KIT | KIT-Bibliothek | Impressum | Datenschutz

From Easy to Hopeless - Predicting the Difficulty of Phylogenetic Analyses

Haag, Julia; Höhler, Dimitri; Bettisworth, Ben; Stamatakis, Alexandros ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Phylogenetic analyzes under the Maximum-Likelihood (ML) model are time and resource intensive. To adequately capture the vastness of tree space, one needs to infer multiple independent trees. On some datasets, multiple tree inferences converge to similar tree topologies, on others to multiple, topologically highly distinct yet statistically indistinguishable topologies. At present, no method exists to quantify and predict this behavior. We introduce a method to quantify the degree of difficulty for analyzing a dataset and present Pythia, a Random Forest Regressor that accurately predicts this difficulty. Pythia predicts the degree of difficulty of analyzing a dataset prior to initiating ML-based tree inferences. Pythia can be used to increase user awareness with respect to the amount of signal and uncertainty to be expected in phylogenetic analyzes, and hence inform an appropriate (post-)analysis setup. Further, it can be used to select appropriate search algorithms for easy-, intermediate-, and hard-to-analyze datasets.


Verlagsausgabe §
DOI: 10.5445/IR/1000154021
Veröffentlicht am 04.01.2023
Originalveröffentlichung
DOI: 10.1093/molbev/msac254
Scopus
Zitationen: 17
Web of Science
Zitationen: 15
Dimensions
Zitationen: 27
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 0737-4038, 1537-1719
KITopen-ID: 1000154021
Erschienen in Molecular Biology and Evolution
Verlag Oxford University Press (OUP)
Band 39
Heft 12
Seiten Art.-Nr.: msac254
Vorab online veröffentlicht am 17.11.2022
Schlagwörter phylogenetics, maximum likelihood, machine learning, random forest regression
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page