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A new way is proposed to cancel the cosmological constant. The proposal involves the metric
determinant acting as a type of self-adjusting q-field without need of a fine-tuned chemical potential. Since
the determinant of the metric now plays a role in the physics, the allowed coordinate transformations are
restricted to those with unit Jacobian. This approach to the cosmological constant problem is, therefore,
similar to the unimodular-gravity approach of the previous literature. The resulting cosmology has been
studied and the obtained results show the natural cancellation of an initial cosmological constant if
quantum-dissipative effects are included.
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I. INTRODUCTION

The cosmological constant problem, at the interface of
gravitation and elementary particle physics, is certainly one
of the most important problems of modern physics [1,2]. In
a nutshell, the main cosmological constant problem is as
follows (throughout, we use natural units with c ¼ 1 and
ℏ ¼ 1). The electroweak standard model of elementary

particles involves a vacuum energy density ϵðEWSMÞ
V of the

order of ð100 GeVÞ4 ∼ 1044 eV4. Moreover, this energy
density can be expected to vary as the temperature T of the
Universe drops. How, then, can the Universe end up with a
vacuum energy density ΛðobservedÞ of order 10−11 eV4?
There are 55 orders of magnitude to explain. See, in
particular, Ref. [2] for further discussion of the astronomi-
cal observations.
We remark that the cosmological constant problem is

about canceling all different contributions to the vacuum
energy density appearing over the whole history of the
Universe and not about canceling just one number. For this
reason, some form of adjustment mechanism seems to be
called for. A particular adjustment mechanism has been
proposed that is inspired by condensed matter physics,
where a special type of vacuum variable q provides for the
natural cancellation of any previously available vacuum
energy density [3,4].
The 4-form realization of q-theory suggests the existence

of a chemical potential μ which leads to the cancellation of

the gravitating vacuum energy density in equilibrium.
However, the dynamics towards the equilibrium remains
a problem since the relaxation of μ to its equilibrium value
μ0 in the Minkowski vacuum was not demonstrated in the
original papers [3,4].
Here, we consider another version of q-theory, where the

role of the dynamical vacuum variable q is played by the
tetrad determinant [5]. The chemical potential in this case
may arise, for example, from a model of the vacuum as a
spacetime crystal, where the number of lattice points is
conserved, which gives rise to a chemical potential μ.
The present paper essentially consists of two parts,

where the second part (Secs. VI and VII) presents the
main cosmological results from an assumed action (6.1).
This assumed action, with only the fields of general
relativity and the standard model of elementary particles,
has a single nonstandard term involving the square root of
the negative metric determinant (or, equivalently, the tetrad
determinant). The first part (Secs. II–V) gives a condensed-
matter-inspired motivation for the assumed action (6.1), but
this action may very well have another origin.
The specific content of the first part, which can be skipped

in a first reading, is as follows. In Sec. II, we present a
physical motivation for having a chemical potential asso-
ciated with the metric determinant. In Sec. III, we then show
that the metric determinant can, in principle, cancel an initial
cosmological constant, but the chemical potential needs to
be fine-tuned. In Sec. IV, we avoid this fine-tuning of the
chemical potential by introducing a nonstandard coupling of
the metric determinant to matter, provided the allowed
coordinate transformations are restricted to those with unit
Jacobian. In Sec. V, we compare the new metric-determinant
cancellation mechanism with what happens in condensed
matter physics, which was the inspiration of our previous
work on q-theory (for a brief review, see Appendix A
in Ref. [6]).
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The specific content of the second part, which can
essentially be read without knowledge of the first part, is
as follows. In Sec. VI, we present a basic model for
cosmology with the metric determinant as a dynamic
variable. We have both analytic and numeric results, but
the cosmological constant cannot be canceled in general.
For that cancellation, we may need to appeal to nonre-
versible effects such as dissipation. In Sec. VII, we consider
a phenomenological model of cosmology with quantum-
dissipative effects included. The main result is that it
appears possible to cancel a cosmological constant for
initial boundary conditions within a finite domain (attractor
behavior). The three appendixes give further results.
In Sec. VIII, we give some concluding remarks on

both parts.

II. SPACETIME CRYSTAL: CONSERVATION
OF LATTICE POINTS

As explained in Sec. I, it is possible to skip ahead to
Sec. VI in a first reading. The present section sets out to
explore a potential condensed-matter-type origin of the
action used later for cosmology.
For a (3þ 1)-dimensional vacuum crystal with elasticity

tetrads [7,8]

Ea
αðxÞ ¼ ∂αXaðxÞ; ð2:1Þ

the density n of lattice points is determined by the volume
of the Brillouin zone,

nðxÞ ¼ 1

ð2πÞ4 e
αβγδE0

αðxÞE1
βðxÞE2

γðxÞE3
δðxÞ: ð2:2Þ

Neglecting factors of 2π, the quantity nðxÞ equals the tetrad
determinant EðxÞ with the dimension of inverse length to
the fourth power (the phase fields Xa are dimensionless).
As suggested in Sec. VII of Ref. [7], it is, in principle,

possible that gravity emerges from a vacuum crystal with
elasticity tetrads (2.1). There would then be an effective
metric gαβ built from the elasticity tetrads, gαβ ∝ ηabEa

αEb
β .

In that case, we can identify the tetrad determinant with the
square root of minus the metric determinant, E ∝ ffiffiffiffiffiffi−gp

. If
the vacuum crystal has a fundamental length scale
l≡ 1=M, we would have

M−4nðxÞ≡M−4EðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
; ð2:3Þ

which relates the lattice-point density n to the emergent
dimensionless metric gαβ that enters the Einstein-Hilbert
action for gravity.
The total number of lattice points is given by

N ¼
Z

d4 x nðxÞ; ð2:4Þ

and it is natural to assume that this number is conserved.
Then there is a Lagrange multiplier in the action,

SN ¼ −μN ¼ −μ
Z

d4x nðxÞ; ð2:5Þ

where μ is the corresponding chemical potential. This
chemical potential μ is dimensionless, which may be of
direct relevance for a recent proposal to replace the big
bang singularity by a quantum phase transition [6].
Instead of a spacetime crystal with a conserved number

of lattice points, one might consider the conventional
vacuum, but now with conservation of the 4-volume.
This would give the same action (2.5) with n from (2.3),
which is really the only input needed for the following.

III. CANCELLATION OF THE
COSMOLOGICAL CONSTANT

The total action is

S ¼ SG þ SM þ SN; ð3:1Þ

with the action SN from (2.5), the gravitational Einstein–
Hilbert action SG containing the Ricci curvature scalar, and
the action SM for the matter fields. The action (3.1) is fully
diffeomorphism invariant.
To study the Minkowski vacuum, we can neglect the

gradient terms in the matter action and also the curvature
term. The matter term then depends only on a potential ϵ,

SM ¼
Z

d4xM−4 n ϵðΦÞ; ð3:2Þ

where Φ is a generic scalar field, considered here to be
without gradients, i.e., constant over the spacetime mani-
fold. The equilibrium vacuum state is obtained by variation
of this last action over Φ,

dϵðΦÞ
dΦ

����
Φ¼Φ0

¼ 0: ð3:3Þ

The equilibrium value Φ0 gives the vacuum energy con-
tribution ϵðΦ0Þ to the effective cosmological constant. It is
nonzero if there is no artificial fine-tuning.
The total contribution to the vacuum energy density ρvac

that enters the Einstein gravitational field equation comes
from SM þ SN by variation of M−4n,

ρvac ¼ ϵðΦ0Þ − μM4: ð3:4Þ

From the Einstein equation applied to the state with zero
curvature R ¼ 0 and zero temperature T ¼ 0, we obtain the
equilibrium value μ ¼ μ0 of the Minkowski vacuum,

ρvac ¼ ϵðΦ0Þ − μ0M4 ¼ 0: ð3:5Þ
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The vacuum energy density of the matter field ϵðΦ0Þ is
naturally canceled by the chemical potential μ ¼ μ0. This is
similar to the 4-form q-theory [3], where the equations
ϵðqÞ − μq ¼ 0 and dϵ=dq − μ ¼ 0 determine both q0
and μ0.
The main problem, now, is in the dynamics: how to

describe the dynamical relaxation of the parameter μ to its
equilibrium value μ0.

