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Abstract 

Increasing shares of volatile generation and non-steerable demand raise the need for 
automated control of the Energy Systems (ESs). Various solutions for management and 
schedule-based control of energy facilities exist today. However, the amount and diver-
sity of applications lead to a multitude of different automated energy management 
solutions. Different optimization algorithms have proven more or less effective for 
energy management. The multitude of optimization algorithms and energy manage-
ment solutions require flexible, modular, and scalable integrations. We present a novel 
Optimization Service (OS) for easily integrating optimization algorithms while evaluat-
ing candidate solutions in the context of ESs applications. We propose an adapter-
based architecture using metadata and domain knowledge to bridge between clients, 
e.g. smart grid applications and optimization algorithms. The architecture interfaces 
different clients with optimizers in a flexible and modular way. The clients provide 
metadata-based descriptions of optimization jobs translated by OS. OS then interacts 
with optimizers and evaluates candidate solutions. A consistent definition of interfaces 
for clients and optimization algorithms facilitates the modular evaluation of candidate 
solutions. OS’s separation of client and optimization algorithms increases scalability by 
managing computational resources independently. We evaluate the presented archi-
tecture for scheduling a so-called Energy Hub (EH) as a test case describing a simula-
tion scenario of a renewable EH embedded in grid scenarios from an industrial area in 
Karlsruhe, Germany. OS utilizes an Evolutionary Algorithm (EA) to optimize schedules 
for cost and strain on the electrical grid. The use case exemplifies OS’s advantages in a 
proof-of-concept evaluation.

Keywords:  Energy management systems, Optimization, Modularity, Flexibility, Smart 
energy system, Smart grid
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Introduction
In order to limit global warming, the European Union (EU)   (UN. BRUSSELS EURO-
PEAN COUNCIL 2015) and the German government formulated the long-term objec-
tive of reaching climate neutrality by 2045. Moreover, Germany aims to produce 100% 
of its electricity from Renewable Energy Sources (RESs) in 2050 (Klaus et al. 2010). High 
penetration of RESs leads to challenges in grid operation, energy security, and environ-
mental sustainability. Challenges include the reduction of grid inertia (Fernández-Guil-
lamón et al. 2019), shortage in high voltage line capacity (Moriarty and Honnery 2016), 
and RES volatility. One fundamental approach to cope with the rising challenges of vol-
atile RES is to use the flexibility provided by the rising number of Distributed Energy 
Resources (DERs), such as combined heat and power plants, battery energy storage sys-
tems, and heat pumps. In this context, flexibility describes the ability of a DER to adapt 
the amount of consumed and provided power (Mauser et al. 2017). DERs often couple 
different sectors like electricity and heat in the case of heat pumps, or electricity and 
mobility in the case of electric vehicle supply equipment. Large amounts of heterogene-
ous DERs penetrate smart grids resulting in optimization problems that consider several 
sectors simultaneously. Moreover, in light of variations in energy demand and sup-
ply caused by weather and hard-to-predict human behavior, the coordination of these 
decentralized systems requires advanced energy management, scheduling, and control 
efforts. Especially for scheduling complex DERs, non-linear, multi-objective optimiza-
tion problems with complex Boundary Conditions (BCs) arise.

Researchers have proposed a variety of approaches for the optimized control of DERs 
and smart- or micro-grids. Firstly, several Energy Management System (EMS) solu-
tions are available, such as openEMS1 or Organic Smart Home (Allerding 2014), which 
implement various features, including communication standards, data model standards 
or data visualization. Secondly, the literature proposes approaches and usually focuses 
on Energy System (ES) description, mathematical formulation of vast sets of BCs, or 
the general impact of optimized schedules on a given ES. A fixed optimization model 
is usually closely coupled to a specific solver or optimization algorithm  in both cases. 
As stated by the “no free lunch theorems of optimization”, there is no generally best-
performing optimization algorithm (Wolpert and Macready 1997). Different algorithms 
(on average) perform better for different problem classes and structures  (Wolpert and 
Macready 1997). Different applications call for different optimization algorithms  for 
smart grid applications, ranging from simple monitoring tasks to complex market pro-
cesses and scheduling tasks. Moreover, different problem instances may benefit (on aver-
age) from selecting different algorithms as search space; therefore, the problem structure 
differs. However, algorithm-specific requirements and labor-intensive implementa-
tion generally hinder switching between algorithms. With the help of a novel OS, we aim 
to alleviate this issue and simplify the switching of optimization algorithms for smart 
grid applications.

