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A B S T R A C T

The effectiveness of adaptive measures tackling the effects of climate change is dependent on robust climate
projections. This becomes even more important in the face of intensifying extreme events. One example of these
events is flooding, which embodies a major threat to highly vulnerable coastal urban areas. This includes
eastern Asia, where multiple coastal megacities are located, e.g. Shanghai and Shenzhen. While the ability
of general circulation models (GCMs) and regional climate models (RCMs) to project atmospheric changes
associated with these events has improved, systematic errors (biases) remain. This study therefore assess
capabilities of improving the quality of regional climate projections for eastern Asia. This is performed by
evaluating an ensemble consisting of bias adjustment methods, GCM-RCM model runs and future emission
scenarios based on representative concentration pathways (RCP) obtained from EAS-CORDEX. We show
that bias adjustment significantly improves the quality of model output and best results are obtained by
applying quantile delta mapping. Based on these results we evaluate potential future changes in crucial
hydrometeorological predictors, univariate extreme events and compound extreme events, focusing on high
wind speeds and extreme precipitation. Key findings include an increase in daily maximum temperature of
1.5 to nearly 4 ◦C, depending on the scenario, as well as increased levels of precipitation under RCP 8.5.
Furthermore, a distinct intensification of extreme events including high temperatures and heavy precipitation
is detected and this increase exceeds the increase of the overall mean of these predictors. The annual number
of compound events including heavy precipitation and extreme wind speeds shows a significant increase of
up to 50% for RCP 8.5 in the South China Sea as well as the adjacent coastal areas.
1. Introduction

Dynamic atmospheric models have become a valuable source of
information, not only for weather predictions, but also in the field
of climatology. An increase in computational capacities, a better un-
derstanding of the underlying physical processes and a growing fund
of experience have led to an improvement in the quality of model
output. In this context, the Intergovernmental Panel on Climate Change
(IPCC) has elaborated a series of plausible scenarios for the end of the
21st century, bearing important drivers for the environmental system,
including levels of greenhouse gases, population statistics and the
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sustainability of predominant resources (IPCC, 2021). The simulations
of these drivers are provided on a global basis and can be used to run
global atmospheric or coupled atmospheric-oceanic models (Wilby and
Harris, 2006), unveiling global trends in crucial predictors (e.g. temper-
ature, precipitation) and offering projections of future climate change
until the end of the 21st century. However, the spatial resolution of
GCMs and the representation of specific climate-related characteristics
remains unsatisfactory when aiming at precise projections on a local
and regional scale.
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Regional refinement, i.e. downscaling, therefore becomes neces-
sary, when aiming at predictions with a higher resolution. Maurer
and Hidalgo (2008). While the dynamical approach, one of two main
approaches, is performed by nesting a high-resolution regional climate
model driven by the output of global models (Giorgi, 2019; Giorgi
et al., 2001), the statistical approach is based on statistical relations
between the large-scale and local atmospheric state (Hewitson and
Crane, 1996; Maraun et al., 2010; Jacobeit et al., 2014). To further
improve the quality of the output of these downscaling methods, the
statistical method of bias adjustment can be applied by obtaining
statistical characteristics in the reference data set and adopting these
to the model output by applying a specified transfer function.

In the wake of the development and improvement of these tools,
scientific research has established a linkage between climate change
and extreme events, potentially leading to an increase in frequency
and intensity (IPCC, 2021). While the effects of and potential changes
in specific univariate extreme events, e.g. droughts, heat waves, heavy
precipitation, have been extensively studied in the past, the scientific
focus has recently shifted towards co-occurring extreme events of more
than one predictor, i.e. compound events. Zscheischler et al. (2020)
offered a classification of different types of compound events, with the
‘‘compounding’’ factor being either based on location, time, variables,
or preconditions. The authors also point out the high relevance of
compound events under a changing climate, and their statements are
complemented by Zhang et al. (2021), who discuss disproportionate
socioeconomic effects of compound events when compared to univari-
ate extreme events. Although many types of compound events have
proven to be of interest towards further scientific research, e.g. heat
and drought, precipitation and streamflow, heat and fire danger, this
article focuses on tropical cyclones as a specific representative of
compound events including extreme wind speeds and precipitation
amounts. Attempts exist towards an overall, global quantification of the
projected changes in compound events in general, as well as tropical
cyclones in specific, which are in detail discussed in the latest reports
of the (IPCC, 2013, 2021). However, a variety of studies addressing
this issue demonstrate regional variations from the general trend and
the necessity for basin-specific analyses (Messmer and Simmonds, 2021;
Torres-Alavez et al., 2021; Knutson et al., 2020; Ridder et al., 2020).

Of the affected areas worldwide, the northwest Pacific stands out in
particular. This is mainly due to the high density of coastal cities and
megacities, e.g. Shanghai, Shenzhen, Guangzhou, and Manila. Due to
their high population density, these urban areas are in particular under
threat by floods and typhoons, accompanied by potentially devastat-
ing environmental and socioeconomic consequences as well as threats
to human life. This is further potentiated by ongoing human-caused
influences on the earth system, for example urbanization, sea-level
rise and climate change. Taking multiple of these risk factors into
account, Balica et al. (2012) demonstrated Shanghai and Manila to be
among the most vulnerable cities towards flooding events worldwide.
This confirms the findings of Hanson et al. (2011), according to which
the majority of cities with the highest population exposure to coastal
flooding in the future is located in East and Southeast Asia, including
Shanghai, Guangzhou, and Ho Chi Minh City. The risk for coastal cities
is even more amplified by impacts of compounding extreme events,
as demonstrated by Xu et al. (2022b). Especially in rapidly growing
megacities like Shenzhen, impacts of climate change may not only
multiply the associated risks (Sarica et al., 2021), but effective adaption
strategies could also be implemented within the development process
of the city, if reliable projections are available (Ke et al., 2021, 2020).

In this concern, it is the objective of this study to contribute op-
timized projections of long-term climate change as well as extreme
events and compound events in the East Asian domain. In the context
of Zscheischler et al. (2020), we consider compound events as events of
multiple variables, taking place at the same time and location. While
many studies focus on either optimized bias adjustment or potential
2

changes in hydrometeorological parameters under climate change, this
research aims at comprehensively combining both aspects of climatol-
ogy. This article therefore seeks contribute to the following questions:
(a) Does the application of statistical bias adjustment affect the data
quality of model output and what methods are suitable? (b) How does
long-term projected climate change under different scenarios manifest
itself in the study domain for crucial hydrometeorological predictors?
(c) What changes in univariate extreme events and compound events
including extreme wind speeds and heavy precipitation are expected
under climate change scenarios and what regions will be affected by
these changes?

The article is structured as follows: Section 2 introduces the applied
data sets and statistical methods. The latter include bias adjustment
methods, tools for model evaluation, performance measures and thresh-
olds of extreme events. Results are presented in Section 3 and struc-
tured according to the given research questions into bias adjustment,
long-term atmospheric changes and extreme events. The results are
subsequently discussed in Section 4 and concluding remarks are given
in Section 5.

2. Data and methods

2.1. Data

The acquired data sets for this study can be distinguished into (a)
model runs of a specific scenario for a future period, (b) historical
model runs for each of the selected future model setups spanning an ob-
served time period, and (c) reanalysis data spanning the same observed
time period for validation purposes. The former originate from the
COordinated Regional Climate Downscaling EXperiment (CORDEX),
providing dynamically downscaled data sets using global and regional
circulation models. The latter is obtained from the latest-generation
ERA5 reanalysis of the European Centre for Medium-Range Weather
Forecasts (ECMWF). All utilized data sets are displayed in Table 1 and
are described in detail below. Included variables are 2 m maximum
temperature, daily accumulated precipitation, 10 m maximum wind
speed, and surface pressure. All variables, corresponding base units and
units of changes, as well as climate indices and definitions utilized in
this study are given in Table 2.