IV. METRIC DETERMINANT AS
A DYNAMIC VARIABLE

Probably the best way to deal with the chemical-potential
fine-tuning problem is to introduce the dependence of the
matter energy density on n, i.e., to have a potential
ϵ ¼ ϵðΦ; nÞ. In this case, the action is invariant only under
those coordinate transformations that have a Jacobian equal
to unity,

detð∂x0α=∂xβÞ ¼ 1: ð4:1Þ

These restricted coordinate transformations also appear in
the unimodular-gravity approach to the cosmological con-
stant problem [9–13] (a brief review is given in Sec. VII
of Ref. [1]).
The Minkowski vacuum may then have a continuous set

of μ values, which determine the equilibrium values n0ðμÞ
of the metric determinant in equilibrium. In other words,
there are many different quantum vacua in flat Minkowski
spacetime and they are parametrized by the values μ of the
chemical potential. (Recall that the Minkowski vacuum in
the original q-theory [3] has a single value μ0 for the
chemical potential.)
The Einstein gravitational field equation (to be given

explicitly in Sec. VI A) now contains the following vacuum
energy density:

ρvacðΦ; nÞ ¼ M4
d
dn

½nM−4ϵðΦ; nÞ − μ n�

¼ ϵðΦ; nÞ þ n
dϵðΦ; nÞ

dn
− μM4: ð4:2Þ

The equilibrium vacua are obtained by variation of the
action over both Φ and n,

dϵðΦ; nÞ
dΦ

¼ 0; ð4:3aÞ

ρvacðΦ; nÞ ¼ 0: ð4:3bÞ

These equations determine the equilibrium values of
the variables Φ and n as functions of μ; that is, having
Φ ¼ ΦðμÞ and n ¼ nðμÞ over a finite range of μ. This range
does not necessarily include μ ¼ 0, as can be seen from the
example below. Hence, it is necessary to introduce μ and
we cannot just forget about it.

The simplest example is

ϵðΦ; nÞ ¼ ϵ̃ðΦÞ
�
1þ n

nscale

�
; ð4:4aÞ

with a fixed positive density nscale (alternatively written as
M4). The corresponding gravitating vacuum energy density
from (4.2) reads

ρvacðΦ; nÞ ¼ ϵ̃ðΦÞ
�
1þ 2

n
nscale

�
− μM4: ð4:4bÞ

Now, condition (4.3a) gives the equilibrium valueΦ0 of the
matter field Φ and condition (4.3b) gives the equilibrium
value n0 ¼ n0ðμÞ of the metric determinant n ∝ ffiffiffiffiffiffi−gp

,

n0ðμÞ ¼ nscale
μM4 − ϵ̃ðΦ0Þ

2ϵ̃ðΦ0Þ
: ð4:5Þ

Assume, for definiteness, that ϵ̃ðΦ0Þ > 0. Then, self-
sustained Minkowski vacua with n0 > 0 exist only at
μM4 > ϵ̃ðΦ0Þ, which does not allow for μ ¼ 0 as men-
tioned above. [Incidentally, the condition μM4 > ϵ̃ðΦ0Þ can
be relaxed by modifying the ϵðΦ; nÞ Ansatz (4.4); a related
example will be presented in the last paragraph of
Appendix A.]
This approach with a dynamically-fixed metric determi-

nant is an extension of the unimodular-gravity approach
[9–13], where typically the metric determinant is elimi-
nated as a dynamical variable; see, e.g., the second and
third paragraphs of Sec. VII in Ref. [1]. (Some related ideas
on a dynamical measure of integration in the action,
generalizing

ffiffiffiffiffiffi−gp
, appear in Ref. [14] and references

therein.)
The simple model (4.4) can be used for calculations of

the dynamics of the cosmological constant, since, contrary
to the original q-theory, the relaxation to the Minkowski
vacuum does not require the fine-tuning of μ to the value
μ0. Instead of the problematic relaxation of μ, there is the
relaxation of n at a given value μM4 > ϵ̃ðΦ0Þ > 0 for the
example considered.
We can also study the relaxation after a cosmological

phase transition, at which the Φ0 value may change.
Different from the original q-theory approach, this does
not require a change in the chemical potential. After the
transition, the quantity n0 will be adjusted to a new
equilibrium state, while μ remains fixed. Moreover, we
can expect a phase transition between the self-sustained
Minkowski vacuum with ϵ̃ðΦ0Þ < μM4 and the state with
ϵ̃ðΦ0Þ > μM4, which can be expanding or contracting.
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V. COMPARISON WITH CONDENSED
MATTER PHYSICS

In condensed matter physics with conservation of
particle number, there is the thermodynamic equilibrium
equation,

dϵ
dn

¼ μ; ð5:1aÞ

and the Gibbs-Duhem relation at temperature T ¼ 0,

ρvac ¼ ϵðnÞ − μn ¼ −P: ð5:1bÞ
The combination of both relations determines μ and n as a
function of the pressure P.
If there is no external pressure, Pexternal ¼ 0, one obtains

the nullification of the effective cosmological constant,

ρvac ¼ ϵðnÞ − μn ¼ −P ¼ −Pexternal ¼ 0: ð5:2Þ

Here, the nullification of the vacuum energy is provided by
the absence of an external environment. But only self-
sustained systems can exist in the absence of external
pressure.
For the example (4.4), self-sustained vacua exist if

μM4 > ϵðΦ0Þ. The vacua with μM4 < ϵðΦ0Þ are not self-
sustained, so that the cosmological constant (the analog of
the external pressure) is nonzero and leads to expansion or
contraction of these vacua (a de Sitter-type universe).