The present paper proposes an architectural design for the modular and flexible inte-
gration of diverse optimization solutions. The task of scheduling resources in smart 

1  https://​opene​ms.​io/.

https://openems.io/
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grids based on (meta-)data descriptions of the controllable resources functions as the 
first proof of concept. The architecture has an adapter-based design that interfaces 
with clients, such as an EMS, energy market platform, or any other applications that 
require optimized schedules and optimization algorithms. The architecture is espe-
cially suited to, but not limited to, the application of metaheuristics. In order to utilize 
metaheuristics, proposed solutions need evaluation and the return of objective value(s). 
If necessary, the proposed architecture automatically takes care of these steps and the 
interaction with the optimizer. Aside from switching between algorithms, modular inte-
gration allows for the parallel use of multiple algorithms. Future work might utilize flex-
ibility regarding different algorithms for automated assessment and selection of the best 
available algorithm. Moreover, the novel approach decouples optimization tasks from 
specific computational resources. With the proposed architecture, it is possible to imple-
ment resource management to distribute the computational burden and use the avail-
able computational resources more efficiently.

The present paper is structured as follows: In the next section, we give an overview 
of the current state of the art regarding optimization in energy management. This is 
followed by the presentation of OS concept and architecture. Subsequently, the imple-
mented use case, an example for the utilization of an EH (see also  Poppenborg et  al. 
2021), and the results of using the proposed OS for this proof-of-concept are pre-
sented and discussed. Finally, we summarize the results and conclude the paper with an 
outlook.

State of the art
There is a vast amount of literature of the operational optimization of ESs with descrip-
tions of different modeling techniques, optimization algorithms, and detailed analysis 
of the results. Most of the literature refers to explicit compositions of ESs. Following 
is a brief overview on research regarding use  case-oriented and use  case-independent 
setups.

Use case‑oriented setups

The authors of Niknam et al. (2013) present a novel probabilistic approach to handling 
uncertainty in the energy management problem. Probabilistic approaches find the 
possible variation of the output caused by variation of the uncertain inputs and show 
which values of the output within the range are most likely. Also, in  Cao et al. (2020), a 
robust optimization approach based on a modified grey wolf optimizer is proposed to 
determine the optimal energy management for a typical micro-grid concerning uncer-
tainties. Zhang et al. (2013) introduce energy management to deal with the challenging 
constraint of the supply-demand balance raised by the intermittent nature of RES in a 
grid-connected microgrid. Obara et al. (2013) present a system that describes a micro-
grid for a particular use case, “the Lake Saroma (Hokkaido)”. Ignat et al. (2018) describe 
a microgrid consisting of several renewable energy sources, one energy storage system, 
and loads. It uses the Particle Swarm Optimization Algorithm to determine the optimal 
operation of the microgrid’s solar, geothermal, and biomass units while optimizing cost. 
Marzband et al. (2014) show an EMS based on a multi-period gravitational search opti-
mization algorithm to solve such problem EMS in a microgrid including different types 
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of distributed generation units, with particular attention to technical constraints. Elsied 
et  al. (2015) present an EMS in a typical microgrid working in grid-connected mode. 
They formulate the established EMS as a non-linear optimization model with different 
equality and inequality constraints for proper solutions based on the AIMMS (Advanced 
Integrated Multidimensional Modeling Software). Regarding optimization algorithms, 
Fathima and Palanisamy (2015) state that (meta)heuristic optimization approaches have 
proven effective for scheduling hybrid RESs.

Other research focuses on more generic approaches by developing systems that, once 
initiated, can manage different compositions of ESs.

Use case‑independent setups

Ayoub et al. (2018) propose one complex system of four main parts: energy semantic net-
work databases; a simulation and optimization module; a risk-based LCA/LCC Module; 
and a user interface. As a two-level (detailed design level and client demonstration level) 
management system, it supports energy conservation options in buildings. Ingo Mauser 
has described a Building EMS in his dissertation  (Mauser 2017). The proposed Build-
ing EMS realizes modular energy management and operation  optimization of devices 
and systems in real-world and simulated buildings. The multicommodity optimization 
integrates into the Building EMS for multi-modal energy management. He provides an 
extensive foundation regarding heuristic optimization for Building facility scheduling 
with a modular simulation back end. Mauser (2017) presents architectural concepts of a 
building EMS couple optimization and simulation into a single system. Similar to other 
approaches in the literature, he combines optimization algorithm (EA), management 
tasks like distribution of schedules, and interpretation of optimization solutions (Energy 
Simulation Core) in one modular but a combined system (Mauser 2017; Mauser et al. 
2016).