2.1.1. CORDEX model output
One contributor of dynamically downscaled climate data is

CORDEX, a Model Intercomparison Project initiated by the World Cli-
mate Research Programme WCRP (Giorgi et al., 2009). For our analysis,
downscaled CORDEX model data is retrieved for the East Asian domain
‘‘EAS’’ (CORDEX, 2022). Of two available resolutions (0.22◦ × 0.22◦

and 0.44◦ × 0.44◦ on a rotated grid), historical model runs as well
as the two existing future runs of all GCM-RCM combinations for
the Representative Concentration Pathways (RCP) 2.6 and 8.5 are
acquired for the finer resolution. For the recently published Shared
Socioeconomic Pathways (SSP), which are similar but not equatable
regarding the former RCP scenarios (IPCC, 2021), downscaled model
output was not yet sufficiently provided for this analysis. For our
domain, available GCM output includes the models MOHC-HadGEM2-
ES (Collins et al., 2011), MPI-ESM (Jungclaus et al., 2013; Stevens
et al., 2013) and NCC-NorESM1-M (Bentsen et al., 2013; Iversen et al.,
2013). RCMs include REMO2015 (Jacob et al., 2012; Jacob, 2001) and
RegCM4-4 (Giorgi et al., 2012). We therefore consider six GCM-RCM
combinations. CORDEX also provides a set of RCM simulations driven
by reanalysis data (Tang et al., 2022). While these simulations offer
further insights into the structure of inherited bias, it is the aim of this
study to specifically assess the joint bias arising from the combination
of the specific GCMs and RCMs, which is why the historical experiments
were obtained. An additional assessment of the bias inherited only in
the RCMs, which can be conducted using reanalysis-driven runs, was

beyond the scope of this analysis.
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Table 1
Datasets utilized in this study. First column depicts term used for the corresponding GCM-RCM combination. For CORDEX, underlying GCMs
and RCMs are given, as well as the provided time span for the historic, RCP 2.6 and RCP 8.5 model runs. ERA5 is reanalysis data set obtained
from ECMWF used for reference purposes.

Name in present study GCM RCM Historical RCP 2.6 RCP 8.5

HadGEM2-RegCM4-4 MOHC-HadGEM2-ES RegCM4-4 1970–2005 2006–2098 2006–2099
HadGEM2-REMO2015 MOHC-HadGEM2-ES REMO2015 1970–2005 2006–2099 2006–2099
MPI-ESM-RegCM4-4 MPI-ESM-MR RegCM4-4 1980–2005 2006–2099 2006–2099
MPI-ESM-REMO2015 MPI-ESM-LR REMO2015 1970–2005 2006–2100 2006–2100
NorESM1-RegCM4-4 NCC-NorESM1-M RegCM4-4 1970–2005 2006–2099 2006–2100
NorESM1-REMO2015 NCC-NorESM1-M REMO2015 1970–2005 2006–2100 2006–2100
ERA5 – – 1979–present – –
Table 2
Variables and definitions of extreme events and climate indices used in this study and corresponding base units and units of changes.

Variable Base unit Changes in variable (𝛥)

Daily maximum 2 m air temperature ◦C ◦C
Daily accumulated precipitation mm %
Daily maximum 10 m wind speed m s−1 m s−1

Daily mean surface pressure hPa hPa

Definitions of extreme events Daily max. wind speed Daily precipitation

Tropical cyclone-force wind event (Walsh et al., 2007) >17.5 m s−1 –
Compound event >17.5 m s−1 >99th percentile

Definitions of climate indices Base unit Changes in index (𝛥)

Annual number of days with tropical cyclone-force winds d d a−1

Annual number of days with compound events d d a−1
Fig. 1. Domain in present study. EAS-CORDEX outer domain in colours, analysed area enclosed in red. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
To match the structure of the validation data, all data sets were
bilinearly interpolated onto a 0.25◦ × 0.25◦ regular grid, following sim-
ilar analyses of, for example, Chakraborty et al. (2021) and Shen et al.
(2020). The suitability of bilinear interpolation regarding precipitation
data in EAS-CORDEX was also demonstrated by Feng et al. (2019).
To account for the model with the shortest temporal availability, the
validation is performed for the period 1981–2005 and future runs are
analysed for the periods 2040–2059 (mid-future) and 2080–2099 (dis-
tant future). Further, as the HadGEM2-RegCM4-4 model combination
does not span the entire future period for the RCP scenario 2.6, ending
in the year 2098, analyses for the distant future for this specific model
include the year 2079.
3

2.1.2. ERA5 reanalysis
To overcome limited data availability in regions with a low density

of measuring stations, several other data sources can be consulted. For
example, observation data from multiple sources and data sets can
be assimilated and interpolated to obtain equally distributed spatial
data (Van Den Besselaar et al., 2017). Also, station-based data can be
combined with satellite-based data, e.g. in remote locations without
a sufficient accessibility (Lahoz and Schneider, 2014; Carrassi et al.,
2018; Cornes et al., 2018). Another approach is the performance of
reanalysis, in which an atmospheric model is driven by assimilated
observations (Wong et al., 2017). This bears the advantage of physical
coherence, as stated by Dee et al. (2011), abiding the laws of physics
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in an intrinsic, spatially consistent model, yet maintaining the charac-
teristics of the underlying observations. This type of reference data is
suitable for our analysis, offering precise data for densely populated
regions, yet also providing spatially consistent data for remote loca-
tions, i.e. over the Pacific Ocean. It also simplifies a spatial comparison
with the similarly structured future model runs. Many well-established
reanalysis products exist, e.g. by JMA (Shinya et al., 2015; Harada
et al., 2016), ECMWF (Hersbach and Dee, 2016; Hersbach et al., 2020),
and NCAR (Kalnay et al., 1996; Kanamitsu et al., 2002). As it fits best
to our selected future models runs in terms of spatial and temporal
availability, daily ERA5 reanalysis data (Hersbach et al., 2018) for the
greater East Asian domain 100◦−150◦ E, 10◦−45◦N (see Fig. 1) on a
egular grid was obtained as a reference for validation. The data set
or each variable has a resolution of 0.25◦ × 0.25◦ and was retrieved
or the period 1981–2020. Since wind speed is not directly available
rom the data store, u (west to east velocity) and v (south to north
elocity) vector components were obtained separately and accordingly
ssembled.

.2. Methods

The main methodological focus of this analysis was the assessment
f uncertainties in the output of the downscaled model data and the
ptimization of this output by applying a variety of bias adjustment
ethods. The performance of these methods was evaluated by applying
cross validation procedure and interpreting the results using Taylor

iagrams as well as statistics regarding climatology. This section is
oncluded by highlighting the applied performance measures and the
tilized thresholds for the detection of extreme events. Note, that bias
djustment for the time series of each grid cell is performed first and
xtreme events are subsequently derived using the adjusted data sets.

.2.1. Bias adjustment methods
As stated above, an improvement in the quality of local climate

rojections can be achieved by performing downscaling. However, a
ariety of sources for bias remains. This includes, for example, system-
tic bias in the GCMs, the inability of free-running models to correctly
ender the daily variability as well as physical simplifications in the
odel setup. These three sources of bias are classified and in detail
escribed by Eden et al. (2012). It is therefore of high importance
or the effectiveness of protective measures and adaptive strategies to
uantify uncertainties in model output as well as to debias. This leads
o the first objective of this study, to address and correct uncertain-
ies in the output of GCM-driven regional climate models. As stated
y Gudmundsson et al. (2012), it is in this context necessary to (a)
ompare the performance of different bias adjustment methods, and (b)
ind an appropriate solution towards the application of bias adjustment
ethods to the raw model output.

