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Energy distribution controlled ballistic Josephson junction
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We report an experimental study on the tuning of supercurrent in a ballistic graphene-based Josephson
junction by applying a control voltage to a transverse normal channel. In this four-terminal geometry, the control
voltage changes the occupation of Andreev states in the Josephson junction, thereby tuning the magnitude
of the supercurrent. As a function of gate voltage, we find two different regimes characterized by a double-
step distribution and a hot-electron distribution, respectively. Our work opens opportunities to design highly
controllable Josephson junctions for tunable superconducting quantum circuits.
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I. INTRODUCTION

The design of controlled Josephson junctions is a cru-
cial aspect of engineering superconducting circuits and their
potential application in quantum technologies and informa-
tion [1]. This is particularly important in Josephson junctions
based on superconducting weak links [2], especially in
a multiterminal geometry, in which Weyl singularities in
the Andreev bound state (ABS) spectra offer new plat-
forms to observe topological effects [3–8] as well as the
emergence of new correlated states [9–15]. Many differ-
ent systems have been used to mediate superconductivity
induced by proximity of superconducting leads such as
metallic [16–20] or semiconducting [21–28] nanostructures,
quantum point contacts [29,30], quantum dot [31], topological
insulators [32–38], or graphene [39]. When superconducting
leads connecting the weak link are close enough to each
other, a dissipationless current can flow via Andreev bound
states [40]. Dedicated low noise electronics and low tem-
perature filtering is required to measure finite [41–44] and
stable [45] maximum supercurrent or critical current Ic. A
full control strategy strongly depends on the tunability of the
superconducting weak link itself. Indeed, Ic depends on many
parameters such as temperature, superconducting gap, contact
transparency, or/and disorder.

Moreover, when the weak link carrier density is gate tun-
able, the critical current amplitude varies inversely to the
normal-state resistance RN, i.e., Ic increases when RN de-
creases. Therefore, the electrostatic control remains the most
straightforward way to tune the amplitude of the critical
current [21,27,28,32–39], while local gating allows its spa-
tial confinement [29–31]. An alternative way to control the
amplitude of Ic was demonstrated by tuning the electron dis-
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tribution in the weak link itself with a transverse controlled
voltage [17–19,25,26]. In these experiments, the control volt-
age allowed one to tune Ic up to reversing its sign and therefore
forming a so-called π junction [18,19]. In this work, we study
the effect of such control voltage in a ballistic superconduct-
ing weak link, here a single layer graphene, in which the
supercurrent is no longer carried by a continuum of ABS
but instead a series of discrete states [40]. We show that this
transverse voltage tunes the occupation of Andreev states in
the Josephson junction, adding an additional knob to control
the magnitude of the supercurrent. We have used a model
accounting for the coupling of the control channel to the
Josephson junction [46–49] with the coupling strength of the
control channel to the Josephson junction as a single parame-
ter. We obtain two distinct regimes, a double-step distribution
and a hot-electron distribution, which fits the amplitude of Ic

when the gate voltage tunes the Fermi level in the valence and
the conduction band, respectively, corresponding to a high and
low normal-state resistance.

II. EXPERIMENTAL RESULTS

A. Device fabrication and measurement setup

We have fabricated our device by encapsulating a single
layer graphene between two hexagonal boron nitride (h-BN)
crystallites, 28- and 18-nm thick for the top and bottom
h-BN, respectively. Graphene and h-BN crystallites were
mechanically exfoliated from natural graphite (NGS Natur-
graphit GmbH) and commercially available h-BN powder
(Momentive, gradePT110), respectively, on a Si substrate with
300-nm-thick SiO2. The h-BN/graphene/h-BN heterostruc-
ture was prepared by following a dry transfer technique
similar to Wang et. al. [50]. The fabricated heterostructure
was subsequently transferred to a different Si substrate with
1000-nm-thick SiO2. Edge contacts to the h-BN encapsu-
lated graphene were established in a similar manner as in
Kraft et al. [30]. However, this process was adapted for the
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FIG. 1. (a) False color atomic force micrograph of the studied
device showing the normal metal (N), superconducting (S), and top
gate (Gate) electrodes. The region enclosed by the dashed black lines
shows the h-BN encapsulated graphene channel. The scale bar is 1
µm. (b) Schematics of the device depicting the edge contact geome-
try. (c) Cross-section schematic of the central part of the device