Conclusion

All the approaches described above focus only on modeling different EMSs or optimi-
zation methods to solve specific problems in microgrids. Some of them are limited to 
a particular scenario. They describe many implementation details for building energy 
management or optimization models, such as mathematical formulas and program 
code. Integration tests consisting of energy management and optimizer in a microgrid 
evaluated the models. However, none of them presents the definition of the interfaces 
between EMS and optimizer, namely how EMS and optimizer communicate with each 
other. Their EMS and optimizer are strongly coupled, have low cohesion, and are often 
not modular. Therefore, it is complex and time-consuming to test and maintain them, 
use them for other scenarios, and to scale them for new requirements. Van Beuzekom 
et al. (2015) concluded from 72 (13 more detailed) papers on combined planning and 
operations optimization that three main challenges arise: 

(1)	 finding the right level of constraint detail while maintaining computational feasibil-
ity;

(2)	 combining short-term dynamics with long-term effects;
(3)	 developing heuristics, terminology, and system boundaries.
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They conclude that no single tool exists to fit all requirements and more research needs 
to be done on combining different optimization tools and approaches. An extensive 
review (Fathima and Palanisamy 2015) concludes that there is a vast amount of tools 
for optimization in hybrid RES, but the flexibility of these tools needs to be increased, 
especially for control and energy management. Framinan and Ruiz (2009) and Framinan 
and Ruiz (2010) analyzed the literature on manufactory scheduling and concluded that 
there is an abundance of different scheduling models and solution procedures but a lack 
of work on practical implementation.

We conclude that the current literature leaves a gap for flexible and modular schedul-
ing in ESs. A novel approach should be readily applicable to actual use cases.

Therefore, the presented article provides a novel optimization service as a communi-
cation interface between EMS and optimization solutions for separating them as inde-
pendent components. The two parts are modular and have low coupling. The generic 
interfaces are defined to integrate different EMSs or optimization solutions easily using 
an adapter-based design. Therefore, the architecture of this optimization service can 
benefit the design of ESs by improving

•	 modularity: Clients, optimization algorithms, and evaluation methods should be 
independently replaceable;

•	 scalability: Architecture should allow scaling of computationally intensive parts of 
the system (Client, Optimization Service (OS), or optimization algorithms indepen-
dently);

•	 flexibility: Developed architecture must apply to different client combinations, sys-
tem configurations, and optimization services.

Concept
Figure  1 illustrates the central concept of OS as a bridge between the client and the 
optimization algorithm. EMS is an example for clients with access to various smart grid 
applications. For scheduling, clients need access to optimization algorithms and meta-
data-based evaluation of optimization suggestions. Based on information from the smart 
grid, a client formulates an optimization problem for OS. One adapter specification 

Fig. 1  System overview of an adapter-based OS
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implements a new client type that communicates from OS to the client and vice versa. 
Implementation of optimization algorithms functions works in the same way. Each new 
type of optimization algorithm needs a new adapter. Once implemented, the optimiza-
tion algorithm is accessible to all clients.

The architecture provides flexibility for the whole system in the sense that

•	 OS receives jobs from multiple clients of the same or different kind(s), such as that 
multiple clients can use a single OS instance;

•	 OS communicates the optimization problem to multiple optimization algorithms of 
the same or different kind(s);

•	 optimization jobs from one client can be split into several OS’s,
•	 or one optimization algorithm splits up suggestions to multiple OS instances.

Architecture

OS mediates between the optimization and client sides by implementing one adapter for 
each side. Fig. 2 illustrates this concept. The adapter is color-coded in light blue. Each 
adapter consists of functions (green) representing the Application Programming Inter-
face (API) and data classes (brown) acting as data interfaces. The presented architecture 
is generic. Any domain-specific implementations are bordered in red and implement 
logic from the ESs domain. APIs translate information between internal data classes and 
external clients/optimization algorithms. The job data and optimization suggestion data 
classes provide the data interface to calculate the input for the objective values and opti-
mization results data classes.

The API consists of several functions handling mapping and communication on the 
client side. The job data class holds domain-specific knowledge about ESs and acts as a 
data interface. The internal evaluation is domain-specific and interacts only with data 
interfaces as input and output. OS passes the final solution to the optimization job to the 
optimization results data class.

