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Abstract In this research, we investigate possibilities to train
convolutional neural networks with a small dataset for semantic
segmentation, while achieving the best possible model general-
ization. In particular, we want to segment corrosion on the sur-
face of industrial objects. In order to achieve model generaliza-
tion, we utilize a selection of established and advanced strate-
gies, i.e. Self-Supervised-Learning. Besides radiometric- and
geometric-based data augmentation, we focus on model com-
plexity regarding encoder and decoder, as well as optimal pre-
training. Finally, we evaluate the best performing model against
a pixel-wise random forest classification. As a result, we achieve
an f1-score of 0.79 for the best performing model regarding the
segmentation of corrosion.

Keywords Semantic segmentation, classification, machine vi-
sion, surface inspection, corrosion detection, quality assurance

1 Introduction

In the field of machine vision (MV), image segmentation techniques
are heavily utilized for the surface inspection of industrial objects [1].
Image segmentation leads to image regions that can represent image
texture in a geometrically precise manner. Well established segmen-
tation methods like thresholding, clustering or region growing, how-
ever, have the disadvantage of lacking semantic information. Newer
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deep-learning-based (DL) segmentation methods based on convolu-
tional neural networks (CNN) are capable of adding semantics implic-
itly within the training process. These methods are often based on
fully-convolutional-networks (FCN), which only consist of convolution
layers as learnable layers, besides optional batch-normalization. FCNs
can be viewed as functions that map an input image to a map of n ∈ C
scores per pixel, where C denotes a set of class labels. By applying an
argmax function, the most likely class c is chosen for a particular pixel.
While DL-based models outperform pre-DL methods on large datasets,
the downside of such models is the potential of overfitting due to the
large amount of model parameters. In a lot of practical applications,
however, no adequate amount of data is available [2]. Among other
applications, common MV tasks in the area of surface inspection lack
a sufficient amount of data in order to train a DL-based model to gen-
eralize well. Recent advances in DL research target the challenges of
small training datasets.
This work aims to utilize a selection of these advanced learning strate-
gies as well as established methods in order to approximate the best
possible model generalization. Our scenario includes a barrel as it is
used for the storage of low radioactive waste (Figure 1(a)), which we
from now on refer to as our object. The training set consists of an
RGB image ITrain of the unwrapped coat of the object (Figure 1(b)),
whereas the test set consists of an RGB image ITest of the bottom. Both
sets are labeled to separate the image pixels into eight classes. In our
previous work [3], we already utilized the coat for training and also
testing, though both datasets were from different areas of the coat and
therefore disjunct from each other. In this new work, however, ITest is
aquired under different illumination conditions, which sets both ITrain
and ITest even further apart from each other regarding the image char-
acteristic. For our scenario, we exclusively use ITrain and no additional
image datasets or unlabeled data for training. Merely, we use ITrain
without labels within a model training at some point in this work. To
train a model, ITrain is split up into smaller image patches for model
input. We employ established and widely used data augmentation
(Section 3.1) techniques by applying geometric and radiometric image
transformations. Another aspect of our work is encoder pretraining
(Section 3.3). For this purpose, we train the models with randomly ini-
tialized model parameters according to some normal distribution and
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with ImageNet-pretrained parameters. As a third encoder pretraining
strategy, we employ self-supervised-learning (SSL) [4]. For measur-
ing the impact of model complexity, we undertake a model selection
(Section 3.2). Therefore, we use two encoders with different depth of
the same model family: ResNet18 and ResNet50 [5]. The accompany-
ing decoder architectures are U-net [6] and DeepLabv3 [7]. The stated
techniques are stages in a training pipeline, where the best performing
technique per stage gets chosen. For comparability, we also employ
a pre-DL algorithm to evaluate the results of both learning domains
against. A random forest classifier [8] (RF) (Section 3.4) therefore is
applied within the RGB feature space. The result is a pixel-wise classi-
fication without further contextual information.

