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STRICHARTZ ESTIMATES FOR MAXWELL EQUATIONS IN

MEDIA: THE STRUCTURED TWO DIMENSIONAL CASE

ROBERT SCHIPPA AND ROLAND SCHNAUBELT

Abstract. We prove Strichartz estimates for two dimensional Maxwell
equations with diagonal Lipschitz permittivity of special structure. These
estimates have no loss in regularity that occurs in general for C1-coefficients.
In particular, in the charge free case we recover Strichartz estimates of wave
equations with C2-coefficients in two dimensions up to endpoints.

1. Introduction and main result

The Maxwell equations are the foundation of electro-magnetic theory. De-
spite its importance, dispersive properties of the linear Maxwell system in media
have only recently be studied systematically at least on full space, see [4], [6],
[7], [8], [9], as well as [1], [3] for earlier contributions. For the two dimensional
situation (1.1), in [8] we have obtained results comparable to the case of the
scalar wave equation, cf. [12], [13]. It is known that for Lipschitz coefficients
one has a loss of derivatrives in these Strichartz estimates compared to C2-
coefficients, in general, see [10] for the wave and [8] for the 2D Maxwell case.
However, in the recent work [2] it was discovered that this loss does not appear
for the wave equation under certain structural assumptions on the coefficients,
see (1.6). In this note, we show an analogous result for the 2D Maxwell system
for structured Lipschitz coefficients.

We investigate the two-dimensional Maxwell system{
∂tD = ∇⊥H−J , (t, x) ∈ R× R2,
∂tB = −∇× E , (1.1)

for the electric D, E : R×R2 → R2 and the magnetic fields B,H : R×R2 → R,
and the current density J : R × R2 → R2. Here we set ∇⊥ = (∂2,−∂1)> and
∇ × v = ∂1v2 − ∂2v1. These equations are equipped with the instantaneous
linear material laws

D = ε(x)E , B = µ(x)H,
for the permittivity ε : R × R2 → R2×2 and the permeability µ : R × R2 → R.
It is assumed that ε is symmetric and strictly positive definite. To focus on the
main difficulties, we let µ = 1 for simplicity, which is also a usual assumption
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in optics (after normalizing the vacuum permittivity ε0 to 1), see [5]. However,
our results easily generalize to strictly positive functions µ as in Theorem 1.1.

The system (1.1) arises as a restriction of the usual three dimensional Maxwell
system (with µ = 1) if the initial values D0 and B0 = H0 only depend on (x, y) ∈
R2 and if their components E03, B01, B02, as well as J3 vanish. Moreover, in the
3D permittivity tensor the components ε3j = εj3 have to be zero for j ∈ {1, 2}.
These restrictions on the fields are then conserved by the evolution equations.

In our recent paper [8] we have shown sharp Strichartz estimates for permit-
tivities ε ∈ Cs(R3,R2×2) with 0 ≤ s ≤ 2. To formulate them, we let u = (D,B)
be the state, denote the (electric) charges by ρe = ∇ · D, and write

P =

 ∂t 0 −∂2

0 ∂t ∂1

∂1(ε21·)− ∂2(ε11·) ∂1(ε22·)− ∂2(ε12·) ∂t

 . (1.2)

where (εij) is the inverse matrix of ε = (εij). (Here we change notation com-
pared to [8].) We call exponents (wave) admissible Strichatz pairs in spatial
dimension d if

2

p
+
d− 1

q
≤ d− 1

2
, 2 ≤ p, q ≤ ∞, ρ =

d

2
− d

q
− 1

p
, (1.3)

where q < ∞ if d = 3. If the first inequality is an equality, (p, q) are called
sharp. (Note that ρ ≥ 0 and ρ = 0 for the pair p = ∞, q = 2 corresponding
to the energy estimate (1.11).) For admissible pairs with d = 2, Cs-coefficients
and the loss parameter σ = 2−s

