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Abstract

Domain derivatives are an important tool to characterize and compute shape derivatives. If
some quantity of interest depends on the shape of an object such as the obstacle in a scatter-
ing problem, shape derivatives are used to describe the effect of variations of the shape on that
quantity. We here consider the scattering of time-harmonic electromagnetic waves by a pene-
trable obstacle. As an alternative to the formulation using the Maxwell system, the problem
may be posed as a coupled system of Helmholtz equations with complicated transmission condi-
tions. We prove equivalence of the two formulations and then proceed to characterize the domain
derivatives of the scattered fields in the potential formulation. Our main result is the equivalence
of the characterizations of such derivatives in the Maxwell and in the potential based problem
formulation.

Mathematics subject classifications (MSC2010): 35Q61, 78A25

Keywords: Maxwell’s equations, domain derivative for penetrable scatterer, potential formulation

1 Introduction

Shape derivatives are an indispensable tool in a range of inverse and optimal design problems. An
objective functional such as the misfit between measured far field data and the field produced by a
given scatterer in an inverse scattering problem, depends on the shape of the given object. Optimiza-
tion of the objective functional through gradient based methods naturally leads to the question of
how derivatives of this functional with respect to the shape of the object can be computed. Compu-
tationally, it is useful that this derivative can be characterized by the domain derivative, a solution
of the original PDE, but with different boundary conditions.

In the present paper, we are concerned with shape derivatives for the electromagnetic scattering
problem for a bounded penetrable object. We consider a time-harmonic electromagnetic incident
field (Ei,H i) in a homogeneous isotropic background medium characterised by a constant positive
permittivity ε0 and permeability µ0. Suppose that in a bounded, open set D ⊆ R3, the permittivity
ε and permeability µ differ from the background values. The total field (E,H) then is a solution to
the system of Maxwell’s equations

curlE − iω µH = 0 , curlH + iω εE = 0 (1)
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in R3, while the incident field satisfies this equation for the material parameters ε0 and µ0 throughout
R3. Moreover, the scattered field (Es,Hs) = (E,H) − (Ei,H i) is assumed to satisfy the Silver-
Müller radiation condition

lim
|x|→∞

(
√
µ0H

s(x)× x− |x|
√
ε0E

s(x)) = 0 , (2)

uniformly in x̂ = x/|x|. The objective functional typically is a functional of this scattered field
and hence inherits the dependence of the scattered field on the shape and physical properties of the
scatterer D.

In this paper, we will be mainly concerned with the well-known approach of representing the elec-
tromagnetic field by potentials: one may choose a vector field A and a scalar function ϕ such that

E = iωA− gradϕ , H =
1

µ
curlA . (3)

Analogous representations for the incident and scattered fields hold. Such representations are not
unique. Under the assumption that divA = 0 in an appropriate sense, Helmholtz decompositions
will provide them. A different approach, more useful for computational purposes, is to impose the
Lorentz gauge condition

divA− iωεµϕ = 0 (4)

instead. This approach has been pursued in [6], where the authors show that for piecewise homoge-
neous media, the approach leads to a well-posed system of integral equations defined on the boundary
of the scatterer that can be used to compute the potentials As and ϕs of the scattered fields.

In our present work, we pursue how to use these potential representations for computing domain
derivatives. The new results are two-fold: Firstly, we give formulations of the method described in [6]
in mathematical terms, using the language of weak formulations of boundary value problems, and
mathematically rigorously establish equivalence to the original electromagnetic scattering problem.
Moreover, and more importantly, in the case when the material properties are piecewise constant,
we characterize the domain derivatives of the potentials As, ϕs and establish their relation to the
domain derivative of Es.

Let us motivate why this approach has computational advantages over other established ways to
compute domain derivatives in relevant situations. One example of an application in which such
scattering problems feature prominently is the optimal design of an object with respect to its electro-
magnetic chirality [3, 10]. An electromagnetic field can canonically be split into components of pure
circular polarizations or helicities. Electromagnetic chirality is a physical concept describing how
different a scatterer interacts with fields of the two helicities. The goal is to design a scatterer that is
(nearly) invisible to incident fields of one helicity while it strongly interacts with fields of the opposite
helicity. Using a simplified model [5], such designs have been realized using shape derivatives [2].
Particular examples have been found at or near optical frequencies and consist of thin elongated
structures that are made of noble metals [11]. However, these objects are too thin to realistically
be fabricable in the near future, and thus thicker objects need to be considered for which the sim-
plified model is no longer valid. The goal thus is to solve electromagnetic scattering problems and
compute domain derivatives for piecewise homogeneous media in a regime where the real part of the
electromagnetic permittivity inside the scatterer is negative. Although the problem in principle can
be formulated as a conventional uniquely solvable system of integral equations and corresponding
domain derivatives can be computed [14], the material properties lead to slow convergence of iterative
solvers when solving the corresponding discretized system. This renders the approach unusable in
practice.

As discussed in [6] and also below in section 3, the formulation of the scattering problem and charac-
terization of the domain derivatives via potentials can be formulated as a system of integral equations
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with operators arising in conjunction with the Helmholtz equation rather than the Maxwell system. A
solution strategy is provided that requires only the inversion of discretizations of boundary operators
that are applied to one scalar unknown, greatly reducing computational complexity. The application
of a direct solver becomes viable, avoiding convergence issues with iterative solvers. Moreover, in the
numerical computation of a domain derivative the solver typically has to be invoked many times for
different right hand sides, making a direct solver even more attractive.

There are possible alternatives that have been derived recently to robustly solve boundary integral
equations for electromagnetic scattering for a wide range of material properties. The Debye poential
based approach of [7–9] has a very convincing theoretical foundation, however it requires non-standard
integral operators that are difficult to implement for complex geometries. Other integral formulations
for the time-harmonic Maxwell system with robust dependence on the material properties have been
reported on [12,13,16,17], but require substantial implementational efforts to evaluate.

In what follows, we will discuss the mathematical formulation of the electromagnetic scattering
problem and its formulation using potentials satisfying (3), (4) in section 2. In particular, we will
provide a mathematical formulation of the transmission problem for A, ϕ given in [6] and establish
that a solution of this problem in turn gives rise to an electromagnetic field (E,H) that solves the
original problem. Thus we establish well-posedness of the transmission problem for the potentials.
Limiting ourselves to the case of piecewise constant media in section 3, we discuss the solution of
the problem via an integral equation formulation. Finally, in section 4, we consider the domain
derivatives of the potentials and characterize them as the solutions of a transmission problem with
the same operators as in the problem forA and ϕ. As the central result of this paper, in Theorem 4.5,
we prove that the domain derivative of the electromagnetic scattered field can in turn be obtained
from the domain derivatives of the potentials. Some results which are not essentially new, have been
collected in the appendix. This in particular concerns the characterizations of the domain derivatives
which are analogous to previously established results [15, 18] except for the the more complicated
transmission conditions.

2 The electromagnetic transmission problem

Throughout this paper we will work with a weak formulation of the problem (1), (2) posed in
appropriate Sobolev spaces. Given some bounded Lipschitz domain Ω, we use the usual Hilbert
spaces

H1(Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω)} ,
H1(Ω,C3) = {U = (U1,U2,U3)> : Uj ∈ H1(Ω)} .

For vector valued functions U and a differential operator D, so that DU takes values in C`, we also
require the Hilbert spaces

H(D,Ω) = {U ∈ L2(Ω,C3) : DU ∈ L2(Ω,C`)} .

Typcial choices for D are curl, div or curl2. As is usual, a subscript loc will be used to indicate cor-
responding spaces of functions having the required regularity on every open set compactly contained
in Ω.

We also require a number of trace spaces on ∂Ω. The spaces Hs(∂Ω), s ∈ (−1, 1), and the correspond-
ing H−s-Hs-duality 〈·, ·〉∂Ω and their analogues for vector fields, are standard. Let γD : H1(Ω) →
H1/2(∂Ω) denote the usual Dirichlet trace operator. For a vector field U ∈ H(div,Ω), the normal
trace will be denoted by Uν = ν · U ∈ H−1/2(∂Ω). For u ∈ H1(Ω) with ∆u ∈ L2(Ω), the normal
derivative on ∂Ω will be denoted by ∂u

∂ν ∈ H
−1/2(∂Ω).
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In addition, there are a number of spaces of (in the weak sense) tangential fields. Denote by ν the
outward drawn unit normal vector to ∂Ω and define for a sufficiently smooth vector field

γtU = U × ν ,

and hereby the spaces,

L2
t (∂Ω) = {U ∈ L2(∂Ω,C3) : U · ν = 0}

H
1/2
t (∂Ω) = {γtU : U ∈ H1(Ω)} , H

−1/2
t (∂Ω) = (H

1/2
t (∂Ω))∗

H−1/2(Div, ∂Ω) = {U ∈ H−1/2
t (∂Ω) : DivU ∈ H−1/2(∂Ω)} .