deposition of two different types of metal electrodes as in
Pandey et. al. [51]. For the superconducting electrodes, we
have used Ti (5 nm)/Al (60 nm), and for the normal-metal
electrodes, Ti (5 nm)/Cu (80 nm)/Al (5 nm) was used. To
control the charge-carrier density in the graphene channel, a
top gate electrode with Ti (5 nm)/Cu (100 nm)/Al (5 nm)
was fabricated. Here, a 25-nm-thick Al2O3 was deposited with
atomic layer deposition method to act as the top gate dielectric
in addition to the top h-BN. In all the electrodes, Ti serves as
an adhesive layer, while the thin Al layer in the Cu contact
and gate electrodes is used as a protective layer to prevent
oxidation of these electrodes.

As can be seen in Fig. 1(a), the graphene channel has
L = 0.46 µm and W = 2 µm across the SGS junction and
L = 4 µm and W = 0.46 µm across the NGN junction. Note
that L denotes the length of the channel between the elec-
trodes, while W denotes the width of the channel along the
electrodes. Figure 1(b) shows the schematic of the device
with the edge contact geometry and Fig. 1(c) shows the
cross-section schematic of the device. All of the transport
measurements were conducted with standard low-frequency
lock-in technique. In order to avoid any spurious effects, the
measurement lines were fed through a series of filters. In all of
the data shown, Ibias (Vbias) denotes the current (voltage) across
the SGS junction, whereas Vctrl denotes the voltage bias across
the NGN junction.

B. Normal-state characterization and ballistic transport

Figures 2(a) and 2(b) show the gate voltage Vg dependent
resistance of the device across the SGS and NGN junctions,
respectively, when the device is in the normal state at T =
6 K. It can be readily observed that the Dirac point for both
of these junctions is shifted to negative gate voltages, which
indicates n-type doping of the graphene sheet due to charge
transfer from the contacts. It also results in the formation of
potential barriers close to the metal/graphene contact inter-

FIG. 2. Normal-state resistance R of the device as a function
of gate voltage Vg as measured across: (a) Superconductor/
graphene/superconductor (SGS) junction; the inset shows
Fabry-Pérot resonances in the p-doped regime. (b) Normal
metal/graphene/normal metal (NGN) junction. (c) Fabry-Pérot
oscillations in the SGS junction as a function of gate voltage Vg and
bias voltage Vbias across the SGS junction.

faces when the charge transport in the graphene channel is
driven into the p-doped regime [52–54]. An important point to
note is that the two junctions have different Dirac points where
VCNP = −2.3 V for the SGS junction and VCNP = −1.8 V for
the NGN junction. In addition, comparing the charge transport
between the n-doped and p-doped regions, higher asymmetry
is observed in the SGS junction while the Dirac curve looks
symmetric across the NGN junction. This can be explained
by considering the dimensions of the two junctions, where the
SGS junction falls in the category of wide and short junction.
NGN junction, on the other hand, falls in the narrow and
long junction regime. Therefore, the doping from the contacts
is more prominent in the SGS junction leading to a higher
shift in the VCNP and charge transport asymmetry in the Dirac
curve as compared to the NGN junction. It also results in the
formation of a coherent electronic Fabry-Pérot (FP) cavity, a
signature of ballistic transport, in the SGS junction when the
Fermi level in graphene is tuned in the valence band [55–64].