2+s , we have established

‖|D|−ρ−
σ
2 u‖LpLq . ‖u‖L2 + ‖Pu‖Ḣ−σ + ‖|D|−

1
2
−σ

2 ρe‖L2 (1.4)

in Theorem 1.2 of [8]. (If q = ∞, one has to replace L∞ by a Besov space
and analogously in (1.7) below.) Here we let LpLq = Lpx0L

q
x′ = Lp(R, Lq(R2)),

Lp = Lpx = LpLp, and |D|α = F−1|ξ|αF for the space-time Fourier transform.
We also write LpTL

q = LpTL
q
x′ = Lp(0, T ;Lq(R2)) for T > 0. Throughout,

x = (x0, x
′) = (t, x′) ∈ R × R2 are the space-time variables and ξ = (ξ0, ξ

′) =
(τ, ξ′) ∈ R×R2 the Fourier variables. Accordingly, spatial fractional derivatives
are denoted by |D′|α = F−1

x′ |ξ
′|αFx′ .

In (1.4) the regularity loss σ
2 compared to C2-coefficients is sharp in general,

as we have seen by a counter-example in [8] that is inspired by [10]. Except
for the charge term, the estimate (1.4) corresponds to the results for the wave
equation in Tataru’s paper [12], which also have the loss σ

2 for Cs-coefficients
(being sharp, in general, see [10]). The charge term in (1.4) compensates the
degeneracy of the main symbol of P , which is a fundamental difference between
the Maxwell and wave case, tied to the system character of (1.1).

However, recently the first author proved with Frey in [2] that Strichartz
estimates without loss hold for wave equations with Lipschitz coefficients under
certain structural assumptions. We state the results of [2] for the 2D case
only. There coefficients a1, a2 ∈ C0,1(R) were considered under the ellipticity
assumption

∃κ, κ > 0 : ∀x ∈ R : κ ≤ ai(x) ≤ κ. (1.5)
2



For the wave operator

Q = ∂tt − (∂1(a1(x1)∂1 + ∂2(a2(x2)∂2)
)

(1.6)

and sharp admissible pairs (p, q), the Strichartz estimates without loss

‖|D′|1−ρv‖LpTLq .T ‖∇u‖L∞T L2 + ‖Qu‖L1
TL

2 (1.7)

were proven in Corollary 4.5 of [2]. Hence, for the wave operator (1.6) with
C0,1-coefficients we have the same Strichartz estimate (1.7) as for the wave
equation with general (elliptic) C2-coefficients, see e.g. [12].

In this note we revisit our approach from [8] and show a loss-less Strichartz
estimate for solutions to (1.1) after frequency localization under the structural
conditions

ε(x) = diag(ε1(x2), ε2(x1)), where εi ∈ C0,1(R) satisfy (1.5), (1.8)

on the permittivities.

Theorem 1.1. Assume that (p, q, ρ) satisfy (1.3) for d = 2 and ε fulfills (1.8).
Let P be given by (1.2), u = (D,B), ρe = ∇ · D, and T ≥ 1. We then obtain
the Strichartz estimates

sup
λ∈2N0 ∪{0}

(1 + λ)−ρ‖S′λu‖LpTLqx′ .T ‖u(0)‖L2
x′

+ ‖Pu‖L1
TL

2
x′

+ ‖|D′|−1/2ρe(0)‖L2
x′

+ ‖|D′|−1/2∂tρe‖L1
TL

2
x′
. (1.9)

Let also ε ∈ B1
∞,2(R2). Then we have

‖|D′|−ρu‖LpTLqx′ .T ‖u(0)‖L2
x′

+ ‖Pu‖L1
TL

2
x′

+ ‖|D′|−1/2ρe(0)‖L2
x′

+ ‖|D′|−1/2∂tρe‖L1
TL

2
x′

(1.10)

for q <∞. If q =∞, one has to replace the left-hand side by ‖u‖LpT Ḃ−ρ∞,2.

The theorem is proved in the next section. Here we first discuss the result
and its proof a bit.

Above we use a spatial Littlewood–Paley decomposition (S′λ)λ∈2N0 , see (2.1).
For (1.10), the slightly improved first-order regularity of ε is needed to sum the
Littlewood–Paley pieces in a commutator argument, see (2.10). We note that
(1.8) excludes the counter-examples to (1.10) from Section 7 of [8].