The symmetric bilinear form

〈U ,V 〉t,∂Ω =

∫
∂Ω
U · (ν × V ) ds , U ,V ∈ L2

t (∂Ω) ,

extends to a duality between H−1/2(Div, ∂Ω) and itself, and the tangential trace extends to a bounded
operator γt : H(curl,Ω) → H−1/2(Div, ∂Ω). Precise definitions of such relations and of the surface
differential operators used here may be found in [4]. Note that for surface differential operators such
as Div above, it will always be clear from the context with respect to which surfaces these operators
are applied. Hence we do not include this surface as an index to the operator.

All these traces may differ when taken from opposite sides of a boundary. As usual, we will indicate
that the trace is taken from the direction the normal vector is pointing to by a superscript +, and
the opposite side by a superscript −. For normal components, this is indicated by Uν |± = ν ·U |±
and for normal derivatives by ∂u

∂ν |
±. Jumps and mean values of traces taken from opposite sides of a

boundary are denoted with the common bracket notation, e.g. in the case of a Dirichlet trace,

[γDu]∂Ω = γ+
Du− γ

−
Du , {γDu}∂Ω =

1

2

(
γ+
Du+ γ−Du

)
.

For vector valued functions, additional notation for derivatives is required. We will denote the
Jacobian matrix of any function U : R3 → C3 by JU . We will use this notation in particular when
dealing with transformations of the domain and domain derivatives in section 4, but we also note
the useful identity

3∑
j=1

∫
Ω
gradU j · gradV j dx =

∫
Ω

tr
(
JU J

>
V

)
dx .

Also, the vector of normal derivatives of the components of U can then be written as JUν.

To conclude this section on notations, we note that we sometimes will make use of distributions. The
action of a distribution f on a test function ϕ ∈ C∞0 (R3) is denoted by (f, ϕ).

To ensure uniqueness of solution to the electromagnetic scattering problem, we need to prescribe
regularity assumptions on the material parameters ε and µ. We will assume for now that both are
piecewise continuously differentiable functions, that Im(ε) ≥ 0 and that there are constants c1, c2 > 0
such that µ ≥ c1 on R3 and either Re(ε) ≥ c2 on R3 or Im(ε) ≥ c2 on some open set. Finally, we
assume that outside some bounded Lipschitz domain D contained in the ball BR of radius R centered
at the origin, both functions are equal to positive constants ε0 and µ0, respectively. Later on in this
paper, stronger assumptions will be imposed.

The transmission problem will be formulated in weak form in BR. The incident field Ei,H i ∈
Hloc(curl,R3) is assumed to be a solution of (1) for ε, µ replaced by ε0, µ0 in all of R3, and gives rise
to the scattered field (Es,Hs) = (E,H)− (Ei,H i). To ensure uniqueness of solution, the scattered
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field is assumed to satisfy the Silver-Müller radiation condition (2). The Calderon operator is the
bounded operator given by

C : H−1/2(Div, ∂BR)→ H−1/2(Div, ∂BR) , γtE
s 7→ γtH

s .

The variational formulation of the scattering problem, based on the weak form of the curl curl
equation for the electric field, is to find E ∈ H(curl, BR) such that∫

BR

(
1

µ
curlE · curlV − ω2εE · V

)
dx− iω 〈CγtE, γtV 〉t,∂BR

= iω 〈H i − CγtEi, γtV 〉t,∂BR
for all V ∈ H(curl, BR) . (5)

Unique solvability of this problem can be proved as in section 4.6 of [22], also using the unique
continuation result of [24]. For the case of Re(ε) < 0 on D, see also [19].

As described in the introduction, we consider potentials A, ϕ such that (3), (4) hold. This leads to
potentials that satisfy a Helmholtz equation with compactly supported distributional source term,

∆u+ k2 u = f , (6)

and k = ω
√
εµ. This is the approach used in [6] and we will discuss it in more detail below.

The appropriate radiation condition for outgoing solutions to the Helmholtz equation is the well-
known Sommerfeld radiation condition. Analogously to the Calderon map, we introduce the DtN-
operator on ∂BR which is the bounded operator given by

Λ : H1/2(∂BR)→ H−1/2(∂BR) , γDu
s 7→ ∂us

∂ν
,

where us denotes a solution to (6) in R3 \BR that satisfies the Sommerfeld radiation condition. The
variational formulation for the total field u ∈ H1(BR) that solves (6) in the homogeneous case f = 0
due to an incident field ui ∈ H1

loc(R3) then is∫
BR

(
gradu · grad v − k2 u v

)
dx− 〈ΛγDu, γDv〉∂BR

=

〈
∂ui

∂ν
− ΛγDu

i, v

〉
∂BR

(7)

for all v ∈ H1(BR). Below, we will also encounter a variant of (7) with the scalar product of the
gradients multiplied by ε, corresponding to a jump in the Neumann data of u along discontinuities
of ε.

Throughout the paper, we will assume that the incident field Ei, H i also has a potential represen-
tation of the form (3),

Ei = iωAi − gradϕi , H i =
1

µ0
curlAi

with potentials ϕi ∈ H1
loc(R3), Ai ∈ H1

loc(R3) that satisfy (6) and (4) with ε, µ replaced by ε0 and
µ0, respectively, and vanishing source terms.

Theorem 2.1 Let E ∈ H(curl, BR) denote a solution to (5) and set H = 1/(iωµ) curlE. Then
there exists a scalar potential ϕ ∈ H1(BR) and a vector potential A ∈ H1(BR,C3) such that (3) and
(4) hold in BR. Moreover ϕ and A are weak solutions to inhomogeneous Helmholtz equations,∫
BR

(
ε gradϕ · grad v − ω2ε2µϕv

)
dx− ε0 〈ΛγDϕ, γDv〉∂BR

= −iω (grad (ε) ·A , v) + ε0

〈
∂ϕi

∂ν
− ΛγDϕ

i, v

〉
∂BR

(8)
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for all v ∈ C∞0 (R3) and∫
BR

(
tr
(
JAJ

>
V

)
− ω2εµA · V

)
dx− 〈ΛγDA, γDV 〉∂BR

= −iω (grad(εµ)ϕ , V )

+

∫
BR

(µ− µ0)H · curlV dx+ iω

∫
BR

(µ− µ0) εE · V dx+
〈
JAiν − ΛγDA

i, γDV
〉
∂BR

(9)

for all V ∈ C∞0 (R3,C3), respectively. Both ϕ − ϕi, A −Ai may be smoothly extended to radiating
solutions to the Helmholtz equation in R3 \BR.

Remark 2.2 As ε = ε0, µ = µ0 outside of D, the distributions on the right hand sides of (8) and
(9) have compact support in BR. For piecewise constant material parameters as we will consider
later (see Theorem 2.4 below), they reduce to terms with support on the interfaces between materials
and can be formulated as interface conditions for the potentials.

Proof (of Theorem 2.1): We start by following the arguments in [1, section 3.5] to obtain a standard
Helmholtz decomposition of E. Denote by ϕ(1) ∈ H1

0 (BR) the uniquely determined solution of the
Dirichlet problem∫

BR

gradϕ(1) · grad v dx = −
∫
BR

E · grad v dx for all v ∈ H1
0 (BR) . (10)

Set A(1) = (iω)−1
(
E + gradϕ(1)

)
. Then divA(1) = 0 in BR and hence A(1) ∈ H(curl, BR) ∩

H(div, BR). Note also that ϕ(1) = 0 outside of the support of divE, so in particular in the neigh-
borhood of ∂BR where ε = ε0 and µ = µ0. Hence iωA(1) = E in this neighborhood. We conclude
that iω ν ·A(1) = ν ·E is smooth on ∂BR and thus A(1) ∈ H1(BR,C3) by Corollary 2.15 in [1]. It
also follows that all Cartesian components of A(1)− (iω)−1Ei can be smoothly extended as radiating
solutions to the Helmholtz equation to R3 \BR.