A variety of approaches towards the correction of biases exists, of
hich many have proven to be suitable and effective towards their

ntended application. In a simplistic approach, a correction of out-
ut data can be achieved by applying the ‘‘delta method’’, i.e. by
dding or multiplying a constant, accounting especially for systematic
rrors (Deque, 2007). A different approach is the application of quantile
apping methods. In general, this describes a statistical transformation

hat is performed on the intensity distribution function of the raw data
o fit the corresponding intensity distribution function of the reference
ata (Piani et al., 2010b) and is expressed as:

𝑏𝑐 = 𝑓 (𝑥𝑚,𝑝), (1)

ith 𝑥𝑏𝑐 denoting the adjusted sample, 𝑓 the transformation function
nd 𝑥𝑚,𝑝 the raw data.

Several approaches to find 𝑓 exist and are in detail discussed
y Gudmundsson et al. (2012). These include, for example, parametric
unctions, for which the quantile–quantile relation of model and refer-
4

nce data is fitted using adjustable parameters. 𝑥𝑏𝑐 is then estimated 𝑥
sing, for example, scale-based adjustments, as in �̂�𝑏𝑐 = 𝑏 𝑥𝑚,𝑝, or
inear adjustments, as in �̂�𝑏𝑐 = 𝑎 + 𝑏 𝑥𝑚,𝑝. Under the assumption of
n underlying theoretical distribution, the distribution function can be
djusted, if the parameters necessary to fit the theoretical distribution
re appropriately estimated. The choice of an adequate distribution
s dependent on the variable, e.g. Li et al. (2019) and Haas et al.
2014) prove the Weibull distribution to be a suitable choice for the
orrection of wind speed. Shin et al. (2019), Piani et al. (2010a),
nd Ines and Hansen (2006) demonstrate the Gamma function to be
uitable for application to precipitation data, and Teutschbein and
eibert (2012) the Gaussian distribution for temperature. The quantile–
uantile relation can also be non-parametrically adjusted using spline
unctions (Kouhestani et al., 2016). Regarding the nature of the spline
unction, Gudmundsson et al. (2012) recommend the use of cubic
moothing splines. Another approach is to correct the density function
f the sample according to the corresponding density function of the
eference data based of the underlying percentiles. Based on Boé et al.
2007), this method is referred to as ‘‘empirical quantile mapping’’
nd performs a percentile-wise empirical estimation and corrects bias
ccording to differences in the percentile estimations as well as linear
nterpolation for values within two percentiles. As for smoothing spline
djustment, this is also a non-parametric approach, because percentile-
ise correction is solely dependent on the structure of the reference
ata and therefore does not require an assumed underlying theoretical
istribution (Themeßl et al., 2012). Using these methods and provided
he cumulative distribution function (CDF) 𝐹 is given, 𝑥𝑏𝑐 can also be
btained by applying

𝑚,𝑐 (𝑥𝑚,𝑐 ) = 𝐹𝑜,𝑐 (𝑥𝑜,𝑐 ) (2)

nd

𝑏𝑐 = 𝐹−1
𝑜,𝑐 [𝐹𝑚,𝑝(𝑥𝑚,𝑝)], (3)

here 𝐹𝑜,𝑐 is the CDF of the reference sample and 𝐹𝑚,𝑝 the CDF of
he uncorrected data (Tong et al., 2021). As the authors show, this
wo-step correction is necessary when correcting independent time
eries, i.e. future time series or validation periods. First, the necessary
orrection for the model data in an observed time period must be
btained by applying Eq. (2). For the variable of interest 𝑥 within the
bserved period (𝑐), the CDF of the model data (𝐹𝑚,𝑐) is first fitted
o the CDF of the reference data (𝐹𝑜,𝑐). This adjusted series can then
e subject to validation. Next, under the assumption that the bias
tructure is time-independent for the observed and future period, the
ransformation function obtained from the observed model series is
pplied to the future series. As given in Eq. (3), the CDF of the model
ata in the projected period (𝐹𝑚,𝑝) is fitted to 𝐹𝑜,𝑐 to obtain the bias
djusted sample 𝑥𝑏𝑐 . Note, that the inverse of 𝐹𝑜,𝑐 is applied.

It becomes apparent from Eqs. (2) and (3), that model values
xceeding (undercutting) the CDF range of the reference data will
e adjusted to match the CDF of the reference data, resulting in a
isturbance of extremes and potential future changes. To account for
his, Boé et al. (2007) and Themeßl et al. (2012) suggest the correction
f ‘‘new extremes’’ according to the correction that is performed for
he highest (lowest) percentile of the reference period, which is also
pplied in this study. Furthermore, demonstrated by Maurer and Pierce
2014) and Maraun (2013), empirical quantile mapping may lead to
n unintentional perturbation of trends in the model, resulting in an
dditional source of bias.

Whether original trends in the model output should be preserved
s also discussed by Cannon et al. (2015) and the method of quantile
elta mapping is introduced. Accordingly, the relative linear trend 𝛥𝑚
or a specific time step 𝑡 is defined as

𝑚(𝑡) =
𝑥𝑚,𝑝(𝑡)

𝐹−1
𝑚,𝑐 [𝐹 𝑡

𝑚,𝑝[𝑥𝑚,𝑝(𝑡)]]
. (4)

ubsequently, the adjusted value for the corresponding time step �̂�𝑏𝑐 (𝑡)
s modified by applying
̂𝑏𝑐,𝛥(𝑡) = �̂�𝑏𝑐 (𝑡)𝛥𝑚(𝑡) (5)
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𝑥

𝑅

𝑅

to form the quantile delta adjusted value �̂�𝑏𝑐,𝛥(𝑡). Therefore, the original
trend in the model is preserved. As the authors show, this approach also
allows for an additive preservation of trends, by applying

𝛥𝑚(𝑡) = 𝑥𝑚,𝑝(𝑡) − 𝐹−1
𝑚,𝑐 [𝐹

𝑡
𝑚,𝑝[𝑥𝑚,𝑝(𝑡)]], (6)

and

̂𝑏𝑐,𝛥(𝑡) = �̂�𝑏𝑐 (𝑡) + 𝛥𝑚(𝑡), (7)

subsequently.
For all consulted methods an adjustment for the number of precip-

itation days was performed. According to Piani et al. (2010b) this can
be achieved by applying a transfer of the number of wet days in the
reference period to the model data. This is necessary, as models tend
to overestimate the number of wet days due to drizzle-effects (Maraun,
2016; Piani et al., 2010b; Gutowski et al., 2003). Starting from the day
with the least precipitation amount, days with non-zero values are set
to 0 until the wet day threshold obtained from the reference data is
reached. As a constraint and following (Gudmundsson et al., 2012),
daily precipitation sums exceeding 0.1 mm d−1 are upheld.

A plurality of studies aiming for the single method with the best per-
formance exists. However, as (Laux et al., 2021) point out, an improve-
ment in the uncertainty assessment can be achieved by constructing
an ensemble of multiple bias adjustment methods, as bias adjustment
itself can possibly even increase the bias in the post-processed data.
We therefore assessed the most promising bias adjustment techniques,
based on literature review and statistical evaluation, and quantified
the benefits regarding single-method-based and ensemble-based ap-
proaches. Preliminary literature review reveals an unequivocal picture
of the suitability of the bias adjustment methods presented above.
While authors point out that most methods are capable of reducing
bias in raw model output, a majority of studies relies on empirical
quantile mapping and quantile delta mapping as they perform most
effective with regard to the respective evaluation criteria (Tong et al.,
2021; Laux et al., 2021; Shen et al., 2020; Enayati et al., 2021; Heo
et al., 2019; Choudhary and Dimri, 2019). According to Gudmunds-
son et al. (2012), smoothing spline-based bias adjustment is also a
promising approach and can generate a similar improvement. As the
non-parametric approaches outperform those implying a theoretical
distribution, and this can be seen for multiple atmospheric variables, we
proceeded close to the approach of Kouhestani et al. (2016), including
three non-parametric approaches in the detailed analysis, i.e. smooth-
ing spline-based bias adjustment (SSPLIN), empirical quantile mapping
(QUANT) and quantile delta mapping (QDM).