(a) (b)

Figure 1: Barrel in the test facility (a). Within the facility, the image data of the coat and
bottom is acquired. Image of the unwrapped coat (b), used for training our
models.

2 Related work

The automated detection of structural damage such as corrosion on in-
dustrial objects based on image data is an active field of research [9].
Specifically, many research efforts are focused on applying end-to-end
DL to the task of corrosion detection [10]. This, however, poses the chal-
lenge that DL approaches are typically data-hungry, requiring large
amounts of training data, while publicly available, labeled datasets for
corrosion detection are few and far between [11]. Furthermore, the vi-
sual appearance of corrosion is quite specific w.r.t. the respective target
materials and shapes and it is still an open research question to what
extent the recently published dataset from [12] can be transferred to
specific application scenarios such as the coated steel barrels used in
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our work. Thus, while other research addresses the question of how to
alleviate the effort of creating large-scale training datasets for corrosion
detection, e.g. via crowd-sourcing [13] or efficient labeling tools [14],
we focus on how to efficiently use small amounts of training data in a
DL context by evaluating the impact of pretraining methods from the
fields of SSL in relation to the results of state-of-the-art DL networks
on a common small-scale dataset.

DL-based corrosion detection can be approached as a classification
problem, where image regions are classified w.r.t. the presence of cor-
rosion in a sliding window manner [15] . Sometimes, the results of a
sliding window classification are further post-processed to yield pixel-
wise segmentation results, e.g. via the activation maps of patches that
have been classified as containing corrosion [16]. Other works aim at
detecting corrosion by means of DL-based object detection networks
such as R-CNNs [17]. Here, first, instance-wise bounding boxes are
regressed which are subsequently refined to pixel-wise segmentation
masks. Lastly, as is the case in our work, DL-based corrosion detection
can be approached as a semantic segmentation task. In [18], differ-
ent fully convolutional segmentation networks are comparatively eval-
uated for the task of segmenting corrosion spots on steel structures.
In [19], fully convolutional segmentation is compared against an ap-
proach based on R-CNN. As the results are found to not be precise
enough, they are refined by a contour-aware postprocessing approach.
Lastly, [20] apply DeepLabv3 in a multi-temporal setting for damage-
progress monitoring.

3 Methodology

In this section, the methods and the utilized datasets are described.
Two methodological strings are applied: One string represents the
model pretraining with the application of all possible encoder-decoder-
combinations. Aside from that, these models are trained with the base-
line dataset, as well as the augmented dataset. The last string is a
pixel-wise RF classification within the RGB feature space.
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3.1 Data augmentation

As mentioned previously, the baseline dataset for training consists of
102 image patches of size 512× 512 px. In the data augmentation pro-
cess, geometric and radiometric transformations are applied to these
patches. The geometric transformations consist of rotations, as well as
a combined crop and resize operation. Because CNNs are rotation in-
variant to only some degree, the distinction between an image patch
and its rotated variant should have a positive effect on the generaliza-
tion capability. The second geometric transformation is a combined
crop and resize operation. A crop of an image is chosen randomly
and then resized to the original image patch size. The resizing oper-
ation utilizes a bilinear interpolation. With this combination, we aim
at creating new appearences of texture, which differ from the original
image patch. Finally, the radiometric transformation consists of a color
space transformation to HSI, where saturation and intensity are ran-
domly varied. The image patch then gets transformed back to RGB.
This strategy is applied to simulate different illumination situations.