We next explain the differences between the right-hand sides of (1.4) with
σ = 0 compared to (1.9) and (1.10). Differentiating the energy 1

2

∫
(εE(t) ·E(t)+

|H(t)|2) dx′ in time, one obtains

‖u(t)‖L2
x′
.κ,κ ‖u(0)‖L2

x′
+ ‖Pu‖L1(0,t;L2). (1.11)

(For time-varying coefficients one would need here ∂tε ∈ L1
TL
∞.) Hence it is

enough to show (1.9) and (1.10) with ‖u‖L2 instead of ‖u(0)‖L2
x′

on the right-

hand side. In step 1) of the proof we will also see how one can pass from ‖Pu‖L2

to ‖Pu‖L1(0,t;L2) by means of Duhamel’s formula, though with a T -depending
constant. This argument also modifies the charge term.

We state the above result with spatial regularity only. But, as seen in the
proof, the low frequency part of u and the frequency ranges |τ | � |ξ′| can be
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handled directly (without involving ρe) so that one could replace |D′| by |D|.
Observe that Sobolev’s embedding already gives

‖|D|−ρu‖LpLq . ‖|D|
1
2u‖L2 ,

so that we have to gain half a derivative to derive (1.10). In particular, if we

only know ‖|D′|−1/2ρe‖L2 ∼ ‖|D′|
1
2D‖L2 for the charge, then (1.10) would not

improve on Sobolev’s embedding. On the other hand, (1.1) implies

ρe(t) = ∇ · D(0)−
∫ t

0
∇ · J (s) ds (1.12)

so that the charge is given by the data. Moreover, we have ρe(0) = ∇ · D(0)
and ∂tρe = −∇ · J in (1.9) and (1.10).

In three spatial dimensions, dispersive estimates for the Maxwell system de-
pend very much on the behavior of the eigenvalues of ε(x) and µ(x) since these
heavily influence the characteristic surface S of the problem (the null set of the
principal symbol of P ), see our recent contributions [4], [6], [9], and the refer-
ences therein. Only in the isotropic case of scalar ε and µ, Strichartz estimates
with admissible exponents (1.3) for d = 3 as for the wave equation are known
so far, see [6]. For smooth coefficents and vanishing charges this was already
shown in [1], which is the only other reference on Strichartz estimates for the
Maxwell system with non-constant coefficients we are aware of.

Already for constant diagonal coefficents ε = diag(ε1, ε2, ε3) and µ =
diag(µ1, µ2, µ3) in the fully anisotropic case εi/µi 6= εj/µj for i 6= j, the admis-
sible range of exponents for the Strichartz estimate is reduced to 2

p + 1
q ≤

1
2 as

in 2D instead of 1
p + 1

q ≤
1
2 as in 3D for the wave equations. This is caused by a

loss of curvature for S in this case, compared to ∂ttw = ∆w where S is the light
cone {τ = ±|ξ′|}. Moreover, the slices Sτ of S for fixed τ 6= 0 have four conical
singularities in the above fully anisotropic case. See [3, 4, 6, 9] for a detailed
discussion. So it is worthwhile to study the influence of structured coefficients
to dispersive properties of the Maxwell system first in the two dimensional case.

In our proof we follow the general strategy from [8]. However, there we used
C2-coefficients in most of the relevant arguments, so that we have to argue
differently at various points. As in [12] we first reduce to functions u which
are localized in the space-time unit cube [0, 1]3 and in Fourier space near a
large dyadic frequency λ ∈ 2N0 . The frequency localization is more demanding
in the present situation since the relevant commutator [P, S′λ]u is uniformly
bounded in L2, but not square summable, for Lipschitz coefficients. (There is
no problem if they belong to in Cs if s > 1.) In (2.10) we manage to sum in λ
using the assumption ε ∈ B1

∞,2, which is only needed here. Then the coefficients
are truncated to frequencies less or equal λ. We next diagonalize the principal
symbol p as in [8]. Using also the FBI transform and results from [11], we can
treat the frequency range |τ | � |ξ′| by an elliptic estimate and the degenerate
range |ξ′| � |τ | by means of the charges.