The bias adjustment and evaluation procedure allows for the eval-
uation of (a) differences in the performance of each investigated bias
adjustment method, (b) the uncertainties within the 30 cross validated
ensemble members of a specific model setup, and (c) the overall perfor-
mance of a specific bias adjustment method for the single models and
ensemble mean. Regarding (a) and (b) Taylor diagrams have proven
suitable for a concise evaluation of bias adjustment performance, as
well as differences within models and correction methods.

2.2.2. Evaluation of methods and models
To evaluate the performance of a specific bias adjustment method,

the transformation function computed for the reference period, i.e. the
calibration period, can be applied to a second, independent period,
i.e. the validation period, that is not included in calibration. This
approach follows the assumption that the bias structure is stationary,
i.e. no change in bias for future periods occurs and effective corrections
for reference periods equally apply to independent periods (Cannon
et al., 2015; Maraun, 2012; Maraun et al., 2010). Nevertheless, re-
garding potential time-dependencies in the model bias, further research
suggests that validation using a single time period may not be sufficient
to provide robust results (Miao et al., 2016; Li et al., 2010; Reifen
and Toumi, 2009). We therefore applied a cross validation procedure
5

that is introduced by Miao et al. (2016) and similarly used by Shen
et al. (2020) to each GCM-RCM combination and each bias adjustment
method. Out of the years 1981–2005, 20 years were chosen on a
random basis and used for calibration. The remaining five years that
are not included in the calibration period are unknown to the transfor-
mation function and hence used as independent validation period. This
procedure was repeated 30 times, for each of which a new set of five
validation years out of the period 1981–2005 was randomly assigned,
and the remaining 20 years were used for calibration. The random
nature of the assignment of the five years for validation guarantees that
every year out of 1981–2005 has the same probability of being chosen
for validation and the entire period is considered within every of the 30
ensemble members, ensuring the robustness of the performance evalua-
tion. Since no presumption regarding the validity of specific years used
for validation can be made, the ensemble mean for each GCM-RCM
combination and each bias adjustment method was computed using the
equally weighted 30 ensemble members.

To provide further insights into the robustness of our findings,
a hypothesis test was applied to gain information on the statistical
significance of the projected changes between the future period and
the reference period. For each grid cell, the daily series of the reference
period was tested against the time series of a future period under the
null hypothesis that both samples are equally distributed (Wilcoxon,
1945). Vice versa, if the null hypothesis is rejected for a predefined
level of significance, it can be assumed that the distributions differ
significantly. For our analysis we define the commonly applied error
probability of 𝛼 = 0.05 to indicate statistical significance. As a gener-
alized assumption of Gaussian distribution could not be upheld for all
samples, a Mann–Whitney U test was performed (Mann and Whitney,
1947; Student, 1908).

2.2.3. Performance measures
The computation of skill scores opens the opportunity of a simple

comparison of two or more entities. A wide range of possibilities exist
for the evaluation of model output as, for example, presented by Kot-
larski et al. (2014). As the results of this study are mainly reliant on
optimized projections of the overall mean and percentile-based thresh-
olds, these metrics are accounted for throughout the evaluation process.
Specifically, the overall mean bias, expressed as BIAS, is calculated
according to Eq. (8), and the calculation of the mean absolute error
(MAE) is shown in Eq. (9). Deviations in percentile-based thresholds
are expressed by 𝛥𝑃𝑛 = 𝑃𝑛,𝑣−𝑃𝑛,𝑜, where 𝑛 is the value of the percentile
that is described, e.g. 95 for the 95th percentile, 𝑣 is the model data
that is to be evaluated and 𝑜 is the reference value. In addition, Taylor
diagrams were consulted as they are widely common throughout the
field of model evaluation and embody a convenient approach to the
evaluation of multiple performance measures (Taylor, 2001; Enayati
et al., 2021; Jolliff et al., 2009). These include centralized root mean
square error (RMSE, Eq. (10)), correlation coefficient (R, Eq. (11)),
and normalized standard deviation (𝜎∗, Eq. (12)). Within the given
equations, 𝑡 indicates the time step, 𝑥𝑜 denotes the reference sample
obtained from ERA5, and 𝑥𝑣 denotes the bias adjusted sample. All
included metrics are calculated for the time series of each of the
inspected grid cells by means of Eqs. (8) through (12). Subsequently,
the mean of the grid cell-wise results is computed for the study domain
and displayed in the corresponding figures.

𝐵𝐼𝐴𝑆 = 1
𝑁

𝑁
∑

𝑡=1
(𝑥𝑣,𝑡 − 𝑥𝑜,𝑡) (8)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑡=1
(|𝑥𝑣,𝑡 − 𝑥𝑜,𝑡|) (9)

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑡=1
(𝑥𝑣,𝑡 − 𝑥𝑜,𝑡)2 (10)

=
1
𝑁

∑𝑁
𝑡=1(𝑥𝑜,𝑡 − 𝑥𝑜)(𝑥𝑣,𝑡 − 𝑥𝑣)

(11)

𝜎𝑜𝜎𝑣
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𝜎∗ =
𝜎𝑣
𝜎𝑜

(12)

simple approach, BIAS represents the overall mean deviation of
he bias adjusted sample 𝑥𝑣 and the corresponding reference 𝑥𝑜. It
nherits the unit of the analysed variable and is equal to 0 if the two
amples are identical. However, this is also the case for a change in
he bias structure, e.g. differing magnitudes, without a change in the
ean. Therefore MAE and RMSE are considered. While these measures

re similar, for example in counteracting the effect of positive and
egative bias cancelling each other by considering absolute and squared
rrors, RMSE places a greater focus on larger deviations. This is due
o the forming of squares prior to the summation and conditions the
elationship: MAE ≤ RMSE. It is shown by Chai and Draxler (2014)
hat both metrics, despite their similarity, must be handled individually
nd can be an equal part of a comprehensive analysis. The authors
lso point out the robustness of large sample sizes when aiming at the
‘true’’ values of RMSE and MAE, beginning at sample sizes of 100 and

ensemble members. This is also given for our validation approach
hat considers sample sizes of ∼7300, i.e. 20 years of daily data, and 30
nsemble members.

The correlation coefficient R is a widely used measure to indicate
linkage in the appearance of two samples. If both samples exhibit a

imilar behaviour for regions of high or low values, this is considered
positive correlation and the coefficient converges towards its upper

imit value 1. In the opposite case, i.e. negative correlation, the coef-
icient value converges to its lower limit −1. For 𝑅 = 0 no correlation
an be assumed.

The normalized standard deviation 𝜎∗ considers the relation be-
ween the standard deviation of the bias adjusted sample and the
eference. If the standard deviations in both samples are equal, 𝜎∗
eaches 1.

.2.4. Definition of extreme events
The adequate choice of threshold for the definition of extreme

vents has for a long time been subject of scientific discourse (Zhang
t al., 2011). This analysis focuses on percentile-based thresholds,
hich are also issued by the Expert Team on Climate Change Detection
nd Indices (ETCCDI, 2022). As the obtained data sets comprise daily
ata, an extreme event referring to the 99th percentile, for example,
tatistically occurs once every 100 days, or three to four times in one
ear, respectively. To account for varying definitions and suggestions
n the literature regarding the optimum percentile to be used as thresh-
ld (Zhang et al., 2011; Guzzetti et al., 2008), the analysis of univariate
xtreme events is based on thresholds ranging from the first to the 99th
ercentile.

To what extent tropical cyclones, within our study region referred to
s typhoons, are adequately represented in reanalysis and climate mod-
ls has been subject to intensive research (Jin et al., 2016; Truchelut
t al., 2013; Truchelut and Hart, 2011; Emanuel, 2010; Bengtsson et al.,
007; Walsh, 1997). A common source of uncertainty within these
nalyses is the under-representation of extreme events, e.g. typhoons,
ue to the broad underlying grid cell structure. To account for this
ssue we followed the approach of Walsh et al. (2007) and adopted
he proposed threshold for tropical cyclone-force winds of 17.5 m s−1

t 10 m for a grid resolution of 0.25◦. We also adopted the authors’
pproach to limit potential influences of extratropical wind events
y limiting the analysis of days with tropical cyclone-force winds to
egions south of 30◦N.

