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The beam longitudinal dynamics code BLonD has been developed at CERN since 2014 and has
become a central tool for longitudinal beam dynamics simulations. In this paper, we present this
modular simulation suite and the various physics models that can be included and combined by
the user. We detail the reference frame, the equations of motion, the BLonD-specific options for
radio-frequency parameters such as phase noise, fixed-field acceleration, and feedback models for
the CERN accelerators, as well as the modeling of collective effects and synchrotron radiation. We
also present various methods of generating multi-bunch distributions matched to a given impedance
model. BLonD is furthermore a well-tested and optimized simulation suite, which is demonstrated
through examples, too.
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I. INTRODUCTION

For several decades, longitudinal beam dynamics sim-
ulations at CERN have been performed using Fermilab’s
widely-used simulation suite called ESME [1]. With the
upgrade projects of the CERN synchrotrons and studies
of future machines, there was a growing need for preci-
sion simulations that can combine for a given study all
relevant physics with machine-specific features. At the
same time, the simulation suite would have to be general
enough to cover a wide range of applications, from low-
to high energy synchrotrons, from electrons over protons
to ions, from space-charge to synchrotron-radiation dom-
inated regimes.

The Beam Longitudinal Dynamics simulation suite
BLonD [2, 3] has been developed at CERN since 2014. It
is an open-source particle tracking code for simulation of
longitudinal motion in synchrotrons, written in Python
and C++ languages. It relies on some of the most popular
and efficient scientific libraries including Numpy [4], and
Scipy [5].

The code uses macro-particles with the same charge-
to-mass ratio as the real particles. Real bunch intensities
typically vary in the range of 108−1013 particles/bunch,
while in simulations, an order of 104 − 107 macro-
particles/bunch are used. BLonD has a modular struc-
ture that allows the user to model different effects accord-
ing to his/her needs. The BLonD code’s unique feature
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is that it disentangles the equations of the beam particles
and the radio-frequency (rf) system, and tracks both of
them with respect to an external reference ‘clock’, just
as in a real machine. This has the advantage of being
able to include several beam- and/or cavity loops, collec-
tive effects, etc. when modeling the beam motion. Ad-
ditional special features of the code are the generation
of matched (multi-)bunch phase-space distributions with
collective effects, rf phase noise and sinusoidal rf phase
modulation, and its overall flexibility.

By now, the BLonD suite has been thoroughly bench-
marked [6] and applied for all the CERN existing and
future synchrotrons; the outcome of the simulation stud-
ies has often been guiding the baseline choices for ma-
chine upgrades and studies. Several other institutes
have started to use the code as well [7, 8]. To men-
tion a few applications, the CERN Proton Synchrotron
Booster (PSB), for instance, poses its challenges with an
injection scheme using constant frequency during a mag-
netic ramp, with beam-based feedback systems on, strong
space-charge, and a beam that stretches over the entire
ring before getting bunched. The Proton Synchrotron
(PS) is equipped with numerous rf systems used to shape
the beam via rf manipulations (e.g. splitting and merg-
ing bunches), so simulations including multi-rf systems
and beam loading effects are required to predict the best
achievable beam quality when increasing beam intensity.
Determining the beam and rf parameters for the post-
2021 Super Proton Synchrotron (SPS) requires a meticu-
lously accurate impedance model, which was determined
from benchmarks of beam-based measurements against
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simulation results. The successful operation of the Large
Hadron Collider (LHC) relies on controlled emittance
blow-up performed during a 14-million-turn energy ramp
with several feedback loops interacting. The proposed
electron-positron Future Circular Collider (FCC) poses
challenges with its numerical requirements for resolving
small beams in a large machine.

In this article, we present the unique features and
special applications of the BLonD code. The paper is
structured as follows: starting from the (i) reference
frame and beam-cavity interactions, we then describe (ii)
the modulation of rf parameters, (iii) the modeling of
impedance and collective effects, (iv) synchrotron radia-
tion and quantum excitation, (v) global and local feed-
back models, over the (vi) generation of particle distri-
butions, to (vii) optimizations and (vii) benchmark tech-
niques.

II. REFERENCE FRAME AND BEAM-CAVITY
INTERACTIONS

Just like beam- and cavity control work in a real syn-
chrotron, BLonD describes the evolution of beam par-
ticle coordinates and the voltage, phase, and frequency
in the radio-frequency accelerating cavities w.r.t. an ex-
ternal reference clock. The design clock time td,(n) in a
given turn n counts the total number of turns elapsed in
the laboratory frame,

td,(0) ≡ 0 and td,(n) ≡
n∑
k=1

Trev,(k) for n ≥ 1. (1)

The revolution periods Trev,(n) are defined by the design
orbit of radius Rd and βd,(n), the relative speed of the
design particle with respect to the speed of light c on
that orbit,

Trev,(n) =
2πRd
βd,(n)c

, (2)

where the user can input βd,(n) implicitly via the cor-
responding design relativistic momentum pd,(n) or total
energy Ed,(n) evolution over time. The input also deter-
mines the design magnetic field ramp Bd,(n) through the
relation

pd,(n) = |q|ρBd,(n), (3)

where q is the charge of the particle and ρ the bending
radius of the magnets.

The user can choose to place several rf stations along
the ring, in which case the magnetic field program of each
section of the ring (from one rf station to another) has
to be input. This sub-cycling of a turn can be useful, for
instance, in the presence of strong synchrotron radiation.
In each rf station, an arbitrary number of nrf harmonic
rf systems can be modeled; all rf systems in a given rf
station will be treated as having the same longitudinal

position. The origin of the coordinate system (ex, ey, ez)
is fixed to the longitudinal position of the first rf station,
on the reference orbit, see Fig. 1.

FIG. 1. Reference frame for the equations of motion and the
reference time. A given particle on the orbit R is described
with the energy E and the longitudinal coordinate t.