The remaining part |τ | ∼ |ξ′| near the light cone is handled by means of the
wave estimate (1.7) from [2], after passsing to a second-order formulation of the
Maxwell system. Only here we use the special structure of ε from (1.8). For
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C2-coefficients in [8] we had employed results from Tataru’s paper [12] instead.
We note that Cs-coefficients were treated in [8] (and in [12]) employing further
frequency cut-offs of the coefficients, which led to the loss of regularity in (1.4).

2. Proof of Theorem 1.1

As noted above we use some arguments from [8]. In the sequel we focus
on the differences to [8]. We proceed in five steps using the following dyadic
frequency decomposition. Let χ ∈ C∞c (R;R≥0) radially decrease with χ(x) = 1
for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. We set

S′λ = F−1
x′ (χ(|ξ′|/λ)− χ(|ξ′|/2λ))Fx′

for λ ∈ 2N0 . Moreover, we write

S′0 = I −
∑
λ∈2N0

S′λ, S′≥λ =
∑
µ≥λ

S′µ, S̃′λ =
8λ∑

µ=λ/8

S′µ, (2.1)

with sums over dyadic numbers. We write Sτλ etc. for the corresponding oper-
ators in 1D (giving a temporal decomposition), and Sλ for the full 3D version
in ξ. The Besov space Bs

p,q(Rd) for s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q <∞ contains

those f ∈ S ′(Rd) with finite norm

‖f‖Bsp,q(Rd) =
( ∑
λ∈2N0∪{0}

(1 + λ)qs‖S′λf‖
q
Lp(Rd)

)1/q
,

Bs
p,∞(Rd) is defined by an obvious modification. Note that it is enough to prove

Theorem 1.1 for sharp pairs with 2
p + 1

q = 1
2 because of Sobolev’s embedding.

1) Reduction to L2 on the left. To establish (1.9), it suffices to show

sup
λ∈2N0∪{0}

(1+λ)−ρ‖S′λu‖LpTLqx′ .T ‖u(0)‖L2
x′

+‖u‖L2
x
+‖Pu‖L2

x
+‖|D′|−1/2ρe‖L2

x
.

(2.2)
Similarly, (1.10) follows from

‖|D′|−ρu‖LpTLq .T ‖u(0)‖L2
x′

+ ‖u‖L2
x

+ ‖Pu‖L2
x

+ ‖|D′|−1/2ρe‖L2
x
. (2.3)

We check this only for (2.2), as (2.3) is treated in the same way.
Once (2.2) is proved, we can derive (1.9) by localization in time and the

energy estimate (1.11). To this end, we extend u to (−T, 2T ) by reflection and
cut-off such that supp(ũ) ⊆ (−T, 2T ). An application of (2.2) to ũ yields

sup
λ∈2N0∪{0}

(1 + λ)−ρ‖S′λu‖LpTLqx′ = sup
λ∈2N0∪{0}

(1 + λ)−ρ‖S′λũ‖LpTLqx′ (2.4)

. ‖u(0)‖L2
x′

+ ‖ũ‖L2 + ‖Pũ‖L2 + ‖|D′|−
1
2 ρ̃e‖L2

. ‖u(0)‖L2
x′

+ ‖u‖L2
TL

2 + ‖Pu‖L2
TL

2 + ‖|D′|−
1
2 ρe‖L2

.T ‖u(0)‖L2
x′

+ ‖Pu‖L1
TL

2 + ‖Pu‖L2
TL

2 + ‖|D′|−
1
2 ρe‖L2 .
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At this point, we use Duhamel’s formula

u(t) = U(t)u(0) +

∫ t

0
U(t− s)Pu(s) ds

for the C0-group U(·) solving (1.1), and the estimate (2.4) for the homoge-
neous problem with initial values u(0), respectively Pu(s). Taking into account
ρe(0) = ∇ · D(0) and ∂tρe = −∇ · J from (1.12), we deduce (1.9).

2) Localization and frequency truncation. We carry out a dyadic fre-
quency localization and frequency-truncate the coefficients accordingly.

In the first step, we observe that Bernstein’s inequality, (1.11), and Hölder’s
inequality yield

‖|D′|−ρS′0u‖LpTLq . ‖|D
′|

1
pS′0u‖LpTL2 .T ‖u(0)‖L2

x′
+ ‖Pu‖L2 .