As a compound extreme event is defined as an extreme event of
wo or more variables, we extended the analysis of tropical cyclone-
orce winds by adding the constraint of daily precipitation above the
9th percentile, relating to ‘‘extremely wet days’’ (ETCCDI, 2022). In
ccordance with Martius et al. (2016) we allowed for a time separation
f one day, to account for events taking place beyond midnight and
vents with an immediate relation. The latter, for example, allows for
he inclusion of storm events on one day, followed by an extreme
6

recipitation event on the next day, into the count of compound events.
. Results

.1. Bias adjustment

For maximum air temperature results show an overall good agree-
ent of the raw model output and reanalysis data (Fig. 2). Across all
odels, notable improvements in data quality appear primarily for the

imulated standard deviation, while correlation is sustained at 0.75–0.8
nd RMSE is slightly reduced to ∼0.7. Regarding precipitation, notable
ifferences in the raw model output become apparent, as deviations
ased on GCM-RCM combinations including RegCM4-4 are generally
ower. Across all models, corrections lead to an alignment in the data
uality and an improvement in the normalized standard deviation,
owever correlation remains low and a notable RMSE remains. This
lso applies to maximum wind speed and surface pressure. For the
ormer, the picture in the quality of raw data is reversed, as mod-
ls based on REMO2015 show a higher consistency. For the latter
onsistency in the quality of the raw model output is higher. The
imilar performance of QUANT and QDM becomes apparent across
ll variables, whereas SSPLIN falls short for precipitation and surface
ressure. While the overall data structure, expressed by the standard
eviation, is notably improved, bias regarding daily variability remains.
ue to the similarity in the results of QUANT and QDM we show only

he Taylor diagram for the 30 cross validated ensemble members of the
atter in Appendix A. The ensemble spread is similar across all variables
nd no noteworthy outliers appear, indicating the robustness in the
hosen reference period.

To further investigate the long-term robustness of the adjusted data
e evaluated BIAS and MAE for the raw data as well as SSPLIN,
UANT, and QDM (Fig. 3). Shown are the performance metrics of

he model mean, consisting of 30 cross validated ensemble members.
t becomes clear that the raw model output inherits significant bias.
oreover, for most models and across all variables positive BIAS is
ore frequent than negative BIAS. While for maximum temperature

nd depending on the model setup, the mean deviation reaches up to
1 ◦C, for precipitation up to +1.7 mm, +3 m s−1 for maximum wind

peed, and +3.6 hPa for surface pressure, BIAS is reduced to nearly zero
fter applying QUANT and QDM. For SSPLIN minimal BIAS remains. An
xception is maximum wind speed, for which all correction methods
educe BIAS to zero.

Across all variables, a reduction in MAE can also be achieved,
owever a residue remains. For maximum wind speed and surface
ressure, reductions in MAE are the strongest, with reductions of up
o 50%. This accounts for up to ∼2 m s−1 for wind speed and ∼4 hPa
or surface pressure. For maximum temperature and precipitation MAE
eduction is less pronounced, resulting in reductions of up to 0.5 ◦C

and 2 mm, respectively.
The analysis of the correction of percentile thresholds shows a

similar picture, as shown for the 95th and 99th percentile (Fig. 4).
All bias adjustment methods are capable of reducing deviations of
downscaled percentiles from reanalysis-based percentiles. Smoothing
spline correction embodies an exception to this in the case of surface
pressure, leading even to an increase in percentile deviations. For
an analysis of this anomaly please refer to the discussion section.
Corresponding to BIAS and MAE, a majority of raw models inherits
a positive deviation resulting from an overestimation of the regarded
variables. After the performance of bias adjustment, the error margins
are notably reduced. For maximum daily temperature and regarding the
domain mean, the deviation of both thresholds lies within a margin of
±0.25 ◦C. For precipitation error margins for the 95th percentile are
smaller (±0.5 mm) than for the 99th percentile (±1.5 mm). In the case
of maximum wind speed the correction of the in general overestimated
percentile thresholds led to a slight overcorrection for all included
models. The resulting errors lie within a range from −0.1 to −0.3 m
s−1 (95th percentile) and −0.3 to −0.7 m s−1 (99th percentile). While

smoothing spline-based correction leads to an increased overestimation
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Fig. 2. Taylor diagrams to evaluate the performance of three bias adjustment methods. The underlying GCM and RCM of each of the six model combinations is given in the row
label and column label, respectively. The four variables are distinguished by symbols, the bias adjustment methods by colours. Taylor diagrams consist of correlation, normalized
RMSE and normalized standard deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of daily mean surface pressure by up to +5 hPa, depending on the
selected model, the error margin for QUANT and QDM spans the range
from −0.1 to +0.4 hPa over both percentile thresholds. Across all
predictors we regard the results of QUANT and QDM as acceptable for a
percentile-based analysis of the climate change signal and based on the
preceeding analysis and the statistical advantages, we proceeded with
the detailed analysis of the chosen predictors using the bias adjusted
data based on QDM.

3.2. Long-term climate change

Regarding climatological changes in the study region, we analysed
the long-term annual changes in the bias adjusted annual model data,
7

as well as changes within the spectrum of percentiles for the daily
data. While the former provides an overview of the overall expected
change for a specific predictor, the latter provides information on
changes in the structure of the predictor. For example, an increase in
the lower and upper percentiles indicates an increase in the frequency
of daily extremes, setting the link to the subsequent analysis compris-
ing of percentile-based extreme events and predefined thresholds of
compound events.

3.2.1. Maximum temperature
Long-term climatological change (Fig. 5 (a), left) shows a steady

increase in the annual mean of the daily maximum temperature for the
RCP 8.5 scenario, leading to maximum temperatures 3.8 ◦C higher in
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Fig. 3. Evaluation of BIAS and MAE within the validation period 1981–2005 for three non-parametric bias adjustment methods (black: raw, green: SSPLIN, blue: QUANT, red:
QDM). (a) daily maximum air temperature, (b) daily precipitation sum, (c) daily maximum wind speed, (d) daily mean surface pressure. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Evaluation of accuracy in the representation of percentiles for three non-parametric bias adjustment methods (black — raw, green — SSPLIN, blue — QUANT, red —
QDM). (a) daily maximum air temperature, (b) daily precipitation sum, (c) daily maximum wind speed, (d) daily mean surface pressure. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
2080–2099 when referring to 1981–2000. The deviation of the single
models from this trend is ±1 ◦C. Under scenario RCP 2.6, temperatures
are to increase until the middle of the 21st century and reach a mean
increase of 1.5 ◦C, then tending to a slight decrease until the end of the
century. Changes in percentiles (Fig. 5 (a), right) indicate a stronger
contribution of daily extremes to the overall change. The increase
for days below the 30th and above the 95th percentile exceeds the
corresponding mean increase across all scenarios and time periods.
While changes remain mostly within a threshold of + 1.5 ◦C for RCP
2.6, extremes exceed the overall mean change by up to 1 ◦C for scenario
RCP 8.5, e.g. leading to temperatures 4.5 ◦C higher on hot days with a
return period of 100 days until the end of the century.