The particles are described with the phase space co-
ordinates (∆t(n),∆E(n)), which are the particle’s arrival
time and energy with respect to the integrated reference
time td,(n) and the design total energy Ed,(n), respec-
tively. For each section of the ring, first the energy ∆E
of a given particle is updated from time step n to n+ 1,
based on the particle’s arrival time and all the rf voltage
kicks k received in the corresponding rf station,

∆E(n+1) = ∆E(n) +

nrf∑
k=1

qVk,(n) sin(ωrf,k,(n)∆t(n) + ϕrf,k,(n))−

− (Ed,(n+1) − Ed,(n)) + Eother,(n), (4)

where Vk is the voltage amplitude, ωrf,k the rf angular
frequency, and ϕrf,k the phase of the rf system k, and
Ed,(n+1) − Ed,(n) the change of the design energy from
one turn to another. The last term Eother,(n) contains
additional energy changes due to induced voltage, syn-
chrotron radiation, etc. The time coordinate of the par-
ticle is updated subsequently, using the already updated
energy of the particle and the momentum compaction
factor α of at least zeroth, and up to second order,

∆t(n+1) = ∆t(n) + Trev,(n+1)

[(
1 + α0,(n+1)δ(n+1)+

+ α1,(n+1)δ
2
(n+1) + α2,(n+1)δ

3
(n+1)

)1 +
∆E(n+1)

Ed,(n+1)

1 + δ(n+1)
− 1

]
,

(5)

where δ(n) =
∆p(n)

pd,(n)
' ∆E(n)

β2
dEd,(n)

is the relative momentum

offset.
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A. Periodicity

In some specific cases, such as the PSB operated at
the h = 1 harmonic, a single bunch can cover the entire
machine circumference, with the head and the tail of the
bunch crossing the boundaries between previous, present,
and next turns, see Fig. 2. For such cases, the periodicity

FIG. 2. Phase-space plot of unstable bunch in accelerating
bucket (h = 1). The time coordinate on the horizontal axis
spans from 0 to Trev. With the periodic condition enabled,
particles that exit the time frame from the right enters back
into the frame from the left.

of the equations of motion can be enabled. The period-
icity will ensure that all particles remain synchronized to
the present time frame, by tracking twice the particles
that lag behind, and by pausing the tracking of particles
that are ahead in time.

If the periodicity algorithm is not applied, the equa-
tions of motion make all the particles that cross the line
∆t = Trev in phase space drift away from the rf bucket.
This ignores the geometry of the ring assumed in the
equations of motion, and could give undesirable results
for example when the beam losses have to be computed
accurately or when an un-bunched beam has to be cap-
tured inside an rf bucket.

The periodicity algorithm is also useful when parts of
the rf bucket cross the line ∆t = Trev in phase space, for
example when the beam phase loop changes the design rf
frequency and shifts the bucket in phase space, or when a
second rf system with relatively high voltage is added in
bunch-lengthening mode to the main-harmonic voltage
during acceleration. In these cases, the bunch will be
numerically split in phase space into two portions, which
however in practice behave as a whole.

III. MODULATION OF RF PARAMETERS

BLonD provides the possibility of simulating any com-
plex beam manipulation in the longitudinal plane, since
both the momentum and the rf programs (ωrf,k(t), Vk(t),
ϕrf,k(t)) can be given as an input. Below, we show some
examples on rf phase noise and modulation, as well as slip

stacking. However, many other applications, such as cog-
ging, synchronization, fixed-frequency acceleration, etc.
are possible to simulate, too.

A. RF phase noise and modulation

For controlled longitudinal emittance blow-up [9, 10],
both band-limited rf phase noise of the main har-
monic [11, 12] and single-frequency modulation of a high
harmonic [13] can be used. In BLonD, a turn-by-turn
phase offset (∆ϕrf,(n)) can be added to the programmed
rf phase (ϕrf,(n)) to achieve this. The modulation func-
tions can be defined by the user directly, or calculated
with built-in functions. For instance, the generation
method of the phase noise presently used in the CERN
synchrotrons [14] can be applied.

In the case of single-frequency modulation, ∆ϕ is com-
puted as

∆ϕn = A sin

(
2π

∫
fndt

)
+ ϕoff (6)

where A is the modulation amplitude, fn is the modu-
lation frequency and ϕoff is an offset about which the
modulation is applied. To correctly simulate the phase
modulation a frequency modulation is computed at the
same time, defined by:

∆ωn =
1

2π

d∆ϕn
dt

ωn . (7)

B. Fixed-field manipulations: slip stacking

Momentum slip-stacking (MSS) is one of the most com-
plicated rf manipulations and is currently being studied
in simulations for the ion beams in the SPS [15] using the
BLonD code. It permits two high-energy particle beams
of slightly different momenta to slip azimuthally, relative
to each other, in the same beam pipe. The two beams are
captured by two rf systems with a small frequency dif-
ference between them. Each beam is synchronized with
one rf system and it is perturbed by the other. When
the two beams are in the desired azimuthal position, the
full beam is recaptured with a much higher rf voltage
at the design rf frequency. In particular, for the SPS,
two batches of 24 bunches, spaced by 100 ns, are inter-
leaved on an intermediate momentum plateau to produce
a single batch of 48 bunches with half the bunch distance
(50 ns). The process as simulated in BLonD, is schemat-
ically illustrated in Fig. 3. Details on how MSS is going
to be applied in the SPS can be found in [16, 17].