We now modify the decomposition to satisfy the gauge condition. Continue ϕ(1) by 0 to a function
in H1(R3) with compact support. Then the equation

∆ϕ(2) + ω2εµϕ(2) = −ω2εµϕ(1) in R3

has a unique solution in ϕ(2) ∈ H2
loc(R3) that satisfies the Sommerfeld radiation condition. Set

ϕ = ϕ(1) + ϕ(2) + ϕi and A = A(1) + (iω)−1 grad(ϕ(2) + ϕi), giving (3). Also,

divA = divA(1) + (iω)−1 ∆(ϕ(2) + ϕ(i)) = iωεµϕ ,

so that (4) holds. Obviously, ϕ − ϕi is a radiating solution to the Helmholtz equation in R3 \ BR.
Noting

A−Ai = A− 1

iω

(
Ei + gradϕi

)
= A(1) − 1

iω
Ei +

1

iω
gradϕ(2) ,

it also holds that all Cartesian components ofA−Ai can be smoothly extended to radiating solutions
of the Helmholtz equation in R3 \BR.

From E ∈ H(curl, BR) satisfying (5) we conclude εE ∈ H(div, BR) and, in particular, we have
div(εE) = 0 ∈ L2(BR). From the potential representation, the gauge condition and the divergence
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theorem we now obtain for v ∈ C∞0 (R3) that∫
BR

(
ε gradϕ · grad v − ω2ε2µϕv

)
dx− ε0

〈
∂ϕ

∂ν
, γDv

〉
∂BR

=

∫
BR

(
(iωεA− εE) · grad v + iωε divA v

)
dx− ε0

〈
ν · (iωA−E), γDv

〉
∂BR

= −iω (grad (ε) ·A , v) . (11)

Taking into account that ϕ− ϕi is radiating gives (8).

As the last step of the proof, we show the variational equation for A. For V ∈ C∞0 (R3,C3) there
holds ∫

BR

tr
(
JAJ

>
V

)
dx− 〈JAν, γDV 〉∂BR

= − (∆A,V ) . (12)

Now, from standard identities from vector calculus, (3) and (4), we obtain

∆A = graddivA− curl2A

= iω grad (εµϕ)− curl

(
µ− µ0

µ
curlA

)
− curl

(
µ0

µ
curlA

)
= iω grad(εµ)ϕ+ iωεµ gradϕ− curl((µ− µ0)H)− µ0 curlH (13)

= iω grad(εµ)ϕ− curl((µ− µ0)H)− ω2εµA− iωεµE − µ0 (−iωεE) .

Inserting into (12) and observing that A−Ai is radiating completes the proof.

Indeed, we may also obtain the original variational equation (5) for E from the equations for the
potentials A and ϕ. This shows equivalence of the original electromagnetic scattering problem (5)
to the variational problem (8), (9).

Theorem 2.3 Assume that ϕ ∈ H1(BR), A ∈ H1(BR,C3) satisfy (8), (9) with E = iωA−gradϕ,
H = (1/µ) curlA. Then ϕ, A satisfy the Lorentz gauge condition (4) and E is a solution of (5).

Proof: Starting from the definition of E, we observe E ∈ H(curl, BR) with curlE = iω curlA.
Additionally, we note that from (8) and (9) ϕs and As

j can smoothly be extended to radiating
solutions of the Helmholtz equation in R3 \BR.

First, we show that the Lorentz gauge condition is satisfied. Let us consider w = divA − iωεµϕ ∈
L2(BR). We choose a test function v ∈ C∞0 (BR) and set V = grad v. Then∫

BR

divA∆v dx = − (graddivA , V ) = −
(
∆A+ curl2A , V

)
= − (∆A ,V ) ,

as curlV = curl grad v = 0. Hence, from (12), we obtain∫
BR

w
(
∆v + ω2εµ0v

)
dx =

∫
BR

tr
(
JAJ

>
V

)
dx− iω

∫
BR

εµϕ∆v dx

+ ω2µ0

∫
BR

ε div(A) v dx− iω3µ0

∫
BR

ε2µϕv dx .
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Substituting equation (9) and observing curlV = 0 leads to∫
BR

w
(
∆v + ω2εµ0v

)
dx = ω2

∫
BR

εµA · V dx− iω (grad(εµ)ϕ , V )

+ iω

∫
BR

(µ− µ0) εE · V dx− iω

∫
BR

εµϕ∆v dx

+ ω2µ0

∫
BR

ε div(A) v dx− iω3µ0

∫
BR

ε2µϕv dx

= ω2

∫
BR

ε (µ− µ0)A · V dx+ iω

∫
BR

εµ gradϕ · V dx

+ iω

∫
BR

(µ− µ0) εE · V dx− iω3µ0

∫
BR

ε2µϕv dx− ω2µ0 (grad(ε) ·A, v) .

Next we use equation (8), which yields∫
BR

w
(
∆v + ω2εµ0v

)
dx = iω

∫
BR

ε (µ− µ0) [−iωA+ gradϕ+E] · V dx = 0 .

by the definition of E. Theorem 4.38 (b) in [19] implies w ∈ H2(U) for any open set U such that
U ⊆ BR and ∆w = −ω2εµ0w in U . Additionally, sinceAs = A−Ai and ϕs = ϕ−ϕi can be extended
to radiating solutions of the corresponding Helmholtz equations, we conclude A and ϕ to be smooth
in a neighborhood of ∂BR. In particular, we have w ∈ H2(BR) and the divergence theorem leads to∫

BR

grad (divA− iωεµϕ) · grad v − ω2εµ0 (divA− iωεµϕ) v dx

=

〈
∂

∂ν
(divA− iωµ0ε0ϕ) , v

〉
∂BR

Thus, with the gauge condition for Ai and ϕi, the function w = divA − iωεµϕ satisfies (7) with
k = ω

√
εµ0 and vanishing incident field. By uniqueness of solution for this problem, we conclude

that w = 0.

It remains to show that E is a weak solution to the Maxwell system. As the Lorentz gauge condition
holds, we may combine (12) and (13) with (9) to obtain

0 = iωµ0

∫
BR

εE · V dx+ µ0 (curlH , V ) for all V ∈ C∞0 (R3,C3) .

This equation is easily seen to be equivalent to (5) without the terms involving terms on ∂BR.

An important case for applications, which we will focus on in the remainder of the paper, is a
piecewise homogeneous medium. For simplicity, we will just consider the case when D is a Lipschitz
domain, R3 \D is connected and for some constants ε1, µ1,

ε(x) =

{
ε1 , x ∈ D ,

ε0 , x ∈ R3 \D ,
µ(x) =

{
µ1 , x ∈ D ,

µ0 , x ∈ R3 \D .
(14)

We note that the case of several disconnected scatterers, each with different material constants, may
be treated in a similar fashion.

Theorem 2.4 Let (14) be satisfied. Then ϕ and A from Theorem 2.1 satisfy the variational problem

a

((
A
ϕ

)
,

(
V
v

))
= `

((
V
v

))
for all

(
V
v

)
∈ H1(BR,C3)×H1(BR) , (15)
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where

a

((
A
ϕ

)
,

(
V
v

))
=

∫
BR

(
ε gradϕ · grad v − ω2ε2µϕv

)
dx

+

∫
BR

(
1

µ
tr
(
JAJ

>
V

)
− ω2εA · V

)
dx− ε0 〈ΛγDϕ, γDv〉∂BR

− 1

µ0
〈ΛγDA, γDV 〉∂BR

+ iω 〈[ε]∂D ν ·A, γDv〉∂D +
iω

µ0
〈[εµ]∂D γDϕ,ν · V 〉∂D

+

〈[
1

µ

]
∂D

JAν|− , γDV
〉
∂D

−
〈[

1

µ

]
∂D

γ−t curlA , γtV

〉
t,∂D

, (16)

`

((
V
v

))
= ε0

〈
∂ϕi

∂ν
− ΛγDϕ

i, γDv

〉
∂BR

+
1

µ0

〈
JAiν − ΛγDA

i, γDV
〉
∂BR

. (17)

Proof: We rewrite the distribution on the right hand side of (8) as

(grad(ε) ·A , v) = −
∫
R3

(ε v divA+ εA · grad v) dx

for all v ∈ C∞0 (R3). Applying the divergence theorem in D and in R3 \D gives

(grad(ε) ·A , v) = 〈[ε]∂DAν , γDv〉∂D .