On the optimization side, the API consists of the same functions for communication 
as on the client side. n-D arrays represent optimization suggestions generically. Specifi-
cally for the domain of scheduling energy management, these n-D arrays can be inter-
preted as setpoints (floats), schedule (list of setpoints), schedule set (list of schedules, 
one for each facility), and list of schedule sets. Three sets of functions inside OS evaluate 

Fig. 2  Overview of OS architecture with a focus on Client and Optimization Side Adapter
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each instance of an optimization suggestion data class. The evaluation returns so-called 
objective values that initiate the objective values data class instances.

Three sets of functions subdivide the evaluation into BCs, domain mapping, and 
objective functions. The sets of functions rely on specified data classes to provide fixed 
and pre-defined interfaces. Interfaces allow the implementation of domain-specific BCs 
while remaining independent of new adapters.

Adapters and Interfaces

The client (Fig. 3) and optimization adapters (Fig. 4) enable communication with exter-
nal services. The combination of communication API, mapping functions, and data 
interfaces yields adapters. The communication API consists of functions that actively 
pull data from a communication service (e.g., Redis) or passively receive data from exter-
nal services (e.g., HTTP requests). The communication API then passes messages to 
respective internal mapping functions. Mappings function as a translator between inter-
nal and external data standards.

The client adapter handles three types of messages by implementing respective map-
ping functions. For clarity, external data names differ from internal data classes. The cli-
ent has to separate the optimization problem into two message objects: Job containing 
the optimization problem’s metadata and Facility Data containing descriptive data about 
the facilities that are part of the optimization problem. When OS conducts a result to 
the optimization problem, OS returns schedules to the client.

Three functions map the incoming messages to the internal data classes. The Opt. Job 
creates one single instance of setup, a subclass of job data. Each facility in the facility 
data message initiates one instance of the entity subclass of job data. Both subclasses 

Fig. 3  Concept of the client side adapter with different mapping functions
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are combined to describe one complete optimization problem. The result of the opti-
mization problem contains a schedule for each entity. The set of schedules makes one 
instance of the optimization results data class. The respective mapping function must 
mediate between an internal entity (id and name-based) references and external (typi-
cally name-based) references.

The optimization adapter handles the initial optimization setup based on the initiated 
job data setup with the respective mapping function. Once initialized, the optimization 
algorithm responds with a candidate solution to the optimization problem. From OS 
point of view, these solutions are further referred to as an optimization suggestions that 
need further evaluation. A mapping function maps these to the optimization suggestion 
data class. Based on a break condition, the optimization suggestion is either returned 
as an optimization result to the client adapter or the optimization adapter as objective 
optimization values. The whole process repeats until the break condition indicates the 
final result.

Evaluation

The evaluation divides into BCs, domain mapping, and objective functions. The three 
parts are a short form of other optimization procedures in literature. Optimization sug-
gestions are the input for BCs that are formulated to apply directly to these abstract 
outputs from the optimization algorithms. The optimization algorithms output the 
schedules in the example of ESs consisting of setpoints relative to maximum output. A 
BC, thereby, has to condition the setpoint. The input for each BC is an entity and indi-
vidual part of the optimization suggestion data object. The novel architecture’s imple-
mentation of BCs follows five simple steps guaranteeing a generic and expandable 
application. 

Fig. 4  Concept of the optimization side adapter with different mapping functions
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1.	 BC checks if necessary metadata exists in the entity data object. If not, the function 
skips further calculation.

2.	 The conditions syntax directly applies to the optimization suggestion.
3.	 BCs formulate a statement. When the condition holds, the statement applies.
4.	 Both statement and condition apply to an entity’s optimization suggestion.
5.	 The schedule is returned.

A pipeline is constructed when describing the system with many BCs (Fig. 5). The pipe-
line can be applied once or until it converges.

Once all BCs are applied to the optimization suggestion, the conditioned suggestions 
are mapped from the domain of optimization suggestions to the domain where evalua-
tion takes place. In the example of ESs, optimization suggestions are in the information 
and communication technologies domain and mapped into the physical domain by cal-
culating the entity’s physical outputs based on setpoints. The input for the domain map-
ping functions are abstract suggestions like setpoints, and the output is relevant physical 
values like electric power.

A set of objective functions evaluates time-series from the physical domain. Typically, 
functions include cost calculations, Root Mean Square Error, or others.