During MSS the magnetic field Bd will be constant,
which means that, in a first-order approximation, the
following relation holds

∆ωrf

ωrf,d
= −η0

∆p

pd
, (8)
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FIG. 3. Illustration of the MSS procedure simulated in BLonD. Two batches, starting from Phase I (top left) are separated in
energy and move in the longitudinal phase space relative to each other. The black line marks ∆E = E − Ed = 0. In Phase II
(top right), the energy distance between the batches increases, while the opposite occurs in Phase III (bottom left). Recapture
is done in Phase IV (bottom right).

where ∆ωrf and ∆p are the changes of the rf angular fre-
quency and beam momentum with respect to their de-
signed values. In a reference frame that is synchronized
with the design revolution period Trev,d, a variation ∆ωrf

implies a change in the rf phase according to

∆ϕrf =
2πh∆ωrf

ωrf,d
. (9)

Providing as an input to BLonD the aforementioned
programs, as well as the rf voltage amplitude programs
for the two cavity groups, the total rf voltage experienced
by each beam is given by

Vrf = V̂rf,1 sin(ωrf,1t+φrf,1)+V̂rf,2 sin(ωrf,2t−φrf,2), (10)

where the indices 1,2 indicate the first and second group
of rf cavities accordingly.

IV. MODELING IMPEDANCE AND
COLLECTIVE EFFECTS

In particle accelerators with high-intensity and high-
brightness beams, the performance is usually limited by
the electromagnetic interaction of the particles with each

other and their surroundings, which are known as collec-
tive effects.

An outcome of these effects is known as potential-
well distortion, which causes, on one hand, incoherent
effects as a shift in the synchronous phase and in the
synchrotron frequency, as well as bunch lengthening [18].
For example, the synchrotron frequency shift may affect
the performance of a controlled longitudinal emittance
blow-up [19]. On the other hand, coherent effects can
trigger instabilities, which can affect individual bunches
or couple several bunches, and can produce uncontrolled
emittance blow-up and high beam losses [20].

BLonD can accurately simulate these effects using the
concept of wakefields and impedances [21]. The electro-
magnetic interaction is described by the so-called wake
function W (t), which represents the electric field excited
by a point charge as experienced by a test charge.

Computing the interaction between the individual
macroparticles is a O(N2) problem. In most practical
cases, it is desirable to apply a binning to the particle
distribution and calculate the wake potential, also called
induced voltage Vind(∆t), which is defined as the convo-
lution of the line density λ(t) of the beam, normalized to
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−∞ λ(t) dt = 1, and the wake function:

Vind(∆t) = −q Np
∫ +∞

−∞
λ(τ)W (∆t− τ) dτ , (11)

where Np is the number of real particles in the beam.
The energy kick Eind(∆t) = q Vind(∆t) due to the in-

duced voltage enters the term Eother in Eq. (4), where
the minus sign in Eq. (11) ensures an energy loss for a
positive wake potential.

The induced voltage can also be computed in frequency
domain using the concept of impedance Z(ω), defined as
the Fourier transform of the wake function:

Z(ω) =

∫ +∞

−∞
W (t) e−j ω t dt, (12)

Vind(∆t) = −q Np
2π

∫ +∞

−∞
Z(ω) Λ(ω) ej ω∆t d∆t, (13)

where Λ(ω) is the beam spectrum, obtained as the
Fourier transform of the line density.

Although both time- and frequency-domain methods
are equivalent, the discretization required for numerical
simulations makes each method suitable for different sit-
uations, depending on the bandwidth of the impedance
source.

Wakefields corresponding to narrow-band impedance
sources require very high frequency resolution to be able
to resolve it correctly. However, in time domain we only
need to describe the signal for a time window equiv-
alent to the length of a bunch or a train of bunches.
In that case, computations in time domain will require
significantly less resources. Alternatively, a broadband
impedance will result in a wakefield that would require
too fine resolution in time domain.

For these reasons, BLonD implements both time and
frequency-domain calculations, as well as different strate-
gies to deal with the discretization of the line density.

A. Impedance sources

Wake functions and impedances can be calculated an-
alytically for simple geometries (see e.g., [22]) or using
numerical codes for more complicated devices.

BLonD includes several analytical impedance models.
One of them is the resonator model, with an impedance
defined as

Z(f) =
Rs

1 + jQ
(
f
fr
− fr

f

) , (14)

where Rs is the shunt impedance, fr is the resonant fre-
quency, and Q the quality factor. The user can include
one or more resonators to model the impedance of an
element.

Furthermore, BLonD contains a model for the resis-
tive wall impedance of the beam pipe, for the case of a
cylindrical beam pipe, and a model for traveling wave
cavities. Coherent synchrotron radiation can be modeled
as an impedance, too.

Finally, BLonD also takes as input tables that con-
sist of either time and wakefield values, or frequency and
impedance values, which can be used to describe an ar-
bitrary impedance model.

All of the above-mentioned impedance models can be
used in a combined manner as well. For more details, see
BLonD documentation.

B. Induced voltage calculation

BLonD uses the impedance sources described above
to calculate the induced voltage that is then applied to
the macroparticles in the same way as the voltage kick
from the accelerating cavities. Both operations can be
combined for optimization by summing the rf voltage to
the induced voltage with the same time resolution. The
total energy kick is then linearly interpolated and applied
based on the particle position ∆ti.

BLonD implements two generic algorithms to compute
the induced voltage that works with all the impedance
sources described above; one is in time domain and the
other in frequency domain.

In frequency domain, the method consists of discretiz-
ing Eq. (13) as

Vind[n] = −q Np IDFT (Z[k] Λ[k]) , (15)

where IDFT is the Inverse Discrete Fourier Transform
and Λ[k] is the Discrete Fourier Transform (DFT) of the
line density: Λ[k] = DFT (λ[n]).

In time domain, the induced voltage is calculated as
a discrete convolution. However, it is in general more
efficient to compute the discrete convolution using the
DFT according to the circular convolution theorem.