Next, we multiply (9) by 1/µ0 and obtain

1

µ0

∫
BR

(
JAJ

>
V − ω2εµA · V

)
dx− 1

µ0
〈ΛγDA, γDV 〉∂BR

− 1

µ0

〈
JAiν − ΛγDA

i, γDV
〉
∂BR

= − iω

µ0
(grad(εµ)ϕ , V ) +

(
1

µ0
− 1

µ1

)∫
D

(µ1H · curlV + iωµ1ε1E · V ) dx

The first term on the right hand side is treated as above:

(grad(εµ)ϕ , V ) = 〈[εµ]∂DγDϕ , V ν〉∂D .

Using the potentials, divergence theorem and gauge condition, we rewrite the second integral as∫
D

(µ1H · curlV + iωµ1ε1E · V ) dx

=

∫
D

(
curlA · curlV − ω2ε1µ1A · V − iωε1µ1 gradϕ · V

)
dx

=

∫
D

(
curlA · curlV + divA divV − ω2ε1µ1A · V

)
dx− 〈iωε1µ1γ

−
Dϕ , ν · V 〉∂D .

The theorem now follows by adding (8) and (9), using the last three equations and Lemma A.1.
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3 A system of integral equations

In this section, we will assume that (14) holds and additionally, that µ = µ0 = µ1. In principle,
a similar analysis can be carried out for the magnetic case, however the non-magnetic case is more
important for practical applications while its analysis is simpler.

For the materials under consideration, the problem from Theorem 2.4 may be formulated as follows:
both ϕ and A satisfy the Helmholtz equation in D with wavenumber k1 =

√
µ0ε1 ω, and in R3 \D

with wavenumber k0 =
√
µ0ε0 ω, respectively. The potentials of the scattered fields ϕ− ϕi, A−Ai

satisfy the Sommerfeld radiation condition and the following interface conditions hold on ∂D:

[γDϕ]∂D = 0 , [γDA]∂D = 0 , (18)[
ε

(
iωAν −

∂ϕ

∂ν

)]
∂D

= 0 , (19)

[iωµ0ε γDϕν − JAν]∂D = 0 . (20)

Here, (18) is obtained from H1 regularity across ∂D. The conditions (19) and (20) are obtained from
(15) – (17) and applications of the divergence theorem.

The fundamental solutions of the Helmholtz equation for the materials under consideration are

Φ(j)(x,y) =
1

4π

eikj |x−y|

|x− y|
, x 6= y , j = 0, 1 .

The corresponding single layer potentials on ∂D are

SL(j) ζ(x) =

∫
∂D

Φ(j)(x,y) ζ(x) ds(y) , x ∈ R3 \ ∂D ,

for smooth enough ζ such that the integral exists. However, by density arguments, the definition
of the single layer potentials extends to more general densities [21], and will use these both with
scalar densities in H−1/2(∂D) and vectorial densities in H−1/2(∂D,C3). They represent solutions to
the corresponding Helmholtz equations in D and R3 \ D, respectively, and satisfy the Sommerfeld
radiation condition. The corresponding boundary operators are

S(j)ζ = γD SL(j) ζ , D̃(j)ζ =
1

2

{
∂ SL(j) ζ

∂ν

}
∂D

on ∂D, and from the jump relations we have

∂ SL(j) ζ

∂ν

∣∣∣∣∣
±

= ∓ζ
2

+ D̃(j)ζ on ∂D .

From (18) – (20), we immediately obtain the following equivalent formulation of the boundary value
problem for the potentials as a system of integral equations.

Theorem 3.1 Let φ(j) ∈ H−1/2(∂D), ψ(j) ∈ H−1/2(∂D,C3), j = 0, 1 and set

ϕ(x) =

{
SL(0) φ(0)(x) + ϕi(x) , x ∈ R3 \D ,

SL(1) φ(1)(x) , x ∈ D ,

A(x) =

{
SL(0)ψ(0)(x) +Ai(x) , x ∈ R3 \D ,

SL(1)ψ(1)(x) , x ∈ D .
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Then ϕ, A are solutions to the problem (15) if and only if φ(j), ψ(j) are solutions to the system of
integral equations

S(0)φ(0) − S(1)φ(1) = f1 ,

S(0)ψ(0) − S(1)ψ(1) = f2 ,

1

2

(
ε0φ

(0) + ε1φ
(1)
)
− ε0D̃

(0)φ(0) + ε1D̃
(1)φ(1) + iω ν ·

(
ε0S

(0)ψ(0) − ε1S
(1)ψ(1)

)
= f3,

1

2

(
ψ(0) +ψ(1)

)
− D̃(0)ψ(0) + D̃(1)ψ(1) + iωµ0 ν

(
ε0S

(0)φ(0) − ε1S
(1)φ(1)

)
= f4

(21)

on ∂D, where

f1 = −γDϕi , f2 = −γDAi ,

f3 = ε0

(
∂ϕi

∂ν
− iωAi

ν

)
, f4 = JAiν − iωµ0ε0 ϕ

i ν .

Theorem 3.2 Suppose that k2
j is not a Dirichlet eigenvalue of −∆ in D, j = 0, 1. Then the system

of integral equations (21) has at most one solution.

Proof: Let φ(0), φ(1), ψ(0), ψ(1) denote a solution to (21) for ϕi = 0, Ai = 0. Let ϕ and A
be defined as in Theorem 3.1. Then these functions are solutions to the transmission problem for
vanishing incident fields and hence by uniqueness of this problem, vanish themselves. Thus we have

S(j)φ(j) = 0 , S(j)ψ(j) = 0 , j = 0, 1 .

By the assumptions, S(j) : H−1/2(∂D)→ H1/2(∂D) is an isomorphism [21, Theorem 7.6], hence the
assertion follows.

Under the conditions of Theorem 3.2, it is also possible to obtain explicit expressions for the solution
of (21). This requires to introduce some auxiliary operators and establish their bijectivity. As S(0)

and S(1) are isomorphisms, we can define

K(j) =

(
−1

2
+ D̃(j)

)
(S(j))−1 , j = 0, 1, L = K(0) −K(1) .

Lemma 3.3 Under the assumptions of Theorem 3.2, the operator L : H1/2(∂D) → H−1/2(∂D) is
invertible.

Proof: Given ζ ∈ H1/2(∂D), consider the problems

∆w + k2
0w = 0 in R3 \D ,

γ+
Dw = ζ on ∂D ,

w satisfies the SRC.

∆w + k2
1w = 0 in D ,

γ−Dw = ζ on ∂D ,

L maps ζ onto the jump in the normal derivative of w across ∂D, Lζ = [∂w/∂ν]∂D. Note that w is
the solution of a transmission problem with vanishing jump of the Dirichlet trace. This is a special
case of the problem treated in [25]. Theorem 4.5 in [25] states that for every prescribed jump of the
Neumann trace there exists a unique solution w, i.e. L is bijective.
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From the second equation in (21), we obtain(
−1

2
+ D̃(0)

)
ψ(0) = K(0)

(
S(1)ψ(1) + f2

)
,(

1

2
+ D̃(1)

)
ψ(1) = K(1)

(
S(0)ψ(0) − f2

)
.

Subtracting these expressions from the fourth equation in (21), respectively, gives the equations

−LS(1)ψ(1) + iωµ0 ν

(
ε0S

(0)φ(0) − ε1S
(1)φ(1)

)
= f4 +K(0)f2

−LS(0)ψ(0) + iωµ0 ν

(
ε0S

(0)φ(0) − ε1S
(1)φ(1)

)
= f4 +K(1)f2 .

(22)

Hence

L
(
ε0S

(0)ψ(0) − ε1S
(1)ψ(1)

)
= iωµ0(ε0 − ε1)

(
ε0 νS

(0)φ(0) − ε1 νS
(1)φ(1)

)
− (ε0 − ε1)f4 −

(
ε0K

(1) − ε1K
(0)
)
f2 .

Applying iων · L−1 to this equation, we can insert into the third equation in (21) to obtain

− ε0

(
K(0) + ω2µ0 (ε0 − ε1)ν · L−1ν

)
S(0)φ(0) + ε1

(
K(1) + ω2µ0 (ε0 − ε1)ν · L−1ν

)
S(1)φ(1)

= f3 + iων · L−1

[
(ε0 − ε1)f4 +

(
ε0K

(1) − ε1K
(0)
)
f2

]
(23)

We now introduce another operator M : H1/2(∂D)→ H−1/2(∂D) by setting

Mζ = ε1K
(1)ζ − ε0K

(0)ζ − ω2µ0 (ε0 − ε1)2 ν · L−1(νζ) , ζ ∈ H1/2(∂D) .