Operation

Figure 6 shows a high-level overview of OS process, client interactions, and optimiza-
tion algorithm interactions. The optimization process starts with an optimization job 

Fig. 5  Metadata-based BCs in a pipeline

Fig. 6  Execution procedure of OS
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containing the current state of facilities and optimization setup variables. The client’s 
information is sent as opt. job and facility data messages to OS. The client side adapter 
initializes instances of the job data class to parameterize the optimization problem and 
maps it to the optimization algorithms syntax via mapping functions. Resulting opt. 
setup is communicated to the optimization algorithm. Once initialized, the optimization 
algorithm iterative generates candidate solutions that OS evaluates. The results of the 
objective functions are returned as objective values to the optimization algorithm, which 
then evaluates the return and generates new candidate solutions until a break condition 
is met. The final optimization suggestion is mapped to optimization results and medi-
ated to the client. The client can request the subsequent optimization by sending a new 
opt. job and new facility data.

Implementation
The presented paper implements three exemplary adapters to connect OS with

•	 a custom EMS client that implements OS in a co-simulation scenario,
•	 General Learning Evolutionary Algorithm and Method (GLEAM), an evolutionary 

optimization algorithm,
•	 and Monte Carlo, a random sampling algorithm for development purposes.

GLEAM is an evolutionary algorithm that has proven to be efficient in scheduling tasks. 
All adapters use Redis2 as communication infrastructure.

Domain knowledge regarding ESs is implemented into the job data class, the BCs, and 
the domain mapping functions (compare Fig.  2), before implemented adapters inter-
act. The implemented domain knowledge is based on  Geidl and Andersson (2007)’s EH 
work. EH is one generic way of describing ESs.

Since EH is a generic concept for mathematical description, implemented domain 
knowledge does not restrict OS appliance to specific compositions of ESs, ensuring the 
system’s flexibility.

Converters and storages are controllable units that condition, transform, or store 
energy, whereas forecasts (sometimes called generic/active consumer) are any non-con-
trollable generations or loads. The combination of the three facility types allows a gen-
eral description of any composition of ESs.

EH further allows the implementation of topological connections between facilities. 
The most basic topological arrangement of EH components is the connection of any 
energy carrier to a grid. The grid connections do not restrict the EH components in con-
sumption or generation. Consequences of certain facilities’ consumption or generation 
must be considered in the objective function, e.g., by a high price of energy carrier grid. 
The presented implementation uses these simplified topological assumptions.

Data interfaces

Implemented data interfaces are separated into four classes: job data, optimization sug-
gestions, objective value, and optimization results (Compare Figs. 2 and 4).

2  https://​redis.​io//.

https://redis.io//
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The job data consists of two subclasses: setup and entity. The setup data interface 
is shown in Listing 1 and provides all data needed to initialize and set up the opti-
mization process, including initialization parameters for the optimization problem, 
static information regarding the simulation system, or the number of objective values 
returned after evaluation.

•	 First, the number of different facilities number_facilities that expect sched-
ules is described as an integer. The power_fraction represents the range for each 
set point. Typically the range is [0,  1] for converter units and [−1, 1] for storage 
units. The power_fraction is implemented as a dictionary with the keys represent-
ing the names of the entities. start_time and stop_time are integers representing 
the internal time for the start and stop of the optimization.

•	 Next, the so-called sitting variables implement interval_steps as the number of 
set points that assemble one schedule.  The names_facilities is a list of all facil-
ity names, including forecasts  being not part of the optimization. All names 
used as keys in the power_fraction must be listed here. The difference between 
stop_time − start_time represents the optimization time range calculation_time . 
The interval_time describes the time between two optimization steps. In the cur-
rent implementation, all set points have to be equidistant. Further research on 
non-equidistant ES scheduling is currently taking place based on the novel archi-
tecture.

•	 The third group consists of the objective functions and the constraints. Each objec-
tive function is given a representative name in a list obj_functions . The same applies 
to the constraints.

The second subclass entity is the data class regarding data modeling of facilities and is 
shown in Listing 2. All later implemented BCs rely on the respective entity data objects. 
The parent class entity consists of a name, controlling that flags whether the entity can 
receive schedules from the optimization algorithm, the outputs that the relative facility 
has, and the Lookup Table (LUT) with a link for later domain mapping.

Based on EH work, entities are further divided into three subclasses implement-
ing respective metadata for each. Converters are described by P_min , the minimal 
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power,  the maximal power P_max , the  current power P_0 , and  the maximal power 
increase RampRate.

Storage units additionally use parameters for calculating the current energy of the facility. 
E_max is the maximum energy, the current energy E_0 , the minimal energy E_min , and 
the efficiency term Eta.

Forecasts are not controllable facilities based purely on time-series data. As they receive 
no schedules, they do not need any metadata description.

An optimization suggestion contains one schedule per controllable instance. The evalua-
tion of one optimization suggestion is stored in the goal value data class.