Vind[n] = −q Np IDFT {DFT (W [n]) DFT (λ[n])} . (16)

It is important to carefully pad the two signals with zeros
so that the result is the linear convolution. If the length
of W [n] is N and the length of λ[n] is M, both signals
need to be padded so that their length is at least L =
N +M − 1; in practice, the next regular number is used
for runtime efficiency. In this case, the complexity of the
algorithm using FFT is O(L logL), to be compared to
O(NM) using the direct convolution algorithm in time
domain.

Given the similarities between Eq. (15) and Eq. (16),
BLonD has a single implementation for both methods,
with the difference that when doing time-domain cal-
culations, a pseudo-impedance is defined as Z∗[k] =
DFT (W ∗[n]), where the * represents that the signal is
zero-padded. Similarly, the beam spectrum is defined as
Λ∗[k] = DFT (λ∗[n]).
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For the special case of purely imaginary impedances,
another method is available, in which the magnitude of
the impedance is directly proportional to the frequency.
In this case, the impedance is described by a constant
number, Z/n, where n = ω/ωrev. The induced voltage
computation is much simpler, as the DFTs are replaced
by a derivative:

Vind[n] = − q Trev

2π Ts

Z

n

dλ[n]

dn
, (17)

where Ts is the binning size for the discretized line den-
sity. An interesting use of this method is the modeling
of space charge as a reactive impedance (see e.g., [23]).

BLonD implements also two special algorithms that
are limited to resonator impedances. The MuSiC algo-
rithm [24] uses a propagation matrix to compute the in-
duced voltage without binning. The second algorithm
is an adaptation of a semi-analytic method [25] to res-
onators and does not require uniform binning.

BLonD can also take into account wakefields lasting
more than one turn, which can be an important contri-
bution of narrow-band impedance sources in small rings.
The code keeps in memory the induced voltage gener-
ated for a user-defined number of preceding turns, which
are shifted in time after every turn and added to the in-
duced voltage of the current turn. When the revolution
frequency is not constant, a linear interpolation is done
to compute the induced voltage with the right binning.

All these algorithms can be combined to represent a
full machine impedance model, using each of them for
different impedance sources depending on their charac-
teristics. BLonD finally calculates the induced voltage
as the sum of the induced voltage from each impedance
source, which is then applied to the macroparticles.

V. SYNCHROTRON RADIATION AND
QUANTUM EXCITATION

BLonD is not only used for studying the beam dynam-
ics of existing accelerators, but also for designing future
machines. The Future Circular Collider (FCC) project
considers two main options that can be installed in a
tunnel of about 100 km: a lepton machine (FCC-ee) op-
erating with up to 365 GeV collision energy [26], and
a 100 TeV hadron machine (FCC-hh) [27]. For both of
them, synchrotron radiation becomes an essential part of
the beam dynamics and needs to be included in macro-
particle simulations. This is also true for light sources,
which use electron beams to provide X-rays to user ex-
periments.

The synchrotron radiation module in BLonD applies
the energy kicks due to the average energy loss per par-
ticle per turn U0, a damping term proportional to the
particle energy offset, and quantum excitation. The de-
tailed implementation is summarized in Ref. [28]. Later,
the option of an ‘empty rf station’ was added, which ap-
plies all kicks except for the rf kick. This is especially

important for FCC-ee tt̄, which has a collision energy of
365 GeV and U0 = 9.2 GeV. Its double rf system is dis-
tributed in two opposite locations of the ring and consists
of multi-cell cavities operating at 400 MHz and 800 MHz
providing 4 GV and 6.9 GV of rf voltage, respectively.

The importance of a correct distribution of kicks can
be understood through a simulation example, in which
a single bunch is generated with a normalized relative
rms energy spread of about 2.2 × 10−3, using eight rf
stations, out of which only two provide half of the total
voltage each. The others are ‘empty’ and activated by
setting zero rf voltage for them. The evolution of the
normalized rms energy spread shows that the equilibrium
value agrees well with the analytic expectation [29], see
Fig. 4. In similar simulations with only two rf stations,
and without additional empty rf stations, particles are
lost from the bucket due to large discrete kicks given by
synchrotron radiation and quantum excitation.

0 50 100 150 200 250 300
Turns

0.15
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0.17
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0.22
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Expected energy spread = 0.15 %
Simulation
Equilibrium energy spread = 0.15 %

FIG. 4. Evolution of the normalized rms energy spread in
FCC-ee tt̄ with 365 GeV collision energy. Simulation and
machine parameters: the two rf stations contain a 400 MHz
rf system with 4 GV rf voltage and 800 MHz rf system with
6.9 GV rf voltage in total; six rf stations are empty.

VI. GLOBAL AND LOCAL FEEDBACK
MODELS

In this Section, we will describe global and local feed-
back models. By global feedback models, we mean mod-
els that are acting on the entire rf system, i.e. either
the rf frequency or phase. By local feedback models, we
mean models that act on one single rf system, typically
the rf voltage amplitude and phase of a group of cavi-
ties. Often, the feedback models also involve measuring
beam signals and feeding the signals back or forward to
regulate the desired quantity.
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A. Global feedback models

For accurate and realistic modeling of beam motion
in a synchrotron, the presence of beam-based feedback
systems cannot always be neglected. For example, quan-
titatively reproducing measured capture losses in the SPS
requires the inclusion of the SPS beam phase loop in the
simulation. Also, rf phase noise or modulation is in prac-
tice often injected through the set point of a beam phase
loop, instead of being injected directly into the cavity set
point.

The BLonD equations of motion allow the actual turn-
by-turn rf phase ϕrf,(n) and frequency ωrf,(n) to deviate
from the originally designed phase ϕrf,d,(n) and frequency
ωrf,d,(n) programs. This feature enables the user to dy-
namically change the rf parameters throughout the sim-
ulation, or simply to program an rf frequency that is
not an integer multiple of the revolution frequency of the
clock. The deviations of the rf frequency from the exact
multiple of the design revolution frequency will result in
an accumulated phase deviation,

∆ϕrf,(n) =

n∑
k=1

ωrf,(k)

h(k)ωrev,(k)
2πh(k). (18)

In such a case, the user will see the bunch and the rf
bucket drift with respect to the reference frame. Fre-
quency loops can be applied to minimize this phase drift
and to ensure that in the long run the rf frequency (and
with it, the beam orbit and energy) is maintained at its
design value.