Combining the first equation in (21) with (23) finally gives the expressions for φ(0), φ(1),

MS(0)φ(0) = f3 + ε1K
(1)f1 + iων · L−1

[
(ε0 − ε1) (f4 − iωµ0ε1 νf1) +

(
ε0K

(1) − ε1K
(0)
)
f2

]
MS(1)φ(1) = f3 + ε0K

(0)f1 + iων · L−1
[
(ε0 − ε1) (f4 − iωµ0ε1 νf1) +

(
ε0K

(1) − ε1K
(0)
)
f2

] (24)

The following Lemma now ensures solvability of the system of integral equations (21).

Lemma 3.4 Under the assumptions of Theorem 3.2, the operator M : H1/2(∂D) → H−1/2(∂D) is
invertible. Thus, the system of integral equations (21) has exactly one solution for every right hand
side.

Proof: First consider L̃ = ε1K
(1) − ε0K

(0). This operator can be interpreted as L in the proof of
Lemma 3.3, but with the Neumann traces of w multiplied by weight factors ε0 and ε1, respectively.
Analogous arguments as in that proof show that L̃ is invertible.

For ζ ∈ H1/2(∂D), multiplication with ν ∈ L∞(∂D,R3) yields νζ ∈ L2(∂D,C3). As L−1 is bounded
from H−1/2(∂D) to H1/2(∂D) and the imbedding of L2(∂D) into H−1/2(∂D) is compact, it follows
that M − L̃ is compact, and hence M is Fredholm with index 0.

In the arguments above, we have shown that the system (21) is equivalent to (23) and (24). Suppose
that M is not injective. Then, for a homogeneous right hand side, (24) has a non-trivial solution
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pair (φ(0), φ(1)) and using (23) we obtain a corresponding non-trivial solution of (21). This is a
contradiction to Theorem 3.2.

Let us note a possible extension of this approach: If one replaces the ansatz for the solution in Theo-
rem 3.1 by a version combining single and double layer potentials in the spirit of Brakhage/Werner,

ϕ(x) =

{
(DL(0)−i SL(0))φ(0)(x) + ϕi(x) , x ∈ R3 \D ,

(DL(1)−i SL(1))φ(1)(x) , x ∈ D ,

A(x) =

{
(DL(0)−i SL(0))ψ(0)(x) +Ai(x) , x ∈ R3 \D ,

(DL(1)−i SL(1))ψ(1)(x) , x ∈ D .

one may dispense with the conditions on the wave numbers in Theorem 3.2. The corresponding
combined operators are always invertible, and the rest of the solution procedure will not change.
However, the resulting system will be more complicated to implement in that it contains double-
layer and hypersingular boundary operators.

4 Domain derivatives

In this section we will investigate the Fréchet derivative of the scattered field with respect to pertur-
bations of the boundary of the domain D. We will make the same assumptions about the material
constants as in section 3. It is then known that the derivative E′ of the scattered electric field exists
and that it can be characterized by a solution of a boundary value problem which is essentially (5)
but with a more complicated transmission condition [18]. We will report these results in more detail
below and then prove a similar results for derivatives of As and ϕs. Finally, we will investigate the
relation between these derivatives and E′.

Let us clarify how we describe perturbations of D and of the corresponding solutions of the scattering
problems. Consider first a diffeomorphism η : BR → BR and the transformation of a scalar function
v defined on BR, ṽ = v ◦ η. Then we have

(grad v) ◦ η = J−>η grad ṽ .

This transformation is also applied to vector solutions of Helmholtz equations. A vector field U
that solves the Maxwell system, needs to be transformed as Û = J>η U ◦ η in order to preserve the
property of being an element of H(curl, BR). It then follows (see [22, section 3.9]) that

(curlU) ◦ η =
1

det Jη
Jη curl Û .

Introduce h ∈ C1
0 (BR,R3) with ‖h‖1,∞ sufficiently small such that the transformation η(x) =

x+ h(x) is a diffeomorphism. Then we obtain the perturbed scatterer

Dh = {η(x) : x ∈ D}

with boundary ∂Dh = {η(x) : x ∈ ∂D}.
Below, we will always denote by E the solution of (5) for the unperturbed scatterer D and by H
the corresponding magnetic field. We will denote the solution of the variational equation (5) with
D replaced by Dh as Eh. The main idea to derive an expression for the Fréchet derivative of the
scattered field as pursued in [18] is to consider the difference of E and Êh = J>η Eh◦η. The following
theorem sums up the main results from [18]:
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Theorem 4.1 There exists a vector field W ∈ H(curl, BR), called the material derivative, such that

lim
‖h‖1,∞→0

1

‖h‖1,∞
‖Êh −E −W ‖H(curl,BR) = 0 .

The map h 7→W is linear and bounded from C1(BR,R3) to H(curl, BR).

Moreover, if D is of class C1 (and thus E|D ∈ H1(D,C3), E|BR\D ∈ H
1(BR \D,C3)), defining the

domain derivative E′ = W −J>hE−JE h, we have E′|D ∈ H(curl, D), E′|BR\D ∈ H(curl, BR \D),

and E′ is the unique radiating weak solution to the transmission problem

curl2E′ − ω2εµE′ = 0 in D and in R3 \D , (25)[
γtE

′]
∂D

= [Grad (hν Eν)× ν]∂D , (26)[
γtH

′]
∂D

= [Grad (hνHν)× ν]∂D + iω [ε]∂D hν (ν × γtE) . (27)

A similar representation can be found for domain derivatives of ϕ and A, which we present next
with detailed calculations collected in the appendix. Consider the variational problem (15) with D
replaced by Dh and corresponding solution (Ah, ϕh). Applying the transformation η, we obtain the
variational equation

ah

((
Ãh
ϕ̃h

)
,

(
V
v

))
= `

((
V
v

))
for all

(
V
v

)
∈ H1(BR,C3)×H1(BR) , (28)

with the variational form ah defined as

ah

((
Ãh
ϕ̃h

)
,

(
V
v

))
=

∫
BR

ε
(
grad ϕ̃h

>J−1
η J−>η grad v − ω2µ0εϕ̃hv

)
det(Jη) dx

+

∫
BR

(
1

µ0
tr
(
J
Ãh
J−1
η J−>η J>V

)
− ω2εÃh · V

)
det(Jη) dx

+ iω
〈
[ε]∂D γDϕ̃h , ν · J−1

η V det(Jη)
〉
∂D

+ iω
〈

[ε]∂Dν · J−1
η Ãh , γDv det(Jη)

〉
∂D

− ε0 〈ΛγDϕ̃ , γDv〉∂BR
− 1

µ0

〈
ΛγDÃ , γDV

〉
∂BR

. (29)

Analysing the difference between (15) and (28) leads to the definition of a corresponding material
derivative and the following result. As the steps of the proof are analogous to the corresponding
result for an acoustic tranmsission problem, we omit the proofs of the this and the next result here
but present them in the appendix for completeness.

Theorem 4.2 Let A, ϕ, Ãh and ϕh as above and let the material derivative (AW , ϕW ) be defined
as the solution of

a

((
AW

ϕW

)
,

(
V
v

))
= `W

((
V
v

))
for all

(
V
v

)
∈ H1(BR,C3)×H1(BR) , (30)

where

`W

((
V
v

))
=

∫
BR

ε
(
gradϕ>

(
Jh + J>h − div(h)I

)
grad v + ω2µ0εdiv(h)ϕv

)
dx

+

∫
BR

(
1

µ0
tr
(
JA

(
Jh + J>h − div(h)I

)
J>V

)
+ ω2ε div(h)A · V

)
dx

− iω
〈

[ε]∂D γDϕ , ν
> (div(h)I − Jh)V

〉
∂D
− iω

〈
[ε]∂D ν

> (div(h)I − Jh)A , γDv
〉
∂D

.
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Then
1

‖h‖1,∞

∥∥∥∥(Ãhϕ̃h
)
−
(
A
ϕ

)
−
(
AW

ϕW

)∥∥∥∥
H1

→ 0

as h→ 0 in C1(BR,R3).

Proof: See appendix C.

In order to numerically compute the domain derivative, a characterization as in Theorem 4.1 is
desirable. As is usual with such result, stronger regularity assumptions are required for the domain.
Formally, we consider the Taylor expansion with respect to h, which motivates the definition of the
domain derivative (A′, ϕ′) by A′ = AW − JAh, and ϕ′ = ϕW − gradϕ · h, respectively.