In terms of the spatial distribution, two gradients become apparent
(Fig. 6). On the one hand side, warming is predicted to be more
intense over continental masses than over the Pacific, on the other hand
warming increases with northward latitude. For the RCP 2.6 scenario
maximum temperature increases by up to 2 ◦C for most regions above
8

30◦ 𝑁 and continental masses further south. Maximum temperatures
are increased by up to 1 ◦C over maritime regions south of 30◦ N,
aggregating to the described overall mean change of +1 to +1.5 ◦C.
For the RCP 8.5 scenario spatial structures remain, however the level of
increase reaches 5 ◦C and above for northern continental land masses,
up to 5 ◦C for coastal regions north and up to 4 ◦C for coastal regions
south of 30◦ 𝑁 until the end of the century. Note, that the changes in
daily maximum temperature are statistically significant for all grid cells
and over all time periods and scenarios.

3.2.2. Precipitation
While the annual precipitation sum (Fig. 5 (b), left) shows no

significant changes through 2099 within RCP scenario 2.6, a moderate
increase can be seen for RCP scenario 8.5, reaching + 0.5 mm in the
daily sum, respectively + 180 mm for the annual total. Maximum peaks
(minimum extremes) within the model range are consistently higher
(lower) for RCP 8.5 (RCP 2.6), however the error margin of ±200 mm
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Fig. 5. Left: Future projections of annual mean for (a) maximum temperature, (c) maximum wind speed, (d) surface pressure, and annual sum for (b) precipitation until 2099.
ERA5 reference represented by solid black line, RCP 2.6 in blue, RCP 8.5 in red. Dotted lines are raw output, solid lines are model mean of bias adjusted data, shaded areas
indicate range of models. Right: Changes in percentiles for 2040–2059 in dashed lines,2080–2099 in solid lines. Each with reference to 1981–2000, model minus ERA5. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
for the annual precipitation sum is high within both scenarios. Regard-
ing changes in the percentile-based thresholds, no significant changes
can be seen for low and mid-range daily precipitation events (Fig. 5 (b),
right). For heavy precipitation events the models suggest an increase
which is stronger the greater the return period. For RCP scenario 2.6
daily precipitation with a return period of 100 days is modelled to be
increased by 1 mm. Within RCP scenario 8.5, however, daily precipita-
tion sums with an equal return period are in mean modelled 9.5 mm, or
20%, higher for the period 2080–2099 when referring to 1981–2000.
Similar to maximum temperature, precipitation extremes exceeding
thresholds above the 95th percentile are simulated to experience a
stronger intensification than the overall mean increase, which is 10%.

Notable regional differences in the prediction of future precipita-
tion can be detected (Fig. 7). These changes, however, remain non-
significant for many parts of the study region. For the RCP 2.6 scenario
a slight drying trend appears for regions within 20◦N and 30◦N, rarely
indicating statistical significance in near-coastal areas. This drying
trend is extended southwards over the continent, reaching a decrease
in mean daily precipitation of up to −20%. Over Northern China, the
South China Sea and the Philippine Sea daily precipitation is to increase
by up to 30%. Predicted changes remain persistent for 2040–2059 and
9

2080–2099. Within the RCP 8.5 scenario variations within central and
eastern China appear, mostly reaching significance for decreases in
daily precipitation. For 2040–2059, the predictions remain comparable,
one exception being maritime areas south of 20◦N which inherit a
significant increase of up to 20%. In contrast to RCP 2.6, the simulated
increase north of 35◦N and south of 25◦N within RCP scenario 8.5 will
intensify until the end of the century and amount up to 30%–50%.
Especially south of 25◦N the transition line from significant increases
in daily precipitation to non-significant variations is embodied by the
coastline, affecting mostly southeastern China, Vietnam, Taiwan and
the Philippines.

3.2.3. Maximum wind speed
The comparison between raw and bias adjusted projections of daily

maximum wind speed (Fig. 5(c), left) shows the notable positive bias
discussed above (Fig. 3) . The adjusted data shows no particular devi-
ations in future time periods and scenarios from the reference period
and the model span is consistently ±0.25 m s−1. Scenario 8.5 shows a
tendency towards decreasing maximum wind speeds beginning in 2080.
It becomes clear from the percentile-based analysis (Fig. 5 (c), right)
that this is mostly contributed to by a decrease in extreme events of
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Fig. 6. Changes in mean daily maximum temperature in CORDEX model mean. (a) RCP 2.6 minus ERA5 (2040–2059), (b) RCP 8.5 minus ERA5 (2040–2059), (c) RCP 2.6 minus
ERA5 (2080–2099), (d) RCP 8.5 minus ERA5 (2080–2099), (e) ERA5 reference 1981–2000, (f) RCP 8.5 minus RCP 2.6. Dots indicate statistical significance at 𝛼 = 0.05. Note, that
all grid cells for (a)-(d) and (f) show statistical significance for maximum temperature.
high wind maxima, reaching to −0.2 m s−1 in 2080–2099. Still, the
overall level of deviations from the reference period remains low.

The spatial manifestation of the projected changes (Fig. 8) shows
similarities to the previous predictors, namely comparable results re-
garding the two time periods for scenario 2.6 as well as 2040–2059
for the scenario 8.5. For maximum wind speed, most regions north
of 25◦N are to experience a decrease in wind speed of up to −0.6 m
s−1, with regional minima in the Tibetan Plateau, northeastern China
and the northern Philippine Sea. While non-significant deviations are
predominant in southeastern China, parts of the South China Sea and
the Indochinese Peninsula show significant increases in maximum wind
speed. During 2080–2099 within the RCP scenario 8.5, the spatial struc-
ture remains, yet the changes are further intensified and reach −0.8 m
s−1 and 0.6 m s−1, respectively. Also, significant increases spread
throughout most of the South China Sea and reach the surrounding
coastlines.

3.2.4. Surface pressure
When analysing surface pressure, the strong dependence on the

geographical altitude must be kept in mind. Discrepancies in the un-
derlying surface altitude for reference and model data impose an addi-
tional source of error that is handed to bias adjustment. The long-term
analysis (Fig. 5 (d), left) shows a marginal projected change in mean
10
surface pressure for both RCP scenarios and time periods reaching up
to +0.6 hPa. The range of models lies within ±0.75–1 hPa. The largest
contribution to this change can be attributed to the lowest percentiles
(Fig. 5 (d), right), starting with +0.5 hPa for the 30th percentile and
reaching up to +5 hPa for the 1st percentile, depending on the time
period and scenario. Due to the dependency on altitude these changes
rather indicate the location than a change in events, i.e. a change in
the regions with the lowest surface pressure.

This assumption is confirmed when the spatial distribution of the
projected changes is taken into account (Fig. 9). While for almost the
entire domain an increase in surface pressure is projected, the increase
over land masses is higher than over maritime areas. For scenario 2.6
projections are consistent until the end of the century and show an
increase of up to +0.5 hPa over the ocean and up to +2 hPa over
land masses, reaching a maximum over the Tibetan Plateau. For this
predictor, too, the spatial structure is similar for both scenarios and the
expected changes for scenario 8.5 are amplified. This applies primarily
to land masses, for which the expected change reaches +5 hPa for
2080–2099.