VI. COSMOLOGY: BASIC MODEL

A. Action and Ansätze

We will now investigate the application to cosmology of
the theory as discussed in the previous sections. These
previous sections can, however, be skipped in a first
reading, as the present section and the next are self-
contained. Here, we aim to establish the asymptotic
vanishing of the total gravitating vacuum energy density.
For that, we simplify the theory to the bare minimum: we
remove the scalarΦ field (which is not really needed for the
cosmological-constant cancellation) and add a standard real
scalar X (needed to get the appropriate expansion of the
Friedmann-Robertson-Walker-type model).
The postulated action is given by

S ¼ SG þ SM þ SΛ−plus þ SN; ð6:1aÞ

SG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p R
16πGN

; ð6:1bÞ

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gαβ∂αX∂βX þ ϵ̄ðXÞ

�
; ð6:1cÞ

SΛ−plus ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ϵðΛ; nÞ; ð6:1dÞ

SN ¼ −μ
Z

d4x nðxÞ; ð6:1eÞ

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
M4; ð6:1fÞ

where gðxÞ is the determinant of the metric gαβðxÞ with
Lorentzian signature and 1=M a fundamental length scale
of the underlying theory. In (6.1c) and (6.1d), we simply
take

ϵ̄ðXÞ ¼ 1

2
g2M2 X2; ð6:2aÞ

ϵðΛ; nÞ ¼ Λþ ζn; ð6:2bÞ

with real parameters g2 ≥ 0 and ζ > 0. We emphasize that,
strictly speaking, the only new input is the single term n ∝ffiffiffiffiffiffi−gp

in the potential (6.2b), consistent with having coor-
dinate invariance restricted by (4.1). A possible condensed-
matter-type origin of the action (6.1) has been discussed in
Secs. II–V, but this action can also have an entirely different
origin.
In the resulting gravitational field equation,

1

8πGN

�
Rαβ −

1

2
Rgαβ

�
¼ ρvacgαβ þ TM

αβ; ð6:3Þ

we have

ρvac ¼ Λþ 2ζn − μM4; ð6:4aÞ

Λ ¼ λM4; ð6:4bÞ

where the chemical potential μ ≠ 0 traces back to the
action term (6.1e) and n has been defined by (6.1f).
Taking the covariant divergence of (6.3) and using the
contracted Bianchi identities, we obtain the following
combined energy-momentum conservation relation:

ðρvacgαβ þ TM
αβÞ;β ¼ 0; ð6:5Þ

where the semicolon stands for a covariant partial derivative
(the colon stands for a standard partial derivative). If the
matter component is separately conserved, ðTM

αβÞ;β ¼ 0, then
equally so for the vacuum component, so that ρvac;β ¼ 0.
With diffeomorphisms restricted to those of unit

Jacobian, the appropriate spatially-flat Robertson-Walker
(RW) metric has been given in Ref. [15] (see also
Ref. [11]):

ds2 ¼ gαβðxÞdxαdxβ ¼ −ÃðtÞdt2 þ R̃2ðtÞδijdxidxj; ð6:6Þ

where t is the cosmic time coordinate from x0 ¼ ct ¼ t and
ÃðtÞ > 0 is an additional Ansatz function. The spatial
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indices i, j in (6.6) run over f1; 2; 3g and R̃ðtÞ is the cosmic
scale factor [the tilde marks the difference with the Ricci
scalar appearing in (6.1b)]. For ÃðtÞ ¼ const > 0, we
recover the standard spatially-flat RW metric. We remark
that the extended RW metric (6.6) gives the vacuum
variable

n ∝
ffiffiffiffiffiffi
−g

p ¼ ðÃÞ1=2jR̃j3; ð6:7Þ

with proportionality constant M4 according to (6.1f).
If the scalar field X is spatially homogeneous in the

cosmological spacetime (6.6), X ¼ XðtÞ, then its energy-
momentum tensor corresponds to that of a perfect fluid
with the following energy density and pressure [16]:

ρXðtÞ ¼
1

2

1

aðtÞ
�
dXðtÞ
dt

�
2

þ 1

2
g2M2ðdXðtÞÞ2; ð6:8aÞ

PXðtÞ ¼
1

2

1

aðtÞ
�
XðtÞ
dt

�
2

−
1

2
g2M2ðXðtÞÞ2: ð6:8bÞ

If the scalar field X is, moreover, rapidly oscillating,
XðtÞ ¼ X0 cosðωtÞ, then the time averages of the energy
density and the pressure give the following matter equation-
of-state parameter:

wM ¼ hPXi
hρXi

¼ ω2=a − g2M2

ω2=aþ g2M2
; ð6:8cÞ

where the cosmological time scale relevant toaðtÞ is assumed
to be much larger than 1=ω or 1=M. Obviously, g2 ¼ 0
gives wM ¼ 1 and a value wM ¼ 1=3 follows from
ω2=a ¼ 2g2M2.
In the following, we will work with this perfect fluid

instead of the original scalar X field and take wM ¼ 1=3,
which can be interpreted as a gas of ultrarelativistic particles.

B. Dimensionless ordinary differential equations

Henceforth, we set

M ¼ EPlanck ≡ 1=
ffiffiffiffiffiffiffi
GN

p
; ð6:9Þ

and introduce the following dimensionless quantities (the
chemical potential μ is already dimensionless):

t → τ; ρXðtÞ → rχðτÞ; ÃðtÞ → aðτÞ; ð6:10aÞ

XðtÞ→ χðτÞ; PXðtÞ→pχðτÞ; R̃ðtÞ→ rðτÞ; ð6:10bÞ

nðtÞ → nðτÞ; Λ → λ; ð6:10cÞ

where nðτÞ is dimensionless and equal to
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðτÞp ¼ffiffiffiffiffiffiffiffiffi

aðτÞp jrðτÞj3.

From the field equations of the action (6.1) and using the
homogeneous perfect fluid from the χ scalar, we obtain the
following dimensionless ordinary differential equations
(ODEs):

_rχ þ 3ð1þ wMÞ
�
_r
r

�
rχ ¼ 0; ð6:11aÞ

3

�
_r
r

�
2

¼ 8πaðrχ þ rvacÞ; ð6:11bÞ

2̈r
r
þ
�
_r
r

�
2

−
�
_a
a

��
_r
r

�
¼ −8πaðwMrχ − rvacÞ; ð6:11cÞ

rvac ¼ λþ 2ζ
ffiffiffi
a

p jrj3 − μ; ð6:11dÞ

where the overdot stands for differentiation with respect to τ.
These ODEs have three real parameters: thematter equation-
of-state parameterwM > −1 and two parameters entering the
vacuum energy density rvac, namely ζ > 0, and μ ≠ 0.
Incidentally, the function aðτÞ has been assumed to be
positive, so that there is no difficulty in taking its square root.
It can be shown that the ODEs (6.11) give an equation

for the constancy of the vacuum energy density,

_rvac ¼ 0: ð6:12Þ
This equation corresponds to the energy-conservation
equation of a homogeneous perfect fluid with equation-
of-state parameter wvac ¼ −1, compared with (6.11a) for
the matter component. In fact, (6.12) traces back to (6.5) for
matter with ðTM

αβÞ;β ¼ 0, so that ρvac;β ¼ 0. In Sec. VII, we
will introduce a vacuum-matter energy exchange, but here
we do without and keep (6.12).