The exact implementations of the beam-based feed-
back models are machine-specific. For the CERN syn-
chrotrons, the exact implementations of frequency, syn-
chronization, radial, and beam phase loop are available
for use. They can be a good starting point also for feed-
back loops in other machines, while also custom-made
feedback models can be easily built and used with the
BLonD architecture.

B. Cavity feedback models

In the presence of beam and due to beam loading [30],
both the amplitude and phase of the rf voltage deviate
from their design values that are usually constant over
a tracking turn. Given that the rf cavities are often the
largest contributor to the machine impedance, the cor-
rection needed to bring these parameters back to their
design values can be computed as in the real machine,
by a cavity-based feedback system. Depending on the
system, the correction is applied within the same turn
for fast feedback systems or with a one-turn delay.

The accurate modeling of the feedback system of an
accelerator is crucial for the realistic simulation of beam
evolution, stability, and losses, as well as the assessment
of the rf requirements of the machine. For example, the

reduction of the bucket size resulting from the devia-
tion of the design rf parameters, together with the mod-
ulation of the bunch-by-bunch positions resulting from
the feedback loops used for beam-loading compensation
can yield larger losses and reduce the machine perfor-
mance. This becomes especially important for the bunch-
to-bucket transfer between consecutive stages of an accel-
erator chain, between the PS-SPS and SPS-LHC [31–33].
In the case of the High-Luminosity LHC (HL-LHC), the
presence of large power transients at the head and tail of
the high-intensity beam batches could result in a power
demand beyond the capacity of the rf system; to under-
stand their magnitude and dynamics, a realistic model
of the full LHC rf cavity controller is needed [34]. The
exact implementation of the cavity controller is machine-
dependent, and models for the SPS (see Fig. 5) and LHC
controllers are presently available in BLonD.

Generally, a one-turn delay feedback system (OTFB)
measures the cavity (antenna) voltage and applies the
necessary correction in the following turn. In the SPS

model, for instance, the antenna voltage ~Vind,(n) is the
sum of the beam- and generator-induced contributions

(~Vind,b,(n), ~Vind,g,(n), respectively) [35]:

~Vind,(n)(t) = ~Vind,b,(n)(t) + ~Vind,g,(n)(t), (19)

where t is resolved typically on a bucket-by-bucket basis.
The additional contribution from the reflected current is
added, if applicable for the system. The vector nota-
tion refers to the use of complex voltage vectors. In its
BLonD implementation, all these signals span one full
turn are discretized at the rf frequency. As described in
Sec. IV, the beam-induced voltage is the result of the

cavity response to the rf beam current ~Ib,(n)(t) which is
obtained from beam profile λ(n)(t) at frf . Likewise, the
generator component in Eq. (19) is the result of the cav-

ity response to the generator current ~Ig,(n)(t) according
to the corresponding generator model (and its time evo-
lution [36]). To compute the bunch-by-bunch correction
to the rf voltage, the feedback system first computes the
difference between the antenna voltage and the required

design (or set point) voltage ~Vd,(n),

∆~V(n)(t) = ~Vd,(n) − ~Vind,(n)(t). (20)

This error signal is then processed (comb-filtered) to re-
move the beam loading effect by comparing it with the er-
ror in the previous turn (n−1). The resulting signal con-
stitutes an additional input to the generator drive, from

which the corrected ~Ig,(n)(t) is obtained via the transmit-
ter model. The corresponding generator-induced voltage
~Vind,g,(n) will keep, in principle, the cavity voltage ~Vind,(n)

equal to the design voltage ~Vd,(n) on a bucket-by-bucket
basis in the presence of beam loading. For rf power stud-
ies, the generator power is derived from these quantities.

For several cavities at the same harmonic in a given rf

station, the total corrected voltage ~Vcorr,(n)(t) is the sum
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FIG. 5. Schematic of the SPS one-turn delay feedback implementation in BLonD. The correction to the rf voltage along each
turn is calculated by the cavity control from the difference of the cavity voltage (antenna), i.e. the sum of the beam- and
generator-induced voltages, with the design voltage (set point).

of the cavity voltages ~Vind,(n)(t) regulated by their corre-
sponding feedback loop. The rf voltage seen by the beam
in Eq. (4), which is constant in amplitude and phase over
a turn, is replaced for beam tracking by the following
voltage that is modulated bucket by bucket:

Vrf,(n)(t) = Vcorr,(n)(t) sin
(
ωrf,(n)t+ ϕcorr,(n)(t)

)
. (21)

For multi-harmonic rf systems, the contribution from ad-
ditional rf harmonics should be added as described in
Eq. (10).

The performance of the correction to the generator can
be further increased by adding a feedforward loop on
the beam branch, for example, as a FIR filter [37]. In
the LHC and SPS models, the feedforward acts on the
present-turn signals of the feedback output voltage and
on the beam-induced voltage, respectively. Moreover, the
feedback (including feedforward) loop can be part of or
act together with other feedback loops such as analogue
and digital feedback systems, as in the case of the LHC
cavity controller, to provide additional corrections.

VII. GENERATION OF PARTICLE
DISTRIBUTIONS

Once all the BLonD objects are initialized to treat the
machine and impedance parameters, an initial particle
distribution is needed to start the simulation. In this
section, we describe several options that were included
in the code to generate an initial particle distribution.
The distribution can be generated either matched to the
rf bucket or using an arbitrary density function. The den-
sity function in the longitudinal phase space is denoted
F (∆t,∆E). The number of macro-particles to be gener-
ated is determined by the user, and each macro-particle
corresponds to a fraction of the total beam current.