This effect can be readily seen in the inset of Fig. 2(a)
as the conductance oscillates with the gate voltage. These
conductance oscillations can be tuned by Vg as well as by
an applied bias Vbias across the SGS junction. Figure 2(c)
shows these conductance oscillations mapped with respect to
Vg and Vbias. As the conductance of the device varies strongly
with Vg and Vbias, a nonoscillating background conductance
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FIG. 3. Characterization of the supercurrent at T = 50 mK and
Vctrl = 0. (a) Ibias − Vbias characteristics at different gate voltages Vg.
(b) Gate voltage dependence of the differential resistance dVbias/Ibias.
(c) Ibias − Vbias characteristics in the presence of perpendicular mag-
netic field B at Vg = 10 V. (d) Measured Fraunhofer pattern (B vs
Ibias) under the same conditions as in (c). Please note that a magnetic
field offset correction was made for (c) and (d).

was subtracted to enhance the visibility of the conductance
oscillations. As can be seen, instead of the usual checkerboard
pattern for symmetric contacts, we observe an asymmetric
interference pattern which suggests an asymmetric coupling
of the two S contacts to the graphene channel [51,65]. Despite
this asymmetric coupling, clear interferences can be observed
in Fig. 2(c). For normal incidence of charge carriers, the cavity
length LC that gives rise to this pattern can be calculated
by using the relation kFLC = Nπ where N is an integer and
kF = √

nπ is the Fermi wave vector with n = αgVg denoting
the charge-carrier density. Here αg = 3.496×1011 V−1 cm−2

is the gate coupling efficiency which was extracted from
Shubnikov–de Haas oscillations at high field (not shown).
Inserting αg into the expression to calculate LC results in
LC ∼ 450 ± 5 nm. Since LC is in agreement with the length
of the graphene channel across the SGS junction, it can be
concluded that the observed interference pattern is indeed
arising from the FP oscillations. This serves as the proof that
the charge transport across the SGS junction is in the ballistic
regime.

C. Gate-dependent supercurrent and Fraunhofer pattern

Here, we characterize the SGS Josephson junction in the
absence of a control voltage across the NGN channel at T =
50 mK, far below the critical temperature of Al (∼1 K). Super-
current in ballistic graphene-based Josephson junctions can be
efficiently tuned by an applied gate voltage which tunes the
charge-carrier density in the weak link [30,66–69]. Figure 3(a)
shows the Ibias − Vbias characteristics of the SGS junction. It is
to be noted that due to a slight shift in the zero magnetic field,
the device was in a nonzero magnetic field during this set of

measurements which resulted in a reduced supercurrent across
the SGS junction. The Ibias − Vbias curves represent the high
p-doped regime (Vg = −10 V), the vicinity of the Dirac point
(Vg = −2.4 V), and the n-doped regime (Vg = 0 V and Vg =
10 V). Figure 3(b) shows the complete map of the differential
resistance dVbias/dIbias across the SGS junction as a function
of Ibias and Vg under the same measurement conditions as in
Fig. 3(a). It can be clearly seen that the device has a noticeable
supercurrent (∼80 nA) in the entire n-doped regime while it
is considerably smaller even in the highly p-doped regime.
Close to the Dirac point, the device is very close to the normal
state with slight nonlinearity in the current-voltage relation.
As can be seen in Fig. 3, the gate tuning of the supercurrent in
our device agrees with the commonly observed gate-tunable
supercurrent in graphene-based Josephson junctions [66–68].

In a wide and short Josephson junction with uniform
current density, the critical current is expected to exhibit a
Fraunhofer interference pattern according to the relation [70]

Ic(B) = Ic(0)
sin(π�/�0)

π�/�0
. (1)

Here Ic(B) is the critical current at a perpendicular magnetic
field B, Ic(0) is the critical current at zero magnetic field, � =
BA is the magnetic flux through the Josephson junction with
junction area A, and �0 is the magnetic flux quantum. The
Fraunhofer pattern bears a strong dependence on the current
density distribution in the Josephson junction. Figures 3(c)
and 3(d) show the Ibias − Vbias characteristics and the differen-
tial resistance, respectively, in the presence of a perpendicular
magnetic field B (offset-corrected), at Vg = 10 V. We observe
a maximum critical current of ∼130 nA at zero magnetic
field and an oscillatory pattern as a function of field is seen
in Fig. 3(d). A clear asymmetry in the interference pattern
for positive and negative magnetic fields is due to the flux
trapping in the magnet itself which could not be corrected
in the measurement and analysis. The interference pattern
resembles a Fraunhofer pattern, though slightly distorted, and
the field scale of the oscillation is consistent with the expected
�B ≈ 2 mT for the geometry of our device. As our four-
terminal geometry has extended graphene parts on each side
of the junction, the width of the junction appears to be not
well defined, while a gradient of supercurrent density may
also flow within these side superconducting weak-link parts
and therefore, the regular Fraunhofer pattern observed in a
short and wide Josephson junction with constant supercurrent
density across it, as predicted in the seminal work of Dynes
and Fulton [71], cannot be observed in our geometry.