C. Analytic Friedmann-type solution for wM = 1=3

We now present an exact solution of the ODEs (6.11) for
wM ¼ 1=3 (an exact solution for general wM > −1 is given
in Appendix A). We take the following Ansatz functions for
τ > 0:

aðτÞ ¼ ατ−2p; ð6:13aÞ

rðτÞ ¼ α−1=6r̂τp=3; ð6:13bÞ

rχðτÞ ¼ α−1χ̂τ−m; ð6:13cÞ

with positive parameters α, p, r̂, χ̂, andm. The vanishing of
rvac from (6.11d) gives immediately

r̂sol ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ζ
ðμ − λÞ3

s
; ð6:14Þ

where, for a given value μ > 0, the dimensionless cosmo-
logical constant λ must obey the following condition:
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λ < μ; ð6:15Þ

so that λ can also be negative. Here, and in the following,
we have assumed a positive μ, but similar results are
obtained for a negative μ.
For the Ansatz functions (6.13), the dimensionless Ricci

and Kretschmann curvature scalars read

R ¼ 2

3
pð5p − 3Þ 1

α
τ−2ð1−pÞ; ð6:16aÞ

K ¼ 4

27
p2ð9 − 24pþ 17p2Þ 1

α2
τ−4ð1−pÞ: ð6:16bÞ

Restricting the power p of the Ansatz functions to the range

0 < p < 1; ð6:17Þ

we look for an expanding (p > 0) Friedmann-type universe
approaching Minkowski spacetime (different from a de
Sitter spacetime at p ¼ 1; cf. Eq. (52) in Ref. [17]). Some
details of the analytic de Sitter-type solution with p ¼ 1
and χ̂ ¼ 0 are given in Appendix B.
With the Ansatz functions (6.13), the three ODEs from

(6.11) reduce to the following expressions:

0 ¼ 1

α
ð4p=3 −mÞχ̂τ−1−m; ð6:18aÞ

0 ¼ p2

3τ2
− 8πχ̂τ−m−2p; ð6:18bÞ

0 ¼ p2

τ2
−
2p
3τ2

þ 8

3
πχ̂τ−m−2p: ð6:18cÞ

These equations have an exact solution,

psol ¼ 3=5; ð6:19aÞ

msol ¼ 4=5; ð6:19bÞ

χ̂sol ¼
3

200π
≈ 0.00477465; ð6:19cÞ

for arbitrary α > 0. Technically speaking, the solution
exists because of an interplay between the two metric
Ansatz functions and the matter energy density. The
evaluated matter equation (6.18a) fixes the power m to
be equal to 4p=3. The evaluated first Friedmann equa-
tion (6.18b) then fixes p ¼ 3=5 and m ¼ 4=5, so that both
terms in the equation get the same temporal dependence τ−2

and cancel each other for an appropriate value of the
constant χ̂. It turns out that the evaluated second Friedmann
equation (6.18c) is then also satisfied.
The main points of this cosmology are

(i) an expanding Friedmann-type universe with cosmic
scale factor r ∼ τ1=5.

(ii) a decreasing perfect-fluid energy density and pres-
sure rχðτÞ ¼ 3pχðτÞ ∼ τ−4=5.

(iii) a cosmological constant canceled by
ffiffiffiffiffiffi−gp ¼ r̂sol

from (6.14), provided condition (6.15) holds, so
that rvacðτÞ ¼ 0.

(iv) the curvature scalars RðτÞ ∼ 0 and KðτÞ ∼ τ−8=5,
approaching Minkowski spacetime for τ → ∞.

Observe that, for a given value μ, we have a whole family of
asymptotic solutions depending on the cosmological con-
stant λ via (6.14), as long as condition (6.15) holds. The
numerics must tell us whether or not there is an attractor
behavior towards Minkowski spacetime.

D. Initial boundary conditions

Before we turn to the numerical evaluation of the ODEs
(6.11), we need to address the delicate issue of boundary
conditions. We are concerned with three functions: aðτÞ,
rðτÞ, and rχðτÞ. The corresponding function space is vast
and we will seek guidance from the analytic solution
obtained in Sec. VI C.
So, we will start out at an arbitrary coordinate time τbcs >

0 and obtain boundary conditions on the three functions by
considering small perturbations of the analytic solution as
given by (6.13), (6.14), and (6.19), for α ¼ 1. There are two
kinds of perturbations, those that do not change rvacðτbcsÞ ¼
0 to leading order and those that do (let us call the first kind
“mild” and the second kind “dangerous”). We have two
types of perturbations in the first category [keeping
rvacðτbcsÞ ≈ 0] and one type of perturbations in the second
category [making rvacðτbcsÞ nonzero to leading order in the
perturbation].
The first type of “mild” perturbations can be written as

follows:

�
δa
a
;
δr
r
;
δrχ
rχ

	ðtype-1Þ
¼ f0; 0; δ1g; ð6:20aÞ

with a negative or positive infinitesimal δ1. For this
type-1 perturbation, the vacuum energy density (6.11d)
stays strictly zero.
The second type of “mild” perturbations has

�
δa
a
;
δr
r
;
δrχ
rχ

	ðtype-2Þ
¼ f−6 δ2; δ2; 0g; ð6:20bÞ

with a negative or positive infinitesimal δ2. The actual ratio
of δr=r and δa=a in (6.20b) keeps the combination

ffiffiffi
a

p jrj3
unchanged to first order in δ2 and precisely this combina-
tion enters the vacuum energy density (6.11d).
The third type of perturbations is in the “dangerous”

category, having rvac ≠ 0 at the starting value τ ¼ τbcs,
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�
δa
a
;
δr
r
;
δrχ
rχ

	ðtype-3Þ
¼ fδ3=6; δ3; 0g; ð6:20cÞ

with a negative or positive infinitesimal δ3. These pertur-
bations give, indeed, rvac ∝ δ3, which can be negative or
positive.
Note, finally, that the above three perturbations are

mutually orthogonal.

E. Numerical results

The ODEs (6.11) can be solved numerically.
Specifically, we use the first-order ODE (6.11a) and the

second-order ODE (6.11c), together with the τ derivative of
the first-order ODE (6.11b), while fixing the boundary
conditions to satisfy (6.11b) as a constraint.
Numerical results for μ ¼ 3 and λ ¼ 1 are shown in

Fig. 1 for boundary conditions from the analytic solution of
Sec. VI C. The numerical solution of Fig. 1 essentially
reproduces the analytic solution, which allows us to test the
numerical accuracy. In fact, we see a small error building up
in the dimensionless Ricci curvature scalar RðτÞ, but the
gravitating vacuum energy density rvacðτÞ stays close to
zero within an accuracy of 10−7.
Further numerical results are shown in Fig. 2 for

boundary conditions from a type-1 perturbation (6.20a).
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FIG. 1. Numerical solution of the ODEs (6.11) with parameters wM ¼ 1=3, ζ ¼ 1, μ ¼ 3, and λ ¼ 1. The initial boundary conditions
are taken from the analytic solution (6.13), (6.14), and (6.19), for α ¼ 1. Specifically, the boundary conditions at τ ¼ τbcs ¼ 10 are:
fa; r; _r; rχg ¼ f0.0630957344; 1.58489319; 0.0316978638; 0.000756730758g, where the _r value has been obtained from the first
Friedman equation (6.11b). The top row shows the three basic variables: the metric functions rðτÞ and aðτÞ and the dimensionless matter
energy density rχ. The bottom row shows three derived quantities: the dimensionless Ricci curvature scalar R, the dimensionless
Kretschmann curvature scalar K, and the dimensionless gravitating vacuum energy density rvac from (6.11d).
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FIG. 2. The model parameters and boundary conditions at τ ¼ τbcs ¼ 10 are as in Fig. 1, but now with a type-1 perturbation (6.20a) for
a constant δ1 ¼ þ1=10: fa; r; _r; rχg ¼ f0.0630957344; 1.58489319; 0.0332450001; 0.000832403833g, where the _r value has been
obtained from the first Friedman equation (6.11b). Similar results are obtained for δ1 ¼ −1=10.
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The other “mild” perturbation (6.20b) gives the numerical
results shown in Fig. 3. The numerical solution of Fig. 2
asymptotically approaches the analytic solution from
Sec. VI C for an α value approximately equal to 0.95.
The numerical solution of Fig. 3 also gets close to the
analytic solution but not perfectly so, as rvacðτÞ is not
exactly zero (the linear term in δ2 vanishes at τ ¼ τbcs but
not the quadratic term).
For these five different boundary conditions (unper-