The criterion for a bunch of particles to be matched is

TABLE I. Density functions and their corresponding line den-
sity [18].

Name F (H) λ (∆t)

Binomial a F0

(
1− H

Hl

)µ
λ0

[
1− 4

(
∆t
τl

)2
]µ+1/2

Gaussian b F0 e
−2 H

Hl λ0 e
−
(

4∆t√
2τl

)2

a µ = 0 waterbag, µ = 1/2 parabolic line density, µ = 1 parabolic
in amplitude, F (H ≥ Hl) = 0 and τl is the full bunch length

b τl = 4σ.

that the density function F is a function of the hamilto-
nian H (or the action J ). This implies that the particle
density is uniform over an iso-hamoltonian curve, and
therefore the particle distribution will remain stationary.
Two routines were included to generate bunches matched
to the rf bucket: the first one requires the density func-
tion F as a user input while the second one requires to
input the line density λ.

The routine using the density function F as an input is
described in Fig. 6a. In this case, the hamiltonian is com-
puted numerically on a grid in the (∆t,∆E) phase space,
using the input machine and rf parameters. The density
function is then computed on the same grid, using the
distribution function F chosen by the user from the ones
given in the left column of Table I. If no impedance ob-
ject was defined, a random particle distribution is directly
sampled from the density function. If impedance sources
are defined, the bunch is iteratively matched to take into
account potential-well distortion. This method is partic-
ularly useful for studies scanning longitudinal emittance
with a fixed density function.

The second routine using the line density λ as input
is described in Fig. 6b. For this routine, the density
in phase space is obtained using the inverse Abel trans-
form [38]. The inverse Abel transform was implemented
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FIG. 6. Flowcharts of the routines used to generate a bunch of particles matched to the rf bucket in BLonD. The generation
is an iterative process that minimizes the difference between the target emittance or bunch length asked by the user. The blue
boxes represent the user input, the beige boxes are the parameters computed internally in the function, and the green boxes
are the resulting beam objects used for tracking. The path in dashed arrows corresponds to the iterative loop for matching
with collective effects.

numerically, and is applicable for cases where the po-
tential well has only one minimum. Only a half of the
bunch profile is required to compute the inverse Abel
transform, the second half of the bunch profile results
from the calculated density F . This implies that in case
of a non-symmetric potential well due to acceleration or
collective effects, one half of the bunch profile is perfectly
reproduced, and the measured and simulated profiles will
only agree if the rf and impedance parameters are well
known. In the presence of impedance sources, the match-
ing consists of iteratively placing the bunch in the center
of the distorted potential well till convergence, without
changing the input line density. Once the density func-
tion F is obtained, the particle distribution is sampled
randomly. This method is particularly useful for stud-
ies starting from bunch profiles identical to the ones ob-
tained in measurements.

Both matching routines were extended for multi-bunch
simulations. The methods implemented in BLonD to
generate an initial particle distribution allowed to per-
form all kind of studies for all synchrotrons at CERN:
starting with a matched distribution at any momentum
during the acceleration ramp, with and without intensity
effects, using the measured line density, etc. In addition,
many routines to generate arbitrary density functions are
implemented (e.g. bi-gaussian, coasting beam). Further
options are continuously being implemented, to fulfill all
needs encountered in the users’ beam dynamics studies.

VIII. OPTIMIZATIONS

The demand for extensive and accurate longitudinal
beam dynamics simulations is dictated by the ongoing
upgrade projects, the studies for future machines as well
as the operation of existing machines at CERN and other
similar research facilities. A complete case study is typi-
cally composed of thousands of simulations, with the aim
of identifying the set of parameters that optimally sat-
isfies the target characteristics. Depending on the case,
a single simulation can last up to several weeks. There-
fore, optimizing the BLonD code in terms of run-time
performance is crucial.

BLonD was developed with performance in mind from
the beginning. At first, the attention was focused on op-
timizing the serial or single-core performance of the code.
For this purpose, the most time consuming code regions,
the hotspots, were identified and translated to C++. C++
is a lower-level, compiled language that generally allows
for the development of performance critical software, and
is supported by highly-efficient libraries such as the Boost
library [39], the Intel MKL library [40], and the VDT li-
brary [41]. After analyzing and resolving a series of per-
formance limitations in the hotspot regions, BLonD++
was able to execute a previously day long simulation in
80 minutes [42]. In Fig. 7, we can see the single-core
speedup of BLonD++ compared to the original Python-
only BLonD implementation, in four testcases that are
well-representative of typical BLonD workloads. The
first bar of every group shows the overall speedup while
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the remaining bars in each group show the speedup per
accelerated code region. Since different testcases require
a different configuration in terms of simulated macro-
particles, number of beam slices, and simulation itera-
tions, the per-testcase speedup ranges from 13.2×, in the
LHC testcase, to 23.2×, in the FCC testcase. In addition,
the most time-consuming code regions were parallelized
using the OpenMP framework [43], enabling BLonD to
scale vertically, i.e. within the boundaries of a single com-
puting node.

BLonD workloads comprise a scientifically and com-
putationally challenging task. These workloads are typi-
cally inherently parallel and fit naturally in a distributed-
memory environment. To anticipate the continuous need
for simulations with finer resolution, more realistic mod-
eling and longer simulation intervals, we developed a dis-
tributed version of BLonD, called HBLonD [44], that can
efficiently combine multiple, remote computing nodes to
simultaneously calculate a BLonD simulation. The Mes-
sage Passing Interface (MPI) [45], was used to allow the
remote nodes to communicate. State-of-the-art high-

performance computing techniques, like dynamic load-
balancing, mixed-parallelism, and approximate comput-
ing, contributed to the impressive scalability demon-
strated by HBLonD. Being able to efficiently combine
up-to more than 600 cores across 32 computing nodes,
HBLonD can offer greater than 10-fold speedups com-
pared to BLonD++, thus reducing the simulation time
further by one order of magnitude.