3.2 Model selection

The model complexity is one aspect of our investigation. Usually in
ML, in order to prevent overfitting, one strategy is to reduce the model
complexity, or to be more specific, the number of model parameters. In
the case of DL-based models, one possibility to achieve this is to con-
sider different depths of a model. Another aspect is the selection of a
decoder, which is responsible for upsampling the learned features to a
map of classification scores with the size of the original image.
Encoders. We utilize the ResNet architecture [5] for our investigations.
This architecture is found quite often in literature as a standard model.
ResNets are used with different depths. We employ a ResNet18 as
the small encoder with a rather low complexity. The ResNet50 on the
other hand is selected as the large encoder, as it contains 50 convolution
layers. Large encoders have the advantage of learning more distinct
features in the lower convolution layers, but have more parameters to
optimize as a disadvantage regarding small training sets. Because the
surface textures of our object are not very complex, we aim for better
generalization while not requiring such distinct features by applying
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the ResNet18 encoder.
Decoders. For similar reasons as mentioned before, we select the U-
net and DeepLabv3 architectures as the decoders, as these are com-
monly used in the domain of semantic segmentation. The U-net
has a feature preservation aspect to it, because of the so-called skip-
connections. These skip-connections map the output of a convolution
layer to its corresponding transpose-convolution layer on the decoding
side. The DeepLabv3 achitecture applies so-called atrous convolutions
and atrous spatial pyramid pooling. The former is applied to yield a
more dense feature representation in the upscaling process. The latter
is applied to include scale invariance to some extent.

3.3 Encoder pretraining

To pretrain the encoder, we apply three different methods: random ini-
tialization according to a normal distribution, pretraining on the Im-
ageNet dataset and SSL. For the latter method, this is achieved by
training an encoder model within an SSL model and then by apply-
ing transfer learning, in order to embed the pretrained encoder into
the segmentation architecture, which is done by extracting the encoder
from the SSL model and append a decoder afterwards.
The random initialization often is the default in popular frameworks
in contrast to setting the parameters to some constant value. In our
case, the parameters are initialized according to the normal distribu-
tion parameterization described in [5], with N (0, 2

nl
), where n is de-

rived from the number of input features as well as the filter size and l
as a layer index.
ImageNet pretraining is popular, because of the transfer learning as-
pect. Only the features on the first layers of training are of interest be-
cause there, low-level features like edges, point-like shapes or corners
are already learned. This can help for faster convergence or maybe
even convergence at all. Of course, pretraining on other datasets is also
possible, especially if they are semantically related to the follow-up
training domain.
The field of self-supervised-learning is densely connected to the DL-
field with a highly active ongoing research. An SSL model is trained
on exclusively unlabeled data. In our case, a contrastive SSL method is
applied: SimCLR [21]. This method takes a sample out of the dataset
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as a positive sample, and another disjunct sample as the negative sam-
ple. For higher distinctiveness, also data augmentation strategies are
applied to the positive sample. A contrastive loss is then calculated
from both samples for backpropagation. The purpose of SSL methods
is to learn feature representations without knowledge about semantics.
This is called the pretext task. From there, the underlying model can
be extracted and added to a so-called downstream task. This proce-
dure can be viewed as a transfer learning. The downstream task in our
case is the semantic segmentation, where the SSL pretrained encoder is
embedded into.

3.4 Random forest classification

The application of an RF classifier in the RGB feature space is done
for evaluation. DL methods outperform pre-DL learning techniques
on benchmark datasets in the most cases. In our use-case with a com-
paratively low amount of data, however, such methods might still out-
perform DL models.

