial resolution of 127 nodes

CO2 Reduction 60% 100%

ρ r2 ρ r2

k-means 0.735 0.164 0.772 0.166

f cap(v) 0.802 0.144 0.786 0.163

f time(v) 0.782 0.147 0.808 0.152

Q 0.789 0.152 0.792 0.165

Table 6  Analogous to Table 3, however with a spatial resolution of 67 nodes

CO2 Reduction 60% 100%

Technology Wind Solar Wind Solar

k-means 0.33 + 2.65 0.01 + 2.34 0.22 + 2.43 0.25 + 0.71

f cap(v) 0.23 + 0.79 0.05 + 0.31 0.14 + 1.12 0.05 + 0.12

f time(v) 0.02 + 2.26 0.07 + 0.99 0.51 + 1.63 0.06 + 0.24

Q 0.42 + 1.45 0.16 + 0.71 0.61 + 1.76 0.07 + 0.48

Table 7  Analogous to Table 3, however with a spatial resolution of 127 nodes

CO2 Reduction 60% 100%

Technology Wind Solar Wind Solar

k-means 0.42 + 5.34 0.06 + 2.17 0.51 + 2.22 0.21 + 1.03

f cap(v) 0.79 + 0.86 0.02 + 0.82 0.2 + 1.14 0.11 + 0.15

f time(v) 0.81 + 2.74 0.02 + 1.45 0.14 + 2.38 0.24 + 0.75

Q 0.36 + 1.31 0.47 + 1.17 0.24 + 2.2 0.36 + 1.07
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Additional file 1: Figure S1. Correlation factors for every considered carrier (solar, wind, battery and hydrogen) and 
power flows between the different model results respective clustering at a spatial resolution of 1250 nodes for a 
60% carbon reduction target compared to 1990s level.

Additional file 2: Figure S2. Average deviations from the mean for every considered carrier (solar, wind, battery and 
hydrogen) and power flows between the different model results respective clustering at a spatial resolution of 1250 
nodes for a 60% carbon reduction target compared to 1990s level.

Additional file 3: Figure S3. Correlation factors as provided in Additional file 1: Fig. S1, here provided for a scenario 
where no carbon emissions are allowed

Additional file 4: Figure S4. Average deviations from the mean for different result out-puts as provided. Additional 
file 2: Fig. S2, here provided for a scenario where nocarbon emissions are allowed.

Table 8  Mean squared error presented as a sum of over- and underestimated optimal estimates 
( MSE = MSE+ + MSE− ) according to equation (14) respective clustering method, storage technology 
and carbon reduction target for a spatial resolution of 97 nodes. Graphically presented in Fig. 10

CO2Reduction 60% 100%

Technology Hydrogen Battery Hydrogen Battery

k-means 0.62 + 0.28 1.0 + 0.76 0.74 + 1.54 0.28 + 0.32

f cap(v) 1.37 + 0.04 0.41 + 1.39 0.24 + 0.68 2.29 + 0.67

f time(v) 0.64 + 0.51 0.57 + 0.28 0.51 + 2.76 0.99 + 0.37

Q 0.58 + 0.07 0.82 + 1.45 0.08 + 2.8 0.09 + 0.26

Table 9  Analogous to Table 8, however with a spatial resolution of 67 nodes

CO2 Reduction 60% 100%

Technology Hydrogen Battery Hydrogen Battery

k-means 0.81 + 0.47 0.34 + 0.26 0.44 + 0.64 0.58 + 0.52

f cap(v) 0.89 + 0.33 1.18 + 1.03 0.13 + 0.86 0.43 + 0.01

f time(v) 0.16 + 0.19 0.46 + 0.26 0.52 + 0.65 0.3 + 0.08

Q 0.0 + 0.1 0.75 + 0.44 0.12 + 0.78 0.02 + 0.19

Table 10  Analogous to Table 8, however with a spatial resolution of 127 nodes

Reduction 60% 100%

Technology Hydrogen Battery Hydrogen Battery

k-means 0.23 + 1.55 0.62 + 1.09 0.34 + 2.75 0.17 + 0.69

f cap(v) 0.24 + 0.96 0.24 + 1.07 2.1 + 1.29 1.92 + 0.96

f time(v) 0.23 + 0.38 0.27 + 0.61 0.94 + 1.93 0.75 + 0.69

Q 0.94 + 0.06 0.34 + 1.59 0.35 + 1.35 0.52 + 0.67

https://doi.org/10.1186/s42162-022-00187-7
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