Graphics processing units (GPUs), originally designed
to render images shown in display devices, e.g. a com-
puter monitor, have lately become the dominant platform
for accelerating general-purpose, data-parallel workloads.
The most time-consuming tasks involved in a typical
BLonD simulation, which are the particle tracking and
the induced voltage calculation, are good candidates for
GPU acceleration. Therefore, we implemented a GPU
accelerated version of BLonD using the CUDA program-
ming language [46], called CuBLonD [47], which demon-
strated an additional five-fold speedup compared to the
CPU only version. In Fig. 8, we performed a weak-
scaling, multi-node performance evaluation of HBLonD
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and CuBLonD against BLonD++. In weak-scaling exper-
iments, the amount of work per computing node is kept
constant as the number of nodes increases. The horizon-
tal axis of Fig. 8 shows the number of computing nodes,
ranging from one to 16. Each computing node contains
either 20 cores or one GPU platform. From left to right,
the four bars in every group of bars correspond to the
measured speedup against BLonD++ of: a) HBLonD, b)
HBLonD using reduced (32-bit instead of 64-bit) arith-
metic precision, c) CuBLonD, and d) CuBLonD using
reduced (32-bit instead of 64-bit) arithmetic precision.
As we can see, HBLonD can effectively combine mul-
tiple computing nodes to run a single BLonD simula-
tion, demonstrating speedups ranging from 10× up-to
17× compared to the previous, single-node implementa-
tion of BLonD. Furthermore, CuBLonD using GPUs to
accelerate the calculation of the most time-consuming re-
gions, achieves speedups that range from 46x up to 78x
compared to BLonD++.

Presently CuBLonD is distributed together with the
main BLonD code. To conclude, BLonD is an all-round
optimized simulator, that adopts state-of-art high per-
formance computing standards, and is capable of effec-
tively utilizing the compute resources of multiple proces-
sors and GPU cards.

IX. BENCHMARKS

Since its original release, BLonD has been used by a
great number of scientists in a wide range of applications.
The trust in the BLonD suite and its predictions has been
established through in-depth testing and benchmarking.
The conducted benchmarks, including comparisons with
analytical calculations, measurements from experiments
run in synchrotrons, or comparisons against other track-
ing codes [6], are all showing sharp agreement.

In addition, every care has been taken throughout the
code development to ensure that BLonD results can be
compared to measurement as accurately as possible. To
this end, the input distributions can be idealized (e.g.
Gaussian, waterbag, etc.) or taken directly from mea-
surements. Also, the control loop features in the code
are designed to reproduce the measured beam behaviour
in the presence of these loops.

Below we show a few examples of code-to-code compar-
isons and benchmarks against theory and measurements.

A. Code-to-code comparison with the MuSiC code

Here we give an example of benchmark between the
BLonD and MuSiC [48] codes and we compare the ob-
tained results with an analytical formula in narrow-band
assumption [16, 49].

For a resonator impedance with a quality factor Q� 1
and relatively low resonant frequency fr, the wakefield
can couple multiple bunches or even the same bunch on

multiple turns. If the resonant frequency fr is close to
an integer multiple p of the revolution frequency, then
Robinson instability can be observed [21]. Supposing a
Gaussian line density with rms bunch length σt, the an-
alytical expression for the growth rate is [21]

1

τa
=

ηe2Np
2EdT 2

revωs

∑
m=±1

(
m (pωrev +mωs)×

× ReZ(pωrev +mωs)Gm(x)
)
,

(22)

where Gm(x) = 2e−x
2

Im(x2)/x2 is the form factor with
x = (pfrev +mfs)σt and Im is the modified Bessel func-
tion of the first kind.

In the studied example, the wakefield of a single bunch
couples the bunch to itself over thousands of turns. The
integer multiple is p = 2 and the resonator parameters
are fr = 2frev + fs, Q = 5000 and Rs = 40 kΩ. In
addition, Np = 4× 1012 ppb, Ed = 13 GeV, η = 0.0217,
Trev = 2.1 µs, fs = 264.1 Hz. The RF system has h = 7,
frf = 3.3 MHz and V̂rf = 165 kV, while Rd = 100 m.
The instability growth time computed with Eq. (22) is
τa = 59.3 ms for σt ≤ 3.3 ns and the results from MuSiC
and BLonD should converge to τa for short bunches (no
Landau damping).

The initial bunch spectrum with σt = 3.3 ns decays
at 200 MHz whereas the resonant impedance is negli-
gible above 1 MHz. It is then not easy to choose in
BLonD the bin size ∆t in time-domain, or equivalently
the maximum frequency fmax = 1/(2∆t) in frequency
domain. In addition, the frequency step ∆f = 1/tmax

for Fourier transforms is another important parameter,
since the wakefield decays slowly and it is not evident
how many turns to take into account. The time do-
main approach for induced voltage calculation is used in
BLonD since the narrow-band resonator would require
a very small frequency step, making simulations com-
putationally heavy. Indeed, the resonator impedance is
not perfectly resolved even choosing ∆f = 70 Hz, which
corresponds to tmax = 7000 Trev. The MuSiC approach
avoids all these difficulties since it operates without slices
and the number of macro-particlesNM is the only param-
eter to be studied.

The instability growth time for σt = 3.3 ns was ex-
amined in MuSiC as a function of NM (Fig.9). When
increasing NM , convergence is observed (63.0 ms) but
not to τa, since the bunch is relatively long and Landau
damping decreases the analytical growth rate. For lower
bunch lengths, the growth time converges to τa, proving
the validity of the MuSiC algorithm.