4 Experiments

This section describes our experimental setup in the domain of method-
ology. Our goal is to detect corrosion as segmented image regions. The
other classes are rejection classes and therefore not of further interest.
We have four classes in total: lacquer, dirt, spots and corrosion. In our
investigations we found that an over-classification leads to a better sep-
arability between corrosion and non-corrosion.
As mentioned in the Section 1, we use the image of the unwrapped
barrel coat ITrain as our training dataset. It is an RGB image of size
3072× 8763 px. For the specification of image size we use the notation
of height× width throughout this work. The models are trained with
smaller image patches with no overlap to neighboring patches, cut from
ITrain. Those image patches are of size 512× 512 px. With this size, we
want to preserve as much information of the surface texture as possible
through keeping spatial coherence. Splitting ITrain into patches results
in 102 image patches as a baseline training dataset, which is used for
training in the setting of no data augmentation. By applying data aug-
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mentation, the dataset grows to 8160 image patches.
For the first variant of encoder pretraining, the encoder is not pre-
trained, but initialized randomly. We keep the default procedure of
PyTorch, which distributes the model parameters according to the so-
called Kaiming initialization [5]. For ImageNet-based encoder pretrain-
ing, we download the pretrained model parameters from torchvision.
The SSL pretraining is done using a batch-size of 512 for both en-
coders. The dataset in both cases is the unlabeled baseline dataset.
It is trained for 8000 epochs. It should be noted that both the ResNet
18 and ResNet50 are randomly initialized for the SSL pretraining.
The DL model training is organized using different combinations with
and without data augmentation, with ResNet18 and ResNet50 and with
three different pretraining settings for the encoder, namely randomly
initialized, ImageNet-, and SSL pretrained. At last, the number of the
previously mentioned combinations is doubled be employing a U-net
and DeepLabv3 decoder architecture. In sum, 24 models are trained
and evaluated.
For random forest training, we applied 100 trees with a maximum
depth of 8. The dataset used for this training is the baseline dataset
with no augmentations. The reason is that the number of datapoints
(pixels) is sufficient for pre-DL models to generalize well on the one
hand, but also on the other hand, RFs are fairly robust against overfit-
ting in general.
The evaluation uses the classification metrics precision, recall, f1-score
and overall accuracy. These metrics show the performance for pixel-
wise classification for each of the methods in order to make them com-
parable. Another metric for measuring the global per-class overlap of
correct classified regions is the Intersection Over Union (IoU). Further
on, the mean IoU (mIoU) as another metric is calculated by averaging
all class-specific IoU values.

5 Results

In this section the results of our experiments are shown. Qualitative re-
sults in the form of visualizations are depicted in Figure 2(a) to 2(f). For
quantitative results Table 1(a) shows the global metrics of all trained
models. Table 1(b) shows the best performing DL model and the RF
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model with class-wise metrics each.

(a) (b) (c)

(d) (e) (f)

Figure 2: ITest (a), ground truth (b), result of the RF classification (c). Ground truth
and predictions are colored as: lacquer (yellow), dirt (bright gray), spots (dark
gray), corrosion (red). Predictions of the DL models: worst performing model
(rn50-dl-noaug-inet) (d), best performing model with all classes (rn50-u-noaug-
rand) (e), best performing model with two aggregated classes no corrosion
(green) and corrosion (red).

6 Discussion

Regarding the model complexity, ResNet18 and ResNet50 yield com-
parable results for the global metrics. For the detection of corrosion,
however, ResNet50 usually shows better results. This holds true for the
four best performing models concerning the f1-score of the corrosion
class. This indicates that lower model complexity does not necessarily
lead to better model generalization as proposed in Section 3.
DeepLabv3 and U-net decoders seem to be on par regarding global
metrics, as well as for the corrosion detection. The highest f1-score
for the corrosion class is achieved by a U-net model. Further on,
DeepLabv3 seem to yield more smoothed results in the visual domain,
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Table 1: The global metrics (a) of each model are shown. The model names are encoded
as follows: encoder-decoder-augmentation-pretraining. The metrics are mean f1-
Score (mF1), overall accuracy (OA) and mean Intersection over Union (mIoU).
The marked model is not the best performing regarding the global metrics, but
the best performing for the corrosion class. The class-wise metrics (b) are shown
for the best performing DL model regarding the f1-score of the corrosion class,
and the RF model. In addition to f1-score (F1) and intersection over union (IoU),
precision (P) and recall (R) are depicted.