Theorem 4.3 Let D be of class C1,1. Then there holds A′ ∈ L2(BR,C3) with A′|D ∈ H1(D,C3)
and A′|BR\D ∈ H

1(Br \D,C3) and ϕ′ ∈ L2(BR) with ϕ′|D ∈ H1(D) and ϕ′|BR\D ∈ H
1(BR \D) can

be extended to radiating weak solutions of the transmission problem

∆A′ + ω2µ0εA
′ = 0 ,

∆ϕ′ + ω2µ0εϕ
′ = 0

}
in R3 \ ∂D , (31)

[
γDA

′]
∂D

= −hν [JAν]∂D , (32)[
γDϕ

′]
∂D

= −hν
[
∂ϕ

∂ν

]
∂D

(33)[
ε

(
iωA′ν −

∂ϕ′

∂ν

)]
∂D

=
[
iωε (Aτ ·Grad(hν) − hν div(Aνν))

− εDiv(hνGradϕ)− ε2ω2µ0hνϕ
]
∂D

, (34)[
iωµ0ε γDϕ

′ ν − JA′ν
]
∂D

=
[
iωµ0ε (ϕGrad(hν)− hν div(ϕν)ν)− ω2µ0εhνA

]
∂D

. (35)

Proof: The proof is given in appendix C.

Remark 4.4 Note that the above transmission problem exactly corresponds to (15), but with a dif-
ferent right hand side. This becomes more obvious when comparing the interface conditions with (18)
– (20).

Having established characterizations for both the domain derivatives of Es and of ϕs, As, it remains
to establish how these are connected.

Theorem 4.5 Let ϕ′, A′ denote the domain derivatives of ϕs and As and hence the radiating
solutions of (31)–(35). Let

E′ = iωA′ − gradϕ′ , H ′ =
1

µ0
curlA′ .

Then E′, H ′ is a solution of the transmission problem from Theorem 4.1 and

divA′ − iωεµ0ϕ
′ = 0

holds.
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Proof: We remark that in this proof we omit the Dirichlet trace operator throughout to simplify
notation. We will also employ the splitting of vector fields into tangential and normal components
as described in Appendix B.

We first prove that E′, H ′ satisfy the transmission condition (27). With the definition of H ′ and
the tangential component of (35) we have

[ν ×H ′]∂D =
1

µ0
[ν × curlA′]∂D =

1

µ0

[(
(J>A′ − JA′)ν

)
τ

]
∂D

=
1

µ0

[(
J>A′ν

)
τ

]
∂D

+
1

µ0

[
iωµ0εϕGradhν − ω2µ0εhν Aτ

]
∂D

=
1

µ0

[(
J>A′ν

)
τ

]
∂D

+ [iωεhν(−Gradϕ+ iωAτ )]∂D + [iωεGrad(hνϕ)]∂D

=
1

µ0

[(
(J>A′ν

)
τ

]
∂D

+ iω[ε]∂Dhν Eτ + [iωε Grad(hνϕ)]∂D

in the sense of traces in H−
1
2 (∂D). Furthermore, from (32) and (20), as well as properties of Jν from

Appendix B,[(
(J>A′ν

)
τ

]
∂D

=
[
ν × (J>A′ν × ν)

]
∂D

=
[
ν ×

(
(grad(A′ · ν)− J>ν A′)× ν

)]
∂D

=
[
Grad(A′ · ν)

]
∂D

+
[
hν ν × (J>ν (JAν)× ν)

]
∂D

=
[
Grad(A′ · ν)

]
∂D

+
[
iωµ0εhν ϕν × (J>ν ν × ν)

]
∂D

=
[
Grad(A′ · ν)

]
∂D

.

Using the normal component of (32) and the transmission condition (20), we conclude

1

µ0

[(
(J>A′ν

)
τ

]
∂D

+ [iωε Grad(hνϕ)]∂D =
1

µ0

[
Grad(A′ · ν + iωεµ0 hνϕ)

]
∂D

=
1

µ0

[
Grad(−hνν>JAν + iωεµ0 hνϕ)

]
∂D

= 0 .

Thus, together with

[ν ×Grad(hνHν)]∂D = − 1

µ0
[ν ×Grad(hν curl(A) · ν]∂D

= − 1

µ0
[ν ×Grad(hν Div(ν ×A))]∂D = 0 ,

we conclude the second transmission condition in Theorem 4.1.

In a second step, we show that the Gauge condition holds if A′, ϕ′ satisfy (31)–(35). Define

w′ = divA′ − iωµ0εϕ
′ .

From the Helmholtz equation we obtain graddivA′ − curl2A′ = ∆A′ ∈ H1(BR \ ∂D). Thus, we
obtain the Helmholtz equation

∆w′ = div(graddivA′)− iω3ε2µ2
0ϕ
′ = −ω2µ0ε

(
divA′ − iωεµ0ϕ

′) = −ω2µ0εw
′

in L2(D) and in L2(BR \ D). Additionally, w′ is uniquely extendable satisfying the Sommerfeld
radiation condition.
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We use (37) to obtain from (32) and the normal component of (34)[
divA′

]
∂D

=
[
iωµ0εϕ

′ + iωµ0εhν div(ϕν) + ω2µ0εhνAν
]
∂D

− [Div(hν(JAν)τ )]∂D − 2κ[hνν
>JAν]∂D .

As A ∈ H1(BR,C3), tangential components and their derivatives do not jump across ∂D. Hence
[Div(hν(JAν)τ )]∂D = 0. From the identity 2κ = div ν and (19), we obtain[

divA′
]
∂D

=
[
iωµ0εϕ

′]
∂D

+ 2κhν

[
iωµ0εϕ− ν>JAν

]
∂D

.

Hence, the Dirichlet traces of w′ are in H
1
2 (∂D), and (20) implies that they do not jump across ∂D.

In particular, we conclude w′ ∈ H1(BR).

Furthermore, since ∆w′ ∈ L2(D) and ∆w′ ∈ L2(BR \ D), exterior and interior Neumann traces of

w′, and in particular of divA′ exist on ∂D. Thus, in the trace space H−
1
2 (∂D) we obtain from the

transmission condition (34)[
ν · gradw′

]
∂D

=
[
ν · graddivA′ + ω2εµ0 ν ·A′ − ω2µ0ε (Aτ ·Gradhν)

]
∂D

+
[
ω2µ0εhν div(Aνν)− iωµ0εDiv(hνGradϕ)− iω3µ2

0ε
2hνϕ

]
∂D

.

It holds

ν ·
(
grad divA′ + ω2εµ0A

′) = ν · curl2A′ = −Div(ν × curlA′) = −µ0 Div(ν ×H ′) .

We now use the second transmission condition in Theorem 4.1, which has already been established
above, and observe Div(ν ×Grad f) = 0 for any scalar function f . Hence[
ν · gradw′

]
∂D

= [−Div (iωµ0εhν (iωAτ −Gradϕ))]∂D −
[
ω2µ0ε (Aτ ·Gradhν)

]
∂D

+
[
ω2µ0εhν div(Aνν)− iωµ0εDiv(hνGradϕ)− iω3µ2

0ε
2hνϕ

]
∂D

=
[
ω2µ0ε (Div (hν Aτ )− (Aτ ·Gradhν) + hν div(Aνν))

]
∂D
−
[
iω3µ2

0ε
2hνϕ

]
∂D

.

We further compute

Div (hν Aτ )− (Aτ ·Gradhν) = hν DivAτ = hν

(
divAτ − ν>JAτν

)
= hν divAτ ,

as
0 = grad(Aτ · ν)

)>
ν = ν>JAτν +A>τ J

>
ν ν = ν>JAτν .

We have already established in the proof of Theorem 2.3 that w = divA− iωεµ0 ϕ = 0 in H2(U) for
any open subset U ⊆ BR and thus has vanishing exterior and interior trace on ∂D. We conclude[

ν · gradw′
]
∂D

= ω2µ0 [εhν (div(Aτ +Aνν)− iωµ0εϕ)]∂D = 0 ,

Thus, we have established that also the Neumann trace of w′ does not jump across ∂D. Collecting
all results, we see that w′ is a radiating solution of a homogeneous transmission problem for the
Helmholtz equation, and by uniqueness w′ vanishes.

We now show that E′, H ′ are solutions to the Maxwell system. Immediately from the definition of
both functions, we have

curlE′ = iω curlA′ = iωµ0H
′ .
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From the Gauge condition established in the second step, we conclude

curlH ′ =
1

µ0
curl2A′ =

1

µ0
(grad div−∆)A′ =

1

µ0

(
grad(iωµ0εϕ

′)−∆A′
)

= iωεgradϕ′ + ω2εA′ = iωε(gradϕ′ − iωA′) = −iωεE′ .