D. Tuning the supercurrent with a transverse normal channel

Following the characterization of the Josephson junction,
we now turn to the control of the occupation of Andreev states
in the SGS channel by applying a control voltage Vctrl across
the NGN channel. Figures 4(a)–4(d) show the Ibias − Vbias

curves across the SGS junctions at various values of Vctrl

at 50 mK under zero magnetic field. The charge transport
in the p-doped regime corresponds to Figs. 4(a) and 4(b),
while Figs. 4(c) and 4(d) correspond to the n-doped regime.
Figures 4(e)–4(h) show the complete map of dVbias/dIbias

across the SGS junction with respect to Ibias and Vctrl under
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FIG. 4. Ibias − Vbias characteristics for different control voltages Vctrl at (a) Vg = −10 V, (b) Vg = −5 V, (c) Vg = 0 V, (d) Vg = 10 V.
Differential resistance dVbias/dIbias map as a function of Ibias and Vctrl at (e) Vg = −10 V, (f) Vg = −5 V, (g) Vg = 0 V, and (h) Vg = 10 V. All
data were taken at T = 50 mK and B = 0.

the same measurement conditions as in Figs. 4(a)–4(d). The
asymmetry with respect to the positive and negative Ibias in
Figs. 4(d) and 4(h) can be attributed to the self-heating of
the device at high critical current. While the supercurrent
is continuously tuned by the control voltage in all of the
measurements, a clear trend can be observed in all of the
maps, that is, the magnitude of the control voltage required
to diminish the superconductivity depends on the magnitude
of the critical current. A comparatively smaller control voltage
can clearly suppress the supercurrent in the p-doped regime as
seen in Figs. 4(a), 4(b), 4(e) and 4(f), while the supercurrent
cannot be completely suppressed in the n-doped regime as
observed in Figs. 4(c), 4(d), 4(g), and 4(h) with the observ-
able nonlinearity even at high control voltages. It can be
understood by considering the fact that the device is weakly
superconducting in the p-doped regime as compared to the
n-doped regime, and therefore, it is more sensitive to the
change caused by the control voltage in the p-doped regime.

III. MODEL

Supercurrent is carried across a ballistic Josephson junc-
tion by discrete ABS below the gap and additional continuum
contributions from “leaky” Andreev resonances above the
gap [40,46]. The magnitude and direction of the supercurrent
is controlled by the phase difference across the junction and
the occupation of the states. In our case, the Josephson junc-
tion is strongly coupled to the control channel, since they are
both part of the same graphene sheet. This coupling leads to
dephasing of the Andreev levels with a concomitant reduction
of the critical current. We use the model of a strongly coupled
control channel [47] generalized to the four-terminal geome-
try of our experiment [48].

The model and experimental setup are illustrated in
Fig. 5(a). A bias current Ibias is driven through the Josephson

junction, while an independent circuit applies a control volt-
age Vctrl to the control channel. Therefore, the control channel
does not inject any net current into the Josephson junc-
tion, and only controls the occupation of the Andreev bound
states. Both the SGS Josephson junction and the NGN control
channel are modeled as single-channel one-dimensional con-
ductors, coupled by a junction of transparency τ . Note that the
SGS Josephson junction itself is modeled with perfect trans-
parency. τ is the coupling to the control channel, and therefore
only controls the dephasing. The length L = 460 nm of the
SGS junction was taken from the geometry of the device. The
coherence length of the Andreev pairs in the graphene sheet
is ξG = h̄vF/2� = 2.4 µm, where vF = 106 m/s is the Fermi
velocity of graphene, and � = 135 µeV is the experimentally
observed gap of the aluminum leads. Therefore, our junction
is in the short limit, and we expect a single ABS below the gap.
As an illustration, we show the spectral supercurrent I (E ) at
the critical current for three different values of τ in Fig. 5(b).
As can be seen, the single ABS is significantly broadened by
the coupling to the control channel. In addition, there is a
small negative contribution from the continuum of leaky states
above the gap.