Using σt = 3.3 ns and NM = 106 in BLonD, the de-
pendence of the growth time on ∆f and fmax was studied
(Fig.10). Choosing fmax = 200 MHz to properly cover
the bunch spectrum, the growth time convergences to
63.0 ms for ∆f approaching 70 Hz, as expected from
the MuSiC simulations. A scan of fmax for two given
values of ∆f shows consistency of results, unless when
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FIG. 9. Instability growth time τ as a function of NM for
σt = 3.3 ns (blue) and as a function of σt for NM = 106

(green) from MuSiC simulations. The dashed lines mark τ =
τa = 59.3 ms and τ = 63 ms.

fmax < 50 MHz, in which case the bunch spectrum is not
properly covered and unreliable results are obtained.

FIG. 10. Instability growth time τ as a function of ∆f for
fmax = 200 MHz (blue) and versus fmax for ∆f = 160 Hz
(green) and ∆f = 70 Hz (red) from BLonD simulations
(σt = 3.3 ns, NM = 106). The dashed lines mark τ = 63 ms
and τ = 65.3 ms. All the results shown are obtained
through simulations in time-domain with tmax = 1/∆f and
∆t = 1/(2fmax).

B. Comparisons with the MELODY code

Loss of Landau damping (LLD) in the longitudinal
plane is an important intensity limitation in particle syn-
chrotrons. New features were recently discovered in this
field and summarized in Ref. [50]. The new MELODY
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FIG. 11. The real part of the normalized mode frequency
found from macro-particle simulations using BLonD (blue
color) and from MELODY (red dotted line) as a function of
bunch intensity for a broad-band resonator impedance with
ImZ/n = 0.07 Ω, Q = 1, fr = 4 GHz (top) and fr = 8 GHz
(bottom). The maximum incoherent frequency obtained from
MELODY is shown with black solid line. The dashed red lines
indicate the LLD intensity thresholds. Plot from [50].

simulator (matrix equations for longitudinal beam dy-
namics) [51] was written for numerical studies of LLD.
For example, it was shown that the LLD threshold in-
versely proportional to the resonant frequency of the
broad-band impedance model with quality factor of one.
This is demonstrated in Fig. 11, where we compare the
emerged coherent modes that were obtained using the
MELODY code and the BLonD code. The obtained re-
sults agree well.

C. Benchmark with measurements

As an application, we consider debunching measure-
ments in the SPS [52], which are used to identify known
and unknown sources of impedance in the machine. Long
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FIG. 12. The SPS impedance model (left) as of 2018 [52], before an extensive impedance reduction campaign. Simulated and
measured spectra (right) of a debunching beam at SPS injection.

bunches are injected into the SPS with the rf system
switched off, and the beam dynamics is entirely dictated
by the machine impedance. Different impedance sources
drive micro-wave instabilities, visible as a spatial modu-
lation in the bunch profile.

The SPS impedance model is shown in Fig. 12 (left)
and is dominated by the impedance of the travelling
wave cavities (TWC) at 200 MHz and 800 MHz, their
higher-order modes (HOMs), and vacuum flanges around
1.4 GHz. The SPS impedance sources range from broad-
band, such as the kickers, to narrow-band, such as the
915 MHz HOM. In BLonD, the SPS impedance is mod-
eled by over 200 resonators, several travelling wave cavi-
ties and impedance tables.

The sum of the measured beam spectra during the first
500 revolutions is compared with the simulated spectrum
in Fig. 12 (right). The initial phase-space distribution
used in the simulation is based on measured profiles and
tomographic reconstruction in the PS. Both spectra in
Fig. 12 (right) have large amplitudes at 200 MHz and
1.4 GHz due to the significant impedances of the 200 MHz
TWC and flanges, respectively.

Another example is the modeling of the rf manipula-
tions in the PS, which are performed to get the nominal
bunch spacing of 25 ns for LHC beams. These manipu-
lations are made possible thanks to the large number of
rf systems in the PS covering many rf harmonics. For
the selected example shown in Fig. 13, 8 bunches are
injected from the PSB (two injections of 4 bunches) in
h = 9 and accelerated to an intermediate energy. Next,
a batch compression is done to bring the beam to h = 14
by passing through all intermediate harmonics. Bunches
are then merged into h = 7, before being finally being
split in three to harmonic h = 21. Note that a controlled
longitudinal emittance blow-up is done right after the ac-
celeration step with phase modulation of a high frequency
rf system tuned at h = 436. The nine harmonics can be

programmed in BLonD to simulate the whole process.
Beam loading effects were also included in the simula-
tion as well as feedback systems. As seen on Fig. 13,
the simulation reproduces very well the measured beam
evolution even for complex rf configurations.

X. CONCLUSIONS AND OUTLOOK

The Beam Longitudinal Dynamics simulation suite
BLonD has been presented. Its modular structure al-
lows the user to build custom simulations modeling a
range of physics phenomena, starting from basic cavity-
beam interaction, over collective effects and a wide range
of rf manipulations, to synchrotron radiation and feed-
back systems. The generation of matched particle dis-
tributions can be widely applied. Code optimizations on
various levels and for a diverse range of hardware allow
the user to make faster and more memory-efficient simu-
lations.

In the future, it is planned to optimize the algorithm
for the hamiltonian distribution functions that are used
for the generation of particle distributions. The imple-
mentation of different algorithms for non-uniform bin-
ning and arbitrary impedance is on-going, too. Machine-
specific global and local feedback models are constantly
being added for various machines and are planned to be
coupled.

BLonD is a constantly evolving and developing code
base. Existing modules are updated and new modules are
added to better tailor the studied phenomena or extend
the current scope and functionality of the code. To en-
sure proper behavior and shielding against coding flaws,
BLonD is supported by automatic unit-testing, integra-
tion testing and coverage analysis.
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