Based on previously discussed data interfaces, the actual evaluation of schedule sugges-
tions takes place, starting with the BC.

Boundary conditions

For readability, the implemented BCs are presented in mathematical syntax. Exem-
plary consider the BC that conditions for the minimal power output of a converter unit. 
The power output Pi

α(t) of an entity i and an energy carrier α at a given time point t are 
described by the nominal setpoint si(t) times the maximal power output. This power out-
put has to be greater or equal to a minimal power Pi

α,min . If not, the converter unit shuts 
down, producing an output of 0 · Pi

α,max.

For this explicit BC, two variables have to be provided in the metadata: Pi
α,max and Pi

α,min . 
The actual condition can be implemented when both variables are presented in the con-
verter instance. All boundaries are rearranged to mathematically condition the setpoint 
si(t) . The presented BC that reviews Pi

α,min is formulated as

(1)Pi
α(t) = si(t) · Pi

α,max ≥ Pi
α,min.
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Additionally BC for Pmax

and RampRate

are added to describe a converter facility. Storage units apply the same BC as converter, 
P_min though changes to

Additionally BC for energy of a storage facility E is added as

Forecasts are not subject to any BCs. The principle of BCs leaves room for future appli-
cations of forecast calculations like uncertainty.

The mapping is currently separated into two functions:

•	 Interpolation based on LUT for all three types of entities, and
•	 integration of the setpoint to gain a state of charge of storage units.

Literature suggests other approaches that can be integrated as additional functions here.

Objective functions

Implemented Objective Functions are oriented on three of the most common functions in 
literature: minimization of 1) system operational cost, 2) emissions, and 3) deviation from 
original demand. For the ability to optimize multiple functions collectively, all functions are 
connected through a penalty variable. The penalty variable for each function is selected so 
that the resulting unit is priced in euros. In general, both system’s operational cost and sys-
tem emission minimizations are the same, as they punish an energy or mass flow with a 
price pα resulting in the initialization of operational cost.

(2)si(t) =
0, if si(t) ≤

Pi
α,min

Pi
α,max

si(t), otherwise.

(3)si(t) =

{

Pi
α,max

|Pi
α,max|

, if si(t) ≥
Pi
α,max

Pi
α,max

si(t), otherwise,

(4)si(t) =















si(t −�t)+
�Pi

α,max

Pi
α,max

, if si(t) ≥ si(t −�t)+
�Pi

α,max

Pi
α,max

si(t −�t)−
�Pi

α,max

Pi
α,max

, if si(t) ≤ si(t −�t)−
�Pi

α,max

Pi
α,max

0, otherwise,

(5)si(t) =

{

Pi
α,min

|Pi
α,max|

, if si(t) ≤
Pi
α,min

|Pi
α,max|

si(t), otherwise.

(6)si(t) =















si(t −�t)+
�Pi

α,max

Pi
α,max

, if si(t) ≥ si(t −�t)+
�Pi

α,max

Pi
α,max

si(t −�t)−
�Pi

α,max

Pi
α,max

, if si(t) ≤ si(t −�t)−
�Pi

α,max

Pi
α,max

0, otherwise.

(7)coperational =
∑

t

∑

i

∑

α

Pi
α(t) · pα(t).
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It is common in the literature to separate the emission and operational costs.
The minimization of system operational costs is formulated as the sum over all time 

steps t, the entity’s i and energy carriers α

with Pi
α(t) the power flow of an entity i and an energy carrier α , and pα the price of an 

energy carrier α.
In the same way, the total cost of emission is phrased as

Last, the deviation from the original demand is integrated quadratic in order to account 
for the sign of Pi

α as

Results
The presented result showcases an exemplary proof of concept with one specific client 
and two implemented optimization algorithms. Results focus on an in-depth discussion 
of one use case rather than displaying multiple superficial implementations.

The EH concept was introduced by Geidel (2007) and describes a central unit that can 
transform, convert, and store energy carriers in decentralized plant networks. EH is a 
modular approach and provides flexibility for balancing local generation and demand, as 
stated by Mohammadi et al. (2017). The modular approach and the provision of flexibil-
ity make EH an excellent candidate to support the local integration of RES by relieving 
the grid infrastructure, as shown in Poppenborg et al. (2021).

The EH model, illustrated in Fig.  7, bi-directionally couples  the electricity and 
gas sectors. Electrolysis with coupled methanation converts electricity to methane. 

(8)
coperational =

∑

t coperational(t)

=
∑

t

∑

i

∑

α P
i
α(t) · pα(t),

(9)
cCO2 =

∑

t cCO2(t)
=

∑

t ṁCO2(t) · pCO2(t).