turbed, type-1 perturbations with δ1 ¼ �1=10, and type-
2 perturbations with δ2 ¼ �10−6), the vacuum energy
density is found to be canceled to high precision (less
than 10−7 for the numerical solutions shown, where λ ¼ 1
sets the scale). Obviously, these “mild” type-1 and type-2
perturbations have rvac ≈ 0 at the starting value τ ¼ τbcs,
which is then not changed by the later dynamics (numeri-
cally, a nontrivial result; analytically, we have _rvac ¼ 0, as
discussed in Sec. VI B).
As mentioned in Sec. VI D, “dangerous” perturbations

have rvac ≠ 0 at the starting value τ ¼ τbcs.We have obtained
numerical results for a type-3 perturbation (6.20c) with
δ3 ¼ þ10−6, giving a constant vacuumenergydensity rvac ¼
6.17444 × 10−6 (a related figurewill be given in Sec. VII C).
Apparently, we need tomodify the dynamics, in order to cure
the “dangerous” perturbations. For this reason, modified
ODEs with vacuum-matter energy exchange (earlier work
[18] already suggested the need for this type of energy
exchange) will be introduced in the next section.

VII. COSMOLOGY: QUANTUM-DISSIPATIVE
EFFECTS

A. Preliminary remarks

A general discussion of relaxation effects in q-theory has
been presented in Ref. [19]. A specific calculation, for a

standard spatially-flat Robertson–Walker metric [i.e.,
ÃðtÞ ¼ 1 in (6.6)], relies on particle production by space-
time curvature [20]. The resulting Zeldovich-Starobinsky-
type source term reads [21]

Γparticle-production ¼ γ̂

����R̃−1 dR̃
dt

����R2; ð7:1Þ

with the cosmic scaling function R̃ðtÞ of the metric (6.6)
and the Ricci curvature scalar RðtÞ ¼ R½ÃðtÞ; R̃ðtÞ�.
We then have for the cosmic evolution of the matter and

vacuum energy densities,

dρM
dt

þ � � � ¼ þΓparticle-production; ð7:2aÞ

dρV
dt

þ � � � ¼ −Γparticle-production; ð7:2bÞ

because of energy conservation (6.5). Observe that
Eqs. (7.2a) and (7.2b) are time-reversal noninvariant for
the source term as given by (7.1). This time-reversal
noninvariance is, of course, to be expected for a dissipative
effect, in fact a quantum-dissipative effect as particle
creation or annihilation is a genuine quantum phenomenon.

B. Modified ODEs with vacuum-matter
energy exchange

We now consider a relativistic matter component with
equation-of-state parameter wM ≡ Pχ=ρχ ¼ 1=3 and add a
positive source term Γ on the right-hand side of (6.11a). We
then need to determine how this addition feeds into the
other ODEs. Specifically, we take three steps towards
modified ODEs with a phenomenological implementation
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FIG. 3. The model parameters and boundary conditions at τ ¼ τbcs ¼ 10 are as in Fig. 1, but now with a type-2 perturbation (6.20b) for
a constant δ2 ¼ þ10−6: fa; r; _r; rχg ¼ f0.0630953559; 1.58489478; 0.0316978000; 0.000756730758g, where the _r value has been
obtained from the first Friedman equation (6.11b). Similar results are obtained for δ2 ¼ −10−6.
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of quantum-dissipative effects. Henceforth, we use the
dimensionless variables from (6.10).
In step 1, we add a source term Γ to the right-hand side of

(6.11a) for wM ¼ 1=3 to get

_rχ þ 4

�
_r
r

�
rχ ¼ Γ: ð7:3aÞ

Next, we see how the new term in (7.3a) feeds into the two
ODEs (6.11b) and (6.11c).
In step 2, we eliminate rχ by taking the sum of one third

of (6.11b) and (6.11c) for wM ¼ 1=3,

1

8πa

�
2̈r
r
þ 2

�
_r
r

�
2

−
�
_r
r

��
_a
a

��
¼ 4

3
rvac; ð7:3bÞ

where the rvac expression will be recalled shortly.
In step 3, we take the derivative of (6.11b), use (7.3a) to

eliminate _rχ , use (6.11b) to eliminate rχ , use the ̈r
expression from (7.3b), and get

_rvac ¼ −Γ; ð7:3cÞ

rvac ¼ λþ 2ζ
ffiffiffi
a

p jrj3 − μ; ð7:3dÞ

where the explicit rvac expression has now been repeated.
For completeness, we give the original first-order Friedman
equation,

3

�
_r
r

�
2

¼ 8πaðrχ þ rvacÞ; ð7:4Þ

which, if it holds initially for the solution of the ODEs (7.3),
will be satisfied at subsequent times (later on, this will
make for a useful diagnostic of the numerical accuracy).
Two remarks are in order:
(1) For Minkowski spacetime with aðτÞ ¼ rðτÞ ¼ 1 in

the dimensionless version of (6.6), we have _rχ ¼ Γ
from (7.3a) and _rvac ¼ −Γ from (7.3c), which
corresponds to a direct vacuum-matter energy ex-
change as long as Γ is nonvanishing.

(2) It would appear that the ODEs (7.3b)and (7.3c) are
independent of the matter energy density rχ, but that
dependence enters by the use of the first-order
Friedman equation (7.4) as a constraint on the
boundary conditions.

Another point is the choice of Γ so that the numerics
works. A suitable choice is

Γ ¼ γ̃j_r=rjðrvacÞ2; ð7:5aÞ

γ̃ðτÞ ¼ γ

�
τ2 − τ2bcs
τ2 þ 1

�
2

; ð7:5bÞ

γ ≥ 0; ð7:5cÞ

for initial boundary conditions at τ ¼ τbcs. This basically
has the structure of expression (7.1), because the left-hand
side of (7.3b) is proportional to the Ricci scalar [recall that
we have a matter component with wM ¼ 1=3, so that the
right-hand side of (7.3b) vanishes if there is no vacuum
component]. We have added in (7.5) a smooth switch-on
function γ̃ðτÞ, in order to ease the numerical evaluation of
the ODEs.
Observe, again, that the ODEs (7.3a) and (7.3c) with

source term (7.5) are time-reversal noninvariant. The basic
structure of the resulting vacuum-energy equation,

_rvac ¼ −γ̃j_r=rjðrvacÞ2; ð7:6Þ

is similar to the one discussed in Refs. [21,22], where, with
a rapid switch-on, an analytic solution could be obtained
for rvacðτÞ that drops to zero as τ → ∞.
The exact solution of Sec. VI C carries over to the

modified ODEs (7.3) with source term (7.5). The reason is
simply that this source term Γ vanishes if rvac ¼ 0, which is
precisely the case for our analytic solution.