The supercurrent is controlled by the applied voltage Vctrl.
The distribution functions for ideal reservoirs are given by

f±(E ) = f0

(
E ± eVctrl

2
, T

)
, (2)

where f0 is the Fermi distribution, and ± corresponds to the
upper/lower control terminal. In the absence of inelastic scat-
tering, the distribution function in the middle of the control
wire is the superposition

fd(E ) = 1
2 [ f+(E ) + f−(E )], (3)

i.e., a double-step distribution function [72]. The double-step
distribution assumes perfect cooling of the dissipated electric
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FIG. 5. (a) Schematic view of the model. (b) Spectral supercurrent at the critical current Ic for Vctrl = 0 for three different transparencies τ .
(c) Distribution functions f0, fd, and fh for eVctrl = �. (d) Spectral supercurrent for τ = 0.94 and different distribution functions. Three plots
correspond to panel (c), whereas the remaining two plots correspond to eVctrl = 2�.

power by the reservoirs. In the n-doped regime, the lower
resistance of the graphene sheet leads to increased power
dissipation and self-heating of the device, as already seen
in the asymmetry of the switching and retrapping currents
in Fig. 4 [73]. As an alternative scenario, we therefore also
consider the limiting case of complete thermalization by
Coulomb scattering, i.e., the hot-electron regime. In this case,
the double-step distribution is replaced by a distribution

fh(E ) = f0(E , T ∗), (4)

with an increased effective temperature T ∗. Here, we ne-
glect electron-phonon cooling, which leaves only cooling by
electronic heat transport to the reservoirs. In this case, for
a voltage-biased wire, the Wiedemann-Franz law gives the
temperature [72,74]

T ∗ =
√

T 2 + V 2
ctrl

4L (5)

in the middle of the control wire, where L is the Lorenz
number. We assume L = L0 = π2k2

B/3e2 for graphene at low
temperatures and sufficiently far from the Dirac point [75].
fd and fh are plotted for eVctrl = � in Fig. 5(c), along with
the equilibrium distribution f0 for the base temperature T =
50 mK of the experiment.

Figure 5(d) illustrates the effect of the control voltage
on the spectral supercurrent for a phase difference of π/2
across the junction and τ = 0.94. The distribution functions
for the first three plots are the same as in Fig. 5(c). Compared
to the equilibrium case, the double-step distribution selec-
tively removes the low-energy part, while the hot-electron
distribution leads to an overall reduction. We also show the
comparison for eVctrl = 2�. At this point, the double-step
distribution eliminates almost the entire positive subgap con-
tribution, effectively reducing the critical current to zero. For
the hot-electron distribution, a considerable positive contribu-
tion remains, and much higher control voltages are required to
completely suppress the supercurrent. Note that this argument
does not depend much on details of the model (e.g., multiple
transport channels) as long as the junction is short, such that
the spectral supercurrent is mostly positive below the gap and
small above the gap.

Figure 6 shows the comparison of the experimental data
to the model for different gate voltages. Here, the current is
normalized as eIRN/�, so that the different resistance of the

SGS junction as a function of doping is already accounted for
by the normalization. The coupling strength τ is the only free
parameter, which we have adjusted to reproduce the observed
IcRN at Vctrl = 0. We find a larger IcRN product in the n-doped
regime, corresponding to a smaller τ . This reflects the fact that
RSGS ≈ RNGN on the p-doped side, while RSGS < RNGN on the
n-doped side. We therefore expect a weaker dephasing of the
ABS and increased IcRN on the n-doped side.