(a)

Model OA mF1 mIoU
rn18-u-noaug-rand 0.52 0.29 0.35
rn18-u-noaug-inet 0.65 0.37 0.48
rn18-u-noaug-ssl 0.75 0.41 0.60
rn18-dl-noaug-rand 0.81 0.30 0.68
rn18-dl-noaug-inet 0.39 0.20 0.24
rn18-dl-noaug-ssl 0.63 0.27 0.46
rn18-u-aug-rand 0.86 0.36 0.76
rn18-u-aug-inet 0.91 0.39 0.83
rn18-u-aug-ssl 0.82 0.29 0.70
rn18-dl-aug-rand 0.88 0.37 0.79
rn18-dl-aug-inet 0.89 0.39 0.80
rn18-dl-aug-ssl 0.88 0.43 0.78
rn50-u-noaug-rand 0.10 0.21 0.05
rn50-u-noaug-inet 0.80 0.41 0.67
rn50-u-noaug-ssl 0.54 0.38 0.37
rn50-dl-noaug-rand 0.39 0.24 0.24
rn50-dl-noaug-inet 0.75 0.24 0.61
rn50-dl-noaug-ssl 0.63 0.27 0.46
rn50-u-aug-rand 0.86 0.36 0.76
rn50-u-aug-inet 0.91 0.39 0.83
rn50-u-aug-ssl 0.82 0.29 0.70
rn50-dl-aug-rand 0.92 0.42 0.85
rn50-dl-aug-inet 0.86 0.40 0.76
rn50-dl-aug-ssl 0.88 0.40 0.79
random forest 0.80 0.44 0.67

(b)

Model Class P R F1 IoU
rn50-u-noaug-rand Laquer 0.86 0.03 0.05 0.10

Dirt 0.05 0.99 0.09 0.04
Spots 0.00 0.00 0.00 0.00
Corrosion 0.83 0.63 0.71 0.21

random forest Laquer 0.95 0.83 0.86 0.82
Dirt 0.06 0.21 0.09 0.05
Spots 0.00 0.00 0.00 0.00
Corrosion 0.82 0.76 0.79 0.42

rn50-u-noaug-rand No Corrosion 0.98 0.99 0.99 0.90
Corrosion 0.83 0.63 0.71 0.21

random forest No Corrosion 0.99 0.99 0.99 0.96
Corrosion 0.82 0.76 0.79 0.42

whereas some U-net-based models tend to show slightly more scat-
tered segmentation results.
A surprising insight is that data augmentation did not seem to have
a positive effect for all models. Moreover, we could only observe in
the three best models, regarding f1-score in the corrosion class, that
DeepLabv3 decoders benefit from data augmentation and tend to
perform poor without data augmentation, while this tends to be the
opposite case with U-nets.
For the encoder pretraining, we could not observe tendencies re-
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garding the different pretraining strategies resulting in a superior
performance. This is especially of interest, because random initializa-
tion is usually considered as an inferior starting point for training.
In our experiments, the random initialization performs similar w.r.t.
the other pretrainings. In literature, usually thousands of unlabeled
images are utilized for SSL. As can be seen in Table 1(a), no gain could
be achieved with SSL pretraining. It can be assumed that the 102
image patches were too few for a substantial SSL pretraining.
The random forest classification yields the best results regarding the
f1-score of the corrosion class. It needs to be considered, however, that
the RF classifier does not take context into account in our experiments.
This leads to results with less smoothness in some regions where the
separability in RGB space is not very pronounced. Especially larger
areas of corrosion are prone to false negatives in the form of scattered
pixels belonging to other classes.

7 Conclusion

For our applied strategies in order to train a DL model to generalize
from a small baseline dataset, we found that for the core class of corro-
sion, a RF classifier performs better within the RGB feature space than
a DL-based model. The RGB feature space in our case is well separa-
ble: There is no surface texture with a similar radiometric signature to
that of corrosion in ITest. Also, for the incorporation of context in the
non-DL domain, a conditional random field could be of advantage. For
the enrichment of the feature space, textural features can be extracted
and added for training.
For the DL domain we found that there is still a large potential for
improvement. While strategies like data augmentation are mandatory
for a long time in such scenarios, we could not see a significant advan-
tage. We only touched the surface of what is possible, with mediocre
results at this point. Other possibilities are to incorporate unlabeled
datasets for Semi-Supervised-Learning or a large scale Self-Supervised-
Learning for better encoder pretraining. Also, Few-Shot-Semantic-
Segmentation techniques can be taken into account in the future, as
there is a fairly high research activity in this area.
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