C. Numerical results

Numerical results from the original ODEs (6.11) for
“mild” perturbations (keeping rvac ≈ 0) have been dis-
cussed in Sec VI E. These results are essentially unchanged
if we use the modified ODEs (7.3), as the source term (7.5)
vanishes if rvac does. We then turn to the “dangerous”
perturbations (making for nonzero rvac to leading order in
the perturbation), for which we have introduced the
modified ODEs (7.3) with the source term Γ from (7.5).
Numerical results, for μ ¼ 3 and λ ¼ 1, are presented in

Figs. 4 and 5 for boundary conditions from a type-3
perturbation (6.20c) with δ3 ¼ þ10−6 at τ ¼ τbcs ¼ 10
and two values of the vacuum-matter energy-exchange
coupling constant, γ ¼ 0 and γ ¼ 2 × 1011. Focussing on
the rvac panels in Fig. 5, we see that the modified ODEs
(7.3) can cancel an initial positive vacuum energy density
and get an asymptotic behavior close to that of the analytic
Friedmann-type solution of Sec. VI C for α ≈ 0.995. A
further remark on these rvac panels is that the drop of rvacðτÞ
by about an order of magnitude occurs smoothly but
rapidly, over the interval τ ∈ ½10; 10.3�. A similar drop
occurs for the Ricci curvature scalar (see the bottom-left
panel of Fig. 5), which is consistent with the result R ¼
32πrvac ≈ 100.53rvac from the ODE (7.3b). Corresponding
to the drop of the vacuum energy density (bottom-right
panel of Fig. 5), there is an increase of the matter energy
density (bottom-middle panel), but the match between both
panels is not perfect, which may be due to the nonlinearity
of the ODEs and the numerical accuracy.
For the same source term (7.5) with γ ¼ 2 × 1011,

different type-3 boundary conditions also give a relaxation
to vanishing rvac (see Figs. 6 and 7). In short, we get, for
μ ¼ 3 and λ ¼ 1, a vanishing vacuum energy density rvac
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FIG. 4. Numerical solution of the modified ODEs (7.3) with source term (7.5) and parameters wM ¼ 1=3, ζ ¼ 1, μ ¼ 3, λ ¼ 1, and
γ ¼ 0 (quantum-dissipative effects turned off). The initial boundary conditions are taken from the analytic solution (6.13), (6.14), and
(6.19), for α ¼ 1, but now with a type-3 perturbation (6.20c) for δ3 ¼ þ10−6. Specifically, the boundary conditions at τ ¼ τbcs ¼ 10 are:
fa; r; _r; rχg ¼ f0.0630957450; 1.58489478; 0.03182679077; 0.000756730758g, where the _r value has been obtained from the first
Friedman equation (7.4). The top row shows the three basic variables: the metric functions rðτÞ and aðτÞ and the dimensionless matter
energy density rχ. The bottom row shows three derived quantities: the dimensionless Ricci curvature scalar R, the dimensionless
Kretschmann curvature scalarK, and the dimensionless gravitating vacuum energy density rvac from (7.3d). The vacuum energy density
from the initial conditions is rvacðτbcsÞ ¼ 6.16667 × 10−6, which stays essentially constant.
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FIG. 5. The boundary conditions at τ ¼ τbcs ¼ 10 and the model parameters are the same as in Fig. 4, but now with γ ¼ 2 × 1011

(quantum-dissipative effects turned on). The vacuum energy density is initially rvacð10Þ ¼ 6.16667 × 10−6 and drops to
rvacð100Þ ∼ 1 × 10−10. The bottom-middle panel shows the extra contribution to the matter energy density compared to that of the

γ ¼ 0 numerical solution of Fig. 4, specifically ΔrχðτÞ≡ rχðτÞ − rðγ¼0;num-solÞ
χ ðτÞ.
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from a finite domain of initial conditions, namely δ3 ∈
½5 × 10−7; 2 × 10−6� for type-3 perturbations. Recall, that
we also have finite domains for the type-1 and type-2
perturbations discussed in Sec. VI E. There is, in fact, a
finite 3-volume in the faðτbcsÞ; rðτbcsÞ; rχðτbcsÞg space
(parametrized by δ1 ∈ ½−0.1;þ0.1�, δ2 ∈ ½−10−6;þ10−6�,
and δ3 ∈ ½5 × 10−7; 2 × 10−6�), whose corresponding sol-
utions have rvac ¼ Oð10−5Þ initially and rvac ¼ Oð10−10Þ
asymptotically.
Similar results have been obtained for other values of the

cosmological constant, provided condition (6.15) holds.
Numerical results for μ ¼ 3 and λ ¼ −1=4 are presented in
Fig. 8. The numerical solution of Fig. 8 approaches

asymptotically the analytic solution from Sec. VI C for
r̂sol ¼ ð13=8Þ1=3 ≈ 1.176 and an α value approximately
equal to 0.9992.
The previous results start “close” to the analytic

Friedmann-type solution in configuration space, but it is
also possible to start “further away” in configuration space.
Specifically, we can start from the analytic de Sitter-type
configuration as given in Appendix B. Numerical results,
for μ ¼ 3 and λ ¼ 10−4, are presented in Figs. 9 and 10
with two values of the vacuum-matter-energy-exchange
coupling constant γ. The numerical solution of Fig. 9
with γ ¼ 0 essentially reproduces the analytic solution of
Appendix B, whereas the numerical solution of Fig. 10

0 20 40 60 80 100
1

0.5
0

0.5
1

1.5
103 R

0 20 40 60 80 100
0

0.5
1

1.5
2

2.5
625 24 8 5 K

0 20 40 60 80 100
1

0.5
0

0.5
1

1.5
105 rvac

0 20 40 60 80 100
0.4
0.6
0.8
1

1.2
1.4

1 5 r×

× × × ×

× × ×

0 20 40 60 80 100
0.4
0.6
0.8
1

1.2
1.4

6 5 a

0 20 40 60 80 100
0.4
0.6
0.8
1

1.2
1.4

200 3 4 5 r

FIG. 6. The model parameters and the boundary conditions at τ ¼ τbcs ¼ 10 are the same as in Fig. 5, but now with a type-3
perturbation (6.20c) for δ3 ¼ þ5 × 10−7: fa; r; _r; rχg ¼ f0.0630957397; 1.584893985; 0.03176239262; 0.000756730758g, where the
_r value has been obtained from the first Friedman equation (7.4). The vacuum energy density is initially rvacð10Þ ¼ 3.08333 × 10−6 and
drops to rvacð100Þ ∼ 1 × 10−10.
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FIG. 7. The model parameters and the boundary conditions at τ ¼ τbcs ¼ 10 are the same as in Fig. 5, but now with a type-3
perturbation (6.20c) for δ3 ¼ þ2 × 10−6; f0.0630957555; 1.584896362; 0.03195519835; 0.000756730758g, where the _r value has
been obtained from the first Friedman equation (7.4). The vacuum energy density is initially rvacð10Þ ¼ 1.23334 × 10−5 and drops
to rvacð100Þ ∼ 2 × 10−10.
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FIG. 9. Numerical solution of the modified ODEs (7.3) with source term (7.5) and parameters wM ¼ 1=3, ζ ¼ 1, μ ¼ 3, λ ¼ 10−4, and
γ ¼ 0 (quantum-dissipative effects turned off). The initial boundary conditions are taken from the analytic de Sitter-type solution (B2)
and (B5), having ᾱ≡ αdeS-spec-sol ¼ 132.629 and r̄≡ rdeS-spec-sol ¼ 1.14471. Specifically, the boundary conditions at τ ¼ τbcs ¼ 10 are:
fa; r; _r; rχg ¼ f1.32629119; 1.09208709; 0.0364029029; 0g, where the _r value has been obtained from the first Friedman equa-
tion (7.4). The top row shows the three basic variables: the metric functions rðτÞ and aðτÞ and the dimensionless matter energy density
rχ . The bottom row shows three derived quantities: the dimensionless Ricci curvature scalar R, the dimensionless Kretschmann
curvature scalar K, and the dimensionless gravitating vacuum energy density rvac from (7.3d). The vacuum energy density from the
initial conditions is rvacðτbcsÞ ¼ 1 × 10−4, which stays essentially constant.
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FIG. 8. Numerical solution of the modified ODEs (7.3) with source term (7.5) and parameters wM ¼ 1=3, ζ ¼ 1, μ ¼ 3, γ ¼ 2 × 1011,
and λ ¼ −1=4 (different from the value λ ¼ 1 in Fig. 5). The initial boundary conditions are taken from the analytic solution (6.13),
(6.14), and (6.19), for α ¼ 1, but now with a type-3 perturbation (6.20c) for δ3 ¼ þ10−7. Specifically, the boundary conditions at
τ ¼ τbcs ¼ 10 are: fa; r; _r; rχg ¼ f0.0630957355; 1.86330736; 0.0372908137; 0.000756730758g, where the _r value has been obtained
from the first Friedman equation (7.4). The basic variables shown have been explained in the caption of Fig. 4 and Δrχ from the bottom-
middle panel is defined in the caption of Fig. 5. The vacuum energy density is initially rvacð10Þ ¼ 1.00208 × 10−6 and drops to
rvacð100Þ ∼ 2 × 10−10.
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with γ ¼ 2 × 1011 shows the reduction of the vacuum
energy density rvac and the approach to the analytic
Friedmann-type solution of Sec. VI C [see, in particular,
the bottom-row panels in Fig. 10 with rðτÞ ∝ τ1=5,
aðτÞ ∝ τ−6=5, and rχðτÞ ∝ τ−4=5].
To summarize, it has been shown that the cosmological