3.3. Tropical cyclone-force wind events

The annual frequency of days with tropical cyclone-force winds
within the reference period 1981–2000 (Fig. 10) shows a latitudinal
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Fig. 7. As Fig. 6, but for mean daily precipitation.
gradient, with low frequencies south of 10◦N and reaching up to
seven days per year at 20◦N, as well as a longitudinal gradient, with
increasing frequencies reaching westward from 150◦E to 120◦E. The
maximum frequency of up to 10 days per year occurred in the Luzon
Strait and the Taiwan Strait. Within the period 2080–2099 and under
the RCP 2.6 scenario, most regions in the eastern half of the domain are
modelled to experience a decrease in frequency, yet indicating statisti-
cal significance only over the eastern Luzon Strait. Significant increases
in the annual frequency are projected for the southern Philippine Sea
and extend over the Philippines into the South China Sea and reach the
Vietnamese and Chinese coastline. Maximum increases are modelled at
+1 to +1.5 days per year. When analysing the RCP 8.5 scenario, the
overall spatial structure of the predicted changes remains. An exception
to this appears over the Taiwan Strait, where a complex picture of
significant increases and decreases for scenario 2.6 changes into overall
significant increases for RCP 8.5. For the remaining domain, a general
shift including amplified increases and a larger extent of regions with
statistically significant increases appears for RCP 8.5, together with
weaker changes in regions with a decrease in frequency. The maximum
increase in days with tropical cyclone-force winds is +2 days per year
and is located in the South China Sea, accounting for an increase of up
to 66%.
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3.4. Compound events of extreme precipitation and wind

During 1981–2000, the highest number of compound events, ac-
cording to the underlying definition, occurred north of 15◦N, reaching
up to three days per year over the South China Sea and 4.5 days over
the Philippine Sea (Fig. 11). The annual count rapidly decreases when
approaching the shoreline. The spatial pattern of the modelled changes
matches the analysis of tropical cyclone-force days, predicting a shift
in the region of maximum activity to the west of the Philippines and
into the South China Sea. Under RCP 2.6, the projection includes a
decrease in the annual frequency for most of the northern and central
Philippine Sea, sparsely reaching −2 days and statistical significance.
For the southern Philippine Sea statistically significant increases of up
to 1.5 days are modelled and reach over the Philippines into the South
China Sea and the Chinese and Vietnamese coast. Within RCP 8.5,
less regions with a modelled decrease appear and projected increases
are amplified. This applies especially to the Taiwan and Luzon Strait,
where increases reach up to 2 days per year, as well as the South China
Sea, of which most regions are to experience a significant increase
in compound events, with maximum increases reaching up to three
per year. Note, that the projected increases reach significantly further
into the land masses and that coastal areas of China and Vietnam
are stronger affected by changes in compound events than for solely
wind-based events. While this already applies for RCP 2.6, the effect is
significantly amplified under RCP 8.5.
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Fig. 8. As Fig. 6, but for mean daily maximum wind speed.
4. Discussion

In the following section the described results are discussed and con-
textualized. The structure of presentation remains, therefore addressing
the assessed uncertainties and applied bias adjustment methods first.
The validity of results regarding long-term climate change, changes in
univariate extreme events and changes in compound extreme events
are discussed in the following. The section is concluded by discussing
limitations linked to the analysis.

4.1. Bias adjustment

Results show that the raw model output quality is strongly depen-
dent on the inspected variable and the chosen GCM-RCM combination.
The model mean of the raw data potentially exceeding the model
range of the bias adjusted models proves the necessity of applying
bias adjustment methods, of which quantile delta mapping provides
the most accurate results within cross validation for our study. As Laux
et al. (2021) demonstrated, the quality of an analysis can be improved
by including more than one bias adjustment method into an ensem-
ble. Taking this into account we applied multiple correction methods,
however the bias resulting from smoothing spline-based corrections
was inherited in the ensemble, affecting the data quality negatively.
While long-term evaluation metrics, e.g. BIAS and percentile-based
thresholds, prove QDM to perform a nearly optimal correction of bias,
12
metrics including daily variability, e.g. MAE, RMSE, and correlation,
show no notable improvement. As we included the GCM-driven histor-
ical experiments provided by CORDEX to assess the joint bias from the
consulted GCM and RCM, this result is expected due to no temporal
correspondence between the model output and ERA5. In the context
of a long-term climatological analysis, however, day-to-day variabil-
ity becomes inferior the quality of long-term metrics and therefore
conclusions drawn from the analysis of the bias adjusted data are of
high value. For the analysis of daily events, e.g. compound events,
the remaining bias has a potential impact on the accurate definition
of events and must therefore be taken into account. Nevertheless, as
QDM improves the model data to inherit an overall BIAS of nearly
0, the assumption of neither systematic nor significant over- or un-
derestimations (see also Section 3.1) can be upheld, increasing the
validity of event-based analyses on a daily basis. This, as is common
within climatological analyses, follows the assumption that the general
physical relationships within the earth system remain unchanged in the
future.

4.2. Long-term climate change

The results regarding projected long-term changes of the inspected
predictors in general are in accordance with findings of similar studies
and the summaries of the (IPCC, 2021). Of particular interest, in terms
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Fig. 9. As Fig. 6, but for mean daily surface pressure.
of daily maximum temperature, is the prevailing increase until the mid-
21st century for all provided RCP scenarios and the level of severity
for the 8.5 scenario until 2099. While heat extremes already impose a
remarkable threat to the environment and human health today (Zhang
et al., 2017; Lu and Chen, 2016; Bao et al., 2016; Gasparrini et al.,
2015; Ma et al., 2014), a further intensification of heat extremes must
be closely monitored and mitigated to avert additional costs and losses.
The amplified increase in daily maximum temperatures above the 95th
percentile adds to this risk.

A variety of studies prove difficulties and challenges when project-
ing precipitation, attributing large uncertainties to, for example, the
model resolution, model parameterizations, and local specifics mod-
els are not capable of reproducing (Huang et al., 2013; Chen and
Frauenfeld, 2014). These uncertainties are reflected in the raw data
used in this study and can, to a considerable extent, be reduced by
applying bias adjustment. While the model mean particularly indicates
significant increases over the South China Sea and the Philippine Sea
and significant deviations between the RCP scenarios 2.6 and 8.5, a
large inter-model spread remains, partially including opposing signals
of change for different GCM-RCM combinations under the same RCP
scenario. This must also be taken into account when analysing daily
extremes. However, we prove quantile delta mapping to reduce the
margin of error for specific percentiles of extreme precipitation. In
this context, the aforementioned potential increase in daily extreme
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precipitation of up to 9.5 mm under RCP 8.5 stands out. It will also
be of high relevance how the significant precipitation increases over
the South China Sea will have an influence on the adjacent coastal
regions and how far these changes will reach into the continental areas.
While potential changes in precipitation frequency and intensity have
also been discussed in previous studies (Gan et al., 2022; Li et al., 2021;
Zhang and Zhou, 2020; Chen et al., 2017; Sun and Ao, 2013), further
improvement in the precision of projections is necessary to grant the
foundation of appropriate and sufficient adaptive measures. In this
context, our study contributes further insights into regional differences
and noteworthy uncertainties within the provided projections of future
precipitation.

For the largest part of the study region, projected increases in
surface pressure are accompanied by decreases in daily maximum wind
speed, which is plausible from a physical point of view. This includes
a negative correlation between air temperature and near-surface wind
speed (Wu et al., 2018) as well as reduced near-surface wind speeds
due to a reduction of the pressure gradient force (Wu et al., 2016; Guo
et al., 2011). However, these authors also determine that a regional dis-
tinction becomes necessary when analysing near-surface winds, as the
outlined predictors alone do not sufficiently explain observed changes
on this height level. This also applies to the findings of our study that
indicate a significant increase in daily maximum wind speeds across the
South China Sea, accompanied with an increase in the annual frequency
of extreme wind events and compound events.
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Fig. 10. Annual frequency of days with tropical cyclone-force winds >17.5 m s−1. (a) ERA5 1981–2000, (b) projected changes in 2080–2099 for CORDEX model mean under RCP
2.6, (c) projected changes in 2080–2099 for CORDEX model mean under RCP 8.5. Dots indicate statistical significance at 𝛼 = 0.05.
4.3. Wind-based extreme events and compound events

Two main findings emerge from this analysis in terms of wind-
based extreme events and compound events of extreme wind speeds
and heavy precipitation. For one, predictions show a distinct westward
shift of the area with the highest annual frequency, from the Northern
Philippine Sea into the South China Sea. This appears for both RCP
scenarios, but increases are amplified under RCP 8.5 conditions and
statistically significant increases are more widespread. On the other
hand, these changes appear not only over maritime areas, but reach
into the continent, substantially impacting coastal regions. For most of
these regions, the inspected compound events occurred less frequently
than extreme events including only wind. Under the given scenarios,
especially under RCP 8.5, the projected relative increases in the annual
number of compound events exceeds those of univariate wind-based
extreme events. As pointed out by Zhang et al. (2021), and Zscheischler
et al. (2018), the impacts of compound events on the environment,
economy and human health are disproportionate when compared to
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univariate extreme events. Protective and adaptive measures coun-
teracting these additional risk factors become even more necessary
if the frequency of compound events increases under future climate
conditions.