In particular, we can replace |D′|−ρ by 〈D′〉−ρ = F−1
x′ 〈ξ

′〉αFx′ with 〈ξ′〉2 =

1 + |ξ′|2. As in Section 3.2 of [8] we restrict to u that are supported in [0, 1]3

by means of a partition of unity.
We truncate the frequencies of ε at λ/8 and denote the resulting coefficients

by ε.λ, and the corresponding operator by Pλ, cf. (1.2). Moreover, P∼λ is
the operator with coefficients ε∼λ that are frequency-localized near λ. Since
‖ε&λ‖L∞ . λ−1‖ε‖C0,1 , we can fix a frequency λ0 ≥ 1 such that the lower
bound (1.8) is true for ε.λ if λ ≥ λ0.

We next deduce (2.2) from the frequency localized bound

λ−ρ‖S′λu‖LpTLq .T ‖S
′
λu(0)‖L2

x′
+ ‖S′λu‖L2 + ‖PλS′λu‖L2 +λ−

1
2 ‖S′λρe‖L2 . (2.5)

for λ � 1. To pass from (2.5) to (2.2), one has to bound ‖PλS′λu‖L2 by

‖S′λPu‖L2 plus terms like ‖S̃′λu‖L2 . We use fixed-time commutator arguments
to this end. We note that

‖PλS′λu‖L2 = ‖S̃′λPλS′λu‖L2 ≤ ‖S̃′λPS′λu‖L2 + ‖S̃′λP∼λS′λu‖L2

≤ ‖S′λPu‖L2 + ‖S̃′λ[P, S′λ]u‖L2 + ‖S̃′λP∼λS′λu‖L2 . (2.6)

Write [P, S′λ] = [P, S′λ]S̃′λ+S′λP (1− S̃′λ). In the second term we can replace the
coefficients ε of P with ε&λ = S′&λε as the low frequencies of ε do not appear

in the frequency interaction:

S′λP (1− S̃′λ)u = S′λP&λ(1− S̃′λ)u. (2.7)

Since P is in divergence form, standard properties of Lipschitz functions yield

‖S̃′λ[P, S′λ]u‖L2 . λ‖S̃′λ[ε, S′λ]S̃′λu‖L2 + λ‖ε&λ‖L∞‖(1− S̃λ)u‖L2 (2.8)

. ‖S̃λu‖L2 + ‖ε‖C0,1‖u‖L2 ,

‖S̃′λP∼λS′λu‖L2 . λ‖S̃λ(ε)S′λu‖L2 . ‖ε‖C0,1‖S′λu‖L2 . (2.9)

Hence, (2.2) follows from (2.5).
To reduce (2.3) to (2.5), we use the square function estimate in Lq(R2) for

2 ≤ q <∞ and Minkowski’s inequality (note that p, q ≥ 2), obtaining

‖|D′|−ρS′&1u‖LpTLq .
(∑

λ&1
λ−2ρ‖S′λu‖2LpTLq

) 1
2
.
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For q =∞, we employ the definition of Besov spaces instead of the Littlewood–
Paley theorem. Invoking (2.5), we need to show that(∑

λ&1

‖PλS′λu‖2L2

) 1
2
. ‖u‖L2 + ‖Pu‖L2 .

In (2.6) the first and third term sum up due to (2.9), already for Lipschitz
coefficients. It remains to verify∑

λ&1

‖S̃′λ[P, S′λ]u‖2L2 . ‖u‖2L2 .

The second term in (2.8) is not square summable. To use the extra Besov
regularity of ε, we go back to (2.7) and write

‖S′λP (1− S̃′λ)u‖L2
x′
. λ‖ε∼λS′�λ‖L2

x′
+ λ‖S̃′λε&λS′&λu‖L2

x′

. λ‖ε∼λ‖L∞
x′
‖u‖L2

x′
+ λ

∑
µ&λ

‖ε∼µ‖L∞
x′
‖S′µu‖L2

x′
.

Square summing the first term in the last line yields∑
λ&1

λ2‖ε∼λ‖2L∞
x′
‖u‖2L2

x′
. ‖ε‖2B1

∞,2
‖u‖2L2

x′
.