constant Λ can, in principle, be cancelled by
ffiffiffiffiffiffi−gp

and
appropriate quantum-dissipative effects. For completeness,
we give, in Appendix C, further numerical results on how
the vacuum energy density is canceled before and after a
phase transition, making concrete the general remarks in
the last paragraph of Sec. IV.

VIII. FINAL REMARKS

Perhaps the most interesting suggestion of this paper is
the interpretation of the action (2.5) for nðxÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp
, as

discussed in Sec. II. In the standard formulation of general
relativity, this action is just a cosmological constant term
with “μ” proportional to the cosmological constant.

Moreover, the action (2.5) is fully diffeomorphism invari-
ant, but the integrand nðxÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp
is not, as it is a scalar

density.
If we now consider this nðxÞ to be a physical quantity

with μ in (2.5) interpreted as a chemical potential (possibly
related to an underlying spacetime crystal), then nðxÞ must
be invariant under coordinate transformations and this
implies that the only allowed coordinate transformations
are those with unit Jacobian. In that case, it is possible that
n also enters the matter potential ϵ, as discussed in Sec. IV.
It is precisely this last step which makes for the “extension”
mentioned in the title of the present paper. (The possibility
of adding extra

ffiffiffiffiffiffi−gp
terms in the matter action was already

noted on p. 220 of Ref. [11], but was not pursued further.)
The example potential ϵ from (4.4a) then shows that,

for an appropriate range of μ values, the equilibrium
value of n can nullify the total gravitating vacuum energy
density (4.4b). In a cosmological context, as discussed
in Secs. VI and VII, the dynamics of n displays an
attractor behavior towards Minkowski spacetime, provided
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FIG. 10. The boundary conditions at τ ¼ τbcs ¼ 10 and the model parameters are the same as in Fig. 9, but now with γ ¼ 2 × 1011

(quantum-dissipative effects turned on). The vacuum energy density is initially rvacð10Þ ¼ 1 × 10−4 and drops to rvacð100Þ ∼ 2 × 10−10.
The third row shows the behavior near the initial boundary conditions and the fourth row the asymptotic behavior.
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quantum-dissipative effects are taken into account. The
cosmological cancellation of an initial vacuum energy
density, perhaps the most important result of this paper,
is illustrated by Figs. 9 and 10.
There are two ingredients for this cosmic reduction of an

initial vacuum energy density ρvac (including a genuine
cosmological constant Λ). First, the quantum-dissipative
processes give an energy transfer from the vacuum com-
ponent (with energy density ρvac and equation-of-state
parameter wvac ¼ −1) to a particle component (with ρM
and wM ≥ 0). Second, the expansion of the Universe does
not affect the vacuum energy density [ρvacðtÞ is constant]
but does reduce the matter energy density [ρMðtÞ drops with
increasing cosmic scale factor R̃ðtÞ from the Robertson-
Walker metric (6.6)]. Such a two-step process has been
considered before [21,22]. New, here, is that the vacuum
variable is not a postulated quantity (such as a 4-form
field strength or a 4D-brane density), but is provided
by the already available spacetime metric, namely by its
determinant.
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APPENDIX A: ANALYTIC FRIEDMANN-TYPE
SOLUTION FOR GENERAL wM

We present in this appendix an exact solution of the
ODEs (6.11) for matter equation-of-state parameter
wM > −1 and μ > 0 (similar results hold for μ < 0). As
in the main text, we take the following Ansatz functions for
τ > 0:

aðτÞ ¼ ατ−2p; ðA1aÞ

rðτÞ ¼ α−1=6r̂τp=3; ðA1bÞ

rχðτÞ ¼ α−1χ̂τ−m; ðA1cÞ

with positive parameters α, p, r̂, χ̂, andm. The vanishing of
rvac from (6.11d) gives

r̂sol ¼
�
1

2ζ
ðμ − λÞ

�
1=3

; ðA2Þ

where, for a given value μ > 0, the following condition
holds on the dimensionless cosmological constant λ:

λ < μ; ðA3Þ

so that λ can also be negative (see the last paragraph of this
appendix for a related remark).

For the Ansatz functions (A1), the dimensionless Ricci
and Kretschmann curvature scalars read

R ¼ 2

3
pð5p − 3Þ 1

α
τ−2ð1−pÞ; ðA4aÞ

K ¼ 4

27
p2ð9 − 24pþ 17p2Þ 1

α2
τ−4ð1−pÞ: ðA4bÞ

We look for an expanding (p > 0) Friedmann-type uni-
verse approaching Minkowski spacetime (different from a
de Sitter spacetime at p ¼ 1).
With the Ansatz functions (A1), the three ODEs from

(6.11) reduce to the following expressions:

0 ¼ 1

α
ðpð1þ wMÞ −mÞχ̂τ−1−m; ðA5aÞ

0 ¼ p2

3τ2
− 8πχ̂τ−m−2p; ðA5bÞ

0 ¼ p2

τ2
−
2p
3τ2

þ 8πwM χ̂τ
−m−2p: ðA5cÞ

The exact solution has arbitrary α > 0 and

psol ¼
2

3þ wM
; ðA6aÞ

msol ¼
2ð1þ wMÞ
3þ wM

; ðA6bÞ

χ̂sol ¼
1

6πð3þ wMÞ2
; ðA6cÞ

where psol ranges over (0,1) for wM ∈ ð−1;þ∞Þ. Phrased
differently, the analytic solution for fixed values of the
model parameters μ, λ, and wM, has a one-dimensional
modulus space Rþ parametrized by α.
The main points of the cosmology with wM ¼ 1, for

example, are as follows:
(i) an expanding Friedmann-type universe with scale

factor r ∼ τ1=6.
(ii) a perfect-fluid energy density and pressure

rχðτÞ ¼ pχðτÞ ∼ 1=τ.
(iii) a cosmological constant cancelled by

ffiffiffiffiffiffi−gp ¼ r̂sol
from (A2), provided condition (A3) holds, so
that rvacðτÞ ¼ 0.