Regarding the question whether the projected long-term changes in
these predictors act favourable towards tropical cyclogenesis, the com-
plex physical relations and interactions act detrimental towards a clear
interpretation. On the one side, increased radiation and near-surface
air temperatures, interacting with sea surface temperatures, enhance
the development of tropical cyclones (Emanuel, 2007). On the other
side, Vecchi and Soden (2007) show adverse effects of increased upper-
tropospheric warming and wind shear towards tropical cyclogenesis. To
grant a more comprehensive view, further investigations of additional
predictors would become necessary but exceeded the scope of our
analysis. This can be subject to further studies, that can potentially
make use of further improved datasets, for example in terms of grid
resolution, parameterizations and computational capacity.

Taking the projected changes of the atmosphere into account, Knut-
son et al. (2015) show a potential decrease in the overall frequency of
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Fig. 11. Annual frequency of compound extreme events including tropical cyclone-force winds (>17.5 m s−1) and daily precipitation above the 99th percentile (maximum 1 day
lag). (a) ERA5 1981–2000, (b) projected changes in 2080–2099 for CORDEX model mean under RCP 2.6, (c) projected changes in 2080–2099 for CORDEX model mean under
RCP 8.5. Dots indicate statistical significance at 𝛼 = 0.05.
tropical cyclones, but an increase in storm intensity and precipitation.
In its latest Assessment Report, the (IPCC, 2021) discusses an increase
in precipitation and storm intensity to be the likely future scenario and
anthropogenic warming to be one of the main drivers. While our study
mostly confirms these projections, it can contribute to the existing ex-
pertise by showing the necessity of a regionally differentiated analysis.
While large portions of our study area are projected to experience a
decrease in wind-based extreme events and compound events, specific
subregions, e.g. the coastal regions of the South China Sea, show signif-
icant increases pointing out potentially heavy socioeconomic impacts in
the future.

4.4. Limitations

While we thoroughly accounted for uncertainties in the underlying
data sets, limitations regarding the interpretation of the results remain.
For example, the impact of the applied interpolation method to match
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the spatial structures of the model and evaluation data should be fur-
ther investigated. As the analyses of Latombe et al. (2018) and Accadia
et al. (2003) pointed out, the choice of interpolation method can impact
the data quality negatively and impose an additional source of bias.

To further evaluate the potential of bias adjustment in our study
region, additional methods, as for example discussed in Gutiérrez et al.
(2019), could be included and compared to this research. Also, mul-
tivariate (Dieng et al., 2022; Cannon, 2018), trend-preserving bias
adjustment methods (Lange, 2019) could be applied in this context.
This continuative analysis could, for example, highlight uncertainties
due to undetectable changes in trends within future periods.

It will also be of interest to study uncertainties arising from the
choice of reference data set. Regarding this issue (Xu et al., 2022a),
prove ERA5 to be a reliable reference for our study region. However,
the authors also point out potential sources of bias within reanalysis.
For example, the inclusion of station-based observational data sets may
lead to altitude-related discrepancies between the station data and the
final reanalysis product. In the context of uncertainties arising from
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Fig. A.1. Taylor diagrams to evaluate 30 cross validated ensemble members used for quantile delta mapping (QDM). Each object represents one ensemble member, black outlines
depict members of the adjusted data set, colours refer to the inspected variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
model characteristics a discrimination of bias originating from the
GCMs and the RCMs can furthermore be achieved by including RCM
runs driven by reanalysis (Tang et al., 2022; Pastén-Zapata et al., 2020;
Martynov et al., 2013).

In terms of wind-based extreme events and compound events, this
study is heavily reliant on the findings of Walsh et al. (2007) re-
garding the definition of tropical cyclone-force winds. While extensive
research exists towards the ability of models to represent tropical
cyclones sufficiently and studies demonstrate constraints under which
such an analysis becomes plausible, it nevertheless remains a source
of uncertainty. Therefore, this research could be complemented by a
continuative uncertainty assessment, for instance concerning the choice
of thresholds regarding extreme events. In the case of precipitation,
for example, the 98th percentile (Martius et al., 2016; Guzzetti et al.,
16
2008), and the 95th percentile (Zhang et al., 2011; Cao et al., 2018)
could be considered. As Zscheischler et al. (2021) demonstrated, a
deeper statistical analysis can also reveal changes in the statistical
dependence of two compounding variables. This was beyond the limits
of this study but could be of high interest and grant further insights
into potential future atmospheric mechanics.

While the findings of this study provide a comprehensive overview
of possible atmospheric changes in the future, the spatial resolution
of the results could be improved to obtain optimized projections for
stakeholders and decision-makers on site. A refinement and further
evaluation of these findings could be achieved, for example with fo-
cus on urban regions such as Shanghai and Shenzhen, by performing
statistical downscaling and including station-based observations.
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Fig. B.1. Projected changes in the annual frequency of days with tropical cyclone-force winds >17.5 m s−1 for the included single models. Left side: projected changes in 2080–2099
under RCP 2.6, right side: projected changes in 2080–2099 under RCP 8.5. Rows are single models in accordance with Table 1. Dots indicate statistical significance at 𝛼 = 0.05.
Please note the varying colour scale when comparing to Fig. 10.
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Fig. C.1. Projected changes in the annual frequency of compound extreme events including tropical cyclone-force winds (>17.5 m s−1) and daily precipitation above the 99th
percentile for the included single models. Left side: projected changes in 2080–2099 under RCP 2.6, right side: projected changes in 2080–2099 under RCP 8.5. Rows are single
models in accordance with Table 1. Dots indicate statistical significance at 𝛼 = 0.05. Please note the varying colour scale when comparing to Fig. 11.
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5. Conclusions

The objectives of this study included performance assessment of bias
adjustment methods, long-term changes in crucial atmospheric predic-
tors under different future scenarios, and projected changes in extreme
and compound events over East Asia and the northwest Pacific. To ad-
dress these objectives we created a multi-model multi-scenario ensem-
ble based on different bias adjustment methods and GCM-RCM combi-
nations obtained from EAS-CORDEX. The key findings, with regard to
the research questions, include the following:

Quantile delta mapping performs best in minimizing bias and proves
to be a valid method to optimize the quality of model output and
improve the robustness of the projected atmospheric changes. Statis-
tically significant differences exist between the debiased projections
of RCP scenarios 2.6 and 8.5, and this is valid for large portions of
the study area. Large differences also exist between the bias adjusted
output of the included single models with partly contradictory trends
for specific parameters and regions. These two factors indicate the
range of uncertainty that must be considered when using these data
sets as basis for further research or decision making.

The most important long-term changes in the inspected model mean
values include an increase in daily maximum temperature ranging from
1.5 to 4 ◦C, dependent on the future socioeconomic and technological
development. Annual precipitation projections include a slight increase
for RCP 8.5, however the range of uncertainty remains high. The
picture is uncertain for maximum wind speed and surface pressure,
mostly being dominated by non-significant variations. For maximum
temperature and precipitation, percentile-based daily extreme events
on the heavy tail of the distribution are projected to intensify more
rapidly than the overall mean.

The analysis of univariate extremes and compound events necessar-
ily requires a regional distinction. While many subregions, solely over
the ocean, will experience a decrease in frequency, specific parts of the
study domain show a significant increase in both wind-based extremes
and compound events. This relates in particular to the South China Sea,
for which both types of events are projected to increase in frequency
and intensity. In this region, the relative increase in relation to the
annual frequency is projected to be higher for compound events than
for solely wind-based events, and the expected changes are amplified
under RCP 8.5.
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