(10)
ddev =

∑

t

(

Pdev(t)
)2

=
∑

t

∑

i

∑

α

(

Pi
α(t)

)2
.

Fig. 7  Co-simulation setup of an EH in a gas and electricity grid scenario near Karlsruhe, Germany



Page 15 of 20Chlosta et al. Energy Informatics  2022, 5(Suppl 4):56	

Combined Heat and Power (CHP) converts methane to electricity. The grid operator 
sends schedules for the EH as one unit to the EMS based on the local RES generation 
and demand  to operate the presented EH as a grid-supporting asset. Subsequently, 
the EMS has to fulfill the received schedule at its Electrical Connection Point (ECP) 
by aggregating included components. Providing a schedule for each facility formu-
lates a complex optimization problem. In more detail, the EMS controls five facili-
ties (battery, gas storage, CHP, electrolysis, methanation) while constantly receiving 
(meta)data on their current state. Schedule optimization follows two objective func-
tions: (1) Follow the grid operator’s target value at the electrical connection point; 
(2) Cost efficiency considering CO2 emissions and operational costs. Objective func-
tions require additional price information. The EMS receives price information as 
(predicted) time-series data from the market simulator (historical time-series data). 
The use case implementation considers the day-ahead spot market price information 
for 2021. Weather data for Karlsruhe, Germany, and the peak power of installed RES 
complete the scenario information. The considered RES accumulates up to 4MW. The 
grid operator simulation provides the resulting schedules for the entire EH by taking 
complete information from the scenario into account as a day-ahead prediction.

With the information on the five facilities, price signals, and total schedule, the 
EMS formulates the optimization problem for OS. The system setup from OS’s point 
of view is represented in Fig.  8. In return, the EMS receives one schedule for each 
facility, respectively. These schedules are then sent to respective controllers, and the 
simulation proceeds. The EMS formulates optimization problems for 24 h with an 
interval of 15 min. Every 24 h, the EMS submits a new optimization problem to OS 
with current facility states. Over the simulation of one year, 365 optimization prob-
lems are formulated and solved by OS.

The EMS can switch between implemented optimization algorithms by configura-
tion. Two optimization algorithms are implemented. The monte Carlo optimization 
process results are not visualized as they do not differ from random chance recogniz-
ably, even after long optimization runs. Following focuses on the simulation run that 
utilized GLEAM as an optimizer.

Figure 9 presents the simulation results, with the black line being the grid opera-
tor’s target value that the EH has to fulfill. At the same time, the green dashed line 
represents the actual electric output of the EH at its connection point. This electrical 

Fig. 8  Implemented setup of EH
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output consists of the aggregated electrical power of the considered EH components. 
The obtained results for an exemplary period of 7 days show an excellent approxima-
tion between the target value and EH’s effectual power output, as depicted in Fig.  9.

With the main computational effort of evaluating every schedule proposed by the opti-
mization algorithm, OS provides the best results as the schedule sends it to the EMS. 
The Simulation and EMS then calculate the component models’ results with significantly 
less computational effort.

Discussion
Current research suggests a gap regarding modularity, scalability, and flexibility of sched-
uling approaches for ES. Additionally, a more straightforward application of scheduling 
approaches to actual use cases is desired.

Novel OS approaches these gaps by implementing an adapter architecture to separate 
clients, evaluation logic, and optimization algorithm. OS provides data interfaces for 
the evaluation logic of candidate solutions from optimization algorithms. The interfaces 
are exemplary filled with rudimentary data models, boundary conditions, and topology 
information from ESs. Two optimization algorithms and one client are connected to one 
instance of OS in an EH simulation test case. The test case provides insights into which 
aspects of flexibility, modularity, scalability, and implementation to actual use cases can 
be fulfilled.

The presented architecture and implementation increase the modularity of scheduling 
in ES by separating data management on the client side, generating candidate solutions 
from optimization algorithms, and evaluating methods through the consequent imple-
mentation of data interfaces. Separated parts thereby increase independence and enable 
separate development.

The presented data interfaces allow the modular design of the evaluation logic. The three 
evaluation functions rely solely on data interfaces. Development and implementation of 

Fig. 9  Results of the optimization for a period of 7 days
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evaluation functions are independent of clients or optimization service data. Only when 
changing the structure of the data interfaces the modules have to be adjusted. The inter-
faces for implementing optimization algorithms through adapters help quickly implement 
different optimization algorithms for different optimization tasks. The presented architec-
ture provides many possible applications, especially in comparing different approaches. 
Modular design facilitates the comparison of different approaches.