It remains to prove the transmission condition (26). From (32) and (33), we find that[
ν ×E′

]
∂D

=
[
ν × (iωA′ − gradϕ′)

]
∂D

= −iω [hν ν × JAν]∂D −
[
ν ×Gradϕ′

]
∂D

= −iω hν [ν × JAν]∂D + [ν ×Grad(hν ν · gradϕ)]∂D .

With

ν × grad(A · ν) = ν × (J>Aν + J>ν A) = ν × (J>A − JA)ν + ν × JAν + ν × J>ν A
= −ν × (curlA× ν) + ν × JAν + ν × J>ν A ,

we have, as [A]∂D = 0 and [ν ×H]∂D = 0,

hν [ν × JAν]∂D = hν

[
ν × grad(A · ν) + ν × (curlA× ν)− ν × J>ν A

]
∂D

=
[
ν × grad(hν A · ν)− ν ×Aν grad(hν) + µ0 ν × (H × ν)− hν ν × J>ν A

]
∂D

= [ν ×Grad(hν Aν)]∂D .

Thus, we conclude the first transmission condition ,[
ν ×E′

]
∂D

= −ν × [Grad(hν (iωA− gradϕ) · ν)]∂D = −ν × [Grad(hν Eν)]∂D .
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A An integral identity

We make use of the following weak form of a well-known identity of differential operators.

Lemma A.1 Let D a bounded Lipschitz domain and U , V ∈ H1(D,C3) with ∆U ∈ L2(D,C3).
Then∫

D

(
JUJ

>
V − curlU · curlV − divU divV

)
dx

=
3∑
j=1

〈JUν , γDV 〉∂D − 〈γt curlU , γtV 〉t,∂D − 〈γD divU , ν · V 〉∂D.

Proof: The identity follows for smooth function from the identity curl2U = graddivU −∆U and
applying partial integration formulas to the individual terms. The lemma then follows from a density
argument.

B Identities for surfaces

The analysis of domain derivatives relies on a number of identities for surface differential operators
and smooth extensions of functions defined on these surfaces. Such results can be found for C2

smooth surfaces in the literature [23]. However, for the analysis presented in section 4, C1,1 regular
surfaces appear to be more natural and hence we will describe here, how the necessary results can
be obtained in this case.

For a bounded domain D ⊆ R3 of class C1,1, for any point x sufficiently close to ∂D, there exists a
uniquely defined projection p(x) ∈ ∂D such that

|x− p(x)| = min
z∈∂D

|x− z| = d .

The existence of such a minimizer follows from compactness of ∂D, and a variational argument
establishes that for every minimizer y there holds x = y±dν(y). Now, uniqueness of the minimizer
in a small enough neighborhood of ∂D follows from Lipschitz continuity of ν.

Lemma B.1 For every bounded domain of class C1,1 the exterior unit normal can be Lipschitz
continuously extended to a neighborhood N of ∂D. This extension is given by

ν(x) = ±grad |x− p(x)| , x ∈ R3 \ ∂D ,

where the + sign is taken for points in the exterior of D, the − sign in the interior of D. The
extension satisfies curlν = 0 and Jνν = 0. Also, Jν is symmetric.

Proof: With the remarks above, everything in the lemma can be established as in [23, Section 2.5]
or [15].

The mean curvature of ∂D can now be defined almost everywhere in N as κ = (1/2) div ν. We also
decompose a vector field U defined in N into its normal part Uν and tangential part Uτ ,

U = Uνν +Uτ ,
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where Uν = U · ν. We may then establish the following relations for U , V ∈ H1(N ,C3) by
straightforward calculations.

Div(UνV τ ) = Uν Div(V τ ) + Grad(V ν) ·Uτ , (36)

div(U) = Div(Uτ ) + 2κUν +
∂Uν
∂ν

, (37)

ν>JUV = V τ ·Grad(Uν) + V ν
∂Uν
∂ν

+ V >τ JνUτ , (38)

div(Uνν) = 2κUν +
∂Uν
∂ν

. (39)

C The domain derivatives of ϕs and As

In this sections we will provide the proofs of Theorems 4.2 and 4.3. We start with some remarks
concerning the transformation η from section 4. The outwards directed normal vector ν at x ∈ ∂D
and the outwards directed normal vector νh at ϕ(x) ∈ ∂Dh are related by

ν̃h =
J−>η ν∣∣∣J−>η ν

∣∣∣
and we have ∫

∂Dh

ds =

∫
∂D

Det(Jη) ds with Det(Jη) = det(Jη)
∣∣∣J−>η ν

∣∣∣ ,
see Lemma 3.17 and 3.18 in [15]. We will make frequent use of linearizations: from Jη = I + Jh,
straightforward calculations show

J−1
η = I − Jh + O

(
‖h‖2C1

)
and det(Jη) = 1 + div(h) + O

(
‖h‖2C1

)
(40)

as h→ 0 in C1(R3,R3) (see e.g. [18]).

Let us also introduce the shorthand notation

X = H1(BR,C3)×H1(BR)

for the Hilbert space underlying the variational equations, and its scalar product 〈·, ·〉X . There are
bounded linear operators A, Ah : X → X and L ∈ X, such that

a (x, y) = 〈Ax, y〉X , ah (x, y) = 〈Ahx, y〉X , x, y ∈ X ,

and
` (y) = 〈L, y〉X , y ∈ X .

Then, (15) and (28) are equivalent to

A
(
A
ϕ

)
= L, Ah

(
Ãh
ϕ̃h

)
= L. (41)

Lemma C.1 The solutions of the equations (41) satisfy∥∥∥∥(Ãhϕ̃h
)
−
(
A
ϕ

)∥∥∥∥
X

≤ C ‖h‖1,∞ ‖L‖X .
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Proof: From (16) and (29), we obtain for any x ∈ X by straightforward estimates that

‖(A−Ah)x‖2X = |a (x, (A−Ah)x)− ah (x, (A−Ah)x)| ≤ C
(∥∥∥I − J−1

η J−>η det(Jη)
∥∥∥
∞

+ ‖1− det(Jη)‖∞ +
∥∥I − J−1

η det(Jη)
∥∥
∞

)
‖(A−Ah)x‖X ‖x‖X .

Applying (40), we conclude
‖(A−Ah)x‖X ≤ C ‖h‖1,∞ ‖x‖X

Since we know A to have a bounded inverse, we conclude by a perturbation argument [20, Theorem
10.1] that

∥∥A−1 −A−1
h

∥∥ ≤ C ‖h‖1,∞. Using (41) finishes the proof.

We are now in a position to prove the existence of the material derivatives.

Proof of Theorem 4.2: Denote by (AW , ϕw) the solution of (30). We will show that∥∥∥∥A(Ãh −A−AW

ϕ̃h − ϕ− ϕW

)∥∥∥∥
X

= o (‖h‖1,∞) , ‖h‖1,∞ → 0 .

From linearity and (41) we obtain

A
(
Ãh −A−AW

ϕ̃h − ϕ− ϕW

)
= A

(
Ãh
ϕ̃h

)
−Ah

(
Ãh
ϕ̃h

)
−A

(
AW

ϕW

)
.

Starting from (15), (28) and (30), and adding and subtracting integrals in a convenient way, leads to

a

((
Ãh −A−W
ϕ̃h − ϕ− w

)
,

(
V
v

))
=

∫
BR

ε
(
grad ϕ̃h

>
(
I − J−1

η J−>η det(Jη)− Jh − J>h + div(h)I
)
grad v

)
dx

− ω2µ0

∫
BR

ε2 (1− det(Jη) + div(h)) ϕ̃h v dx+ ω2µ0

∫
BR

ε2 div(h) (ϕ̃h − ϕ) v dx

+

∫
BR

εgrad (ϕ̃h − ϕ)>
(
Jh + J>h − div(h)I

)
grad v dx

+
1

µ0

3∑
j=1

∫
BR

grad Ãh,j
> (

I − J−1
η J−>η det(Jη)− Jh − J>h + div(h)I

)
gradV j dx

− ω2

∫
BR

ε (1− det(Jη)− 1 + div(h)) Ãh · V dx+ ω2

∫
BR

ε
(
Ãh −A

)
· V div(h) dx

+
1

µ0

3∑
j=1

∫
BR

grad
(
Ãh,j −Aj

)> (
Jh + J>h − div(h)I

)
gradV j dx

+ iω
〈

[ε]∂D γDϕ̃h , ν
> (I − J−1

η det(Jη) + div(h)I − Jh
)
V
〉
∂D

− iω
〈

[ε]∂D (γDϕ̃h − γDϕ) , ν> (div(h)I − Jh)V
〉
∂D

+ iω
〈

[ε]∂D ν
> (I − J−1

η det(Jη) + div(h)I − Jh
)
Ãh , γDv

〉
∂D

− iω
〈

[ε]∂D ν
> (div(h)I − Jh)

(
Ãh −A

)
, γDv

〉
∂D

.
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Substituting the linearizations (40), we obtain for h sufficiently small

a

((
Ãh −A−AW

ϕ̃h − ϕ− ϕw

)
,

(
V
v

))
6 C

(
‖ϕ̃h‖H1‖v‖H1‖h‖21,∞ + ‖ϕ̃h − ϕ‖H1‖h‖1,∞

)
+ C

(
‖Ãh‖H1‖V ‖H1‖h‖21,∞ + ‖Ãh −A‖H1‖V ‖H1‖h‖1,∞

)
.