As a function of Vctrl, the double-step distribution (solid
lines) gives a good description of the data for small control
voltage in the p-doped regime. In the n-doped regime, the hot-
electron distribution (dashed lines) gives a good description,
reflecting the higher power dissipation. Due to the negative
spectral supercurrent at high energy, there should be a zero to
π transition of the Josephson current at eVctrl/2� � 1 for the
double-step distribution. This is visible as a node in the model
plots, where the critical current vanishes and then reappears.
The transition is absent in the hot-electron regime. The fact
that we observe a monotonic decrease of the critical current
without 0-π transition can be attributed to partial thermaliza-
tion at higher control voltage even in the p-doped regime. A
simple phenomenological discussion of partial thermalization
is given in Appendix B. A more detailed model would require
a realistic treatment of Coulomb scattering in the device,
which is beyond the scope of our experimental work.

IV. DISCUSSION AND PERSPECTIVE

We have demonstrated that supercurrent can be tuned by
a transverse voltage in a ballistic graphene-based Joseph-
son junction. By using this control voltage, we continuously
modify the occupation of the discrete Andreev levels and
therefore the magnitude of Ic. We highlight two different
regimes with our model, i.e., a double-step distribution and
a hot-electron regime. The first corresponds to the case where
the Fermi level, tuned by the gate voltage Vg, sits in the valence
band and Ic amplitude is the lowest while the normal-state
resistance is the highest due to the additional p-n junction
formed in the vicinity of the leads by charge transfer (forming
an electronic FP cavity, and FP interferences are observed
via the conductance/resistance oscillations [see Fig. 2(a)]
and the checkerboard pattern when the system is set out of
equilibrium [see Fig. 2(c)]). As mentioned before, this double-
step distribution implies a full heat dissipation by the leads.
The second corresponds to the case where the Fermi level
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FIG. 6. Normalized resistance R/RN as a function of normalized bias current eIRN/� and normalized control voltage eVctrl/2� for different
gate voltages Vg. Solid lines are model results for the double-step distribution and dashed lines are for the hot-electron regime (see text for
details).

sits in the conduction band and Ic amplitude is the highest,
while the normal-state resistance is the lowest at large charge-
carrier density, in turn, leading to increased power dissipation
and self-heating effect. We note that this is also reflected
in the hysteretic behavior of Ic [73] [see the asymmetry of
Ic in the differential resistance map in Figs. 4(g) and 4(h)].
While we observe two different regimes, we actually do not
observe the sign reversal of the critical current implying the
formation of a controllable π junction [76,77] as reported
in metallic nanostructures [18,19] but not in semiconducting
systems [25,26]. We have interpreted the absence of a 0-π
transition in our samples by the partial charge-carrier ther-
malization at large control voltages. This could be prevented
by optimizing the geometry of our system and enlarging the
size of the reservoirs. We suggest that these experiments could
be performed by using double-gated bilayer graphene for an
even more tunable weak link in a Josephson junction [30], as
the combination of gates not only allows the control of the
charge-carrier density and the contact resistance, but also can
be used to break the lattice inversion symmetry of the bilayer
graphene system, opening a band gap and modifying the band
structure itself. This would add another knob to explore many
possible configurations of a Josephson junction.
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APPENDIX A: MODEL

Our model is based on the four-terminal generalization [48]
of the three-terminal model originally developed in [47], as
sketched in Fig. 5(a) in the main text. The Josephson junc-
tion is modeled as an ideal one-dimensional conductor (i.e.,
with perfect coupling to the superconducting reservoirs). Two
control channels are connected to the Josephson junction by
contacts with identical transmission probability τ . We also
assume a symmetric control voltage ±Vctrl/2 applied to the
two control terminals.

In the following, it is convenient to express all distribution
functions in terms of h0(E ) = 1 − 2 f0(E ) = tanh(E/2kBT ),
which obeys h0(−E ) = −h0(E ). In the main text and
Fig. 5(c), the conventional definition of the distribution func-
tions based on the Fermi function f0 = [exp(E/kBT ) + 1]−1

is chosen.
The current of the four-terminal system can be calculated

as the superposition of the currents of two three-terminal
systems [48]. Consequently, the superposition of currents can
be replaced by the superposition of distribution functions
hctrl(E ) = [h+(E ) + h−(E )]/2, where h± are the distribution
functions at the two control terminals. For symmetric bias,
hctrl(E ) obeys the same particle-hole symmetry as h0. Using
this symmetry, we can express the supercurrent as an integral
over positive energy only,