The implemented use case showed the separation of computational resources between 
the three instances, allowing the distribution of computational expenses on different 
machines. The evaluation of candidate solutions has shown to be the computationally most 
intensive part of the presented optimization problem. OS’s architecture successfully decou-
pled client, OS, and optimization algorithms, thereby increasing the system’s scalability.

OS communicates the optimization problem to multiple optimization algorithms, 
thereby demonstrating flexibility regarding optimization algorithms. Use case-specific data 
has been injected into OS, making OS a generic and flexible optimization tool. The archi-
tecture increased the flexibility of the system in the sense that changes in the simulation 
system only have to be implemented on the client side.

The construction of BCs in a pipeline also holds advantages. It creates independence 
between the client that supplies data and the internal library of BCs. The client can supply 
less detailed data in return for lower calculation accuracy. Modeling through BCs thereby 
becomes independent of data modeling. The independence is one key feature of the pre-
sented OS’s flexibility, as the system does not require adjustments for clients with varying 
detail of data models.

The presented architecture can move the edge of current knowledge to more modular, 
scalable, and flexible ES scheduling shown in a realistic use case scenario.

Though, the selected test case cannot cover all architectural advantages. The setup lim-
its the significance of evaluating the stated property of flexibility. OS received jobs from 
one single client that represented optimization problems of one single type of scenario. 
The stated increase in flexibility due to the ability to connect multiple clients with vary-
ing optimization problems can not be confirmed nor refuted. Similarly, implementing one 
OS instance allows no further conclusions regarding the client’s flexibility to split optimiza-
tion problems onto multiple OS instances. A test case combining clients with more diverse 
optimization problems, numerous instances of OS, and more advanced optimization algo-
rithms is an extensive exercise left for ongoing research.

Additionally, to architectural limitations, the implemented facility logic is still elementary 
though functioning. This especially applies to the topological information regarding con-
nections of different entities. The topological model is sufficient to represent the presented 
use case but has to be improved to apply to more diverse use cases. Apart from topology, 
the level of detail of data modeling and BCs was kept low for the proof of concept and 
might limit the accuracy of results. Especially under higher time resolution of the optimiza-
tion, more detailed modeling might become noticeable or even necessary.

Conclusions
The presented paper first derives the necessity for an OS’s flexible, modular, and scal-
able architecture from the literature. OS implements an adapter pattern that generi-
cally mediates between clients and optimization algorithms. Domain-specific logic 
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evaluates candidate solutions and solves the client’s optimization problems. Domain 
knowledge of ESs fills the presented architecture exemplary. A co-simulation scenario 
based on real-world scenario data from near Karlsruhe, Germany, implements OS 
for evaluation purposes. An EMS inside the co-simulation acts as a client, while the 
GLEAM, an exemplary metaheuristic evolutionary algorithm, acts as an optimization 
algorithm. The benefits and limitations are motivated based on the proof of concept 
implementation and conceptual work. The presented paper concludes with a brief 
outlook on future work and thoughts on overcoming current limitations.

Further research focuses on the implementation of topologies into the presented 
architecture. The literature presents different methods, but the most fitting must 
be identified and implemented. The additional implementation work focuses on the 
domain-specific modeling of the entity data class and BC. Both offer the potential to 
increase the level of detail and standardization.

The presented architecture can separate tasks in the ES scheduling into parts of 
different computational expenses. One improvement lies in a concept and imple-
mentation to efficiently manage resources of OS and optimization algorithms. Auto-
mated parallelization of computationally expensive parts is one promising approach 
in resource management. Presented OS receives an optimization problem from the 
client before initializing an optimization algorithm and holds all information for 
meta-optimization. Future implementations of OS could select a fitting optimization 
algorithm for the presented optimization problem to enhance optimization efficiency 
greatly.

Furthermore, as part of developing the presented architecture, a comparison of dif-
ferent optimization algorithms for (real) case ES scheduling will be provided. A prom-
ising research topic also explores the need for detailed modeling through extensive 
sets of BCs. The presented use case utilized merely five boundary conditions but still 
resulted in approximations close enough to schedule EH facilities successfully. Dif-
ferent sets of BCs can be easily compared with the presented architecture to research 
what detail level of modeling is sufficient for different use cases. Last, the setup allows 
optimizing problems from different domains, like a combination of operating and 
planning optimization. The generic structure should allow utilizing OS for different 
optimization problems.
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