Now Lemma C.1 implies the assertion.

Proof of Theorem 4.3: For a domain D of class C1,1, it follows from standard regularity results for
elliptic PDEs [21, Theorem 4.18] thatA|D ∈ H2(D,C3),A|BR\D ∈ H

2(BR\D,C3) and ϕ|D ∈ H2(D),

ϕ|BR\D ∈ H
2(BR \D). From the corresponding variational problems it follows that ϕ, ϕW , and the

cartesian components of A, AW are weak solution of the Helmholtz equation in D and radiating
weak solutions in R3 \D as asserted. The Dirichlet transmission conditions for A′, ϕ′ follow directly
from the definition and from the fact that A, AW ∈ H1(BR,C3), ϕ, ϕW ∈ H1(BR). Thus it remains
to show the two last transmission conditions.

By definition

a

((
A′

ϕ′

)
,

(
V
v

))
= a

((
AW

ϕW

)
,

(
V
v

))
− a

((
JAh

gradϕ · h

)
,

(
V
v

))
Note that h has compact support in BR. Thus from (30) and the definition of a (see Theorem 2.4),
we obtain

a

((
A′

ϕ′

)
,

(
V
v

))
=

∫
BR

ε
(
gradϕ>

(
Jh + J>h − div(h)I

)
grad v + ω2µ0εdiv(h)ϕv

)
dx

+

∫
BR

 1

µ0

3∑
j=1

gradA>j

(
Jh + J>h − div(h)I

)
gradV j + ω2εdiv(h)A · V

dx

− iω
〈

[ε]∂D γDϕ , ν
> (div(h)I − Jh)V

〉
∂D
− iω

〈
[ε]∂D ν

> (div(h)I − Jh) A , γDv
〉
∂D

−
∫
BR

ε
(
grad (gradϕ · h) · grad v − ω2εµ0 gradϕ · h v

)
dx

−
∫
BR

 1

µ0

3∑
j=1

grad (gradAj · h) · gradV j − ω2ε JAh · V

dx

− iω
〈

[ε γD gradϕ · h]∂D , ν>V
〉
∂D
− iω

〈[
εν>JAh

]
∂D

, γDv
〉
∂D

. (42)

From elementary calculations we have

div
(

(h · gradϕ)grad v + (h · grad v)gradϕ− (gradϕ · grad v)h
)

= gradϕ>
(
Jh + J>h − div(h)I

)
grad v + (h · gradϕ)∆v + (h · grad v)∆ϕ.

and Green’s first identity leads to

−
∫
BR

εgrad (gradϕ · h) · grad v dx =

∫
BR

ε (h · gradϕ) ∆v dx

+

〈
ε0 γ

+
D(h · gradϕ) ,

∂v

∂ν

∣∣∣∣+
〉
∂D

−

〈
ε1 γ

−
D(h · gradϕ) ,

∂v

∂ν

∣∣∣∣−
〉
∂D

.
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Combining these equations with the Helmholtz equation for ϕ, we obtain∫
BR

ε
(
gradϕ>

(
Jh + J>h − div(h)I

)
grad v + ω2µ0εdiv(h)ϕv

)
dx

−
∫
BR

ε
(
grad (gradϕ · h) · grad v − ω2µ0εgradϕ · hv

)
dx

=

∫
BR

εdiv
(

(h · gradϕ)grad v + (h · grad v)gradϕ− (gradϕ · grad v)h
)

dx

+

∫
BR

ω2µ0ε
2 div(ϕvh)dx+

〈
ε0 γ

+
D(h · gradϕ) ,

∂v

∂ν

∣∣∣∣+
〉
∂D

−

〈
ε1 γ

−
D(h · gradϕ) ,

∂v

∂ν

∣∣∣∣−
〉
∂D

.

Applying the divergence theorem to the integrals on the right hand side gives∫
BR

ε
(
gradϕ>

(
Jh + J>h − div(h)I

)
grad v + ω2µ0εdiv(h)ϕv

)
dx

−
∫
BR

ε
(
grad (gradϕ · h) · grad v − ω2µ0εgradϕ · hv

)
dx

=

〈
ε0

(
hν γ

+
D gradϕ− ∂ϕ

∂ν

∣∣∣∣+ h
)
, γ+

D grad v

〉
∂D

−

〈
ε1

(
hν γ

−
D gradϕ− ∂ϕ

∂ν

∣∣∣∣− h
)
, γ−D grad v

〉
∂D

− ω2µ0

〈[
ε2
]
∂D
hν γDϕ , γDv

〉
∂D

.

We now decompose h into its tangential and normal component of ∂D, h = hτ + hνν. Since ϕ,
v ∈ H1(BR), the tangential components of their gradients do not jump across ∂D. Hence we have∫

BR

ε
(
gradϕ>

(
Jh + J>h − div(h)I

)
grad v + ω2µ0εdiv(h)ϕv

)
dx

−
∫
BR

ε
(
grad (gradϕ · h) · grad v − ω2µ0εgradϕ · hv

)
dx

=

〈
[ε]∂D hν Gradϕ−

[
ε
∂ϕ

∂ν

]
∂D

hτ , Grad v

〉
∂D

− ω2µ0

〈[
ε2
]
∂D

hν γDϕ , γDv
〉
∂D

.

Completely analogous calculations may be carried out for the components of A instead of ϕ. Com-
bining these equations, we have

a

((
A′

ϕ′

)
,

(
V
v

))
=

〈
[ε]∂D hν Gradϕ−

[
ε
∂ϕ

∂ν

]
∂D

hτ , Grad v

〉
∂D

− ω2µ0

〈[
ε2
]
∂D

hν γDϕ , γDv
〉
∂D

− 1

µ0

3∑
j=1

〈[
∂Aj

∂ν

]
∂D

hτ , GradV j

〉
∂D

− ω2 〈[ε]∂D hν γDA , γDV 〉∂D

− iω
〈

[ε]∂D γDϕ , ν
> (div(h)I − Jh)V

〉
∂D
− iω

〈
[ε]∂D ν

> (div(h)I − Jh) A , γDv
〉
∂D

− iω
〈

[ε γD gradϕ · h]∂D , ν>V
〉
∂D
− iω

〈[
εν>JAh

]
∂D

, γDv
〉
∂D

.
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We now use the transmission conditions (19), (20) to replace the normal derivatives of ϕ and Aj .
Subsequently, partial integration is applied to all surface gradients. Combining (36)–(39) yields

Div(Aνhτ )−Aν div(h) + ν>JhA− ν>JAh = Aτ ·Grad(hν)− hν div(Aνν).

Furthermore, we have

3∑
j=1

Div (ϕνjhτ )V j = ϕDiv(hτ )ν>V + ϕh>τ JνV + h>τ Grad(ϕ)ν>V ,

ν>JhV = grad(hν) · V − h>τ JνV ,

which leads to

3∑
j=1

Div(ϕνjhτ )V j − ϕν>V div(h) + ϕν>JhV − (grad(ϕ) · h)ν>V

= ϕGrad(hν) · V − hν div(ϕν)ν>V .

Therefore, we finally obtain

a

((
A′

ϕ′

)
,

(
V
v

))
=
〈[

iωε (Aτ ·Grad(hν)− hν div(Aνν))− εDiv(hνGradϕ)− ε2ω2µ0hνϕ
]
∂D

, γDv
〉
∂D

+
〈[

iωµ0ε (ϕGrad(hν)− hν div(ϕν)ν)− ω2µ0εhνA
]>
∂D

, γDV
〉
∂D

,

i.e. A′, ϕ′ is a weak solution of the exterior boundary value problem as asserted.
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