(iv) the curvature scalars RðτÞ ∼ 1=τ and KðτÞ ∼ 1=τ2.
The overall behavior of this wM ¼ 1 cosmology is not very
different from that of Sec. VI C, which had a wM ¼ 1=3
perfect fluid.
Let us end with a parenthetical remark expanding on the

third item of the previous paragraph. It is, namely, possible
to relax condition (A3) by changing the ϵ Ansatz (6.2b).
An example, using dimensionless variables, is given by
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ϵ ¼ λþ nþ 1=n2, which gives rvac ¼ λþ 2n − 1=n2 − u
from (4.2). In this rvac expression, any value of λ − u can be
canceled by an appropriate real value n ¼ n̄ > 0.

APPENDIX B: ANALYTIC DE SITTER-TYPE
SOLUTION

The ODEs (6.11) have an analytic Friedmann-type
solution, as discussed in Sec. VI C and Appendix A. But
there is also an analytic de Sitter-type solution, which will
be presented here.
As before, we assume the model parameters to obey the

following conditions:

ζ > 0; ðB1aÞ

μ > 0; ðB1bÞ

λ < μ; ðB1cÞ

where the condition on the chemical potential μ is only to
simplify the discussion (what really matters is that the
combination μ − λ is positive). The Ansatz functions for
τ > 0 are

aðτÞ ¼ ατ−2p; ðB2aÞ

rðτÞ ¼ α−1=6r̂τp=3; ðB2bÞ

rχðτÞ ¼ 0; ðB2cÞ

with positive parameters α, p, and r̂. The general de Sitter-
type solution (denoted “deS-gen-sol”) then has the follow-
ing parameters:

pdeS-gen-sol ¼ 1; ðB3aÞ

αdeS-gen-sol ¼ 1=ð24πrvac-deS-gen-solÞ; ðB3bÞ

rvac-deS-gen-sol ¼ λþ 2ζðr̂deS-gen-solÞ3 − μ > 0; ðB3cÞ

r̂deS-gen-sol > 0: ðB3dÞ

The corresponding dimensionless Ricci and Kretschmann
curvature scalars read

RdeS-gen-sol ¼
4

3

1

αdeS-gen-sol
; ðB4aÞ

KdeS-gen-sol ¼
8

27

1

α2deS-gen-sol
: ðB4bÞ

The above solution has rvac (or, equivalently, r̂) as a free
parameter. For λ > 0, a special solution (denoted “deS-
spec-sol”) has vacuum energy density rvac ¼ λ if the
following parameters are chosen:

p
deS-spec-sol

¼ 1; ðB5aÞ

α
deS-spec-sol

¼ 1

24πλ
; ðB5bÞ

r̂
deS-spec-sol

¼
ffiffiffiffiffi
μ

2ζ
3

r
: ðB5cÞ

The dimensionless Ricci and Kretschmann curvature
scalars are given by (B4) with αdeS-gen-sol replaced by
αdes-spec-sol.

0 20 40 60 80 100
0.5
0

0.5
1

1.5
2

3 4 1 R

0 20 40 60 80 100
1.0
0
1
2
3
4

27 8 1
2 K

0 20 40 60 80 100
0.5
0

0.5
1

1.5
2

102 rvac

0 20 40 60 80 100
0.6
0.8
1

1.2
1.4
1.6 1

1 6 r × ×

× × × × ×

× × ×1
1 3 r

0 20 40 60 80 100
1.0
0
1
2
3
4

1 1
2 a

0 20 40 60 80 100
1

0.5
0

0.5
1

1.5
102 r

FIG. 11. Numerical solution of the modified ODEs (7.3) with the source term (7.5) and the λ stepfunction (C1) modelling a
cosmological phase transition at τ ¼ τPhT, for parameters wM ¼ 1=3, ζ ¼ 1, μ ¼ 3, λ1 ¼ 10−2, λ2 ¼ 1.5 × 10−2, and γ ¼ 0 (quantum-
dissipative effects turned off). The initial boundary conditions at τ ¼ τbcs ¼ 10 are taken from the analytic de Sitter-type solution and are
similar to those of Fig. 9. The boundary conditions at τ ¼ τPhT

þ ¼ 50þ take the numerical function values of faðτÞ; rðτÞ; _rðτÞg obtained
just below τPhT, while the rχð50þÞ value follows from the first Friedman equation (7.4) with λ ¼ λ2.
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APPENDIX C: READJUSTMENT
AFTER A PHASE TRANSITION

The readjustment of the vacuum variable q to a cosmo-
logical phase transition has been discussed, in general terms,
by Sec. II C of Ref. [3]. We expect a similar behavior of the
metric-determinant vacuum variable n from (2.3), especially
as we have observed an attractor behavior in the numerical
resultsofSecs.VIandVII.Thepresentappendixaims toverify
these expectations with a simplified setup. From now on, we
will use only the dimensionless variables from Sec. VI B.
Specifically, we model the phase transition by taking

different λ values before and after a cosmic time τPhT,

λðτÞ ¼
�
λ1; for τ < τPhT;

λ2; for τ > τPhT:
ðC1Þ

Let us consider, for simplicity, the case λ2 > λ1 > 0. Then,
wewill solve the modified ODEs (7.3) over the cosmic time
interval τ ∈ ½τbcs; τPhTÞ for τbcs < τPhT and λ ¼ λ1 and over
the interval τ ∈ ðτPhT; τmax� for τPhT < τmax and λ ¼ λ2. At
τ ¼ τPhT, we take the metric functions faðτÞ; rðτÞ; _rðτÞg to
be continuous and the rχ value just above τPhT from the first
Friedman equation (7.4) with λ ¼ λ2 > λ1. (Different
matching conditions are needed for the case 0 < λ2 < λ1.)
Numerical results are shown in Fig. 11 for the case with-

out vacuum-matter energy exchange (γ ¼ 0) and in
Fig. 12 for the case with vacuum-matter energy exchange
(γ > 0). The results from Fig. 12 demonstrate that, as
expected, the added vacuum energy from a phase tran-
sition can be rapidly cancelled by the metric-determinant
vacuum variable, provided quantum-dissipative effects are
included.
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FIG. 12. The boundary conditions at τ ¼ τbcs ¼ 10 and the model parameters are the same as in Fig. 11, but now with γ ¼ 2 × 1011

(quantum-dissipative effects turned on). The vacuum energy density starts from the value rvacð10Þ ¼ 1 × 10−2, drops to
rvacð50−Þ ≈ 2 × 10−10, then jumps to rvacð50þÞ ≈ 0.5 × 10−2, and finally drops to rvacð100Þ ≈ 3 × 10−10. The numerical results for
RðτÞ and KðτÞ on the second row are not plotted at τPhT ¼ 50, as the “spikes” there are primarily artifacts. The third row shows the
behavior of the two metric functions and the vacuum energy density in a small interval around at τPhT ¼ 50 with Δτ ¼ 10−6 [the left and
middle panels use the combinations r̂ðτÞ≡ ᾱ1

1=6=r̄1τ−1=3rðτÞ and âðτÞ≡ 1=ᾱ1τ2aðτÞ, which are precisely the combinations from the
top row]. The fourth row shows the asymptotic behavior of the two metric functions and the matter energy density.
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