By means of Hölder’s inequality and Fubini’s theorem, we estimate the square
sum of second term by∑
λ&1

λ2
(∑
µ&λ

‖ε∼µ‖L∞
x′
‖S′µu‖L2

x′

)2
.
∑
λ≥1

λ2
∑
µ&λ

‖ε∼µ‖2L∞
x′

∑
µ&λ

‖S′µu‖2L2
x′

(2.10)

.
∑
µ≥1

‖ε∼µ‖2L∞
x′

∑
λ.µ

λ2 ‖u‖2L2
x′

.
∑
µ≥1

µ2‖ε∼µ‖2L∞
x′
‖u‖2L2

x′
= ‖ε‖2B1

∞,2
‖u‖2L2

x′
.

As a result, (2.5) also implies (2.3) if ε ∈ B1
∞,2.

3) Diagonalization. We diagonalize the main symbol of P as in Section 3.1
[8], obtaining

p(x, ξ) = i

 ξ0 0 −ξ2

0 ξ0 ξ1

−ξ2ε
11 ξ1ε

22 ξ0

 = m(x, ξ)d(x, ξ)m(x, ξ)−1

=

−ξ∗1ε22(x) ξ∗2 −ξ∗2
−ξ∗2ε11(x) −ξ∗1 ξ∗1

0 1 1

iξ0 0 0
0 i(ξ0 − |ξ′|ε̃) 0
0 0 i(ξ0 + |ξ′|ε̃)


·

 −ξ∗1 −ξ∗2 0
1
2ξ
∗
2ε

11(x) −1
2ξ
∗
1ε

22(x) 1
2

−1
2ξ
∗
2ε

11(x) 1
2ξ
∗
1ε

22(x) 1
2


7



with |ξ′|2ε̃ = 〈ξ′, ε̃(x)ξ′〉, ε̃(x) = adj(ε−1(x)) = diag(ε22(x), ε11(x)), and ξ∗i =
ξi/|ξ′|ε̃ for i = 1, 2. See also [7]. Here we use that ε is diagonal in our case,
though this is not needed in this and the next step.

Strictly speaking, the symbols in the diagonalization depend on λ, but we
suppress the dependence in the following to lighten the notation.

4) Estimate off the light cone. We use the diagonalization to localize also
the temporal frequencies µ of u to the spatial frequency λ. in the next step. To
this end, in this step we treat the case that µ differs much from λ.

a) Let µ� λ. Here the operator Pλ is elliptic and gains one derivative. More
precisely, Bernstein’s inequality yields

λ−ρ‖SτµS′λu‖LpLq . λ−ρλ
1− 2

qµ
1
2
− 1
p ‖SτµS′λu‖L2 ≤ µ

1
2 ‖SτµS′λu‖L2

Now we use the FBI transform

Tµf(z) = Cµ
9
4

∫
R3

e−
µ
2

(z−y)2
f(y) dy, z = x− iξ ∈ T ∗R3 ' R6,

see [11], and set vµ = TµS
τ
µS
′
λu. We recall that Tµ : L2(R3) → L2

Φ(R6) is an

isometry, where the range space has the weight Φ(z) = e−µξ
2
. Using (15) in [12],

one can check that vµ is essentially supported in B(0, 2)×{1 ∼ |ξ0| � |ξ′|} =: U
and ‖vµ‖L2(Uc) .N µ−N‖SτµS′λu‖L2 . So it remains to estimate ‖vµ‖L2(U).

Since p is strictly positive on U , Theorem 1 of [11] implies

‖vµ‖L2(U) . ‖p(x, ξ)vµ‖L2(U) . ‖p(x, ξ)vµ‖L2
Φ

. µ−1‖Pλ(x,D)SτµS
′
λu‖L2 + µ−

1
2 ‖SτµS′λu‖L2 . (2.11)

This suffices for summation over µ� λ, and we have thus shown

λ−ρ‖Sτ�λS′λu‖LpTLq .T ‖S
′
λu‖L2 + ‖PλS′λu‖L2 . (2.12)

b) Let µ � λ. Here we see that the non-degenerate components of d(x, ξ)
are elliptic and the degenerate first component is estimated by the charges. As
above, Bernstein’s inequality yields

λ−ρ‖SτµS′λu‖LpLq . λ
1
pµ

1
2
− 1
p ‖SτµS′λu‖L2 .