I (φ) =
∫ ∞

0
I (E , φ)dE , (A1)

which accounts for the balance of particle and hole contribu-
tions. Here, φ is the phase difference across the junction, and
the spectral supercurrent is given by

I (E , φ) = e

h

{
hctrl(E ) ja(E , φ), E < �

hctrl(E ) jb(E , φ) + h0(E ) jc(E , φ), E > �.
(A2)

The subgap contribution is entirely controlled by hctrl, whereas the continuum contribution above the gap is affected by both the
control voltage and the equilibrium distribution of quasiparticles in the superconductor. The spectral functions in Eq. (A2) are
given by

ja(E , φ) = 2τ (2 − τ )

(
1

F (E , φ)
− 1

F (E ,−φ)

)
, (A3)

jb(E , φ) = τ [u2 + (1 − τ )v2]

(
1

D(E , φ)
− 1

D(E ,−φ)

)
, (A4)
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jc(E , φ) = (2 − τ )U (E )

|u2 − v2|
(

1

D(E , φ)
− 1

D(E ,−φ)

)
, (A5)

where D, F , and U are given by

D(E , φ) = u4 + v4(1 − τ )2 − 2u2v2(1 − τ ) cos

(
EL

�ξ0
+ φ

)
, (A6)

F (E , φ) = 1 + (1 − τ )2 − 2(1 − τ ) cos

[
−2 arccos

(
E

�

)
+ EL

�ξ0
+ φ

]
(A7)

U (E ) = u4 + v4(1 − τ ) − u2v2((1 − 4v2)τ + 2) (A8)

and the coherence factors u and v are defined by

u2 = 1

2

(
1 +

√
E2 − �2

|E |
)

, (A9)

v2 = 1

2

(
1 −

√
E2 − �2

|E |
)

. (A10)

The model plots are normalized to the normal-state resistance RN = h/2e2 of the ideal single-channel Josephson junction to
make them comparable to the experimental data.

APPENDIX B: PARTIAL THERMALIZATION

In addition to the fits shown in the main text, we have also
experimented with phenomenological descriptions of partial
thermalization. First of all, one might suspect that the effective
T ∗ in the hot-electron regime is lower than the temperature
due to the full Wiedemann-Franz-law heating. This might
be the case if one includes electron-phonon cooling, or it
may also occur in graphene in the hydrodynamic regime [75]
(which is not relevant to our experiment). However, a hot-
electron distribution with reduced heating will produce a
weaker Ic(Vctrl ) dependence, and therefore does not give a
good description in either doping regime. Nevertheless, one
can construct simple phenomenological interpolations be-
tween the two limiting cases:

(1) A hot double step

fhd(E ) = 1
2 [ f+(E , T ∗) + f−(E , T ∗)] (B1)

with enhanced T ∗, but with reduced heating power compared
to the Wiedemann-Franz law, i.e.,

T ∗ =
√

T 2 + a
V 2

ctrl

4L (B2)

with a < 1. This corresponds to nonideal reservoirs, where
the temperature of the electrons in the copper leads is slightly
increased.

(2) A superposition of double-step and hot-electron distri-
bution

fsup(E ) = r fh(E ) + (1 − r) fdd (E ) (B3)

with the distributions given in the main text and 0 < r < 1.
This is a very crude description of partial thermalization of
electrons in the graphene sheet itself. These intermediate sce-
narios are illustrated in Fig. 7 for Vg = −10 V. Both can give
a better fit of Ic(Vctrl ) than fd, and the 0-π transition is nearly
invisble. However, the distribution functions and the Ic(Vctrl )
dependencies are very similar, and a clear distinction regard-
ing which one is better is not possible. Also, both scenarios
introduce more parameters and assumptions, and provide little
additional insight beyond the fact that partial thermalization
must happen somewhere in the structure. We have therefore
restricted ourselves to the well-defined limiting cases in the
main text, and leave a full description of thermalization in
these structures as a question to theory.

FIG. 7. Comparison of two scenarios of partial thermalization.
(a) Distribution functions and (b) critical current. In both panels,
a = 0.2 for fhd and r = 0.3 for fsup.
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