We let TλS
τ
µS
′
λu = vλ, which is now essentially supported in {1 ∼ |ξ′| � |ξ0|}

and obtain

‖vλ‖L2
Φ

= ‖m(x, ξ)m−1(x, ξ)vλ‖L2
Φ
. ‖m−1(x, ξ)vλ‖L2

Φ
.

Using Theorem 1 of [11], the component [m−1(x, ξ)vλ]1 is estimated by

‖[m(x, ξ)−1vλ]1‖L2
Φ
. λ−1‖∇ · S′λD‖L2

x
+ λ−

1
2 ‖S′λD‖L2

x
.

By the essential support property, the components d2 and d3 are strictly
prositive. For i = 2, 3 we thus obtain

‖[m(x, ξ)−1vλ]i‖L2
Φ
.‖[d(x, ξ)m(x, ξ)−1vλ]i‖L2

Φ
.‖m(x, ξ)d(x, ξ)m(x, ξ)−1vλ‖L2

Φ

= ‖p(x, ξ)vλ‖L2
Φ
.
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This fact allows to gain derivatives as in (2.11) and leads to

λ−ρ‖SτµS′λu‖LpLq . µ
1
2
− 1
pλ

1
p
− 1

2 ‖|D′|−
1
2∇ · S′λD‖L2

x

+ µ
1
2
− 1
pλ

1
p
− 1

2 ‖S′λu‖L2 + µ
1
2
− 1
pλ

1
p
−1‖PλS′λu‖L2 .

Summing over µ ≤ λ, we derive

λ−ρ‖Sτ�λS′λu‖LpTLq .T ‖S
′
λu‖L2 + ‖PλS′λu‖L2 + ‖|D′|−

1
2S′λρe‖L2

x
. (2.13)

5) Estimate near the light cone. In view of (2.12) and (2.13), for (2.5) it
remains to estimate the space-time region {|τ | ∼ |ξ′| ∼ λ}. Set (Dλ,Hλ) =
Sτ∼λS

′
λu and Jλ = PλS

τ
∼λS

′
λu = Sτ∼λPλS

′
λu. To estimate (Dλ,Hλ), we pass to

the second order equation starting from
∂tD1λ = ∂2Hλ + J1λ,
∂tD2λ = −∂1Hλ + J2λ,
∂tHλ = ∂2(ε−1

1λD1λ)− ∂1(ε−1
2λD2λ) + J3λ.

(2.14)

Taking another time derivative in the third equation, we find

∂2
tHλ = ∂2(ε−1

1λ ∂2Hλ) + ∂1(ε−1
2λ ∂1Hλ) + ∂2(ε−1

1λJ1λ)− ∂1(ε−1
2λJ2λ) + ∂tJ3λ.

Setting f = ∂2(ε−1
1λJ1λ)−∂1(ε−1

2λJ2λ)+∂tJ3λ, the standard energy estimate and
(2.14) imply

‖∇Hλ(t)‖L2
x′
. ‖∇xHλ(0)‖L2

x′
+ ‖f‖L1

TL
2 .T λ‖S′λu(0)‖L2

x′
+ λ‖Jλ‖L2 .

We now use (1.7) taken from [2] and obtain

λ1−ρ‖Hλ‖LpTLq .T ‖∇Hλ‖L∞T L2 +‖f‖L1
TL

2 .T λ‖S′λu(0)‖L2
x′

+λ‖Jλ‖L2 . (2.15)

Furthermore, the first and second equation in (2.14) give

λ−ρ‖Diλ‖LpLq . λ−ρλ−1‖∂tDiλ‖LpLq . λ−ρ(λ−1‖∂jHλ‖LpLq + λ−1‖Jiλ‖LpLq).

with j 6= i in {1, 2}. The first term has been bounded by ‖S′λu(0)‖L2
x′

+ ‖Jλ‖L2

in (2.15). Due to Sobolev’s embedding, the second term can be estimated by

λ−ρλ−1‖Jλ‖LpLq . λ−
1
2 ‖Jλ‖L2 .

Hence, (2.5) is shown and the proof of Theorem 1.1 is complete. �
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